JPH10152762A - Production of hard aluminum alloy sheet excellent in di workability - Google Patents

Production of hard aluminum alloy sheet excellent in di workability

Info

Publication number
JPH10152762A
JPH10152762A JP31059496A JP31059496A JPH10152762A JP H10152762 A JPH10152762 A JP H10152762A JP 31059496 A JP31059496 A JP 31059496A JP 31059496 A JP31059496 A JP 31059496A JP H10152762 A JPH10152762 A JP H10152762A
Authority
JP
Japan
Prior art keywords
rolling
sheet
workability
heat treatment
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31059496A
Other languages
Japanese (ja)
Inventor
Toyonobu Tanaka
豊延 田中
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31059496A priority Critical patent/JPH10152762A/en
Publication of JPH10152762A publication Critical patent/JPH10152762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a hard Al alloy sheet excellent in DI workability by minimal stages at a low cost by subjecting a molten Al alloy of specific composition to continuous casting and rolling into a sheet by means of a twin-roll caster and then applying heat treatment, cold rolling, and annealing under respectively specified conditions. SOLUTION: A molten Al alloy, having a composition containing, by weight, 0.5-2.5% Mg, 0.5-2.5% Mn, 0.1-0.7% Fe, 0.05-0.5% Si and 0.005-0.20% Ti independently or in combination with 0.0001-0.05% B and further containing one or >=2 kinds among small amounts of Cu, Cr, and Zr, is solidified by means of a twin-roll caster at >=50 deg.C/sec solidification rate and then continuously cast and rolled into a sheet of 1-4mm thick under a load of >=50kgf per millimeter of width. Subsequently, the sheet is held at 580-630 deg.C for >=6hr and then held at 480-530 deg.C for 1hr. The sheet is cold-rolled at 50-95% rolling rate and then subjected to process annealing at 380-600 deg.C for <=2min and to finish annealing at 100-150 deg.C for <=8hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に2ピースアル
ミニウム缶の缶胴材(DI缶胴材)に適したDI加工性
に優れるアルミニウム合金硬質板を低コストで製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy hard plate excellent in DI workability and suitable for a two-piece aluminum can body (DI can body) at low cost.

【0002】[0002]

【従来の技術】一般に、アルミニウム缶ボディを製造す
る際にはDI(Drawing & Ironing)加工(深絞りとしご
き加工)が行われるため、これらの材料にはDI加工性
に優れるAl-Mn-Mg系のJISA3004合金などが広く用いられ
ている。従来の缶ボディ材用アルミニウム合金板は、半
連続鋳造法(DC鋳造法)により鋳造されたDC鋳塊を
均質化処理、熱間粗圧延、熱間仕上圧延、焼鈍、冷間加
工といった多くの工程を経て製造されており製造コスト
が高かった。そこで工程短縮を目的に双ロール式などの
連続鋳造圧延法が検討されるようになった。この双ロー
ル式連続鋳造圧延法では、アルミニウム合金溶湯は、双
ロールにより冷却され凝固した鋳塊が、直ちに同じ双ロ
ールにより板状に圧延される。このようにして製出され
る鋳塊(板材)には、熱処理、冷間圧延、必要に応じ仕
上げ焼鈍が施されたのち、DI加工が施される。
2. Description of the Related Art Generally, when an aluminum can body is manufactured, DI (Drawing & Ironing) processing (deep drawing and ironing) is performed. Therefore, these materials are made of Al-Mn-Mg having excellent DI workability. JISA3004 alloy is widely used. Conventional aluminum alloy sheets for can body materials are manufactured by a continuous casting method (DC casting method), which includes a DC ingot homogenizing treatment, hot rough rolling, hot finishing rolling, annealing, and cold working. It was manufactured through a process and the manufacturing cost was high. Therefore, continuous casting and rolling methods such as a twin roll method have been studied for the purpose of shortening the process. In the twin-roll continuous casting and rolling method, the molten aluminum alloy is cooled by the twin rolls and the solidified ingot is immediately rolled into a plate by the same twin rolls. The ingot (plate material) produced in this way is subjected to heat treatment, cold rolling, finish annealing as required, and then DI processing.

【0003】[0003]

