JP2008240099A - Aluminum alloy sheet for packaging container and method for producing the same - Google Patents

Aluminum alloy sheet for packaging container and method for producing the same Download PDF

Info

Publication number
JP2008240099A
JP2008240099A JP2007084538A JP2007084538A JP2008240099A JP 2008240099 A JP2008240099 A JP 2008240099A JP 2007084538 A JP2007084538 A JP 2007084538A JP 2007084538 A JP2007084538 A JP 2007084538A JP 2008240099 A JP2008240099 A JP 2008240099A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
alloy plate
less
packaging container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007084538A
Other languages
Japanese (ja)
Inventor
Atsuto Tsuruta
淳人 鶴田
Kazumasa Tsuji
和正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007084538A priority Critical patent/JP2008240099A/en
Publication of JP2008240099A publication Critical patent/JP2008240099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for packaging containers which exhibits high shapability into a can with a bottom and can produce a packaging container having excellent pressure resistance and to provide a method for producing the same. <P>SOLUTION: The aluminum alloy sheet includes 0.2-0.4 mass% Cu, 1.0-2.0 mass% Mg, 0.7-1.3 mass% Mn, 0.4-0.8 mass% Fe, and 0.1-0.4 mass% Si, with the balance being Al and unavoidable impurities and has a 0.2% yield strength of 255-300 N/mm<SP>2</SP>, a half-band width of less than 0.4 with respect to an X-ray diffraction peak as measured on a crystal lattice plane of a Miller index (220), and exhibits an increment of not less than 10 N/mm<SP>2</SP>in tensile strength after being subjected to 5% cold working. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、飲料、食品用途に使用される包装容器、特に、DI缶、ボトル缶等の包装容器の缶胴に使用される包装容器用アルミニウム合金板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a packaging container used for beverages and food applications, in particular, an aluminum alloy plate for a packaging container used for a can body of a packaging container such as a DI can and a bottle can, and a method for producing the same.

従来、飲料、食品用途に使用される包装容器として、図2に示すように、有底円筒状の胴部21と、その胴部21に繋がりこの胴部21より小さい外径を有するネック部22と、このネック部22の端部に形成されたフランジ部23および開口部24とを備えた包装容器(DI缶)20が知られている。また、図3に示すように、底部31、側壁部32、ネック部33と、ネジ切り加工されたネジ部34を備えた口部35とが一体成形された2ピースボトル缶30も知られている。   2. Description of the Related Art Conventionally, as a packaging container used for beverages and foods, as shown in FIG. 2, a bottomed cylindrical barrel 21 and a neck 22 connected to the barrel 21 and having an outer diameter smaller than that of the barrel 21. And the packaging container (DI can) 20 provided with the flange part 23 and the opening part 24 which were formed in the edge part of this neck part 22 is known. Further, as shown in FIG. 3, a two-piece bottle can 30 is also known in which a bottom portion 31, a side wall portion 32, a neck portion 33 and a mouth portion 35 having a threaded screw portion 34 are integrally formed. Yes.

これらいずれの包装容器も、競合する他の容器に対する競争力を高めるためには、薄肉軽量化を進めてコストダウンを図ることが有効であるが、その際に耐圧強度を確保するため缶底形状の工夫(例えば、接地径の縮小など)が様々行われている(特許文献1参照)。
特開平5−338640号公報(請求項1、図1)
In order to increase the competitiveness of any of these packaging containers against other competing containers, it is effective to reduce the cost by reducing the thickness and weight. Various ideas (for example, reduction of the contact diameter) have been made (see Patent Document 1).
JP-A-5-338640 (Claim 1, FIG. 1)

しかしながら、そうした缶底形状の変更、加えて薄肉化に伴って、例えば、チャイム部(図2中、符号25を付した部分、図3中、符号36を付した部分)にしわが発生するなど、缶底成形に伴う不具合が発生しやすくなるという問題がある。缶底成形性を高めるには、材料の静的回復を促進して伸び率の向上、加工硬化指数の向上を図ることが有効な手段であるが、材料の回復に伴い強度も大幅に低下する場合があり、その結果、缶の耐圧強度の低下を招き十分な薄肉化を達成できないという問題があった。また、材料の回復の度合いによって加工硬化特性が異なり、十分な耐圧強度が得られない場合が生ずるという問題もあった。   However, with such a change in the can bottom shape, in addition to the thinning, for example, wrinkles occur in the chime portion (the portion denoted by reference numeral 25 in FIG. 2, the portion denoted by reference numeral 36 in FIG. 3), etc. There is a problem that problems associated with can bottom molding are likely to occur. In order to improve can bottom moldability, it is effective to promote static recovery of the material to improve elongation and work hardening index, but the strength significantly decreases as the material recovers. As a result, there is a problem in that the pressure resistance strength of the can is lowered and sufficient thinning cannot be achieved. In addition, the work-hardening characteristics differ depending on the degree of recovery of the material, and there is a problem that a sufficient pressure strength cannot be obtained.

そこで、本発明は、上記問題を解決するため、製缶時に優れた缶底成形性を示すとともに、高い耐圧強度を有する包装用容器を得ることができる包装容器用アルミニウム合金板およびその製造方法を提供するものである。   Therefore, in order to solve the above problems, the present invention provides an aluminum alloy plate for a packaging container and a method for producing the same that can provide a packaging container having a high pressure strength while exhibiting excellent can bottom formability at the time of can making. It is to provide.

