JP5676870B2 - Aluminum alloy plate for can body having excellent redrawability and method for producing the same - Google Patents

Aluminum alloy plate for can body having excellent redrawability and method for producing the same Download PDF

Info

Publication number
JP5676870B2
JP5676870B2 JP2009238351A JP2009238351A JP5676870B2 JP 5676870 B2 JP5676870 B2 JP 5676870B2 JP 2009238351 A JP2009238351 A JP 2009238351A JP 2009238351 A JP2009238351 A JP 2009238351A JP 5676870 B2 JP5676870 B2 JP 5676870B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy plate
diameter
redrawability
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009238351A
Other languages
Japanese (ja)
Other versions
JP2011084775A (en
Inventor
石田 隆史
隆史 石田
齊藤 洋
洋 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2009238351A priority Critical patent/JP5676870B2/en
Publication of JP2011084775A publication Critical patent/JP2011084775A/en
Application granted granted Critical
Publication of JP5676870B2 publication Critical patent/JP5676870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

本発明は、深絞りと再絞りによって缶胴が形成される缶胴用として好適なアルミニウム合金板およびその製造方法に関するものである。   The present invention relates to an aluminum alloy plate suitable for a can body in which a can body is formed by deep drawing and redrawing, and a method for manufacturing the same.

一般に缶ボディとしては、その開口端部に缶蓋が巻締められる缶や、開口端部にキャップが螺着されるボトル缶等があり、飲料等の内容物が充填、密封され、市場において流通している。このような缶ボディは、従来、JIS3004(AA3004)またはJIS3104(AA3104)のAl合金からなる板材に絞り加工およびしごき加工を施すことによって行われるDI(Draw-Ironing)加工により形成されている。   In general, the can body includes a can with a can lid wound around its open end and a bottle can with a cap screwed into its open end, filled with beverages and other contents, and distributed in the market. doing. Such a can body is conventionally formed by DI (Draw-Ironing) processing which is performed by drawing and ironing a plate material made of an Al alloy of JIS3004 (AA3004) or JIS3104 (AA3104).

例えば図1に示す如く、板材を打ち抜いて円盤状のブランク材Wを形成し、このブランク材Wをカッピングプレスによって絞り加工することにより底の浅いカップ状体W1に成形する。次にDI加工装置によって、カップ状体W1に再絞りしごき加工および張り出し加工によるドーム成形を施して有底円筒状体W2を形成する。このDI加工装置による再絞り加工は、カップ状体W1をパンチスリーブと再絞りダイとの間に配置し加工することで所定のカップ径とした後、複数のアイアニング・ダイを順次通過させることで徐々にしごき加工し、カップ状体の側壁をしごいて伸張させる。このしごき加工が終了した有底筒状体W2は、加工装置のパンチスリーブが更に前方に押し出て底部をボトム成形金型に押圧することにより、底部に、例えばドーム部12aを有した缶状体15を得ることができる。 For example, as shown in FIG. 1, by punching a plate material to form a disk-shaped blank W, shaping the blank material W into a cup-shaped body W1 shallow bottom by deep drawing by cupping press. Next, the DI processing apparatus performs dome forming by redrawing and ironing and overhanging the cup-shaped body W1 to form a bottomed cylindrical body W2. The redrawing process by this DI processing apparatus is performed by arranging a cup- shaped body W1 between a punch sleeve and a redrawing die to obtain a predetermined cup diameter, and then sequentially passing a plurality of ironing dies. Gradually squeeze and squeeze and stretch the side wall of the cup. The bottomed cylindrical body W2 that has been subjected to the ironing process has a can-like shape having, for example, a dome portion 12a at the bottom when the punch sleeve of the processing apparatus pushes further forward and presses the bottom against the bottom molding die. The body 15 can be obtained.

即ち、図2に詳細に示す如く、缶状体15の底部12の中央側に、胴部11の缶軸方向に胴部11の内側に向けて凹むドーム部12aを形成するとともに、このドーム部12aの外周縁部に胴部11の缶軸方向における外側に向けて突出する環状凸部12cを形成する。そして、この環状凸部12cの先端部分に接地部12bを形成し、この接地部12bを介して缶状体15が接地面L上において正立姿勢をとるようにされている。   That is, as shown in detail in FIG. 2, a dome portion 12 a that is recessed toward the inside of the trunk portion 11 in the can axis direction of the trunk portion 11 is formed on the center side of the bottom portion 12 of the can-like body 15. An annular convex portion 12c is formed on the outer peripheral edge portion of 12a so as to protrude outward in the can axis direction of the body portion 11. And the grounding part 12b is formed in the front-end | tip part of this cyclic | annular convex part 12c, and the can-like body 15 takes the erect posture on the grounding surface L via this grounding part 12b.

この種の飲料缶において、しごき加工性を損なうことなく低コストで缶底接地部の小径化に対応し得る缶胴用アルミニウム合金板として、以下の特許文献1に記載の如く、Mg0.8〜1.4wt%、Mn0.7〜1.3wt%、Fe0.2〜0.5wt%、Si0.1〜0.5wt%、Cu0.1〜0.3wt%、Ti0.005〜0.05wt%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金板であって、引張強さと伸び率を特定の範囲内にあるようにした缶胴用アルミニウム合金板が提案されている。   In this type of beverage can, as described in the following Patent Document 1, as an aluminum alloy plate for a can body that can cope with a reduction in diameter of the bottom surface of the can bottom without impairing ironing workability, 1.4 wt%, Mn 0.7 to 1.3 wt%, Fe 0.2 to 0.5 wt%, Si 0.1 to 0.5 wt%, Cu 0.1 to 0.3 wt%, Ti 0.005 to 0.05 wt% There has been proposed an aluminum alloy plate for a can body, which is an aluminum alloy plate containing Al and inevitable impurities, the balance of which is within a specific range of tensile strength and elongation.

特開2001−262261号公報JP 2001-262261 A

ところで、この種の飲料缶には、更なる薄肉軽量化が望まれており、薄肉軽量化を達成するためには、飲料缶において缶底部の耐圧強度の確保が必要となる。これを達成する方法は大きく分けて2種類考えられ、そのうちの1つの方法は材料強度を高くする方法であり、もう1つの方法は飲料缶の缶底の形状を工夫する方法である。   By the way, further reduction in thickness and weight is desired for this type of beverage can, and in order to achieve reduction in thickness and weight, it is necessary to ensure the pressure resistance of the bottom of the can in the beverage can. There are roughly two methods for achieving this, one of which is a method for increasing the material strength, and the other is a method for devising the shape of the bottom of the beverage can.