【発明が解決しようとする課題】前記双ロール式連続鋳
造圧延法では、凝固直後に圧下され急冷されるため、得
られる鋳塊は非常に微細な組織となり加工性に優れる。
しかし析出する金属間化合物は直径が1μm以下の小さ
なものになるため、しごき加工時に焼付が発生し易いと
いう問題がある。このため金型寿命が短く、歩留りが低
くなる。また深絞りの際の耳率が高いなどといった問題
もある。このようなことから、本発明者らは缶ボディ材
としての特性を良好に保持し、且つ鋳塊に析出する微細
な金属間化合物を粗大化させる方法について、双ロール
式連続鋳造圧延、鋳塊熱処理、冷間圧延、仕上げ焼鈍な
どでの諸条件を広く検討して、本発明を完成するに至っ
た。本発明は、DI加工性に優れるアルミニウム合金硬
質板を低コストで製造する方法を提供することにある。
In the twin-roll continuous casting and rolling method, the ingot obtained has a very fine structure and is excellent in workability because it is reduced immediately after solidification and rapidly cooled.
However, since the precipitated intermetallic compound has a small diameter of 1 μm or less, there is a problem that seizure easily occurs during ironing. Therefore, the mold life is short and the yield is low. There is also a problem that the ear ratio at the time of deep drawing is high. From these facts, the present inventors have proposed a method for maintaining good properties as a can body material and coarsening fine intermetallic compounds precipitated in an ingot, twin-roll continuous casting and rolling, After extensively examining various conditions such as heat treatment, cold rolling, and finish annealing, the present invention was completed. An object of the present invention is to provide a method for manufacturing an aluminum alloy hard plate excellent in DI workability at low cost.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Mg 0.5〜2.5wt%、Mn 0.5〜2.5wt%、Fe 0.1〜0.7w
t%、Si0.05〜0.5wt%を含有し、Ti 0.005〜0.20wt%
を単独であるいはB0.0001〜0.05wt% とともに含有し、
さらにCu0.05〜0.5wt%、Cr0.05〜0.3wt%、Zn0.05
〜0.5wt%の1種または2種以上を含有し、残部Alおよ
び不可避不純物からなるアルミニウム合金溶湯を、双ロ
ールキャスターにより、50℃/sec以上の凝固速度で凝固
後、直ちに巾1mm当たり 50kgf以上の荷重をかけて厚さ
1mm以上4mm未満の板材に連続鋳造圧延し、次いで前記
板材に 580〜630 ℃の温度で6時間以上保持後 480〜53
0 ℃の温度で1時間以上保持する熱処理を施し、次いで
圧延率50〜95%で冷間圧延し、その後必要に応じて 100
〜150 ℃で8時間以下保持する仕上げ焼鈍を施すことを
特徴とするDI加工性に優れるアルミニウム合金硬質板
の製造方法である。
According to the first aspect of the present invention,
Mg 0.5-2.5wt%, Mn 0.5-2.5wt%, Fe 0.1-0.7w
t%, Si 0.05-0.5wt%, Ti 0.005-0.20wt%
Alone or together with B 0.0001-0.05wt%,
Furthermore, Cu0.05-0.5wt%, Cr0.05-0.3wt%, Zn0.05
An aluminum alloy melt containing up to 0.5 wt% of one or more types and the balance of Al and unavoidable impurities is solidified at a solidification rate of 50 ° C / sec or more by twin roll casters, and immediately 50 kgf or more per 1 mm width And then continuously cast and rolled into a sheet having a thickness of 1 mm or more and less than 4 mm, and after holding the sheet at a temperature of 580-630 ° C. for 6 hours or more, 480-53
A heat treatment of holding at a temperature of 0 ° C. for 1 hour or more is performed, and then cold rolling is performed at a rolling reduction of 50 to 95%.
This is a method for producing an aluminum alloy hard plate excellent in DI workability, which is characterized by performing finish annealing of holding at -150 ° C for 8 hours or less.

【0005】請求項2記載の発明は、圧延率50〜95%で
冷間圧延したのち 380〜600 ℃の温度で2分以下保持す
る中間焼鈍を施し、さらに50〜95%の最終冷間圧延を施
すことを特徴とする請求項1記載のDI加工性に優れる
アルミニウム合金硬質板の製造方法である。
[0005] The invention according to claim 2 is characterized in that after cold rolling at a rolling reduction of 50 to 95%, intermediate annealing is performed at a temperature of 380 to 600 ° C for 2 minutes or less, and final cold rolling of 50 to 95% is further performed. The method for producing an aluminum alloy hard plate having excellent DI processability according to claim 1, wherein

【0006】[0006]

【発明の実施の形態】本発明で用いるアルミニウム合金
の組成について説明する。Mgは、Siと共存してMg
2 Siを時効析出し、またCuと共存してAl−Cu−
Mg系化合物を時効析出し、またAlマトリックスに固
溶するなどして強度向上に寄与する。Mgの含有量を
0.5〜2.5wt%に規定する理由は、0.5wt%未満ではその効
果が十分に得られず、2.5wt%を超えると、しごき加工時
の変形抵抗が大きくなってしごき加工後の缶の外観が著
しく悪化するためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The composition of the aluminum alloy used in the present invention will be described. Mg coexists with Si
2 Age-precipitated Si, and coexisted with Cu to form Al-Cu-
The aging precipitation of the Mg-based compound and the solid solution in the Al matrix contribute to the improvement of the strength. Mg content
The reason for specifying 0.5 to 2.5 wt% is that if the content is less than 0.5 wt%, the effect cannot be sufficiently obtained, and if it exceeds 2.5 wt%, the deformation resistance at the time of ironing becomes large and the appearance of the can after ironing becomes poor. This is because it is significantly deteriorated.

【0007】Mnは、FeまたはSiと共存して微細な
晶出物を多数生成する。この晶出物は、のちの熱処理で
粗大化して固体潤滑剤的作用を果たし、しごき加工での
擦り傷や焼付き(ゴーリング)の発生を抑える。この
他、MnはAlマトリックスに固溶して強度向上にも寄
与する。Mnの含有量を 0.5〜2.5wt%に規定した理由
は、0.5wt%未満では晶出物が十分な量生成せず、2.5wt%
を超えると20〜30μm径の粗大晶出物が生成してしごき
加工性を阻害する恐れがあるためである。
Mn coexists with Fe or Si to produce a large number of fine crystals. The crystallized substance is coarsened by the subsequent heat treatment and acts as a solid lubricant, thereby suppressing the occurrence of scratches and galling during ironing. In addition, Mn forms a solid solution in the Al matrix and contributes to improvement in strength. The reason that the content of Mn is defined as 0.5 to 2.5 wt% is that if the content is less than 0.5 wt%, a sufficient amount of crystallization is not generated,
This is because if it exceeds 20 mm, coarse crystals having a diameter of 20 to 30 μm may be formed, which may impair ironing workability.