本願発明者は、製缶時の高い缶底成形性と、高い耐圧強度を有する包装用容器を得ることができる包装容器用アルミニウム合金板を提供することを目的として、アルミニウム合金板の材料の化学成分と冷間圧延時の材料の動的回復、静的回復に着目し、合金底部、および圧延条件による材料の動的回復、静的回復について研究を重ね、前記課題を解決するアルミニウム合金板とその製造方法を見出し、本発明を成すに至った。   The inventor of the present application aims to provide an aluminum alloy plate for packaging containers that can provide a packaging container having high can bottom moldability and high pressure strength at the time of can making. Focusing on the dynamic recovery and static recovery of materials during cold rolling, and the alloy bottom, and the aluminum alloy plate that solves the above problems by repeatedly researching the dynamic recovery and static recovery of materials depending on rolling conditions The production method was found and the present invention was accomplished.

すなわち、請求項1に係る発明の包装容器用アルミニウム合金板は、Cuを0.2〜0.4質量%、Mgを1.0〜2.0質量%、Mnを0.7〜1.3質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金板であって、0.2%耐力が255〜300N/mm、ミラー指数が(220)である結晶格子面に基づくX線回折ピークの半値幅が0.4未満、かつ5%の冷間加工を加えたときの引張強さの増分が10N/mm以上であることを特徴とする。 That is, the aluminum alloy plate for a packaging container according to the first aspect of the present invention is 0.2 to 0.4 mass% Cu, 1.0 to 2.0 mass% Mg, and 0.7 to 1.3 Mn. An aluminum alloy plate containing 0.4% by mass to 0.4% by mass of Fe, 0.1% to 0.4% by mass of Si, and the balance being composed of Al and inevitable impurities, Tensile strength when cold-working is applied with a half-value width of X-ray diffraction peak based on a crystal lattice plane with a% yield strength of 255 to 300 N / mm 2 and a Miller index of (220) of less than 0.4 and 5% The increase in the thickness is 10 N / mm 2 or more.

このアルミニウム合金板では、Cu、Mg、Mn、FeおよびSiを前記特定の含有量の範囲で含有し、残部がAlおよび不可避的不純物から構成され、0.2%耐力、ミラー指数が(220)である結晶格子面に基づくX線回折ピークの半値幅、および冷間加工を加えたときの引張強さの増分が特定の範囲であることによって、製缶時に高い缶底成形性を示すとともに、高い耐圧強度を有する包装容器を得ることができる。   In this aluminum alloy plate, Cu, Mg, Mn, Fe and Si are contained in the range of the specific content, the balance is composed of Al and inevitable impurities, 0.2% proof stress, Miller index is (220) In addition to exhibiting a high can bottom formability at the time of can making, the half width of the X-ray diffraction peak based on the crystal lattice plane and the increase in the tensile strength when cold working is in a specific range, A packaging container having high pressure strength can be obtained.

また、請求項2に係る発明の包装容器用アルミニウム合金板の製造方法は、Cuを0.2〜0.4質量%、Mgを1.0〜2.0質量%、Mnを0.7〜1.3質量%。Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金を溶解、鋳造して鋳塊を作製する第1工程と、前記鋳塊を均質化熱処理する第2工程と、前記均質化熱処理された鋳塊を熱間圧延して圧延板を作製する第3工程と、前記圧延板を中間焼鈍なしで冷間圧延してアルミニウム合金板を作製する第4工程とを含み、前記第4工程の冷間圧延の最終パスにおける圧延ロール温度を50℃以上とし、かつ、最終パスの冷間加工率を55〜65%とすることを特徴とする。   Moreover, the manufacturing method of the aluminum alloy plate for packaging containers of the invention which concerns on Claim 2 is Cu 0.2-0.4 mass%, Mg 1.0-2.0 mass%, Mn 0.7- 1.3% by weight. An ingot is produced by melting and casting an aluminum alloy containing 0.4 to 0.8 mass% Fe and 0.1 to 0.4 mass% Si, with the balance being Al and inevitable impurities. A first step, a second step of homogenizing heat treatment of the ingot, a third step of hot rolling the ingot subjected to the homogenization heat treatment to produce a rolled plate, and the intermediate plate without intermediate annealing. A fourth step of producing an aluminum alloy sheet by cold rolling, the rolling roll temperature in the final pass of the cold rolling of the fourth step is set to 50 ° C. or more, and the cold work rate of the final pass is 55 It is characterized by being -65%.

このアルミニウム合金板の製造方法では、Cu、Mg、Mn、FeおよびSiを前記特定の含有量の範囲で含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金を、溶解、鋳造、均質化熱処理、熱間圧延および冷間圧延する際に、冷間圧延の最終パスにおける圧延ロール温度を50℃以上とし、かつ、最終パスの冷間加工率を55〜65%とすることによって、製缶時に高い缶底成形性を示すとともに、高い耐圧強度を有する包装容器を得ることができるアルミニウム合金板を製造することができる。   In this method for producing an aluminum alloy plate, an aluminum alloy containing Cu, Mg, Mn, Fe and Si in the above-mentioned specific content range, with the balance consisting of Al and inevitable impurities, is melted, cast, and homogeneous When heat treatment, hot rolling and cold rolling are performed, the rolling roll temperature in the final pass of cold rolling is set to 50 ° C. or more, and the cold working rate of the final pass is set to 55 to 65%. It is possible to produce an aluminum alloy plate that exhibits a high can bottom moldability when canned and can provide a packaging container having high pressure strength.

本発明の包装容器用アルミニウム合金板は、必須含有成分であるCu、Mg、Mn、FeおよびSiを特定の範囲含有するとともに、0.2%耐力、結晶格子面(220)に基づくX線回折ピークの半値幅、および冷間加工時の引張強さの増分が特定の範囲であるため、製缶時に高い缶底成形性を示すとともに、高い耐圧強度を有する包装容器を得ることができる。   The aluminum alloy plate for packaging containers according to the present invention contains Cu, Mg, Mn, Fe and Si, which are essential components, in a specific range, and also has an X-ray diffraction based on 0.2% proof stress and crystal lattice plane (220). Since the half width of the peak and the increment of the tensile strength during cold working are in a specific range, a packaging container having high pressure-resistant strength can be obtained while exhibiting high can bottom formability during can making.