後者の方法には、飲料缶の接地部分の径の小径化や接地アール部(図2に示す構造の場合、接地部12b)の小径化が有効であると考えられるが、これらを実施すると再絞り成形時に缶底部での破断が生じ易くなる問題がある。即ち、再絞り成形時にポンチにより缶底部を加工中に缶底が抜けて破れてしまうおそれがある。
また、飲料缶の軽量化やデザイン性の面から、缶高さと缶胴比を従来の飲料缶より大きくしたいとの要求もある。従来の製造方法では、このカップ径/接地径(接地部12bが描く円の径)=1.7、カップ径/缶胴径=1.3程度が代表的であった。ここで一般的な飲料缶の缶胴成形は、2回絞り加工(深絞り+再絞り)で実施されており、缶高さと缶胴径の比を大きくするためには、再絞り比を大きくする必要がある。従ってこの場合も再絞り成形時に缶底での破断が発生し易くなる問題がある。
更に、従来の缶に比べて缶胴を細くした細長い缶を新規デザインの要望などに応じて作成する場合、上記の絞り比がどうしても大きくならざるを得ない問題がある。
For the latter method, it is considered effective to reduce the diameter of the ground contact portion of the beverage can and to reduce the diameter of the grounding radius portion (in the case of the structure shown in FIG. 2, the ground contact portion 12b). There is a problem that breakage at the bottom of the can easily occurs during the drawing. That is, there is a possibility that the can bottom may come off and be broken during processing of the can bottom by punching at the time of redrawing.
In addition, from the viewpoint of weight reduction and design of beverage cans, there is also a demand to make the can height and can body ratio larger than those of conventional beverage cans. In the conventional manufacturing method, the cup diameter / ground diameter (the diameter of the circle drawn by the ground contact portion 12b) = 1.7 and the cup diameter / can body diameter = 1.3 are representative. Here, the can body molding of general beverage cans is carried out by twice drawing (deep drawing + redrawing). To increase the ratio between the can height and the can body diameter, the redrawing ratio is increased. There is a need to. Therefore, also in this case, there is a problem that breakage at the bottom of the can easily occurs during redrawing.
Furthermore, when an elongated can whose can body is thinner than a conventional can is produced in response to a demand for a new design, there is a problem that the above-described aperture ratio must be increased.

また、従来の缶を更に薄肉化する場合、問題点が2つ考えられる。1つ目の問題点は、缶底部の板厚が薄くなることによる缶強度不足である。ただし、この問題点は先にも記載の如く缶底形状を工夫することで対応は可能となる。2つ目の問題点は、F(フランジ)/W(ウォール)厚の薄肉化が限界の場合のメタル量の不足である。この場合、ブランク径を大きくしてメタル量を確保する必要があるため、必然的にカップ径も大きくならざるを得ない。通常缶とボトル缶とでカップ径/缶胴径が異なるのも、ボトル缶の方がブランク径が大きいことによる。即ち、更なる薄肉化を行う必要が生じてブランク径を大きくしようとした場合に従来材料では対応できない問題がある。   In addition, when the conventional can is further thinned, there are two problems. The first problem is a lack of can strength due to the thin plate thickness at the bottom of the can. However, this problem can be dealt with by devising the shape of the bottom of the can as described above. The second problem is an insufficient amount of metal when thinning the F (flange) / W (wall) thickness is the limit. In this case, since it is necessary to increase the blank diameter to ensure the amount of metal, the cup diameter inevitably increases. The reason why the cup diameter / can body diameter is different between the normal can and the bottle can is that the bottle can has a larger blank diameter. That is, there is a problem that conventional materials cannot cope with the necessity of further thinning and increasing the blank diameter.

そこで本発明者は、上述の再絞り性を向上させるためには、従来材料よりも、引張強さと耐力との差が大きく、伸び率が高い材料であって、しかも、缶底部の強度を確保するために必要最低限の耐力を有する材料の提供が有効であると考えた。
また、そのようなアルミニウム合金板を製造するために、この種のアルミニウム合金板の製造方法について研究したところ、中間焼鈍として連続焼鈍を用い、最終冷間圧延後に所定の条件で仕上焼鈍を行うことで析出強化と回復の相互効果により、従来の材料に比べて引張強さと耐力との差異が大きく、伸び率が高く、再絞り性に優れた材料を開発できることを知見し、本願発明に到達した。
Therefore, in order to improve the above-described redrawability, the present inventor is a material having a larger difference between tensile strength and yield strength and higher elongation than the conventional material, and further ensuring the strength of the bottom of the can. Therefore, it was considered effective to provide a material having the minimum proof stress.
In addition, in order to manufacture such an aluminum alloy plate, research was conducted on a method for manufacturing this type of aluminum alloy plate, and continuous annealing was used as intermediate annealing, and finish annealing was performed under predetermined conditions after final cold rolling. As a result of the mutual effect of precipitation strengthening and recovery, it was found that the difference between the tensile strength and the proof stress was larger than that of the conventional material, the elongation was high, and the material excellent in redrawability could be developed, and the present invention was reached. .

本発明は以上の背景に基づきなされたもので、飲料缶の薄肉軽量化を更に推し進めることができるとともに、軽量化やデザイン性の面で缶高さと缶胴径の比を従来のものより大きくしても再絞り成形時に缶底での破断が生じない再絞り成形性に優れた缶胴用アルミニウム合金板の提供と、その製造方法の提供を目的とする。   The present invention has been made on the basis of the above background, and can further reduce the thickness and weight of beverage cans and increase the ratio between the can height and the can body diameter from the conventional one in terms of weight reduction and design. However, an object of the present invention is to provide an aluminum alloy plate for a can body that is excellent in redrawability and does not break at the bottom of the can during redrawing, and to provide a manufacturing method thereof.

本発明の再絞り成形性に優れた缶胴用アルミニウム合金板は、缶胴の底部に凸型の接地部が形成されてなり、その接地部のR径が2.0mm以下の飲料缶に用いられるアルミニウム合金板であって、前記飲料缶は、前記アルミニウム合金板をカッピング加工によりカップ状体としてからDI加工により有底円筒状体とし、金型による成形加工により缶胴の底部に凸型の接地部が形成され、カップ径と接地径の比が1.94以上2.5以下、かつカップ径と缶胴径の比が1.40以上1.8以下の飲料缶であり、質量%でSi:0.1〜0.5%、Fe:0.3〜0.7%、Cu:0.05〜0.5%、Mn:0.5〜1.5%、Mg:0.4〜1.5%、Cr:0.001〜0.05%、Zn:0.05〜0.5%、Ti:0.001〜0.05%を含有し、残部が不可避不純物を含み、スラブ鋳造と熱間圧延と冷間圧延により得られ、引張強さが307MPa以下であり、引張強さと耐力の差が36MPa以上であり、かつ伸び率が6%以上であり、AB耐力が240MPa以上であることを特徴とする。 The aluminum alloy plate for can bodies excellent in redrawability of the present invention is used for beverage cans having a convex grounding portion formed at the bottom of the can body, and the R diameter of the grounding portion being 2.0 mm or less. The beverage can has a cup-shaped body by cupping and then a bottomed cylindrical body by DI processing, and a convex shape at the bottom of the can body by molding with a mold. A beverage can having a grounding portion, a ratio of the cup diameter to the ground diameter of 1.94 to 2.5, and a ratio of the cup diameter to the can body diameter of 1.40 to 1.8, in mass%. Si: 0.1-0.5%, Fe: 0.3-0.7%, Cu: 0.05-0.5%, Mn: 0.5-1.5%, Mg: 0.4- 1.5%, Cr: 0.001-0.05%, Zn: 0.05-0.5%, Ti: 0.001-0. Containing 5%, include balance inevitable impurities, obtained by slab casting and hot rolling and cold rolling, the tensile strength is not more than 307MPa, and the difference between the tensile strength and yield strength is 36 MPa or more, and The elongation is 6% or more, and the AB yield strength is 240 MPa or more.

本発明の再絞り成形性に優れた缶胴用アルミニウム合金板において、ベーキング後の伸び率が7.1%以上であることが好ましい。
本発明の再絞り成形性に優れた缶胴用アルミニウム合金板において、前記飲料缶は、カップ径と接地径の比が1.94以上2.23以下、かつカップ径と缶胴径の比が1.44以上1.67以下の飲料缶であることを特徴とする。
本発明の再絞り成形性に優れた缶胴用アルミニウム合金板において、前記飲料缶は、ベーキング後の座屈強度が1735N以上1774N以下、ベーキング後の耐圧強度が746kPa以上760kPa以下であることを特徴とする。
本発明の再絞り成形性に優れた缶胴用アルミニウム合金板は、口径が34mm以上のボトル缶用であることを特徴とする。
In the aluminum alloy plate for can bodies excellent in redrawability of the present invention, the elongation after baking is preferably 7.1% or more.
In the aluminum alloy plate for can bodies excellent in redrawability of the present invention, the beverage can has a ratio of the cup diameter to the ground diameter of 1.94 to 2.23, and the ratio of the cup diameter to the can body diameter. It is a beverage can of 1.44 or more and 1.67 or less.
In the aluminum alloy plate for a can body having excellent redrawability according to the present invention, the beverage can has a buckling strength after baking of 1735N or more and 1774N or less and a pressure strength after baking of 746 kPa or more and 760 kPa or less. And
The aluminum alloy plate for can bodies excellent in redrawability of the present invention is characterized by being for bottle cans having a diameter of 34 mm or more.

本発明は先に記載の再絞り成形性に優れた缶胴用アルミニウム合金板を製造するに際し、鋳造で得たスラブに対し、熱間圧延、冷間圧延によって中間板厚まで加工されたアルミニウム合金板に、加熱速度10〜200℃/秒、保持温度500〜570℃、保持時間1〜30秒、冷却速度10〜200℃/秒の連続焼鈍を施し、次いで圧延率45〜80%で最終板厚まで最終冷間圧延を行った後、保持温度120〜180℃に30分以上保持する最終熱処理を施すことを特徴とする。
本発明は先に記載の再絞り成形性に優れた缶胴用アルミニウム合金板を製造するに際し、鋳造で得たスラブに対し、熱間圧延、冷間圧延によって中間板厚まで加工されたアルミニウム合金板に、加熱速度10〜200℃/秒、保持温度500〜570℃、保持時間1〜30秒、冷却速度10〜200℃/秒の連続焼鈍を施し、次いで圧延率45〜80%で最終板厚まで最終冷間圧延を行った後、120℃以上に30分以上保持する状態を確保する冷却を行うことを特徴とする。
The present invention provides an aluminum alloy processed to the intermediate sheet thickness by hot rolling or cold rolling on the slab obtained by casting when producing the aluminum alloy sheet for can bodies excellent in the redrawability described above. The plate is subjected to continuous annealing at a heating rate of 10 to 200 ° C./second, a holding temperature of 500 to 570 ° C., a holding time of 1 to 30 seconds, and a cooling rate of 10 to 200 ° C./second, and then the final plate at a rolling rate of 45 to 80%. After performing the final cold rolling to a thickness, a final heat treatment is performed by holding at a holding temperature of 120 to 180 ° C. for 30 minutes or more.
The present invention provides an aluminum alloy processed to the intermediate sheet thickness by hot rolling or cold rolling on the slab obtained by casting when producing the aluminum alloy sheet for can bodies excellent in the redrawability described above. The plate is subjected to continuous annealing at a heating rate of 10 to 200 ° C./second, a holding temperature of 500 to 570 ° C., a holding time of 1 to 30 seconds, and a cooling rate of 10 to 200 ° C./second, and then the final plate at a rolling rate of 45 to 80%. After performing the final cold rolling to a thickness, cooling is performed to ensure a state of maintaining at 120 ° C. or higher for 30 minutes or longer.

本発明によれば、飲料缶の薄肉軽量化を更に推し進めることができるとともに、軽量化やデザイン性の面で缶高さと缶胴径の比を従来のものより大きくしても再絞り成形時に缶底での破断が生じない再絞り成形性に優れた缶胴用アルミニウム合金板を提供することができる。
本発明の製造方法によれば、中間焼鈍として連続焼鈍を用い、最終冷間圧延後に所定の温度域で所定時間以上保持する仕上焼鈍となる熱処理を行うか、あるいは、最終冷間圧延後に所定温度域に所定時間保持する冷却を行うことで析出強化と回復の相互効果により、従来の材料に比べて引張強さと耐力との差異が大きく、伸び率が高く、再絞り性に優れた缶胴用アルミニウム合金板を製造することができる。
According to the present invention, it is possible to further reduce the thickness and weight of a beverage can, and at the time of redrawing even if the ratio between the can height and the can body diameter is larger than the conventional one in terms of weight reduction and design. It is possible to provide an aluminum alloy plate for a can body that is excellent in redrawability without causing breakage at the bottom.
According to the production method of the present invention, continuous annealing is used as the intermediate annealing, and heat treatment is performed to finish annealing that is retained for a predetermined time in a predetermined temperature range after the final cold rolling, or a predetermined temperature after the final cold rolling. Due to the mutual effect of precipitation strengthening and recovery by cooling for a predetermined time in the zone, the difference between tensile strength and proof stress is larger than that of conventional materials, the elongation is high, and the redrawability is excellent. Aluminum alloy plates can be manufactured.

アルミニウム合金板材から有底筒状体を形成するまでの一般工程を説明する工程説明図。Process explanatory drawing explaining the general process until it forms a bottomed cylindrical body from an aluminum alloy plate material. 図1に示す有底筒状体の環状凸部を示す断面図。Sectional drawing which shows the cyclic | annular convex part of the bottomed cylindrical body shown in FIG.

以下、本発明の具体的な実施形態について説明する。
本発明の一実施形態に係る缶胴用アルミニウム合金板においてその組成は、質量%でSi:0.1〜0.5%、Fe:0.3〜0.7%、Cu:0.05〜0.5%、Mn:0.5〜1.5%、Mg:0.4〜1.5%、Cr:0.001〜0.05%、Zn:0.05〜0.5%、Ti:0.001〜0.05%を含有し、残部が不可避不純物とされている。なお、本願明細書において特に指定しない限り組成比の上限値と下限値を〜で結んで表示する場合、下限値以上、上限値以下を示すものとする。よって、Si:0.1〜0.5%と表記した場合は、Si含有量が0.1質量%以上、0.5質量%以下の範囲を示す。
Hereinafter, specific embodiments of the present invention will be described.
In the aluminum alloy plate for a can body according to an embodiment of the present invention, the composition is, in mass%, Si: 0.1 to 0.5%, Fe: 0.3 to 0.7%, Cu: 0.05 to 0.5%, Mn: 0.5-1.5%, Mg: 0.4-1.5%, Cr: 0.001-0.05%, Zn: 0.05-0.5%, Ti : Containing 0.001 to 0.05%, the balance being inevitable impurities. Unless otherwise specified in the present specification, when the upper limit value and the lower limit value of the composition ratio are connected with “˜”, the lower limit value and the upper limit value are indicated. Therefore, when it describes with Si: 0.1-0.5%, Si content shows the range of 0.1 mass% or more and 0.5 mass% or less.

先ず、本発明で使用するアルミニウム合金の組成限定理由について説明する。Siは同時に含有されるMgとともに化合物を形成し、固溶硬化、析出硬化、分散硬化作用を及ぼすほか、Al、Mn、Feなどとも金属間化合物を形成して、しごき成形時にダイスに対する焼き付きを防止する効果を発揮する。Si含有量が0.1%未満では、所望の潤滑性能を発揮できず、ダイスへの焼き付きを防止するのに不十分である。一方、Si含有量が0.5%を越えると脆くなり加工性が劣化する。従ってSiの適正含有量は、0.1〜0.5%と設定する。
Fe及びCrは結晶の微細化と、しごき成形加工時にダイスに対する焼き付きを防止する効果を発揮する。Feの場合には含有量が0.3%未満では所望の効果が得られず、一方、Fe含有量が0.7%を越えると脆くなり加工性が劣化する。従ってFeの適正含有量は、0.3〜0.7%と設定する。Crの場合には、Cr含有量が0.001%未満では所望の効果が得られず、一方、Cr含有量が0.05%を越えると脆くなり加工性が劣化する。従ってCrの適正含有量は、0.001〜0.05%とする。
CuはMgと金属間化合物を形成し、固溶硬化、析出硬化、分散硬化作用を及ぼす。Cu含有量が0.05%未満ではこれらの効果が乏しく、またCu含有量が0.5%を越えると加工性が劣化する。従って、Cuの適正な含有量は0.05〜0.5%に設定する。
First, the reasons for limiting the composition of the aluminum alloy used in the present invention will be described. Si forms a compound with Mg contained at the same time, and acts as a solid solution hardening, precipitation hardening, dispersion hardening action, and also forms an intermetallic compound with Al, Mn, Fe, etc., and prevents seizure to the die during ironing. Demonstrate the effect. If the Si content is less than 0.1%, the desired lubricating performance cannot be exhibited, which is insufficient for preventing seizure on the die. On the other hand, if the Si content exceeds 0.5%, it becomes brittle and the workability deteriorates. Therefore, the appropriate content of Si is set to 0.1 to 0.5%.
Fe and Cr exhibit the effect of miniaturizing crystals and preventing seizure on the die during ironing. In the case of Fe, if the content is less than 0.3%, the desired effect cannot be obtained. On the other hand, if the Fe content exceeds 0.7%, it becomes brittle and the workability deteriorates. Therefore, the proper content of Fe is set to 0.3 to 0.7%. In the case of Cr, if the Cr content is less than 0.001%, the desired effect cannot be obtained. On the other hand, if the Cr content exceeds 0.05%, it becomes brittle and the workability deteriorates. Therefore, the proper content of Cr is set to 0.001 to 0.05%.
Cu forms an intermetallic compound with Mg and exerts solid solution hardening, precipitation hardening, and dispersion hardening. If the Cu content is less than 0.05%, these effects are poor, and if the Cu content exceeds 0.5%, the workability deteriorates. Therefore, the appropriate content of Cu is set to 0.05 to 0.5%.

MnはFe、Si、Alとともに金属間化合物を形成し、晶出相及び分散相となって分散効果作用を発揮するとともに、しごき成型加工時にダイスに対する焼き付きを防止する効果を発揮する。Mn含有量が0.5%未満では、所望の硬化特性が得られず、一方、Mn含有量が1.5%を越えると脆くなり加工性が劣化する。従ってMnの適正含有量は、0.5〜1.5%と設定する。Mgは固溶体強化作用を有し、圧延加工時に加工硬化性を高めるとともに、前記SiやCuと共存することで分散硬化と析出硬化作用を発揮する。Mg含有量が0.4%未満ではこれらの作用効果が十分発揮されず、またMg含有量が1.5%を越えると加工性が劣化し、特にカール加工性が低下する。従って、Mgの適正含有量は0.4〜1.5%に設定する。   Mn forms an intermetallic compound together with Fe, Si, and Al, and acts as a crystallization phase and a dispersed phase to exhibit a dispersion effect and to prevent seizure against a die during ironing processing. If the Mn content is less than 0.5%, desired curing characteristics cannot be obtained. On the other hand, if the Mn content exceeds 1.5%, it becomes brittle and the workability deteriorates. Therefore, the appropriate content of Mn is set to 0.5 to 1.5%. Mg has a solid solution strengthening action, enhances work hardenability during rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. When the Mg content is less than 0.4%, these functions and effects are not sufficiently exhibited, and when the Mg content exceeds 1.5%, the workability deteriorates, and particularly the curl workability deteriorates. Therefore, the appropriate content of Mg is set to 0.4 to 1.5%.

Znは析出するMg、Si、Cuの金属間化合物を微細化する作用を有する。Zn含有量が0.05%未満では効果が不十分で、Zn含有量が0.5%を越えると加工性と耐食性が劣化する。従ってZnの適正な含有量は0.05〜0.5%とする。
Tiは結晶粒を微細化し、加工性を改善する効果を発揮する。Ti含有量が0.001%未満ではこれらの効果が発揮されず、また0.05%を越えると粗大な化合物ができて、加工性が劣化する。従って、Tiの適正な含有量は0.001〜0.05%とする。
Zn has the effect of refining the precipitated intermetallic compounds of Mg, Si, and Cu. If the Zn content is less than 0.05%, the effect is insufficient, and if the Zn content exceeds 0.5%, workability and corrosion resistance deteriorate. Therefore, the proper content of Zn is set to 0.05 to 0.5%.
Ti exhibits the effect of refining crystal grains and improving workability. If the Ti content is less than 0.001%, these effects are not exhibited, and if it exceeds 0.05%, a coarse compound is formed and the workability deteriorates. Therefore, the proper Ti content is 0.001 to 0.05%.

以上説明の組成比のアルミニウム合金板において、飲料缶とするための再絞り性を向上させるためには、従来材料よりも、引張強さと耐力との差が大きく、伸び率が高い材料であって、しかも、缶底部の強度を確保するために必要最低限の耐力を有する材料の提供が有効である。
また、そのようなアルミニウム合金板を製造するために、この種のアルミニウム合金板の製造方法において、中間焼鈍として連続焼鈍を用い、最終冷間圧延後に所定の条件で仕上焼鈍を行うことで析出強化と回復の相互効果により、従来の材料に比べて引張強さと耐力との差異が大きく、伸び率が高く、再絞り性に優れた材料を提供することができる。
即ち、前記組成比のアルミニウム合金板を製造するには、溶製したスラブを熱間圧延加工し、熱間圧延仕上板厚を例えば2.6mmとしてから、中間冷間圧延加工し、中間焼鈍、最終冷間圧延を経て最終熱処理を行って缶用としての板厚、例えば、0.35mmの板厚とすることが好ましい。
In the aluminum alloy plate having the composition ratio described above, in order to improve the redrawability for making a beverage can, the difference between the tensile strength and the proof stress is larger than that of the conventional material, and the material has a high elongation rate. In addition, it is effective to provide a material having a minimum proof strength in order to secure the strength of the bottom of the can.
In addition, in order to produce such an aluminum alloy plate, in this type of aluminum alloy plate production method, continuous annealing is used as intermediate annealing, and precipitation annealing is performed by performing final annealing under predetermined conditions after final cold rolling. Due to the mutual effect of the recovery, it is possible to provide a material having a large difference in tensile strength and proof stress as compared with conventional materials, a high elongation rate, and excellent redrawability.
That is, in order to produce an aluminum alloy plate having the above composition ratio, hot slab processing is performed on the molten slab, the hot rolled finish plate thickness is set to, for example, 2.6 mm, intermediate cold rolling processing, intermediate annealing, It is preferable that the final heat treatment is performed after the final cold rolling to obtain a plate thickness for cans, for example, a plate thickness of 0.35 mm.

前述の熱間圧延仕上を行う場合の仕上温度は280℃〜480℃の範囲であることが好ましい。
前記中間冷間圧延を行う場合の圧延率は40〜90%の範囲であることが好ましい。
前記中間焼鈍を行う場合の温度は500〜570℃の範囲、1〜30秒の範囲であることが好ましい。
前記最終冷間圧延を行う場合の圧延率は45〜80%の範囲、最終冷間圧延仕上温度は140℃以上であることが好ましく、この場合に120℃以上に30分以上保持する状態を確保する冷却を行うことが好ましい。
また、前記最終冷間圧延を行った後、保持温度120〜180℃に30分以上保持する最終熱処理を施すことが好ましい。この最終熱処理の際の保持温度範囲を前記範囲から外れるように120℃よりも低くした場合、十分な底抜け性の改善が見られない。
また、180℃を越える温度で最終熱処理を行うと、底抜け性の改善効果はそれ以上に増加せず、場合によっては若干減少傾向を示し、また、消費エネルギー的にも無駄が多くなる。
It is preferable that the finishing temperature in the case of performing the above hot rolling finish is in the range of 280 ° C to 480 ° C.
The rolling rate in the case of performing the intermediate cold rolling is preferably in the range of 40 to 90%.
The temperature for the intermediate annealing is preferably in the range of 500 to 570 ° C. and in the range of 1 to 30 seconds.
When the final cold rolling is performed, the rolling rate is preferably in the range of 45 to 80%, and the final cold rolling finishing temperature is preferably 140 ° C. or higher, and in this case, the state of maintaining at 120 ° C. or higher for 30 minutes or longer is ensured. It is preferable to perform cooling.
Moreover, after performing the said last cold rolling, it is preferable to give the last heat processing hold | maintained for 30 minutes or more at the holding temperature of 120-180 degreeC. When the holding temperature range at the time of this final heat treatment is made lower than 120 ° C. so as to be out of the above range, a sufficient improvement in bottoming out property is not observed.
Further, when the final heat treatment is performed at a temperature exceeding 180 ° C., the bottoming-out improvement effect does not increase any more, and in some cases, it tends to decrease slightly, and wasteful energy is also consumed.

以下に、本発明の具体的実施例について説明するが、本願発明はこれらの実施例に限定されるものではない。
以下の表1に示す組成比の合金スラブを溶製し、表2に示すNo.1〜No.7、No.10の試料は、熱間圧延加工により板厚2.6mmのアルミニウム合金板を作製し、このアルミニウム合金板に圧延率58%の中間冷間圧延を施し、板厚1.1mmのアルミニウム合金板を作製し、このアルミニウム合金板に連続焼鈍炉(CAL)にて以下の表2に示す温度、保持時間の条件にて中間焼鈍を行った。
この後、表2に示す圧延率、仕上温度、仕上板厚にて最終冷間圧延を行い、必要に応じて表2に示す最終熱処理を行って飲料缶用のアルミニウム合金板を得た。
表2に示すNo.1〜7、10の試料は、熱間圧延仕上温度280℃で板厚2.6mmとした試料、No.8、9の試料は、熱間圧延仕上温度320℃で板厚2.0mmとし、中間焼鈍を行わなかった試料である。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
An alloy slab having a composition ratio shown in Table 1 below is melted, and samples No. 1 to No. 7 and No. 10 shown in Table 2 are made of an aluminum alloy plate having a thickness of 2.6 mm by hot rolling. The aluminum alloy plate was subjected to intermediate cold rolling at a rolling rate of 58% to produce an aluminum alloy plate having a thickness of 1.1 mm. The aluminum alloy plate was subjected to the following Table 2 in a continuous annealing furnace (CAL). Intermediate annealing was performed under the conditions of temperature and holding time shown in FIG.
Then, the final cold rolling was performed at the rolling rate, finishing temperature, and finishing plate thickness shown in Table 2, and the final heat treatment shown in Table 2 was performed as necessary to obtain an aluminum alloy plate for beverage cans.
Samples Nos. 1 to 7 and 10 shown in Table 2 are samples with a hot rolling finishing temperature of 280 ° C. and a plate thickness of 2.6 mm, and samples Nos. 8 and 9 are plates with a hot rolling finishing temperature of 320 ° C. It is a sample having a thickness of 2.0 mm and not subjected to intermediate annealing.

これらのアルミニウム合金板試料について引張強さ(TS:MPa)、耐力(YS:MPa)、伸び(EL:%)、引張強さ−耐力(TS−YS:MPa)を測定した結果を表3に記載する。また、各アルミニウム合金板試料について、210℃で10分加熱するベーキング処理を施し、このベーキング後の引張強さ(TS:MPa)、耐力(AB耐力:YS:MPa)、伸び(EL:%)を測定した結果を表3に併記する。
表3に示す座屈強度とは、DI缶にベーキング処理(210℃10分)を施した後、缶軸方向に圧縮荷重を負荷し、缶底部(図2の底部12)が座屈した時の平均荷重(サンプル数n=10)を示し、耐圧強度とは、DI缶にベーキング処理(210℃10分)を施した後、缶胴内部にエアー圧をかけて、缶底のドーム部12a(図2参照)が反転した時の平均圧力(サンプル数n=10)を示す。
Table 3 shows the results of measurement of tensile strength (TS: MPa), proof stress (YS: MPa), elongation (EL:%), and tensile strength-proof strength (TS-YS: MPa) for these aluminum alloy sheet samples. Describe. In addition, each aluminum alloy plate sample was subjected to a baking treatment of heating at 210 ° C. for 10 minutes, and the tensile strength (TS: MPa), proof strength (AB proof strength: YS: MPa), and elongation (EL:%) after baking. The results of measuring are also shown in Table 3.
The buckling strength shown in Table 3 is when the DI can is baked (210 ° C for 10 minutes) and then a compressive load is applied in the direction of the can axis, and the bottom of the can (bottom 12 in FIG. 2) buckles. The average load (number of samples n = 10) is shown. The pressure strength is the dome part 12a at the bottom of the can by applying air pressure to the inside of the can body after baking the DI can (210 ° C. for 10 minutes). The average pressure (number of samples n = 10) when (see FIG. 2) is reversed is shown.

Figure 0005676870
Figure 0005676870

Figure 0005676870
Figure 0005676870

Figure 0005676870
Figure 0005676870

また、表2に示す条件で製造されたNo.1〜10のアルミニウム合金板試料について、先に図1を元に説明したカッピング加工およびDI加工を施し、そのDI加工時の底抜け性について調査した結果を表4に示す。
表4に示す結果は、DI加工を施す場合に、図1に示すカップ状体W1とした場合のカップ径(外径)と、図2に示す缶状体15とした場合の缶胴径(外径)と、接地部の径(接地円の直径)と、カップ径/接地径と、カップ径/缶胴径と、缶高さ/缶胴径と、接地部R径(接地部アール径)について設定条件を実施条件として以下の表5に記載した条件の場合に得られた結果である。
Moreover, about the aluminum alloy plate sample of No. 1-10 manufactured on the conditions shown in Table 2, the cupping process and DI process which were demonstrated previously based on FIG. 1 were performed, and the bottoming property at the time of the DI process was investigated. The results are shown in Table 4.
The results shown in Table 4 show that when DI processing is performed, the cup diameter (outer diameter) in the case of the cup-shaped body W1 shown in FIG. 1 and the can body diameter in the case of the can-shaped body 15 shown in FIG. Outer diameter), diameter of the grounding part (diameter of grounding circle), cup diameter / grounding diameter, cup diameter / can body diameter, can height / can body diameter, grounding part R diameter (grounding part radius diameter) ) Is the result obtained in the case of the conditions described in Table 5 below with the set conditions as the implementation conditions.

Figure 0005676870
Figure 0005676870

Figure 0005676870
Figure 0005676870

表3に示す如く、No.1〜3、7〜9の試料はいずれも引張強さ−耐力(TS−YS:MPa)の値が30MPaを下回る試料であるのに対し、No.4、6の試料はいずれも引張強さ−耐力(TS−YS:MPa)の値が30MPaを越える試料である。No.4の試料にあっては、表4に示すA〜Hの全ての実施条件においていずれも底抜け性に優れ、100缶製缶して1缶も底抜けを生じない、優れた底抜け性を示した。
No.6の試料にあっては、実施条件F、Hにて若干底抜けを生じたが、その他の条件A〜E、Gにおいて100缶製缶して1缶も底抜けを生じない、優れた底抜け性を示した。
As shown in Table 3, the samples Nos. 1 to 3 and 7 to 9 are samples whose tensile strength-proof stress (TS-YS: MPa) is less than 30 MPa, whereas Nos. 4 and 6 These samples are samples whose tensile strength-proof stress (TS-YS: MPa) value exceeds 30 MPa. In the sample No. 4, all of the conditions A to H shown in Table 4 are excellent in bottom-out property, and cans made of 100 cans do not cause bottom-out. It was.
In the sample of No. 6, a slight bottoming occurred in the implementation conditions F and H, but in other conditions A to E and G, 100 cans were made, and one bottom did not cause bottoming. Showed sex.

表5の実施条件Bは接地部R径を2.5mmとする実施条件であるが、このように接地部R径を大きくすると、表4に示す如くNo.1〜10のいずれの試料であっても底抜け性は良好となり、いずれの試料においても底抜け性、換言すると、再絞り成形性に問題を生じない。これは、接地部R径の値を2.5mmより小さい1.5mm、2.0mmとした場合に、再絞り成形性に大きな影響があり、接地部R径が小さい程、再絞り成形性を阻害する傾向があり、再絞り成形性に制約が生じることを意味する。   Implementation condition B in Table 5 is an implementation condition in which the diameter of the ground contact portion R is 2.5 mm. When the diameter of the ground contact portion R is increased in this way, any sample No. 1 to 10 as shown in Table 4 is obtained. However, the bottom-out property is good, and any sample does not cause a problem in bottom-out property, in other words, redrawability. This has a great influence on the redrawability when the value of the grounding portion R diameter is 1.5 mm and 2.0 mm smaller than 2.5 mm. The smaller the grounding portion R diameter, the more the redrawing formability. There is a tendency to inhibit, which means that restrictions are imposed on redrawability.

しかし、先にも説明した如く、飲料缶の更なる薄肉軽量化のためには、缶底部の耐圧強度の確保が必要となるので、これを達成するための接地径の小径化、接地部R径の小径化が必要となり、このため、接地部R径を小径化しても、再絞り成形性に支障を来さないことが重要となる。
この点に鑑み、接地部R径を小さくしても、実施条件に広く対応することができる、No.4、6のアルミニウム合金板試料が有望であり、これらの試料は、表3に示す如く引張強さ−耐力(TS−YS:MPa)の値が30MPaを越える試料であり、伸びが6.0%を越える試料であり、AB耐力が240MPa以上の試料であり、缶強度における座屈強度と耐圧強度においても優れている。また、No.5のアルミニウム合金板試料は最終熱処理温度が190℃と高いために、缶強度における座屈強度と耐圧強度においてNo.4、6のアルミニウム合金板試料より若干劣る結果となった。
なお、カップ径/接地径の上限は2.5が好ましく、カップ径/缶胴径の上限は1.8が好ましい。
However, as described above, in order to further reduce the thickness and weight of the beverage can, it is necessary to ensure the pressure resistance of the bottom of the can. Therefore, it is important that the redrawability is not hindered even if the diameter of the ground contact portion R is reduced.
In view of this point, No. 4 and 6 aluminum alloy plate samples that can be widely applied to the implementation conditions even if the grounding portion R diameter is reduced are promising, and these samples are shown in Table 3. A sample with a tensile strength-proof strength (TS-YS: MPa) value exceeding 30 MPa, an elongation value exceeding 6.0%, an AB strength value of 240 MPa or more, and a buckling strength at can strength It is also excellent in pressure resistance. In addition, since the final heat treatment temperature of the No. 5 aluminum alloy plate sample was as high as 190 ° C., the buckling strength and pressure resistance of the can strength were slightly inferior to those of the No. 4 and 6 aluminum alloy plate samples.
The upper limit of the cup diameter / ground diameter is preferably 2.5, and the upper limit of the cup diameter / can barrel diameter is preferably 1.8.

次に、表2に示すアルミニウム合金板の製造条件について検討すると、No.1、6の試料は、最終熱処理を行っていない試料であるが、No.6の試料は最終冷間圧延後の冷却条件として、120℃以上の温度域を1時間維持する条件で冷却している。これに対してNo.1のアルミニウム合金板試料は、最終冷間圧延の仕上温度が110℃であり、ここから冷却しているために120℃以上の状態が保持されていない。
No.1の試料は表3に示す如く伸びが不足し、TS−YSの値が低く、再絞り成形性に劣り、座屈強度、耐圧強度とも低くなっている。これに対し、No.6の試料は、伸びが高く、TS−YSの値が高く、再絞り成形性に優れ、座屈強度、耐圧強度とも高くなっている。
Next, when the production conditions of the aluminum alloy plate shown in Table 2 are examined, the samples No. 1 and 6 are samples that have not been subjected to the final heat treatment, but the sample No. 6 is cooled after the final cold rolling. As a condition, cooling is performed under a condition that a temperature range of 120 ° C. or higher is maintained for 1 hour. On the other hand, the finishing temperature of the final cold rolling of the No. 1 aluminum alloy sheet sample is 110 ° C., and since it is cooled from here, the state of 120 ° C. or higher is not maintained.
As shown in Table 3, the No. 1 sample has insufficient elongation, has a low TS-YS value, is inferior in redrawability, and has low buckling strength and pressure strength. On the other hand, the sample No. 6 has high elongation, a high TS-YS value, excellent redrawability, and high buckling strength and pressure strength.

No.2の試料は、最終熱処理温度を150℃としたが20分しか熱処理していない試料であるが、伸びが不足し、TS−YSの値が低く、再絞り成形性が低下している。   The sample No. 2 was a sample that had a final heat treatment temperature of 150 ° C. but was heat-treated only for 20 minutes, but the elongation was insufficient, the TS-YS value was low, and the redrawability was lowered. .

No.4の試料は150℃に2時間保持する熱処理を施すことで、伸びが高く、TS−YSの値が高く、再絞り成形性に優れ、座屈強度、耐圧強度とも高くなっている。
No.7の試料は中間焼鈍を500℃未満の470℃で施した試料であるが、伸びが不足し、TS−YSの値が低く、再絞り成形性に劣り、座屈強度、耐圧強度とも低くなっている。
No.8、9の試料は中間冷間圧延と中間焼鈍を行っていない試料であるが、伸びが不足し、TS−YSの値が低く、再絞り成形性に若干劣り、座屈強度、耐圧強度とも低くなっている。
The sample of No. 4 is subjected to a heat treatment held at 150 ° C. for 2 hours, so that the elongation is high, the TS-YS value is high, the redrawability is excellent, and the buckling strength and the pressure strength are also high.
The sample of No. 7 is a sample subjected to intermediate annealing at 470 ° C. below 500 ° C., but the elongation is insufficient, the TS-YS value is low, the redrawability is inferior, and the buckling strength and the pressure strength are both low. It is low.
Samples Nos. 8 and 9 are samples that have not been subjected to intermediate cold rolling and intermediate annealing. However, the elongation is insufficient, the TS-YS value is low, the redrawability is slightly inferior, buckling strength, and pressure resistance. Both strength is low.

これらの試験結果から、前記組成比のアルミニウム合金板において、接地部のR径が2.0mm以下の飲料缶に用いられるアルミニウム合金板であって、引張強さと耐力の差が30MPa以上であり、かつ伸び率が6%以上であり、AB耐力が240MPa以上であるならば、DI加工する場合の再絞り成形性に優れることが明らかになった。   From these test results, in the aluminum alloy plate having the above composition ratio, the R diameter of the ground contact portion is an aluminum alloy plate used for beverage cans having a diameter of 2.0 mm or less, and the difference in tensile strength and proof stress is 30 MPa or more, When the elongation is 6% or more and the AB yield strength is 240 MPa or more, it has been clarified that the redrawability in DI processing is excellent.

また、前記アルミニウム合金板を製造する場合、最終冷間圧延後に120〜180℃に30分以上保持する最終熱処理を施すか、最終冷間圧延後に120℃以上の温度に30分以上維持できる冷却条件を選択することで、引張強さと耐力の差が30MPa以上であり、かつ伸び率が6%以上であり、AB耐力が240MPa以上であるアルミニウム合金板を得ることが可能となり、このアルミニウム合金板をDI加工することで、軽量化やデザイン性の面で缶高さと缶胴径の比を従来のものより大きくした飲料缶を製造しても、再絞り成形性の良好な状態で飲料缶を製造できることが明らかになった。   In addition, when producing the aluminum alloy sheet, a cooling condition that can be maintained at 120 to 180 ° C. for 30 minutes or more after the final cold rolling or maintained at a temperature of 120 ° C. or more for 30 minutes or more after the final cold rolling It is possible to obtain an aluminum alloy plate having a difference between the tensile strength and the yield strength of 30 MPa or more, an elongation of 6% or more, and an AB yield strength of 240 MPa or more. By processing DI, beverage cans can be manufactured with good redrawability even if beverage cans with a higher ratio of can height and can body diameter than conventional ones are manufactured in terms of weight reduction and design. It became clear that we could do it.

W…ブランク材、W1…カップ状体、W2…有底筒状体、11…缶胴、12…底部、12a…ドーム部、12b…接地部、12c…環状凸部、15…缶状体、L…接地面。   W ... blank material, W1 ... cup-shaped body, W2 ... bottomed cylindrical body, 11 ... can body, 12 ... bottom part, 12a ... dome part, 12b ... grounding part, 12c ... annular convex part, 15 ... can-like body, L: Ground plane.

Claims (7)

缶胴の底部に凸型の接地部が形成されてなり、その接地部のR径が2.0mm以下の飲料缶に用いられるアルミニウム合金板であって、
前記飲料缶は、前記アルミニウム合金板をカッピング加工によりカップ状体としてからDI加工により有底円筒状体とし、金型による成形加工により缶胴の底部に凸型の接地部が形成され、カップ径と接地径の比が1.85以上2.5以下、かつカップ径と缶胴径の比が1.40以上1.8以下の飲料缶であり、
質量%でSi:0.1〜0.5%、Fe:0.3〜0.7%、Cu:0.05〜0.5%、Mn:0.5〜1.5%、Mg:0.4〜1.5%、Cr:0.001〜0.05%、Zn:0.05〜0.5%、Ti:0.001〜0.05%を含有し、残部が不可避不純物を含み、スラブ鋳造と熱間圧延と冷間圧延により得られ、引張強さが307MPa以下であり、引張強さと耐力の差が36MPa以上であり、かつ伸び率が6%以上であり、AB耐力が240MPa以上であることを特徴とする再絞り成形性に優れた缶胴用アルミニウム合金板。
A convex grounding portion is formed at the bottom of the can body, and an aluminum alloy plate used for beverage cans having an R diameter of the grounding portion of 2.0 mm or less,
The beverage can has a cup-shaped body by cupping the aluminum alloy plate and then a bottomed cylindrical body by DI processing, and a convex grounding portion is formed at the bottom of the can body by molding with a mold, and the cup diameter And the ratio of the ground diameter is 1.85 or more and 2.5 or less, and the ratio of the cup diameter and can body diameter is 1.40 or more and 1.8 or less.
In mass%, Si: 0.1 to 0.5%, Fe: 0.3 to 0.7%, Cu: 0.05 to 0.5%, Mn: 0.5 to 1.5%, Mg: 0 .4 to 1.5%, Cr: 0.001 to 0.05%, Zn: 0.05 to 0.5%, Ti: 0.001 to 0.05%, the balance including inevitable impurities Obtained by slab casting, hot rolling and cold rolling, the tensile strength is 307 MPa or less, the difference between the tensile strength and the proof stress is 36 MPa or more, the elongation is 6% or more, and the AB proof stress is 240 MPa. An aluminum alloy plate for a can body excellent in redrawability, characterized by being as described above.
ベーキング後の伸び率が7.1%以上であることを特徴とする請求項1に記載の再絞り成形性に優れた缶胴用アルミニウム合金板。 The aluminum alloy plate for can bodies excellent in redrawability according to claim 1, wherein the elongation after baking is 7.1% or more. 前記飲料缶は、カップ径と接地径の比が1.94以上2.23以下、かつカップ径と缶胴径の比が1.44以上1.67以下、缶高さ/缶胴径2.1以上2.3以下の飲料缶であることを特徴とする請求項1または請求項2に記載の再絞り成形性に優れた缶胴用アルミニウム合金板。   The beverage can has a cup diameter / ground diameter ratio of 1.94 to 2.23, a cup diameter / can barrel diameter ratio of 1.44 to 1.67, a can height / can barrel diameter of 2. The aluminum alloy plate for can bodies excellent in redrawability according to claim 1 or 2, wherein the beverage can is 1 or more and 2.3 or less. 前記飲料缶のベーキング後の座屈強度が1735N以上1774N以下、ベーキング後の耐圧強度が746kPa以上760kPa以下である請求項3記載の再絞り成形性に優れた缶胴用アルミニウム合金板。 The aluminum alloy plate for can bodies excellent in redrawability according to claim 3, wherein the beverage can has a buckling strength after baking of 1735N to 1774N and a pressure strength after baking of 746kPa to 760kPa. 口径が34mm以上のボトル缶用であることを特徴とする請求項1〜4のいずれかに記載の再絞り成形性に優れた缶胴用アルミニウム合金板。   The aluminum alloy plate for can bodies excellent in redrawability according to any one of claims 1 to 4, wherein the aluminum alloy plate has excellent redrawability. 請求項1〜5のいずれかに記載の再絞り成形性に優れた缶胴用アルミニウム合金板を製造するに際し、
鋳造で得たスラブに対し、熱間圧延、冷間圧延によって中間板厚まで加工されたアルミニウム合金板に、加熱速度10〜200℃/秒、保持温度500〜570℃、保持時間1〜30秒、冷却速度10〜200℃/秒の連続焼鈍を施し、次いで圧延率45〜80%で最終板厚まで最終冷間圧延を行った後、保持温度120〜180℃に30分以上保持する最終熱処理を施すことを特徴とする缶胴用アルミニウム合金板の製造方法。
In producing an aluminum alloy plate for can bodies excellent in redrawability according to any one of claims 1 to 5,
The aluminum alloy sheet processed to the intermediate sheet thickness by hot rolling and cold rolling to the slab obtained by casting has a heating rate of 10 to 200 ° C / second, a holding temperature of 500 to 570 ° C, and a holding time of 1 to 30 seconds. The final heat treatment is performed by performing continuous annealing at a cooling rate of 10 to 200 ° C./second, and then performing final cold rolling to a final sheet thickness at a rolling rate of 45 to 80%, and then holding at a holding temperature of 120 to 180 ° C. for 30 minutes or more. The manufacturing method of the aluminum alloy plate for can bodies characterized by performing this.
請求項1〜5のいずれかに記載の再絞り成形性に優れた缶胴用アルミニウム合金板を製造するに際し、
鋳造で得たスラブに対し、熱間圧延、冷間圧延によって中間板厚まで加工されたアルミニウム合金板に、加熱速度10〜200℃/秒、保持温度500〜570℃、保持時間1〜30秒、冷却速度10〜200℃/秒の連続焼鈍を施し、次いで圧延率45〜80%で最終板厚まで最終冷間圧延を行った後、120℃以上に30分以上保持する状態を確保する冷却を行うことを特徴とする缶胴用アルミニウム合金板の製造方法。
In producing an aluminum alloy plate for can bodies excellent in redrawability according to any one of claims 1 to 5,
The aluminum alloy sheet processed to the intermediate sheet thickness by hot rolling and cold rolling to the slab obtained by casting has a heating rate of 10 to 200 ° C / second, a holding temperature of 500 to 570 ° C, and a holding time of 1 to 30 seconds. Then, after performing continuous annealing at a cooling rate of 10 to 200 ° C./second, and then performing the final cold rolling to the final sheet thickness at a rolling rate of 45 to 80%, cooling that ensures a state of maintaining at 120 ° C. or higher for 30 minutes or longer The manufacturing method of the aluminum alloy plate for can bodies characterized by performing.
JP2009238351A 2009-10-15 2009-10-15 Aluminum alloy plate for can body having excellent redrawability and method for producing the same Active JP5676870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238351A JP5676870B2 (en) 2009-10-15 2009-10-15 Aluminum alloy plate for can body having excellent redrawability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238351A JP5676870B2 (en) 2009-10-15 2009-10-15 Aluminum alloy plate for can body having excellent redrawability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011084775A JP2011084775A (en) 2011-04-28
JP5676870B2 true JP5676870B2 (en) 2015-02-25

Family

ID=44077941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238351A Active JP5676870B2 (en) 2009-10-15 2009-10-15 Aluminum alloy plate for can body having excellent redrawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5676870B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633053A1 (en) * 2014-04-30 2020-04-08 Alcoa USA Corp. Method of manufacturing an aluminum container made from aluminum sheet
KR101988146B1 (en) * 2014-12-19 2019-06-11 노벨리스 인크. Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof
JP6311206B2 (en) * 2017-04-21 2018-04-18 三菱アルミニウム株式会社 Inspection method of aluminum alloy plates for beverage can bodies with excellent surface properties
BR112022004472A2 (en) * 2019-09-10 2022-05-31 Anheuser Busch Llc Reduction of material usage and plastic deformation steps in the manufacture of aluminum containers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747803B2 (en) * 1992-02-07 1995-05-24 スカイアルミニウム株式会社 Method for manufacturing aluminum alloy hard plate with low ear rate
JPH10152762A (en) * 1996-11-21 1998-06-09 Furukawa Electric Co Ltd:The Production of hard aluminum alloy sheet excellent in di workability
JP3871462B2 (en) * 1999-02-09 2007-01-24 古河スカイ株式会社 Method for producing aluminum alloy plate for can body
JP4088257B2 (en) * 2003-01-31 2008-05-21 株式会社神戸製鋼所 Aluminum alloy plate for bottle cans
JP3748438B2 (en) * 2003-03-31 2006-02-22 株式会社神戸製鋼所 Aluminum alloy plate for packaging container and method for producing the same
JP4019084B2 (en) * 2005-03-25 2007-12-05 株式会社神戸製鋼所 Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2008057030A (en) * 2005-09-09 2008-03-13 Universal Seikan Kk Di can
JP2008057019A (en) * 2006-09-01 2008-03-13 Universal Seikan Kk Aluminum alloy sheet for drink can and container using the same
JP2008240099A (en) * 2007-03-28 2008-10-09 Kobe Steel Ltd Aluminum alloy sheet for packaging container and method for producing the same
JP2008274319A (en) * 2007-04-26 2008-11-13 Furukawa Sky Kk Method for manufacturing aluminum alloy sheet for beverage can body

Also Published As

Publication number Publication date
JP2011084775A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO2012043582A1 (en) Cold-rolled aluminum alloy sheet for bottle can
CN101268207A (en) Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet
CN106255772A (en) Steel sheet for high-strength container and manufacture method thereof
JP5676870B2 (en) Aluminum alloy plate for can body having excellent redrawability and method for producing the same
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5247994B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247995B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP5247996B2 (en) Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP3748438B2 (en) Aluminum alloy plate for packaging container and method for producing the same
CN106460106B (en) Used for Making Beverage Container Body aluminium alloy plate and its manufacturing method
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
CN105658827B (en) Cover aluminium alloy plate and its manufacture method
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JP6372984B2 (en) Manufacturing method of aluminum alloy plate for can body with excellent distribution hole resistance
JPH09256097A (en) Baking-finished aluminium alloy sheet for can end and its production
JP5456418B2 (en) Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof
JP7235634B2 (en) Aluminum alloy plate for can body
JP6532149B2 (en) Aluminum alloy sheet for can body and method of manufacturing the same
JP2005042195A (en) Aluminum alloy sheet with excellent barrel cutting resistance for bottle can
JP2007332392A (en) High-strength aluminum alloy sheet for wide mouth bottle can cap and its production method
JPH028353A (en) Manufacture of aluminum alloy for forming excellent in baking strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5676870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250