【0008】Feは、前述のように、MnまたはSiと
共存して微細な晶出物を多数生成する。この晶出物は、
のちの熱処理で粗大化して固体潤滑剤的作用を果たし
て、しごき加工時のゴーリングの発生を抑える。またF
eはMn系化合物の晶出を促進する。Feの含有量を
0.1〜0.7wt%に規定した理由は、0.1wt%未満ではその効
果が十分に得られず、0.7wt%を超えると20〜30μm径の
粗大晶出物が生成してしごき加工性を阻害する恐れがあ
るためである。
[0008] As described above, Fe coexists with Mn or Si to produce many fine crystallized substances. This crystallized product
It is coarsened by the subsequent heat treatment and acts as a solid lubricant to suppress galling during ironing. Also F
e promotes crystallization of the Mn-based compound. Fe content
The reason specified in the range of 0.1 to 0.7 wt% is that if the content is less than 0.1 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 0.7 wt%, coarse crystals having a diameter of 20 to 30 μm are formed and ironing workability is impaired. This is because there is fear.

【0009】Siは、Mgとの間でMg2 Si化合物を
析出し、またAlマトリックスに固溶して強度向上に寄
与する。また前述のようにFeまたはMnとの間で晶出
物を生成し、しごき加工時のゴーリングの発生を抑え
る。Siの含有量を0.05〜0.5wt%に規定した理由は、
0.05wt%未満ではその効果が十分に得られず、0.5wt%を
超えるとその効果が飽和する上、材料が硬化して成形性
が悪化するためである。
[0009] Si precipitates a Mg 2 Si compound with Mg, and forms a solid solution in an Al matrix, thereby contributing to an improvement in strength. Further, as described above, a crystallized substance is generated between Fe and Mn to suppress the occurrence of galling during ironing. The reason that the content of Si is defined as 0.05 to 0.5 wt% is as follows.
If the content is less than 0.05 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 0.5 wt%, the effect is saturated, and the material is hardened to deteriorate the moldability.

【0010】Tiは鋳塊の結晶粒を微細化して製缶後の
肌荒れを抑制する。Tiの含有量を 0.005〜0.2wt%に規
定した理由は、0.005wt%未満ではその効果が十分に得ら
れず、0.2wt%を超えると初晶TiAl3 が晶出してしご
き加工性を阻害するためである。Tiと共にBを添加す
ると、Tiの効果が向上する。Bの含有量を0.0001〜0.
05wt% に規定した理由は、 0.0001wt%未満ではその効果
が十分に得られず、 0.05wt%を超えるとTiB2 の粗大
粒子が生成してピンホール発生の原因となり、またしご
き加工性を悪化させるためである。
[0010] Ti refines the crystal grains of the ingot to suppress roughening after can making. The reason for defining the Ti content to be 0.005 to 0.2 wt% is that if the content is less than 0.005 wt%, the effect is not sufficiently obtained, and if it exceeds 0.2 wt%, primary crystal TiAl 3 is crystallized and ironing workability is inhibited. That's why. When B is added together with Ti, the effect of Ti is improved. The content of B is 0.0001-0.
The reason for defining the 05Wt%, the effect is insufficient at less than 0.0001%, to produce coarse particles exceeds 0.05 wt% TiB 2 cause pinholes occur, also ironing deteriorate workability It is to make it.

【0011】本発明では上記各元素の他に、Cu、Z
n、Crのうちの1種または2種以上を含有させて、強
度をより一層向上させる。Cu、Zn、Crの含有量を
それぞれ0.05〜0.5wt%、0.05〜0.5wt%、0.05〜0.3wt%に
規定した理由は、下限値未満ではいずれもその効果が十
分に得られず、上限値を超えるといずれもしごき加工性
が悪化するためである。
In the present invention, in addition to the above elements, Cu, Z
The strength is further improved by containing one or more of n and Cr. The reason that the contents of Cu, Zn, and Cr are defined as 0.05 to 0.5 wt%, 0.05 to 0.5 wt%, and 0.05 to 0.3 wt%, respectively, is that the effect is not sufficiently obtained below the lower limit, and the upper limit is not set. This is because, in any case, ironing workability deteriorates.