また、本発明のアルミニウム合金板の製造方法によれば、製缶時に高い缶底成形性を示すとともに、高い耐圧強度を有する包装容器を得ることができるアルミニウム合金板を製造することができる。   Moreover, according to the manufacturing method of the aluminum alloy plate of this invention, while showing high can bottom moldability at the time of can production, the aluminum alloy plate which can obtain the packaging container which has high pressure strength can be manufactured.

以下、本発明に係るアルミニウム合金板(以下、「本発明の合金板」という)およびその製造方法について詳細に説明する。   Hereinafter, an aluminum alloy plate according to the present invention (hereinafter referred to as “alloy plate of the present invention”) and a manufacturing method thereof will be described in detail.

まず、本発明の合金板の必須含有成分であるCu、Mg、Mn、FeおよびSiの含有量の数値限定理由、ならびに、0.2%耐力、結晶格子面(220)に基づくX線回折ピークの半値幅、および冷間加工時の引張強さの増分の数値限定理由について説明する。   First, the reason for limiting the contents of Cu, Mg, Mn, Fe and Si, which are essential components of the alloy plate of the present invention, and the X-ray diffraction peak based on 0.2% proof stress and crystal lattice plane (220) The reason for limiting the numerical values of the half-value width and the tensile strength increment during cold working will be described.

(Cu含有量:0.2〜0.4質量%)
本発明の合金板において、Cuは、製缶時の缶強度、しごき加工時やネック成形時の成形性に寄与する元素である。Cu含有量が0.2質量%未満では製缶時の缶強度不足を招き、0.4質量%を超えると強度が過剰となり、しごき加工時の割れや缶底シワ等の不良発生率が高いため実用に適さない。そのため、本発明の合金板では、Cu含有量は0.2〜0.4質量%である。
(Cu content: 0.2 to 0.4 mass%)
In the alloy plate of the present invention, Cu is an element that contributes to can strength at the time of can making, formability at the time of ironing and neck forming. If the Cu content is less than 0.2% by mass, the can strength will be insufficient at the time of can making, and if it exceeds 0.4% by mass, the strength will be excessive, and the incidence of defects such as cracks and can bottom wrinkles during ironing will be high. Therefore, it is not suitable for practical use. Therefore, in the alloy plate of this invention, Cu content is 0.2-0.4 mass%.

(Mg含有量:1.0〜2.0質量%)
本発明の合金板において、Mgは、冷間圧延時の動的回復および静的回復、均質化熱処理時のバーニング、圧延時の板表面の焼付き性など、合金板の製造に影響を及ぼす元素である。Mg含有量が1.0質量%未満では、冷間圧延時の動的回復、静的回復に伴って強度が大幅に低下することになり、材料強度不足、ひいては缶強度の不足を招く。また、1.0質量%以上を確保すれば、こうした回復に伴う強度低下が抑えられ、製缶した際に十分な耐圧強度を得ることができる。しかし、2.0質量%を超えると均質化熱処理時のバーニングや、圧延時の板表面の焼付きが発生しやすくなるなど、材料製造上における問題点があり実用に適さない。また、圧延板が製造できても、強度が過剰となるためしごき加工時の割れや缶底シワ等の不良発生率が高くなる。そのため、本発明の合金板では、Mg含有量は、1.0〜2.0質量%であり、好ましくは1.1〜1.7質量%である。
(Mg content: 1.0-2.0 mass%)
In the alloy sheet of the present invention, Mg is an element that affects the production of the alloy sheet, such as dynamic recovery and static recovery during cold rolling, burning during homogenization heat treatment, and seizure of the sheet surface during rolling. It is. If the Mg content is less than 1.0% by mass, the strength is greatly reduced along with dynamic recovery and static recovery during cold rolling, which leads to insufficient material strength and thus insufficient can strength. Moreover, if 1.0 mass% or more is ensured, the strength fall accompanying such a recovery | restoration is suppressed and sufficient compressive strength can be obtained when it can-made. However, if it exceeds 2.0% by mass, there are problems in material production such as burning during homogenization heat treatment and seizure of the plate surface during rolling, which is not suitable for practical use. Moreover, even if a rolled sheet can be manufactured, the strength becomes excessive, so that the occurrence rate of defects such as cracks and can bottom wrinkles during ironing increases. Therefore, in the alloy plate of this invention, Mg content is 1.0-2.0 mass%, Preferably it is 1.1-1.7 mass%.

(Mn含有量:0.7〜1.3質量%)
本発明の合金板において、Mnは、製缶時の缶強度、成形性に影響を及ぼす元素である。Mn含有量が0.7質量%未満では、製缶時に缶強度の不足を招き、1.3質量%を超えると金属間化合物のサイズ、量ともに過度に増える結果となり、粗大な金属間化合物起因のフランジ割れやしごき加工時の割れ発生等、成形性に悪影響を及ぼす。また、強度が過剰となるためしごき加工時の割れや缶底シワ等の不良発生率が高くなる。そのため、本発明の合金板では、Mn含有量は、0.7〜1.3質量%であり、好ましくは0.75〜1.20質量%である。
(Mn content: 0.7 to 1.3% by mass)
In the alloy plate of the present invention, Mn is an element that affects the strength and formability of the can during can making. If the Mn content is less than 0.7% by mass, the can strength will be insufficient at the time of can making, and if it exceeds 1.3% by mass, the size and amount of the intermetallic compound will increase excessively, resulting in coarse intermetallic compounds. Adversely affects moldability, such as cracking of flanges and cracking during ironing. Moreover, since the strength is excessive, the occurrence rate of defects such as cracks and can bottom wrinkles during ironing is increased. Therefore, in the alloy plate of this invention, Mn content is 0.7-1.3 mass%, Preferably it is 0.75-1.20 mass%.

(Fe含有量:0.4〜0.8質量%)
本発明の合金板において、Feは、製缶時の耳の発生等の成形性、また、製造時の金属間化合物の生成等に影響を及ぼす元素である。Fe含有量が0.4質量%未満では、0−180°耳の増大により、所定の缶寸法が得難くなる。また、0.8質量%を超えると、金属間化合物のサイズ、量ともに過度に増える結果となり、粗大な金属間化合物起因のフランジ割れやしごき加工時の割れ発生等、成形性に悪影響を及ぼす。そのため、本発明の合金では、Fe含有量は0.4〜0.8質量%である。
(Fe content: 0.4 to 0.8 mass%)
In the alloy plate of the present invention, Fe is an element that affects the formability such as the generation of ears during can making and the production of intermetallic compounds during production. When the Fe content is less than 0.4% by mass, it is difficult to obtain a predetermined can size due to an increase of 0-180 ° ears. On the other hand, if it exceeds 0.8 mass%, the size and amount of the intermetallic compound will increase excessively, which will adversely affect the formability such as flange cracking due to coarse intermetallic compound and cracking during ironing. Therefore, in the alloy of the present invention, the Fe content is 0.4 to 0.8% by mass.

(Si含有量:0.1〜0.4質量%)
本発明の合金板において、Siは製缶時の耳の発生、熱間圧延時の合金組織の形成等に影響を及ぼす元素である。Si含有量が0.1質量%未満では45°耳が増大し、0.4質量%を超えると、熱間圧延時の集合組織のばらつきを招き、耳率のばらつきが増大し、いずれの場合も所定の缶寸法が得難くなる虞がある。そのため、本発明の合金板において、Si含有量は0.1〜0.4質量%である。
(Si content: 0.1 to 0.4 mass%)
In the alloy plate of the present invention, Si is an element that affects the generation of ears during can making, the formation of alloy structure during hot rolling, and the like. When the Si content is less than 0.1% by mass, the 45 ° ear increases. When the Si content exceeds 0.4% by mass, the texture of the hot rolling varies, and the variation of the ear rate increases. However, it may be difficult to obtain a predetermined can size. Therefore, in the alloy plate of the present invention, the Si content is 0.1 to 0.4 mass%.

(不可避的不純物)
本発明の合金板は、不可避的不純物として、例えば、Cr:0.10質量%以下、Zn:0.50質量%以下、Ti:0.10質量%以下、Zr:0.10質量%以下、B:0.05質量%以下などの含有は本発明の効果を妨げるものではなく、このような不可避的不純物を含有していてもよい。
(Inevitable impurities)
The alloy plate of the present invention has, for example, Cr: 0.10% by mass or less, Zn: 0.50% by mass or less, Ti: 0.10% by mass or less, Zr: 0.10% by mass or less as inevitable impurities. B: Inclusion of 0.05% by mass or less does not hinder the effects of the present invention, and may contain such inevitable impurities.

(0.2%耐力が255〜300N/mm
包装容器用アルミニウム合金板は、成形時に高い加工力を必要とし、しごき成形時に割れ(ティアオフ)が発生せず、また、缶底成形時に缶底シワが発生しない、などの特性が求められる。本発明の合金板では、0.2%耐力が300N/mmを超えると、成形時に高い加工力が必要となるため、しごき成形時に割れ(ティアオフ)を発生しやすく、また、缶底成形時にしわ押さえ力の効果が低下し、缶底シワが発生しやすくなる。また、255N/mm未満では、缶底強度が低下し耐圧強度が不足する。そのため、本発明の合金板では、0.2%耐力を255〜300N/mmとする。
(0.2% proof stress is 255 to 300 N / mm 2 )
The aluminum alloy sheet for packaging containers requires a high processing force at the time of molding, and does not generate cracks (tear-off) at the time of ironing, and does not generate can bottom wrinkles at the time of can bottom molding. In the alloy plate of the present invention, if the 0.2% proof stress exceeds 300 N / mm 2 , a high processing force is required at the time of molding, so that cracking (tear-off) is likely to occur during ironing, and at the time of can bottom molding The effect of the wrinkle holding force is reduced and can bottom wrinkles are likely to occur. Moreover, if it is less than 255 N / mm < 2 >, can bottom strength will fall and pressure-resistant strength will run short. Therefore, in the alloy plate of the present invention, the 0.2% proof stress is set to 255 to 300 N / mm 2 .

(ミラー指数が(220)である結晶格子面に基づくX線回折ピークの半値幅が0.4未満)
包装容器用アルミニウム合金板は、製缶時の優れた缶底成形性および製缶後に優れた耐圧強度を得るためには、冷間圧延後に十分に動的および静的に回復するとともに、加工硬化することが求められる。本発明の合金板では、ミラー指数が(220)である結晶格子面に基づくX線回折ピークの幅広がりは、冷間圧延後の回復の度合いと対応する。(220)結晶格子面に基づくX線回折ピークの半値幅が0.4未満であれば回復が十分なため缶底成形性に優れ、しわ等の問題がなく、また十分な加工硬化を有するため製缶後の耐圧強度を満足することができる。これに対し、0.4以上の場合は回復不十分により缶底成形性に劣るとともに、加工硬化も小さくなり耐圧強度が不足することになる。そのため、本発明の合金板では、ミラー指数が(220)である結晶格子面に基づくX線回折ピークの半値幅を0.4未満、好ましくは0.36以下とする。
(Half width of X-ray diffraction peak based on crystal lattice plane with Miller index (220) is less than 0.4)
Aluminum alloy sheets for packaging containers recover sufficiently dynamically and statically after cold rolling and work hardening in order to obtain excellent can bottom formability during can making and excellent pressure strength after can making. It is required to do. In the alloy plate of the present invention, the broadening of the X-ray diffraction peak based on the crystal lattice plane with a Miller index of (220) corresponds to the degree of recovery after cold rolling. (220) If the half width of the X-ray diffraction peak based on the crystal lattice plane is less than 0.4, the recovery is sufficient and the can bottom formability is excellent, there is no problem such as wrinkles, and the material has sufficient work hardening. The pressure strength after can making can be satisfied. On the other hand, in the case of 0.4 or more, the can bottom moldability is inferior due to insufficient recovery, and work hardening is reduced, resulting in insufficient pressure resistance. Therefore, in the alloy plate of the present invention, the half width of the X-ray diffraction peak based on the crystal lattice plane having a Miller index of (220) is less than 0.4, preferably 0.36 or less.