【0012】本発明で前記アルミニウム合金の鋳造を双
ロールキャスターで行うのは、双ロールキャスターで製
出される鋳塊は比較的厚さの薄い板状鋳塊(厚さ1〜4
mm)のため、従来のDC鋳塊(厚さ 200〜 500mm)のよ
うに、鋳塊の均質化処理、熱間粗圧延、熱間仕上げ圧延
等の工程が省略できるためである。本発明において、双
ロールキャスターでの溶湯の凝固速度を50℃/sec以上に
規定した理由は、50℃/sec未満では鋳塊中心部に多量の
偏析が生じてしごき加工性が低下するためである。双ロ
ールキャスターでの圧延荷重を巾1mm当たり 50kgf以上
に規定した理由は、 50kgf未満では凝固時に生じる偏析
物が微細に粉砕されないため、熱処理後も偏析物が固溶
されずに残存してしごき加工性を害するためである。双
ロールキャスターで得られる板材の厚さを1mm以上4mm
未満に規定した理由は、1mm未満では表層が極端に急冷
されて表層に割れが生じ、また4mm以上では鋳塊中心部
の冷却速度を50℃/sec以上にするのが困難になり、鋳塊
中心部に多量の偏析が生じるためである。
In the present invention, the casting of the aluminum alloy is performed by a twin-roll caster because the ingot produced by the twin-roll caster is a plate-like ingot having a relatively small thickness (thickness of 1 to 4).
mm), as in the case of a conventional DC ingot (thickness: 200 to 500 mm), steps such as homogenization of the ingot, hot rough rolling, and hot finish rolling can be omitted. In the present invention, the reason for setting the solidification rate of the molten metal in the twin roll caster to 50 ° C./sec or more is that if it is less than 50 ° C./sec, a large amount of segregation occurs in the center of the ingot and ironing workability is reduced. is there. The reason why the rolling load on a twin roll caster is specified to be 50 kgf or more per 1 mm width is that if it is less than 50 kgf, segregated matter generated during solidification is not finely pulverized, so that segregated matter remains without solid solution even after heat treatment and is ironed. This is to hurt the sex. The thickness of the plate material obtained with twin roll casters is 1mm or more and 4mm
If it is less than 1 mm, the surface layer will be extremely quenched and cracks will occur on the surface layer. If it is more than 4 mm, it will be difficult to set the cooling rate at the center of the ingot to 50 ° C / sec or more. This is because a large amount of segregation occurs at the center.

【0013】双ロールキャスターにより製出された鋳塊
には、熱処理が一段目と二段目に分けて施される。一段
目熱処理で組織の均質化を図るとともに前述の微細な晶
出物を1μm以上の大きさに粗大化させ、しごき加工時
のゴーリングの発生を防止する。次いで二段目熱処理で
Mn等の固溶元素を析出させて耳率の低減を図る。
The ingot produced by the twin roll caster is subjected to heat treatment in the first stage and the second stage. In the first heat treatment, the structure is homogenized, and the above-mentioned fine crystallized material is coarsened to a size of 1 μm or more to prevent galling during ironing. Next, solid solution elements such as Mn are precipitated by a second-stage heat treatment to reduce the ear ratio.

【0014】一段目熱処理の保持条件を 580〜630 ℃の
温度で6時間以上に規定した理由は、熱処理温度が 580
℃未満、または熱処理時間が6時間未満では、組織の均
質化が不十分であり、また微細晶出物が1μm以上に粗
大化しない。従ってしごき加工時にゴーリングが発生す
るためである。一方熱処理温度が 630℃を超えると局所
的に融解して外観を損ねるためである。二段目熱処理の
保持条件を 480〜530 ℃の温度で1時間以上に規定した
理由は、熱処理温度が 480℃未満または熱処理時間が1
時間未満では、Mnが十分に析出せず、また熱処理温度
が 530℃を超えるとMnが析出しなくなり、いずれの場
合も耳率が増加するためである。
The reason why the holding condition of the first heat treatment is specified at 580 to 630 ° C. for 6 hours or more is that the heat treatment temperature is 580 to 630 ° C.
If the temperature is lower than 0 ° C. or the heat treatment time is less than 6 hours, the structure is not sufficiently homogenized, and the fine crystallized product does not become coarser than 1 μm. Therefore, galling occurs during ironing. On the other hand, if the heat treatment temperature exceeds 630 ° C, it will melt locally and impair the appearance. The reason why the holding condition of the second heat treatment is specified at a temperature of 480 to 530 ° C for 1 hour or more is that the heat treatment temperature is less than 480 ° C or the heat treatment time is 1 hour.
If the heat treatment temperature exceeds 530 ° C., Mn does not precipitate, and the ear ratio increases in any case.

【0015】冷間圧延の圧延率を50〜95%に規定した理
由は、圧延率が50%未満では金属間化合物が微細に分散
せず、かつ十分な強度が得られない、また95%を超える
と強度が高くなりすぎてしごき加工性が低下する(破胴
率が高くなる)ためである。特に望ましい圧延率は60〜
90%である。
The reason why the rolling ratio of the cold rolling is specified to be 50 to 95% is that if the rolling ratio is less than 50%, the intermetallic compound is not finely dispersed and sufficient strength cannot be obtained. If it exceeds, the strength becomes too high and the ironing workability is reduced (the fracture rate is increased). Particularly desirable rolling rate is 60 ~
90%.

【0016】冷間圧延の途中に中間焼鈍を施しても良
い。中間焼鈍を施すと再結晶が起き、耳率が一層低下す
る。中間焼鈍により強度も調整される。前記中間焼鈍の
条件を 380〜520 ℃の温度で2分以内に規定した理由
は、温度が 380℃未満では再結晶が不完全なため、また
温度が 520℃を超え、または保持時間が2分を超えると
析出物の再固溶量が多くなり、いずれの場合もしごき加
工性が低下する。保持時間は、保持無し、即ち目標温度
に到達後すぐに冷却しても良いし、到達後2分以内保持
しても良い。
Intermediate annealing may be performed during the cold rolling. When the intermediate annealing is performed, recrystallization occurs, and the ear ratio further decreases. The strength is also adjusted by the intermediate annealing. The reason for specifying the conditions of the intermediate annealing at a temperature of 380 to 520 ° C. within 2 minutes is that recrystallization is incomplete at a temperature of less than 380 ° C. and that the temperature exceeds 520 ° C. or the holding time is 2 minutes. If it exceeds 300, the amount of re-dissolved precipitates increases, and in any case, the ironing workability decreases. The holding time may be no holding, that is, cooling may be performed immediately after reaching the target temperature, or may be maintained within 2 minutes after reaching the target temperature.

【0017】さらに、必要に応じて仕上げ焼鈍を施し
て、しごき加工性の向上を図る。仕上げ焼鈍の条件を 1
00〜150 ℃、8時間以下に規定した理由は、 100℃未満
ではその効果が十分に得られず、 150℃を超え、または
8時間を超えるとDI成形時の加工硬化が過度に進み、
しごき加工で割れ(破胴)が発生し易くなるためであ
る。
Further, if necessary, finish annealing is performed to improve ironing workability. Finish annealing conditions 1
The reason for defining the temperature at 00 to 150 ° C. for 8 hours or less is that if the temperature is lower than 100 ° C., the effect cannot be sufficiently obtained, and if the temperature exceeds 150 ° C. or exceeds 8 hours, the work hardening during DI molding excessively proceeds.
This is because cracking (fracture) is likely to occur during ironing.

【0018】[0018]

【実施例】本発明を実施例により詳細に説明する。 (実施例1)表1に示す組成のアルミニウム合金を、双
ロールキャスターにて連続鋳造圧延して、厚さ 3.9mmの
板材とし、この板材に 620℃にて9時間保持後 520℃に
て2時間保持する熱処理を施し、次いで圧延率74%の冷
間圧延を施して厚さ1.0mm の板材とし、次いで 520℃で
30sec 保持する中間焼鈍を施し、さらに70%の冷間圧延
を施して厚さ0.30mmの板材とし(トータル圧延率92
%)、この板材に 120℃で2時間保持する仕上げ焼鈍を
施して缶胴用板材を製造した。前記連続鋳造圧延での圧
延荷重は 200kgf/mmとした。
EXAMPLES The present invention will be described in detail with reference to examples. (Example 1) An aluminum alloy having the composition shown in Table 1 was continuously cast and rolled using a twin-roll caster to form a plate having a thickness of 3.9 mm. The plate was kept at 620 ° C for 9 hours, and then at 520 ° C for 2 hours. Heat treatment for holding for a period of time, and then cold rolling at a rolling reduction of 74% to form a 1.0 mm thick sheet, and then at 520 ° C
Intermediate annealing for 30 seconds is performed, followed by 70% cold rolling to obtain a 0.30 mm thick sheet (total rolling ratio 92%
%), And this plate was subjected to finish annealing at 120 ° C. for 2 hours to produce a plate for a can body. The rolling load in the continuous casting and rolling was 200 kgf / mm.

【0019】得られた合金板について、機械的性質(耐
力(YS), 引張強さ(TS), 伸び)を調べた。また33mmφ、
肩R2.5mm のポンチを用いて57mmφのブランクをクリア
ランス30%で深絞りして耳率を測定した。また製缶ライ
ンにて、絞り成形、再絞り成形、3段のしごき成形(最
終のしごき率40%)を行い、缶側壁厚さが 105μmの缶
を1万缶成形し、そのときの破胴数を調べた。また塗装
ベーキング条件に相当する 200℃で20分間の加熱処理を
施した合金板について、前記と同じ機械的性質を調べ
た。結果を表2に示す。
The obtained alloy sheets were examined for mechanical properties (proof stress (YS), tensile strength (TS), elongation). 33mmφ,
The ear ratio was measured by deep drawing a blank of 57 mmφ with a clearance of 30% using a punch with a shoulder R2.5 mm. In the can-making line, draw forming, redraw forming, and three-step ironing (final ironing rate 40%) were performed, and 10,000 cans with a side wall thickness of 105 μm were formed. I checked the number. Further, the same mechanical properties as above were examined for an alloy plate which had been subjected to a heat treatment at 200 ° C. for 20 minutes corresponding to the coating baking conditions. Table 2 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】 [0021]

【0022】表2より明らかなように、本発明例の No.
a〜dはベーク前後とも機械的性質に優れ、また耳率が
低く、しごき加工性に優れ、従って製缶上または製品と
しての問題は何もなかった。これに対しMgの少ない N
o.eはベーク後の強度が低く、Mnの少ない No.f、F
eとSiの少ない No.gはゴーリングが発生した。Mg
の多い No.hは破胴数が多く、Mnの多い No.iはしぼ
り加工性が低下したためカッピング割れが多発した。F
e、Si、Bの多い No.j、Ti、Bの多い No.kはピ
ンホールが発生し、また破胴数が多くなった。TiとB
が添加されていない No.mは鋳塊の組織が粗く製缶後に
肌荒れが生じた。Cu、Cr、Znの多い No.n、pは
しごき加工性が低下して破胴数が増加した。
As is evident from Table 2, No. 1
The samples a to d had excellent mechanical properties before and after baking, had a low ear ratio, and were excellent in ironing workability. Therefore, there was no problem on can making or as a product. On the other hand, N with less Mg
Nos. f and F have low strength after baking and low Mn.
No.g with little e and Si produced galling. Mg
No. h, which has a large number, had a large number of fractured bodies, and No. i, which had a large amount of Mn, had reduced cupping cracking due to reduced squeezability. F
No.j, which contains a lot of e, Si, and B, and No.k, which contains a lot of Ti and B, produced pinholes and increased the number of broken bodies. Ti and B
In No.m to which no was added, the structure of the ingot was coarse and the skin became rough after can making. No.n and p with much Cu, Cr and Zn reduced ironing workability and increased the number of fractured bodies.