(5%の冷間加工を加えたときの引張強さの増分が10N/mm以上)
包装容器用アルミニウム合金板は、製缶時に十分な耐圧強度を得るために、缶底成形時に十分に加工硬化することが求められる。本発明の合金板では、引張強さの増分が10N/mm以上であれば、缶底成形を施したときの加工硬化が十分であり、製缶後に十分な耐圧強度を得ることができる。そのため、本発明の合金板では、5%の冷間加工を加えたときの引張強さの増分が10N/mm以上とする。
(Increase in tensile strength when 5% cold working is applied is 10 N / mm 2 or more)
The aluminum alloy plate for packaging containers is required to be sufficiently work-hardened at the time of can bottom molding in order to obtain sufficient pressure resistance at the time of can making. In the alloy plate of the present invention, if the increase in tensile strength is 10 N / mm 2 or more, work hardening is sufficient when can bottom molding is performed, and sufficient pressure strength can be obtained after canning. Therefore, in the alloy plate of the present invention, the increment of the tensile strength when 5% cold work is applied is 10 N / mm 2 or more.

次に、本発明の合金板の製造方法について説明する。
本発明の合金板は、図1に示すとおり、Cuを0.2〜0.4質量%、Mgを1.0〜2.0質量%、Mnを0.7〜1.3質量%。Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金を溶解、鋳造して鋳塊を作製する第1工程(S1)と、前記鋳塊を均質化熱処理する第2工程(S2)と、前記均質化熱処理された鋳塊を熱間圧延して圧延板を作製する第3工程(S3)と、前記圧延板を中間焼鈍なしで冷間圧延してアルミニウム合金板を作製する第4工程(S4)とを主要工程とする方法によって製造される。
Next, the manufacturing method of the alloy plate of this invention is demonstrated.
As shown in FIG. 1, the alloy plate of the present invention contains 0.2 to 0.4 mass% Cu, 1.0 to 2.0 mass% Mg, and 0.7 to 1.3 mass% Mn. An ingot is produced by melting and casting an aluminum alloy containing 0.4 to 0.8 mass% Fe and 0.1 to 0.4 mass% Si, with the balance being Al and inevitable impurities. A first step (S1), a second step (S2) for homogenizing heat treatment of the ingot, and a third step (S3) for producing a rolled sheet by hot rolling the ingot subjected to the homogenization heat treatment, The fourth step (S4) in which the rolled plate is cold-rolled without intermediate annealing to produce an aluminum alloy plate is manufactured by a method having a main step.

本発明の合金板の製造方法において、第1工程におけるアルミニウム合金の溶解、鋳造時の加熱温度、第2工程における均質化熱処理温度、第3工程における熱間圧延ロール温度等の条件は特に限定されず、通常のアルミニウム合金板の製造条件に従うものである。そして、本発明の製造方法においては、第4工程における冷間圧延の最終パスにおける圧延ロール温度、および最終パスの冷間加工率を特定の範囲とするものである。以下、これらの冷間圧延の最終パスにおける圧延ロール温度および冷間加工率の数値限定理由について説明する。   In the method for producing an alloy plate of the present invention, conditions such as melting of the aluminum alloy in the first step, heating temperature during casting, homogenization heat treatment temperature in the second step, hot rolling roll temperature in the third step are particularly limited. In other words, it follows the normal production conditions for aluminum alloy sheets. And in the manufacturing method of this invention, the rolling roll temperature in the last pass of the cold rolling in a 4th process, and the cold work rate of the last pass are made into the specific range. Hereinafter, the reasons for limiting the numerical values of the rolling roll temperature and the cold working rate in the final pass of the cold rolling will be described.

(冷間圧延時の最終パスにおける圧延ロール温度:50℃以上)
本発明の合金板の製造方法において、冷間圧延時の最終パスにおける圧延ロール温度は、冷間圧延時の動的回復、材料の加工硬化に寄与する製造条件である。本発明の合金板の製造方法において、第4工程の冷間圧延の最終パスにおける圧延ロール温度が50℃未満では、冷間圧延時の動的回復が不十分となり、材料の加工硬化が小さくなるため、製缶した際の耐圧強度が不足する。本発明において、「圧延ロール温度」とは、板のエッジ部分が通る部位のロール温度を言う。そのため、本発明の合金板の製造方法において、第4工程の冷間圧延の最終パスにおける圧延ロール温度を50℃以上、好ましくは120℃以下とする。
(Rolling roll temperature in the final pass during cold rolling: 50 ° C or higher)
In the method for producing an alloy sheet of the present invention, the rolling roll temperature in the final pass during cold rolling is a production condition that contributes to dynamic recovery during cold rolling and work hardening of the material. In the method for producing an alloy sheet of the present invention, when the rolling roll temperature in the final pass of the cold rolling in the fourth step is less than 50 ° C., the dynamic recovery during cold rolling becomes insufficient and the work hardening of the material becomes small. For this reason, the pressure resistance when the can is made is insufficient. In the present invention, the “rolling roll temperature” refers to the roll temperature at the portion through which the edge portion of the plate passes. Therefore, in the manufacturing method of the alloy plate of this invention, the rolling roll temperature in the last pass of the cold rolling of the 4th process shall be 50 ° C or more, preferably 120 ° C or less.