【0023】(実施例2)実施例1で用いた No.bのア
ルミニウム合金を、双ロールキャスターで連続鋳造し、
得られた鋳塊に、熱処理、冷間圧延、中間焼鈍、または
仕上げ焼鈍などを施して缶胴用板材を製造した。製造条
件は種々に変化させた。得られた板材について実施例1
と同じ調査を行った。従来のDC鋳造法により鋳造した
鋳塊 (厚さ500mm)を用いて製造したものについても同様
の調査を行った。製造条件を表3、4に、調査結果を表
5、6にそれぞれ示す。
(Example 2) The aluminum alloy of No. b used in Example 1 was continuously cast using a twin roll caster,
The obtained ingot was subjected to heat treatment, cold rolling, intermediate annealing, finish annealing, or the like to produce a can body plate. Manufacturing conditions were varied. Example 1 of the obtained plate material
The same survey was conducted. The same investigation was performed on the ingot (thickness: 500 mm) manufactured by the conventional DC casting method. The manufacturing conditions are shown in Tables 3 and 4, and the inspection results are shown in Tables 5 and 6, respectively.

【0024】[0024]

【表3】 (注)凝固速度℃/sec、圧延荷重Kgf/mm、温度(℃)−時間(hr)、 最終冷間圧延率%、厚さ(mm)−温度(℃)−時間(秒、hr)。[Table 3] (Note) Solidification rate ° C / sec, rolling load Kgf / mm, temperature (° C)-time (hr), final cold rolling rate%, thickness (mm)-temperature (° C)-time (seconds, hr).

【0025】[0025]

【表4】 (注)〜表3と同じ、熱延上がり板厚 No.29は2mm, No.30は4mm 。 [Table 4] Note: Same as Table 3, hot-rolled sheet thickness No.29 is 2mm, No.30 is 4mm.

【0026】 [0026]

【0027】 [0027]

【0028】本発明例のNo.1〜12は、従来例のNo.27,28
より耐力が高く、その他はほぼ同等の特性であった。こ
れに対して鋳塊板厚の厚いNo.13 および連続鋳造時に材
料に十分な圧延荷重をかけずに鋳造したNo.14 は、均質
化処理後も鋳造時に生じた中央部偏析が粗大に残るため
素板中央部に粗大な金属間化合物が存在し破胴数が多か
った。No.15 は一段目熱処理温度が低いため、No.17 は
熱処理時間が短いため、組織の均質化が不十分であり、
また微細晶出物が粗大化しなかったためしごき加工時に
ゴーリングが発生した。No.16 は一段目熱処理温度が高
いため局所的に融解して外観が悪化した。No.18 は二段
目熱処理温度が低いため、またNo.20 は熱処理時間が短
いため、またNo.19 は二段目熱処理温度が高いため、い
ずれもMnが十分に析出せず、耳率が大きくなった。N
o.21 は最終冷間圧延率が低いため金属間化合物が微細
に分散せず、強度が低下した。またNo.22 は中間焼鈍温
度が低いため再結晶が不十分で破胴数が増加した。No.2
3 は中間焼鈍温度が高いため、No.24 は中間焼鈍時間が
長いため、いずれも析出物が再固溶してしごき加工性が
低下し破胴数が増加した。No.25 は仕上焼鈍温度が高い
ため、またNo.26 は仕上焼鈍時間が長いため、いずれも
加工硬化が過度となり破胴数が増加した。
Nos. 1 to 12 of the present invention correspond to Nos. 27 and 28 of the conventional example.
The proof stress was higher and the other characteristics were almost the same. On the other hand, No. 13 with a large ingot thickness and No. 14 which was cast without applying sufficient rolling load to the material during continuous casting, coarsely segregated in the central part generated during casting even after homogenization treatment Therefore, a coarse intermetallic compound was present in the central part of the base plate, and the number of fractured bodies was large. No.15 has a low first-stage heat treatment temperature, and No.17 has a short heat treatment time, so the structure is not sufficiently homogenized.
In addition, galling occurred at the time of ironing because fine crystals did not coarsen. No. 16 melted locally and deteriorated in appearance due to the high first stage heat treatment temperature. No. 18 has a low second heat treatment temperature, No. 20 has a short heat treatment time, and No. 19 has a high second heat treatment temperature. Has grown. N
In o.21, since the final cold rolling reduction was low, the intermetallic compound was not finely dispersed and the strength was reduced. In No.22, the intermediate annealing temperature was low, so recrystallization was insufficient and the number of fractures increased. No.2
No. 3 had a high intermediate annealing temperature, and No. 24 had a long intermediate annealing time. Therefore, in all cases, the precipitate re-dissolved and ironing workability decreased, and the number of fractured bodies increased. No. 25 had a high finish annealing temperature, and No. 26 had a long finish annealing time.

【0029】前記実施例以外に、別途、熱処理を施さな
い場合について実験したところ、中間焼鈍、仕上焼鈍の
有無に関わらず、素板強度が異常に高くなり、また伸び
が異常に低くなり、その為しごき加工で割れが多発し
た。
In addition to the above-mentioned examples, experiments were conducted separately on the case where no heat treatment was performed. Regardless of the presence or absence of intermediate annealing and finish annealing, the strength of the base plate was abnormally high and the elongation was abnormally low. Many cracks occurred during the ironing process.

【0030】前記実施例では、双ロールキャスターによ
り鋳造した薄い鋳塊を用いたため工程数が少なく製造コ
ストが安かった。
In the above embodiment, a thin ingot cast by a twin roll caster was used, so that the number of steps was small and the production cost was low.

【0031】[0031]

【発明の効果】以上に述べたように、本発明では鋳造を
双ロールキャスターを用いて行うので鋳塊厚さが薄く、
そのため鋳造以降の工数が少なく、製造コストが安価で
ある。また製缶材としての特性および品質は、鋳造、熱
処理、冷間圧延を適正な条件で行うことにより従来材と
同等に保持できる。依って工業上顕著な効果を奏する。
As described above, in the present invention, since the casting is performed using the twin roll caster, the thickness of the ingot is small,
Therefore, the number of steps after casting is small, and the manufacturing cost is low. The properties and quality of the can material can be maintained at the same level as conventional materials by performing casting, heat treatment, and cold rolling under appropriate conditions. Therefore, there is an industrially significant effect.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 683 C22F 1/00 683 684 684C 685 685Z 686 686A 691 691B 691C 694 694A Continuation of front page (51) Int.Cl. 6 identification code FI C22F 1/00 683 C22F 1/00 683 684 684C 685 685Z 686 686A 691 691B 691C 694 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg 0.5〜2.5wt%、Mn 0.5〜2.5wt%、
Fe 0.1〜0.7wt%、Si0.05〜0.5wt%を含有し、Ti
0.005〜0.20wt% を単独であるいはB0.0001〜0.05wt%
とともに含有し、さらにCu0.05〜0.5wt%、Cr0.05〜
0.3wt%、Zn0.05〜0.5wt%の1種または2種以上を含有
し、残部Alおよび不可避不純物からなるアルミニウム
合金溶湯を、双ロールキャスターにより、50℃/sec以上
の凝固速度で凝固後、直ちに巾1mm当たり 50kgf以上の
荷重をかけて厚さ1mm以上4mm未満の板材に連続鋳造圧
延し、次いで前記板材に 580〜630 ℃の温度で6時間以
上保持後 480〜530 ℃の温度で1時間以上保持する熱処
理を施し、次いで圧延率50〜95%で冷間圧延し、その後
必要に応じて 100〜150 ℃で8時間以下保持する仕上げ
焼鈍を施すことを特徴とするDI加工性に優れるアルミ
ニウム合金硬質板の製造方法。
1. Mg 0.5-2.5 wt%, Mn 0.5-2.5 wt%,
Fe 0.1-0.7wt%, Si 0.05-0.5wt%, Ti
0.005 ~ 0.20wt% alone or B0.0001 ~ 0.05wt%
Together with Cu 0.05-0.5 wt%, Cr 0.05-
An aluminum alloy melt containing one or more of 0.3 wt% and 0.05-0.5 wt% of Zn, and the balance consisting of Al and unavoidable impurities is solidified at a solidification rate of 50 ° C / sec or more by twin roll casters. Immediately applying a load of 50 kgf or more per 1 mm width, continuously casting and rolling into a sheet having a thickness of 1 mm or more and less than 4 mm, and holding the sheet at a temperature of 580-630 ° C. for 6 hours or more, and then a temperature of 480-530 ° C. Heat treatment for holding for more than an hour, then cold rolling at a reduction ratio of 50 to 95%, and then, if necessary, finish annealing at 100 to 150 ° C for 8 hours or less, which is excellent in DI workability. Manufacturing method of aluminum alloy hard plate.
【請求項2】 圧延率50〜95%で冷間圧延したのち 380
〜600 ℃の温度で2分以下保持する中間焼鈍を施し、さ
らに50〜95%の最終冷間圧延を施すことを特徴とする請
求項1記載のDI加工性に優れるアルミニウム合金硬質
板の製造方法。
2. After cold rolling at a reduction ratio of 50 to 95%,
The method for producing an aluminum alloy hard plate excellent in DI workability according to claim 1, wherein intermediate annealing is performed at a temperature of -600 ° C for 2 minutes or less, and final cold rolling of 50-95% is further performed. .
JP31059496A 1996-11-21 1996-11-21 Production of hard aluminum alloy sheet excellent in di workability Pending JPH10152762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31059496A JPH10152762A (en) 1996-11-21 1996-11-21 Production of hard aluminum alloy sheet excellent in di workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31059496A JPH10152762A (en) 1996-11-21 1996-11-21 Production of hard aluminum alloy sheet excellent in di workability

Publications (1)

Publication Number Publication Date
JPH10152762A true JPH10152762A (en) 1998-06-09

Family

ID=18007138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31059496A Pending JPH10152762A (en) 1996-11-21 1996-11-21 Production of hard aluminum alloy sheet excellent in di workability

Country Status (1)