(冷間圧延時の最終パスの冷間加工率:55〜65%)
本発明の合金板の製造方法において、冷間圧延時の最終パスにおける冷間加工率は、冷間圧延時の動的回復、静的回復、材料の加工硬化に寄与する製造条件である。本発明の合金板の製造方法において、第4工程の冷間圧延の最終パスにおける冷間加工率が55%未満では、冷間圧延時の動的回復、静的回復ともに不十分で、缶底成形時にしわを発生させるなどの不具合を生じやすく、かつ、加工硬化も小さくなるため、製缶した際の耐圧強度が不足する。また、65%以上では、材料の回復が過多となり、強度低下を招くため、製缶後の耐圧強度が不十分となる。さらに、しごき成形性も低下し、DI成形時に破断などの加工不具合を生じやすくなる。そのため、本発明の合金板の製造方法において、第4工程の冷間圧延の最終パスにおける冷間加工率を55〜65%とする。
(Cold working rate of the final pass during cold rolling: 55 to 65%)
In the method for producing an alloy plate of the present invention, the cold work rate in the final pass during cold rolling is a production condition that contributes to dynamic recovery, static recovery, and work hardening of the material during cold rolling. In the method for producing an alloy sheet of the present invention, when the cold work rate in the final pass of the cold rolling in the fourth step is less than 55%, both dynamic recovery and static recovery during cold rolling are insufficient, and the bottom of the can Failures such as wrinkling during molding are likely to occur, and work hardening is reduced, resulting in insufficient pressure resistance when canned. On the other hand, if it is 65% or more, the material is excessively recovered and the strength is reduced, so that the pressure resistance after canning becomes insufficient. Further, iron moldability is also lowered, and processing defects such as breakage are likely to occur during DI molding. Therefore, in the manufacturing method of the alloy plate of this invention, the cold work rate in the last pass of the cold rolling of a 4th process shall be 55-65%.

以下、本発明について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを対比して具体的に説明する。   Hereinafter, the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.

(実施例1〜5、比較例1〜5)
各例において、表1に示す成分組成、製造条件(冷間圧延時の最終パスにおける圧延ロール温度、冷間加工率)で、板厚0.270mmのアルミニウム合金板を作製した。このアルミニウム合金板について、下記の評価を行った。
1)JIS H 4000に準じて引張試験を行って0.2%耐力を測定した。
2)アルミニウム合金に対してX線回折分析を行い、ミラー指数(220)の結晶格子面に基づく回折ピーク(回折角度:65度)の半値幅を求めた。
3)アルミニウム合金に対して5%の冷間加工を加え、その後にJIS H 4000に準じて引張試験を行って引張強さを求め、引張強さの増分を求めた。
(Examples 1-5, Comparative Examples 1-5)
In each example, an aluminum alloy plate having a plate thickness of 0.270 mm was produced with the component composition and production conditions shown in Table 1 (the rolling roll temperature and the cold working rate in the final pass during cold rolling). The following evaluation was performed on this aluminum alloy plate.
1) A 0.2% proof stress was measured by performing a tensile test according to JIS H4000.
2) X-ray diffraction analysis was performed on the aluminum alloy, and the half-value width of the diffraction peak (diffraction angle: 65 degrees) based on the crystal lattice plane of the Miller index (220) was determined.
3) 5% cold working was applied to the aluminum alloy, and then a tensile test was performed according to JIS H 4000 to determine the tensile strength, and the increment in tensile strength was determined.

Figure 2008240099
Figure 2008240099

さらに、このアルミニウム合金板を用いて、下記の処理および成形を行った。
(1)ブランク径140mm、カップ径90mmで絞りカップを成形した。
(2)その後、再絞り、3段しごき、トリミングを経て、DI缶(ストレート缶)を作製した。
(3)このストレート缶に200℃×20分のベーキング処理を実施した。
(4)さらに、4段ネック成形、フランジ成形を経て、最終缶を作製した。
Further, the following treatment and molding were performed using this aluminum alloy plate.
(1) A drawn cup was formed with a blank diameter of 140 mm and a cup diameter of 90 mm.
(2) Thereafter, a DI can (straight can) was produced through redrawing, three-stage ironing, and trimming.
(3) The straight can was baked at 200 ° C. for 20 minutes.
(4) Further, the final can was manufactured through four-stage neck molding and flange molding.

そして、この成形過程および最終缶において、カップ耳率、しごき成形性、缶底成形性および耐圧強度の評価を行った。   And in this shaping | molding process and the last can, evaluation of the cup ear ratio, ironing moldability, can bottom moldability, and pressure strength was performed.

(カップ耳率)
絞りカップ10缶の耳率を測定し、その平均値が2.0%以下を「○」(良好)、2.0%を超えた場合を「×」(不良)とした。
(Cup ear rate)
The ear rate of 10 cans of the squeezed cups was measured, and when the average value exceeded 2.0%, “◯” (good), and when the average value exceeded 2.0%, “×” (bad).

(しごき成形性)
前記の成形工程によって、連続して10000缶製缶したときに、破断(胴切れ)やスジ状の欠陥が発生した回数が0〜3回のものを○(良好)、4回以上を×(不良)とした。
(Silent formability)
When 10000 cans can be made continuously by the above-mentioned forming process, the number of occurrences of breakage (out of body) and streak-like defects is 0 to 3 (good), 4 or more times x ( Bad).

(缶底成形性)
カッピング後に再絞りまでを行い、その再絞り缶の缶底テーパー部のシワを3次元測定機で全周の形状測定を行い、最大ピーク値で評価した。その際のシワ押さえ圧は50psi、また再絞りダイスRは1.5mmとした。そして、最大ピーク値が0.35mm未満であるときを「○」(良好)とし、それ以外のときを「×」(不良)とした。
(Can bottom moldability)
After cupping, re-drawing was performed, and wrinkles of the can bottom taper portion of the re-drawn can were measured with a three-dimensional measuring machine on the entire circumference and evaluated with the maximum peak value. The wrinkle pressure at that time was 50 psi, and the redraw die R was 1.5 mm. And when the maximum peak value was less than 0.35 mm, it was set as “◯” (good), and other times were set as “x” (defective).

(耐圧強度)
最終缶(缶底接地径48mm)に徐々に内圧を負荷し、缶底部がバックリングする際の最大圧で耐圧強度を評価した。10缶について測定をし、その平均値が6.7kg/cm以上(657kPa以上)を「○」(良好)、6.7kg/cm未満(657kPa未満)を「×」(不良)とした。
(Pressure strength)
The inner pressure was gradually applied to the final can (can bottom contact diameter 48 mm), and the pressure resistance was evaluated by the maximum pressure when the can bottom buckled. 10 cans were measured, and the average value was 6.7 kg / cm 2 or more (657 kPa or more) as “◯” (good), and less than 6.7 kg / cm 2 (less than 657 kPa) as “x” (bad). .

Figure 2008240099
Figure 2008240099

表2に示すとおり、実施例1〜5は本発明で規制する条件を満足しているので、いずれの評価項目も○となった。一方、比較例では、本発明で規制する条件のいずれかを満足していないので、いずれかの評価項目が×となった。すなわち、各比較例の評価結果は、下記の通りである。
比較例1は、Cuの含有量が下限値未満で0.2%耐力が下限値未満となったので、耐圧強度が不足した。
比較例2は、Cuの含有量が上限値を超え0.2%耐力が上限値を超えるため、しごき成形性、缶底成形性が不良であった。
比較例3は、Mg含有量が下限値未満で0.2%耐力が下限値未満となったので、耐圧強度が不足した。
比較例4は、Mg含有量が上限値を超え0.2%耐力が上限値を超えるため、しごき成形性、缶底成形性が不良であった。
比較例5は、Mn含有量が下限値未満で0.2%耐力が下限値未満となったので、耐圧強度が不足した。
比較例6は、Mn含有量が上限値を超え0.2%耐力が上限値を超えるため、しごき成形性、缶底成形性が不良であった。
比較例7は、Fe含有量が下限値未満であるため、カップ耳率が不良であった。
比較例8は、Fe含有量が上限値を超え、粗大な金属間化合物が増加した結果、しごき成形性が不良であった。
比較例9は、Si含有量が下限値未満であるため、耳率が不良であった。
比較例10は、Si含有量が上限値を超えたため、やはり耳率が不良であった。
比較例11は、圧延ロール温度が下限値未満であるため、材料の加工硬化が小さく(5%の冷間加工を加えたときの引張強さの増分が10N/mmに達せず)、缶底成形が不良であった。
比較例12は、冷間圧延最終パスの加工率が下限値未満であるため、材料の加工硬化が小さく(5%の冷間加工を加えたときの引張強さの増分が10N/mmに達せず)、缶底成形が不良であった。
比較例13は、冷間圧延最終パスの加工率が上限値を超えているため、0.2%耐力が低下して下限値未満となり、耐圧強度が不足した。
As shown in Table 2, since Examples 1 to 5 satisfied the conditions regulated by the present invention, all the evaluation items were good. On the other hand, in the comparative example, since any of the conditions regulated by the present invention is not satisfied, one of the evaluation items is x. That is, the evaluation result of each comparative example is as follows.
In Comparative Example 1, since the Cu content was less than the lower limit and the 0.2% proof stress was less than the lower limit, the pressure strength was insufficient.
In Comparative Example 2, since the Cu content exceeded the upper limit and the 0.2% proof stress exceeded the upper limit, the ironing moldability and the can bottom moldability were poor.
In Comparative Example 3, since the Mg content was less than the lower limit and the 0.2% proof stress was less than the lower limit, the pressure strength was insufficient.
In Comparative Example 4, since the Mg content exceeded the upper limit and the 0.2% proof stress exceeded the upper limit, the iron moldability and the can bottom moldability were poor.
In Comparative Example 5, since the Mn content was less than the lower limit and the 0.2% proof stress was less than the lower limit, the pressure strength was insufficient.
In Comparative Example 6, since the Mn content exceeded the upper limit and the 0.2% proof stress exceeded the upper limit, the ironing moldability and the can bottom moldability were poor.
In Comparative Example 7, since the Fe content was less than the lower limit value, the cup ear ratio was poor.
In Comparative Example 8, the iron content exceeded the upper limit value, and as a result of an increase in coarse intermetallic compounds, the iron formability was poor.
In Comparative Example 9, since the Si content was less than the lower limit value, the ear rate was poor.
In Comparative Example 10, since the Si content exceeded the upper limit value, the ear rate was still poor.
In Comparative Example 11, since the rolling roll temperature is less than the lower limit, the work hardening of the material is small (the increase in tensile strength when 5% cold working is applied does not reach 10 N / mm 2 ), and the can The bottom molding was poor.
In Comparative Example 12, the work rate of the final cold rolling pass is less than the lower limit value, so the work hardening of the material is small (the increase in tensile strength when 5% cold work is applied is 10 N / mm 2) . The bottom of the can was poor.
In Comparative Example 13, since the processing rate of the final cold rolling pass exceeded the upper limit value, the 0.2% proof stress decreased to less than the lower limit value, and the pressure strength was insufficient.

本発明の包装容器用アルミニウム合金板の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the aluminum alloy plate for packaging containers of this invention. 包装容器(DI缶)の構成を示す概略図である。It is the schematic which shows the structure of a packaging container (DI can). 2ピースボトル缶の構成を示す概略図である。It is the schematic which shows the structure of a 2 piece bottle can.

Claims (2)

Cuを0.2〜0.4質量%、Mgを1.0〜2.0質量%、Mnを0.7〜1.3質量%、Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金板であって、
0.2%耐力が255〜300N/mm
ミラー指数が(220)である結晶格子面に基づくX線回折ピークの半値幅が0.4未満、かつ
5%の冷間加工を加えたときの引張強さの増分が10N/mm以上である
ことを特徴とする包装容器用アルミニウム合金板。
Cu 0.2-0.4 mass%, Mg 1.0-2.0 mass%, Mn 0.7-1.3 mass%, Fe 0.4-0.8 mass%, Si An aluminum alloy plate containing 0.1 to 0.4% by mass, the balance being composed of Al and inevitable impurities,
0.2% proof stress 255~300N / mm 2,
The half-value width of the X-ray diffraction peak based on a crystal lattice plane with a Miller index of (220) is less than 0.4, and the increase in tensile strength when cold work of 5% is applied is 10 N / mm 2 or more. An aluminum alloy plate for a packaging container.
Cuを0.2〜0.4質量%、Mgを1.0〜2.0質量%、Mnを0.7〜1.3質量%。Feを0.4〜0.8質量%、Siを0.1〜0.4質量%含有し、残部がAlおよび不可避的不純物から構成されるアルミニウム合金を溶解、鋳造して鋳塊を作製する第1工程と、
前記鋳塊を均質化熱処理する第2工程と、
前記均質化熱処理された鋳塊を熱間圧延して圧延板を作製する第3工程と、
前記圧延板を中間焼鈍なしで冷間圧延してアルミニウム合金板を作製する第4工程とを含み、
前記第4工程の冷間圧延の最終パスにおける圧延ロール温度を50℃以上とし、かつ、最終パスの冷間加工率を55〜65%とする
ことを特徴とする包装容器用アルミニウム合金板の製造方法。
Cu 0.2-0.4 mass%, Mg 1.0-2.0 mass%, Mn 0.7-1.3 mass%. An ingot is produced by melting and casting an aluminum alloy containing 0.4 to 0.8 mass% Fe and 0.1 to 0.4 mass% Si, with the balance being Al and inevitable impurities. The first step;
A second step of homogenizing heat treatment of the ingot;
A third step of hot rolling the homogenized heat-treated ingot to produce a rolled plate;
A fourth step of producing an aluminum alloy sheet by cold rolling the intermediate sheet without intermediate annealing,
The production of an aluminum alloy plate for a packaging container, characterized in that the rolling roll temperature in the final pass of the cold rolling in the fourth step is 50 ° C. or higher, and the cold working rate in the final pass is 55 to 65%. Method.
JP2007084538A 2007-03-28 2007-03-28 Aluminum alloy sheet for packaging container and method for producing the same Pending JP2008240099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084538A JP2008240099A (en) 2007-03-28 2007-03-28 Aluminum alloy sheet for packaging container and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084538A JP2008240099A (en) 2007-03-28 2007-03-28 Aluminum alloy sheet for packaging container and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008240099A true JP2008240099A (en) 2008-10-09

Family

ID=39911781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084538A Pending JP2008240099A (en) 2007-03-28 2007-03-28 Aluminum alloy sheet for packaging container and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008240099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084775A (en) * 2009-10-15 2011-04-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can barrel having excellent redraw formability, and method for producing the same
WO2014129385A1 (en) * 2013-02-25 2014-08-28 株式会社Uacj Aluminum alloy plate for can body and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084775A (en) * 2009-10-15 2011-04-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can barrel having excellent redraw formability, and method for producing the same
WO2014129385A1 (en) * 2013-02-25 2014-08-28 株式会社Uacj Aluminum alloy plate for can body and production method therefor
JPWO2014129385A1 (en) * 2013-02-25 2017-02-02 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20160083825A1 (en) Aluminium alloy sheet for metallic bottle or aerosol container
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP2015147972A (en) Aluminum alloy sheet for can lid and manufacturing method therefor
JP4829988B2 (en) Aluminum alloy plate for packaging container lid
JP2012188704A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP5449693B2 (en) Aluminum alloy cold-rolled plate for bottle can and method for producing the same
JP3748438B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP2008057019A (en) Aluminum alloy sheet for drink can and container using the same
JP2008240099A (en) Aluminum alloy sheet for packaging container and method for producing the same
WO2016002226A1 (en) Aluminum alloy plate for beverage can body and method for manufacturing same
JP2009242830A (en) Aluminum alloy sheet for bottle can and method for producing the same
JP4943714B2 (en) High strength aluminum alloy plate for wide-mouth bottle can cap
JP4088257B2 (en) Aluminum alloy plate for bottle cans
JP4763976B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP2021107578A (en) Aluminum sheet with enhanced formability and aluminum container made from aluminum sheet
JP2006299330A (en) Aluminum alloy sheet for bottle can body
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP2017082277A (en) Manufacturing method of aluminum alloy sheet for beverage can body or beverage bottle can body excellent in anisotropy and neck moldability
JP2006265702A (en) Cold-rolled aluminum alloy sheet for bottle-shaped can superior in high temperature property
WO2016152790A1 (en) Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans
JP7426243B2 (en) Aluminum alloy plate for bottle body
JP2005320577A (en) Aluminum alloy sheet for wide mouthed bottle can cap
JP2008144221A (en) Aluminum alloy sheet for cap and manufacturing method therefor
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP4291642B2 (en) Method for manufacturing aluminum alloy plate for packaging container lid