Country Link
JP (1) JPH10152762A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017410A1 (en) * 1998-09-21 2000-03-30 Gibbs Die Casting Aluminum Corporation Aluminum die cast alloy having high manganese content
FR2805827A1 (en) * 2000-03-03 2001-09-07 Pechiney Rhenalu Method for the production of an aluminium alloy for the fabrication of drink can bodies with enhanced resistance to sidewall abuse
US6309481B1 (en) * 1997-10-08 2001-10-30 Aluminium Rheinfelden, Gmbh Aluminum casting alloy
WO2002048413A1 (en) * 2000-12-13 2002-06-20 The Furukawa Electric Co.,Ltd. Method of manufacturing aluminum alloy fin material for brazing
JP2003071546A (en) * 2001-08-30 2003-03-11 Nippon Light Metal Co Ltd Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
KR100489018B1 (en) * 2002-08-30 2005-05-11 주식회사 포스코 Method of Manufacturing High Manganese Steel Strip With Twin Roll Strip Casting Apparatus
EP1614760A1 (en) * 2003-04-15 2006-01-11 Nippon Light Metal Company Ltd. Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
CN100413986C (en) * 2003-04-15 2008-08-27 日本轻金属株式会社 Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
KR100862768B1 (en) * 2002-08-30 2008-10-13 주식회사 포스코 Method for Manufacturing High Manganese Steel Strip with High Strength and High Elongation Using Twin Roll Strip Caster
KR100887119B1 (en) * 2002-08-30 2009-03-04 주식회사 포스코 Method of Manufacturing High Manganese Steel Sheet Strip with Twin Roll Strip Casting Apparatus
JP2009291804A (en) * 2008-06-04 2009-12-17 Mazda Motor Corp Continuous casting/rolling device and manufacturing method of metallic member
JP2011084775A (en) * 2009-10-15 2011-04-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can barrel having excellent redraw formability, and method for producing the same
EP2822717A4 (en) * 2012-03-07 2016-03-09 Alcoa Inc Improved 6xxx aluminum alloys, and methods for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309481B1 (en) * 1997-10-08 2001-10-30 Aluminium Rheinfelden, Gmbh Aluminum casting alloy
WO2000017410A1 (en) * 1998-09-21 2000-03-30 Gibbs Die Casting Aluminum Corporation Aluminum die cast alloy having high manganese content
FR2805827A1 (en) * 2000-03-03 2001-09-07 Pechiney Rhenalu Method for the production of an aluminium alloy for the fabrication of drink can bodies with enhanced resistance to sidewall abuse
WO2001064965A1 (en) * 2000-03-03 2001-09-07 Pechiney Rhenalu Method for making aluminium alloy strips for making can bodies
CN100429327C (en) * 2000-12-13 2008-10-29 古河Sky株式会社 Method of manufacturing aluminum alloy fin material for brazing
WO2002048413A1 (en) * 2000-12-13 2002-06-20 The Furukawa Electric Co.,Ltd. Method of manufacturing aluminum alloy fin material for brazing
JP2002241910A (en) * 2000-12-13 2002-08-28 Furukawa Electric Co Ltd:The Method for producing aluminum alloy fin material for brazing
US6620265B2 (en) * 2000-12-13 2003-09-16 The Furukawa Electric Co., Ltd. Method for manufacturing an aluminum alloy fin material for brazing
JP2003071546A (en) * 2001-08-30 2003-03-11 Nippon Light Metal Co Ltd Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
KR100489018B1 (en) * 2002-08-30 2005-05-11 주식회사 포스코 Method of Manufacturing High Manganese Steel Strip With Twin Roll Strip Casting Apparatus
KR100862768B1 (en) * 2002-08-30 2008-10-13 주식회사 포스코 Method for Manufacturing High Manganese Steel Strip with High Strength and High Elongation Using Twin Roll Strip Caster
KR100887119B1 (en) * 2002-08-30 2009-03-04 주식회사 포스코 Method of Manufacturing High Manganese Steel Sheet Strip with Twin Roll Strip Casting Apparatus
EP1614760A4 (en) * 2003-04-15 2006-10-18 Nippon Light Metal Co Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
CN100413986C (en) * 2003-04-15 2008-08-27 日本轻金属株式会社 Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
EP1614760A1 (en) * 2003-04-15 2006-01-11 Nippon Light Metal Company Ltd. Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
JP2009291804A (en) * 2008-06-04 2009-12-17 Mazda Motor Corp Continuous casting/rolling device and manufacturing method of metallic member
JP2011084775A (en) * 2009-10-15 2011-04-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can barrel having excellent redraw formability, and method for producing the same
EP2822717A4 (en) * 2012-03-07 2016-03-09 Alcoa Inc Improved 6xxx aluminum alloys, and methods for producing the same
AU2013202557B2 (en) * 2012-03-07 2017-06-15 Arconic Inc. Improved 6XXX aluminum alloys and methods for producing the same

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
JP3194742B2 (en) Improved lithium aluminum alloy system
WO1995022634A1 (en) Method of manufacturing aluminum alloy plate for molding
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2020120267A1 (en) Method of making 6xxx aluminium sheets with high surface quality
JPH10152762A (en) Production of hard aluminum alloy sheet excellent in di workability
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
JPH1030147A (en) Aluminum-zinc-magnesium alloy extruded material and its production
US6726785B2 (en) Aluminum alloy sheet material and method for producing the same
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3278130B2 (en) Method for producing high-strength heat-treated aluminum alloy sheet for drawing
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JPH11256290A (en) Manufacture of aluminum alloy sheet for can body
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming