JP5634828B2 - Manufacturing method and use of spinel type lithium manganese composite oxide particles - Google Patents

Manufacturing method and use of spinel type lithium manganese composite oxide particles Download PDF

Info

Publication number
JP5634828B2
JP5634828B2 JP2010244499A JP2010244499A JP5634828B2 JP 5634828 B2 JP5634828 B2 JP 5634828B2 JP 2010244499 A JP2010244499 A JP 2010244499A JP 2010244499 A JP2010244499 A JP 2010244499A JP 5634828 B2 JP5634828 B2 JP 5634828B2
Authority
JP
Japan
Prior art keywords
range
composite oxide
manganese composite
oxide particles
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010244499A
Other languages
Japanese (ja)
Other versions
JP2012096949A (en
Inventor
小柳 嗣雄
嗣雄 小柳
輝昭 角田
輝昭 角田
真也 碓田
真也 碓田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2010244499A priority Critical patent/JP5634828B2/en
Publication of JP2012096949A publication Critical patent/JP2012096949A/en
Application granted granted Critical
Publication of JP5634828B2 publication Critical patent/JP5634828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、比表面積が小さく、粒子密度および粒子の充填密度が高く、格子定数が均一で、圧縮弾性率が高く、しかも粒子毎の圧縮弾性率の変動幅が小さく均一なスピネル型リチウム・マンガン複合酸化物粒子およびその製造方法、ならびに前記粒子特性を有するために電極膜形成時に集電体基板を損傷することがなく、また、この時、圧着しても粒子の破壊がなく、正極材として用いた場合にMnの溶出が少なく、充放電容量が高く、サイクル特性に優れたリチウムイオン二次電池とに関する。   The present invention provides a spinel type lithium manganese having a small specific surface area, a high particle density and a high packing density of particles, a uniform lattice constant, a high compressive elastic modulus, and a small fluctuation range of the compressive elastic modulus for each particle. The composite oxide particles and the production method thereof, and the above-mentioned particle characteristics do not damage the current collector substrate during the formation of the electrode film. The present invention relates to a lithium ion secondary battery having little elution of Mn when used, high charge / discharge capacity, and excellent cycle characteristics.

リチウムイオン電池用正極材として、コバルト酸リチウム、ニッケル酸リチウム及びマンガン酸リチウムなどが一部実用化され、高性能化を目指して研究・開発が進められている。   As a positive electrode material for lithium ion batteries, lithium cobaltate, lithium nickelate, lithium manganate, etc. have been put into practical use, and research and development are being promoted aiming at high performance.

これらのうち、コバルト酸リチウムは原料のコバルトが高価であり、また実効蓄電量が理論量の約50%しかないと言う問題がある。またニッケル酸リチウムは安価で実効蓄電量がコバルト酸リチウムの約1.4倍もあり注目されているが、合成が困難であり、安全性にも問題がある。一方、マンガン酸リチウムは実効蓄電量はコバルト酸リチウムより若干劣るが、原料のマンガンが安価なことと、保存性や安全性がコバルト酸リチウムと同等であるので、リチウムイオン電池用正極材として期待されている。   Among these, lithium cobaltate has a problem that the raw material cobalt is expensive and the effective storage amount is only about 50% of the theoretical amount. Lithium nickelate is also attracting attention because it is inexpensive and has an effective storage capacity that is about 1.4 times that of lithium cobaltate. However, it is difficult to synthesize and has a problem with safety. On the other hand, lithium manganate is slightly inferior to lithium cobaltate in effective storage capacity, but it is expected to be a positive electrode material for lithium ion batteries because the raw material manganese is cheap and its storage and safety are equivalent to lithium cobaltate. Has been.

これらの正極材は、微粒子状のものをグラファイトなどの炭素系導電剤及びバインダーと共に有機溶剤に混合してペースト状合剤とし、これを15〜20μmのアルミ箔に均一な厚さに塗布する。次いで、乾燥後合剤の密度を高くすると共に電極の厚さを均一にするためにプレス機で圧縮して電池用正極が製造される。この正極が負極、セパレーターなどと共に電池用容器に装填され電池が構成されるが、一定容積の電池中にできるだけ多くの正極材が充填されることが充電容量又は放電容量などの電池性能を向上させる意味で好ましい。このためには、合剤中の正極材の量を多くすれば良いが、合剤中に配合し得る正極材の量にも制限がある。そこで、できるだけ緻密な微粒子の正極材を用いれば、充填密度が大きいことから、単位体積当たりに充填される正極材の重量が多くなり、放電容量の高い電池が得られる。すなわち、正極材としては重量当たりの放電容量と同時に、体積当たりの放電容量(重量当たりの放電容量×正極材微粒子の充填密度)の高いことも正極材の重要な因子である。   These positive electrode materials are mixed in an organic solvent together with a carbon-based conductive agent such as graphite and a binder into a paste mixture, and this is applied to a 15 to 20 μm aluminum foil with a uniform thickness. Next, after drying, the density of the mixture is increased and the electrode is compressed with a press to make the electrode thickness uniform, whereby a positive electrode for a battery is produced. This positive electrode is loaded into a battery container together with a negative electrode, a separator, etc., and the battery is configured. However, filling as much positive electrode material as possible into a certain volume of battery improves battery performance such as charge capacity or discharge capacity. Preferred in terms. For this purpose, the amount of the positive electrode material in the mixture may be increased, but the amount of the positive electrode material that can be blended in the mixture is also limited. Therefore, if a positive electrode material with fine particles as fine as possible is used, the packing density is large, so that the weight of the positive electrode material filled per unit volume increases and a battery with a high discharge capacity can be obtained. That is, as a positive electrode material, a high discharge capacity per unit volume (discharge capacity per unit weight x packing density of positive electrode material fine particles) is also an important factor of the positive electrode material.

しかしながら、従来正極材として用いられているマンガン酸リチウムの微粒子は、同じ粒径のコバルト酸リチウムの微粒子と比較した時の充填密度が小さい。そのため、同一容積の正極材を比較した場合、重量当たりの放電容量はコバルト酸リチウムの80%程度が期待できるが、体積当たりの放電容量は50〜60%程度と低くなると言う問題点がある。さらに、従来のマンガン酸リチウムを正極材として用いた電池では、充放電を繰り返すうちに次第に放電容量が低下するという、サイクル特性の低下の問題点がある。   However, the lithium manganate fine particles conventionally used as the positive electrode material have a smaller packing density when compared with the lithium cobalt oxide fine particles having the same particle diameter. Therefore, when comparing positive electrode materials of the same volume, the discharge capacity per weight can be expected to be about 80% of lithium cobalt oxide, but there is a problem that the discharge capacity per volume is as low as about 50 to 60%. Furthermore, in a battery using conventional lithium manganate as a positive electrode material, there is a problem of deterioration in cycle characteristics in that the discharge capacity gradually decreases as charging and discharging are repeated.

これらの問題点を解決するために、マンガン酸リチウムに、例えばBなどの第三成分を添加したリチウム・マンガン複合酸化物が提案されている(特開平4−237970号公報:特許文献1)、特開平5−290846号公報:特許文献2、特開平8−195200号公報:特許文献3)。   In order to solve these problems, a lithium-manganese composite oxide in which a third component such as B is added to lithium manganate has been proposed (JP-A-4-237970: Patent Document 1). JP-A-5-290846: Patent Document 2, JP-A-8-195200: Patent Document 3).

また、特開平11−71115号公報(特許文献4)には、LiおよびMn以外の少なくとも1種の他元素を含有し、有機溶媒中でMn溶出が少ないスピネル構造リチウム・マンガン系酸化物からなる正極活物質(以下、正極材ということがある)が開示されている。   JP-A-11-71115 (Patent Document 4) contains at least one other element other than Li and Mn, and consists of a spinel structure lithium / manganese oxide with little Mn elution in an organic solvent. A positive electrode active material (hereinafter sometimes referred to as a positive electrode material) is disclosed.

この時の正極材の製造方法として、マンガン化合物として平均凝集粒子径が0.5〜50μmの二酸化マンガン粒子を用い、これに他種元素化合物を混合し、造粒した後、500〜1000℃で焼成する方法が開示されている。この時、原料を均一に混合するとともに造粒、焼成を行う方法としてロータリーキルンを使用することが推奨されている。   As a manufacturing method of the positive electrode material at this time, manganese dioxide particles having an average agglomerated particle diameter of 0.5 to 50 μm are used as manganese compounds, and after mixing and granulating other kinds of elemental compounds at 500 to 1000 ° C. A method of firing is disclosed. At this time, it is recommended to use a rotary kiln as a method of mixing raw materials uniformly and performing granulation and firing.

しかしながら、平均凝集粒子径が0.5〜50μmの二酸化マンガン粒子と他種元素化合物とをロータリーキルンで混合、焼成する方法では、混合がミクロに均一にならず、得られる粒子の組成、格子定数、粒子密度等の変動が大きく不均一となり、加えて、連続式、バッチ式に拘わらず焼成温度を均一にすることが困難で、得られるスピネル構造リチウムマンガン系酸化物粒子の密度、比表面積、結晶子系 一次粒子径等が変動し、正極材として用いた場合、高性能を維持することが困難であったり、また、性能が変動することがあり、さらに改良することが求められていた。   However, in the method of mixing and firing manganese dioxide particles having an average agglomerated particle diameter of 0.5 to 50 μm and other kinds of element compounds in a rotary kiln, the mixing is not microscopically uniform, and the composition of the resulting particles, the lattice constant, Fluctuations in particle density, etc. are large and non-uniform. In addition, it is difficult to make the firing temperature uniform regardless of the continuous type or batch type, and the density, specific surface area, and crystal of the resulting spinel lithium manganese oxide particles When the primary particle diameter and the like of the child system fluctuate and are used as the positive electrode material, it is difficult to maintain high performance or the performance may fluctuate, and further improvement has been demanded.

さらにまた、本願出願人は特開平11−171551号公報(特許文献5)に、B(ホウ素)またはV(バナジウム)を含む融点が800℃以下の酸化物を含み、結晶粒子の大きさが約0.1〜5.0μmの範囲にあり、焼結して平均粒子径が2〜30μmのリチウム・マンガン複合酸化物粒子およびその製造方法を開示している。   Furthermore, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 11-171551 (Patent Document 5) includes an oxide containing B (boron) or V (vanadium) and having a melting point of 800 ° C. or less, and has a crystal grain size of about Disclosed are lithium-manganese composite oxide particles that are in the range of 0.1 to 5.0 μm, sintered and have an average particle diameter of 2 to 30 μm, and a method for producing the same.

製造方法として、具体的には、リチウム化合物、二酸化マンガン粒子、融点が800℃以下の酸化物を所定組成範囲となるように混合した水懸濁液を噴霧乾燥等により乾燥した後、ロータリーキルン等により650〜900℃で焼成している。この時、原料二酸化マンガン粒子は、好ましくは平均粒子径を0.1〜5μmの範囲に予め湿式粉砕等により調整することが記載されている。また、水懸濁液(混合スラリー)の固形分濃度は10〜30重量%が好ましいと特許文献5には記載されている。   As a production method, specifically, a water suspension in which a lithium compound, manganese dioxide particles, and an oxide having a melting point of 800 ° C. or less are mixed so as to have a predetermined composition range is dried by spray drying or the like, and then a rotary kiln or the like. Baking at 650-900 ° C. At this time, it is described that the raw material manganese dioxide particles are preferably adjusted in advance by wet pulverization or the like so that the average particle diameter is in the range of 0.1 to 5 μm. Patent Document 5 describes that the solid content concentration of the aqueous suspension (mixed slurry) is preferably 10 to 30% by weight.

特開平4−237970号公報JP-A-4-237970 特開平5−290846号公報Japanese Patent Laid-Open No. 5-290846 特開平8−195200号公報JP-A-8-195200 特開平11−71115号公報JP-A-11-71115 特開平11−171551号公報JP-A-11-171551

特許文献1〜3に記載のものでは、しかし、これらのリチウム・マンガン複合酸化物を正極材として用いた電池では、常温より高い温度で使用したときのサイクル特性が低いという問題が依然残されている。   In the batteries described in Patent Documents 1 to 3, however, batteries using these lithium / manganese composite oxides as the positive electrode material still have the problem of low cycle characteristics when used at a temperature higher than room temperature. Yes.

また特許文献4に記載の方法では、平均凝集粒子径が0.5〜50μmの二酸化マンガン粒子と他種元素化合物とをロータリーキルンで混合、焼成する方法では、混合がミクロに均一にならず、得られる粒子の組成、格子定数、粒子密度等の変動が大きく不均一となり、加えて、連続式、バッチ式に拘わらず焼成温度を均一にすることが困難で、得られるスピネル構造リチウムマンガン系酸化物粒子の密度、比表面積、結晶子系 一次粒子径等が変動し、正極材として用いた場合、高性能を維持することが困難であったり、また、性能が変動することがあり、さらに改良することが求められていた。   Further, in the method described in Patent Document 4, in the method in which manganese dioxide particles having an average aggregated particle size of 0.5 to 50 μm and other kinds of element compounds are mixed and fired in a rotary kiln, the mixing is not microscopically uniform. Fluctuations in the composition, lattice constant, particle density, etc. of the resulting particles are greatly non-uniform, and in addition, it is difficult to make the firing temperature uniform regardless of the continuous type or batch type, and the resulting spinel structure lithium manganese oxide Particle density, specific surface area, crystallite system The primary particle diameter, etc. fluctuate. When used as a positive electrode material, it may be difficult to maintain high performance, and performance may fluctuate, further improving. It was requested.

さらに引用文献5の方法では、上記水懸濁液は粗大粒子が存在したり、微細粒子が凝集して粗大粒子化するためか、経時変化により沈降する粒子が存在し、噴霧乾燥し、焼成して得られる粒子の組成、密度、比表面積、格子定数等が経時的に変化して不均一になり、正極材として用いた際に放電容量、サイクル特性等が不充分となる問題があった。   Further, according to the method of Cited Document 5, the water suspension has coarse particles, or fine particles aggregate to become coarse particles, or there are particles that settle due to changes over time, and spray-dried and fired. The composition, density, specific surface area, lattice constant, etc. of the particles obtained in this way change over time and become non-uniform, resulting in insufficient discharge capacity and cycle characteristics when used as a positive electrode material.

また、水懸濁液の経時変化により、噴霧乾燥して得られる粒子の中に凹部を有していたり、お碗状の粒子が存在し、これを高温で焼成して得られる粒子の粒子緻密が変動しやすく、低下する傾向があり、正極材として用いた際に放電容量、サイクル特性等が不充分となる問題があった。   Further, due to the change over time of the aqueous suspension, there are concave portions in the particles obtained by spray drying, or bowl-like particles are present, and the particle density of the particles obtained by firing this at high temperature However, when used as a positive electrode material, there is a problem that discharge capacity, cycle characteristics and the like are insufficient.

このような状況の下、本発明者等は、上記問題点について鋭意検討した結果、リチウム化合物、二酸化マンガン粒子、アルミナゾルおよびホウ酸を所定組成範囲となるように混合し、pHを所定範囲に調整すると、水懸濁液の降伏応力値が所定の範囲となり、即ち、水懸濁液中で二酸化マンガン粒子が他の成分とともに緩く凝集して全体的に三次元ゲル構造を取ることを見出し、これにより、前記した経時変化による凝集、粒子の粗大化、さらには粒子の沈降を抑制することができ、経時変化がなくなるとともに粒子密度が高く、格子定数の変動幅が小さく、しかも圧縮弾性率の変動係数の小さいリチウム・マンガン複合酸化物粒子が得られることを見出して本発明を完成するに至った。   Under such circumstances, the present inventors diligently studied the above problems, and as a result, mixed lithium compound, manganese dioxide particles, alumina sol and boric acid so as to be within a predetermined composition range, and adjusted pH to a predetermined range. Then, the yield stress value of the aqueous suspension falls within a predetermined range, that is, the manganese dioxide particles are loosely aggregated together with other components in the aqueous suspension to form an overall three-dimensional gel structure. Can suppress aggregation, particle coarsening, and particle sedimentation due to the above-mentioned change over time, and there is no change over time, the particle density is high, the fluctuation range of the lattice constant is small, and the change in compression modulus The inventors have found that lithium-manganese composite oxide particles having a small coefficient can be obtained, and have completed the present invention.

すなわち、本発明の要旨は以下のとおりである。
[1]下記の工程(a)〜(c)からなることを特徴とするスピネル型リチウム・マンガン複合酸化物粒子の製造方法;
(a)リチウム化合物(水酸化リチウム)、平均一次粒子径(D1)が0.1〜1μmの範囲にある二酸化マンガン粒子(A)、アルミナゾルおよびホウ素化合物を、Li:Mn:Al:Bの原子比が(x+y):(2−y−z):z1:z2(但し、x=1.0〜1.2、0<y≦0.2、1<x+y≦1.2、z1(Al)=0.01〜0.2、z2(B)=0.0005〜0.05、z=z1+z2)の比率となり、固形分濃度が5〜50重量%の範囲にあり、該分散液の降伏応力値が5〜500Paの範囲にあり、pHが9〜14の範囲にある噴霧乾燥用混合物分散液を調製する工程。
(b)噴霧乾燥する工程。
(c)焼成する工程。
That is, the gist of the present invention is as follows.
[1] A process for producing spinel-type lithium / manganese composite oxide particles comprising the following steps (a) to (c);
(A) Lithium compound (lithium hydroxide), manganese dioxide particles (A) having an average primary particle diameter (D 1 ) in the range of 0.1 to 1 μm, alumina sol, and boron compound, Li: Mn: Al: B The atomic ratio is (x + y) :( 2-y−z): z1: z2 (where x = 1.0 to 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, z1 (Al ) = 0.01 to 0.2, z2 (B) = 0.005 to 0.05, z = z1 + z2), and the solid content concentration is in the range of 5 to 50% by weight. A step of preparing a spray dispersion mixture dispersion having a yield stress value of 5 to 500 Pa and a pH of 9 to 14.
(B) A step of spray drying.
(C) A step of firing.

[2]前記工程(c)についで、さらに下記工程(d)を行う[1]のスピネル型リチウム・マンガン複合酸化物粒子の製造方法;
(d)平均粒子径(D3)が10〜20μmの範囲にあり、粒子径分布が2〜40μmとなるように解砕する工程。
[3]前記工程(a)における二酸化マンガン粒子(A)のゼータ電位が−60〜−5mVの範囲にある[1]または[2]のスピネル型リチウム・マンガン複合酸化物粒子の製造方法。
[4]充填かさ密度(ABD)が1.0〜1.6g/mlの範囲にあり、圧縮充填密度(CBD)が1.5〜2.1g/mlの範囲に、CBDとABDとの比CBD/ABDが1.1〜1.8の範囲にある[1]〜[3]のスピネル型リチウム・マンガン複合酸化物粒子の製造方法。
[2] The method for producing spinel-type lithium / manganese composite oxide particles according to [1], wherein the following step (d) is further performed following the step (c);
(D) A step of crushing so that the average particle size (D 3 ) is in the range of 10 to 20 μm and the particle size distribution is 2 to 40 μm.
[3] The method for producing spinel type lithium / manganese composite oxide particles according to [1] or [2], wherein the manganese dioxide particles (A) in the step (a) have a zeta potential in the range of −60 to −5 mV.
[4] The ratio of CBD to ABD is such that the filling bulk density (ABD) is in the range of 1.0 to 1.6 g / ml and the compressed packing density (CBD) is in the range of 1.5 to 2.1 g / ml. A process for producing spinel type lithium / manganese composite oxide particles according to [1] to [3], wherein CBD / ABD is in the range of 1.1 to 1.8.

[5]10%圧縮弾性率が20〜200kgf/mm2の範囲にあり、10%圧縮弾性率の変動係数(CV値)が5〜30%の範囲にある[1]〜[4]のスピネル型リチウム・マンガン複合酸化物粒子の製造方法。
[6]下記の一般式で示されるスピネル型リチウム・マンガン複合酸化物粒子であって、比表面積が0.1〜2.0m2/gの範囲にあり、平均粒子径(D3)が10〜20μmの範囲にあり、粒子径分布が2〜40μmの範囲にあり、充填かさ密度(ABD)が1.0〜1.6g/mlの範囲にあり、圧縮充填密度(CBD)が1.5〜2.1g/mlの範囲に、CBDとABDとの比CBD/ABDが1.1〜1.8の範囲にあり、格子数が8.15000〜8.25000オングストロームの範囲にあり、該格子定数の標準偏差が0.00092オングストローム以下であり、10%圧縮弾性率が20〜200kgf/mm2の範囲にあり、10%圧縮弾性率の変動係数(CV値)が5〜30%の範囲にあることを特徴とするリチウム・マンガン複合酸化物粒子。
Li(x+y)Mn(2-y-z)z4
(但し、x=1.0〜1.2、0<y≦0.2、1<x+y≦1.2、MはAlおよびBで、z1(Al)=0.01〜0.2、z2(B)=0.0005〜0.05)
[7]前記[1]〜[5]のスピネル型リチウム・マンガン複合酸化物粒子の製造方法によって製造された[6]のリチウム・マンガン複合酸化物粒子。
[8]前記[1]〜[5]の製造方法によって製造されたスピネル型リチウム・マンガン複合酸化物粒子を正極材として用いたことを特徴とするリチウムイオン二次電池。
[5] Spinel of [1] to [4] having a 10% compression modulus in the range of 20 to 200 kgf / mm 2 and a coefficient of variation (CV value) of the 10% compression modulus in the range of 5 to 30% Method of manufacturing type lithium / manganese composite oxide particles.
[6] Spinel-type lithium / manganese composite oxide particles represented by the following general formula, having a specific surface area of 0.1 to 2.0 m 2 / g and an average particle diameter (D 3 ) of 10 In the range of ˜20 μm, particle size distribution in the range of 2 to 40 μm, packing bulk density (ABD) in the range of 1.0 to 1.6 g / ml, and compression packing density (CBD) of 1.5. in the range of ~2.1g / ml, in the range of the ratio CBD / ABD between CBD and ABD is 1.1 to 1.8, the lattice constants are in the range of 8.15000 to 8.25000 Å, the The standard deviation of the lattice constant is 0.00092 angstrom or less, the 10% compression modulus is in the range of 20 to 200 kgf / mm 2 , and the coefficient of variation (CV value) of the 10% compression modulus is in the range of 5 to 30%. Lithium Ma characterized by Cancer composite oxide particles.
Li (x + y) Mn (2-yz) M z O 4
(However, x = 1.0 to 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, M is Al and B, z1 (Al) = 0.01 to 0.2, z2 (B) = 0.005 to 0.05)
[7] The lithium / manganese composite oxide particles according to [6] produced by the method for producing spinel-type lithium / manganese composite oxide particles according to [1] to [5].
[8] A lithium ion secondary battery using spinel-type lithium / manganese composite oxide particles produced by the production method of [1] to [5] as a positive electrode material.

本発明によれば、球状のリチウム・マンガン複合酸化物微粒子が得られる。このような粒子を、正極材として用いるとなどに塗布する際にアルミ箔を傷つけるようなことがなく、正極材として用いたときにアルミ箔などの金属箔を含む集電体基板を損傷することがなく、また、この時、圧着しても粒子の破壊がない。その結果、体積当たりの放電容量が高く、高温で使用したときのサイクル特性に優れたリチウムイオン二次電池を提供することができる。   According to the present invention, spherical lithium / manganese composite oxide fine particles can be obtained. When such particles are used as a positive electrode material, the aluminum foil is not damaged when applied, and when used as a positive electrode material, a current collector substrate containing a metal foil such as an aluminum foil is damaged. Also, at this time, there is no destruction of the particles even if pressure bonding is performed. As a result, a lithium ion secondary battery having a high discharge capacity per volume and excellent cycle characteristics when used at high temperatures can be provided.

まず、本発明に係るスピネル型リチウム・マンガン複合酸化物粒子の製造方法について説明する。
スピネル型リチウム・マンガン複合酸化物粒子の製造方法
本発明に係るスピネル型リチウム・マンガン複合酸化物粒子の製造方法は、下記の工程(a)〜(c)からなることを特徴とする。
First, a method for producing spinel-type lithium / manganese composite oxide particles according to the present invention will be described.
Method for Producing Spinel Type Lithium / Manganese Composite Oxide Particles The method for producing spinel type lithium / manganese composite oxide particles according to the present invention comprises the following steps (a) to (c).

[(a)分散液調製工程]
まず、(a)リチウム化合物(水酸化リチウム)、平均一次粒子径(D1)が0.1〜1μmの範囲にある二酸化マンガン粒子、アルミナゾルおよびホウ素化合物を、Li:Mn:Al:Bの原子比が(x+y):(2−y−z):z1:z2(但し、x=1.0〜1.2、0<y≦0.2、1<x+y≦1.2、z1(Al)=0.01〜0.2、z2(B)=0.0005〜0.05、z=z1+z2)の比率となり、固形分濃度が5〜50重量%の範囲にあり、該分散液の降伏応力値が5〜500Paの範囲にあり、pHが9〜14の範囲にある噴霧乾燥用混合物分散液を調製する。
[(A) Dispersion preparation step]
First, (a) a lithium compound (lithium hydroxide), manganese dioxide particles having an average primary particle diameter (D 1 ) in the range of 0.1 to 1 μm, an alumina sol, and a boron compound are converted into atoms of Li: Mn: Al: B. The ratio is (x + y) :( 2-y−z): z1: z2 (where x = 1.0 to 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, z1 (Al) = 0.01 to 0.2, z2 (B) = 0.0005 to 0.05, z = z1 + z2), and the solid content concentration is in the range of 5 to 50 wt%. A mixture dispersion for spray drying having a yield stress value in the range of 5 to 500 Pa and a pH in the range of 9 to 14 is prepared.

二酸化マンガン粒子
本発明に用いる二酸化マンガン粒子は、通常、電解二酸化マンガン粉末、化学合成二酸化マンガン粉末が用いられる。また水酸化マンガン、炭酸マンガン、硝酸マンガンなどの熱分解して二酸化マンガンとなるマンガン化合物あるいはこれらの混合物を用いることができる。
Manganese dioxide particles As the manganese dioxide particles used in the present invention, electrolytic manganese dioxide powder and chemically synthesized manganese dioxide powder are usually used. Further, manganese compounds such as manganese hydroxide, manganese carbonate, manganese nitrate, etc. which are thermally decomposed to become manganese dioxide, or a mixture thereof can be used.

本発明では、電解二酸化マンガン粉末が好適に用いられるが、そのままもちいた場合は粒子径が大きく、高温で加熱処理しても効率的にスピネル結晶化せず、二酸化マンガンとして残存する場合があり、放充電容量、サイクル特性が不充分となる場合がある。   In the present invention, electrolytic manganese dioxide powder is preferably used, but if used as it is, the particle size is large, spinel crystallization is not efficiently performed even when heat-treated at high temperature, and may remain as manganese dioxide. The charge / discharge capacity and cycle characteristics may be insufficient.

通常、電解二酸化マンガン粉末を粉砕して用いるが、粉砕した二酸化マンガン粒子(A)の平均一次粒子径(D1)は0.1〜1μm、さらには0.2〜0.8μmの範囲にあることが好ましい。 Usually, the electrolytic manganese dioxide powder is used after being pulverized, but the average primary particle diameter (D 1 ) of the pulverized manganese dioxide particles (A) is in the range of 0.1 to 1 μm, more preferably 0.2 to 0.8 μm. It is preferable.

ここで、二酸化マンガン粒子(A)の平均一次粒子径とは、粒子径の測定において、超音波を照射した直後の凝集のない状態で測定した粒子径を意味している。
なお、上記の平均一次粒子径は超音波照射装置(堀場製作所性: LA−950v2)を用いて測定した値である。
Here, the average primary particle diameter of the manganese dioxide particles (A) means a particle diameter measured in a state without aggregation immediately after irradiation with ultrasonic waves in the measurement of the particle diameter.
In addition, said average primary particle diameter is the value measured using the ultrasonic irradiation apparatus (Horiba Seisakusho: LA-950v2).

二酸化マンガン粒子の平均一次粒子径(D1)が小さいと、リチウム化合物(水酸化リチウム)、アルミナゾル、ホウ素化合物および二酸化マンガン粒子(A)からなる噴霧乾燥用混合物分散液において、二酸化マンガン粒子(A)の後述するゼータ電位が−60mVより低くなる(つまりマイナス電荷が大きくなる)場合があり、また降伏応力値が500Paを越えて高くなる場合があり、この場合噴霧乾燥用混合物分散液が固いプリン状態になり、噴霧乾燥が困難となり、噴霧乾燥できたとしても均一に乾燥することが困難で、緻密で球状のスピネル型リチウム・マンガン複合酸化物粒子を得ることが困難である。 When the average primary particle diameter (D 1 ) of the manganese dioxide particles is small, in the mixture mixture for spray drying composed of lithium compound (lithium hydroxide), alumina sol, boron compound and manganese dioxide particles (A), manganese dioxide particles (A ) (Described later) may be lower than −60 mV (that is, the negative charge increases), and the yield stress value may be higher than 500 Pa. In this case, the spray-drying mixture dispersion may be a hard pudding. In this state, spray drying becomes difficult, and even if spray drying is possible, it is difficult to uniformly dry, and it is difficult to obtain dense and spherical spinel type lithium / manganese composite oxide particles.

また、スピネル型リチウム・マンガン複合酸化物粒子の粒子密度が変動しやすく低下する傾向があり、また、格子定数の変動幅が大きくなる場合があり、このような粒子を正極材として用いた際に電極の強度、密度等が低下する場合があり、放電容量、サイクル特性等が不充分となる場合がある。   In addition, the density of the spinel-type lithium / manganese composite oxide particles tends to fluctuate and tend to decrease, and the fluctuation range of the lattice constant may increase. When such particles are used as a positive electrode material, The strength, density, etc. of the electrode may decrease, and the discharge capacity, cycle characteristics, etc. may be insufficient.

二酸化マンガン粒子(A)の平均一次粒子径(D1)が大きすぎると、水酸化リチウム、アルミナゾル、ホウ酸および二酸化マンガン粒子(A)からなる噴霧乾燥用混合物分散液において、二酸化マンガン一次粒子のゼータ電位(表面電荷量)が−5mVを越えることになる。これにより、コロイド的な性質が不充分となり粒子間の反発力が小さくなるため二酸化マンガン一次粒子が容易に凝集し、時間とともに粗大凝集粒子化し、このような噴霧乾燥用混合物分散液を噴霧乾燥すると、より高温での焼成を必要とし、高温で焼成した場合は格子欠陥が増加するためかMnの溶出が増加する場合がある。また、得られるスピネル型リチウム・マンガン複合酸化物粒子は粒子密度が低く、格子定数の変動幅が大きく、しかも圧縮弾性率が低く圧縮弾性率の変動係数が大きくなり、このような粒子を用いた二次電池は充放電容量、サイクル特性が不充分となる場合がある。 If the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) is too large, the manganese dioxide primary particles in the spray dispersion mixture dispersion comprising lithium hydroxide, alumina sol, boric acid and manganese dioxide particles (A) The zeta potential (surface charge amount) exceeds -5 mV. As a result, the colloidal properties are insufficient and the repulsive force between the particles is reduced, so that the manganese dioxide primary particles easily aggregate and become coarse agglomerated particles over time. When such a spray-drying mixture dispersion is spray-dried, Further, firing at a higher temperature is required, and when firing at a higher temperature, the elution of Mn may increase due to an increase in lattice defects. In addition, the obtained spinel type lithium / manganese composite oxide particles have a low particle density, a large fluctuation range of the lattice constant, a low compressive modulus, and a large coefficient of variation of the compressive modulus. The secondary battery may have insufficient charge / discharge capacity and cycle characteristics.

リチウム化合物
本発明に用いるリチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、酸化リチウム等が挙げられる。中でも、水酸化リチウム、炭酸リチウムは好適に用いることができる。
Lithium compound Examples of the lithium compound used in the present invention include lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, and lithium oxide. Among these, lithium hydroxide and lithium carbonate can be preferably used.

アルミナゾル
本発明ではLi、Mn以外の第1の元素としてAlが使用される。本発明の調製工程では、Alの化合物としてアルミナゾル(Al23・nH2O)を用いる。
Alumina sol In the present invention, Al is used as the first element other than Li and Mn. In the preparation process of the present invention, alumina sol (Al 2 O 3 .nH 2 O) is used as the Al compound.

アルミナゾル中のアルミナ(水和物)粒子は概ね繊維状の一次粒子であるかこれらが束になった二次粒子である。
アルミナ粒子の平均一次粒子径は、5〜50nm、さらには10〜30nmの範囲にあることが好ましい。
The alumina (hydrate) particles in the alumina sol are generally fibrous primary particles or secondary particles in which they are bundled.
The average primary particle diameter of the alumina particles is preferably in the range of 5 to 50 nm, more preferably 10 to 30 nm.

平均一次粒子径が前記範囲にあれば多量のアルミナ(水和物)粒子が二酸化マンガン一次粒子(A)に付着あるいは吸着し、二酸化マンガン粒子(A)のゼータ電位が低下し、水懸濁液中で二酸化マンガン粒子が他の成分とともに緩く凝集して全体的に三次元ゲル構造を取るようになって、降伏応力値が所定の範囲となり、経時変化による凝集、粒子の粗大化、さらには粒子の沈降を抑制することができる。   If the average primary particle size is in the above range, a large amount of alumina (hydrate) particles adhere to or adsorb to the manganese dioxide primary particles (A), and the zeta potential of the manganese dioxide particles (A) decreases, resulting in an aqueous suspension. The manganese dioxide particles are loosely agglomerated together with other components to take a three-dimensional gel structure as a whole, and the yield stress value is within a predetermined range. Aggregation due to aging, coarsening of the particles, and further Settling can be suppressed.

アルミナ(水和物)粒子の平均一次粒子径が小さいと、アルミナ(水和物)粒子同士が凝集し、最終的に得られるスピネル型リチウム・マンガン複合酸化物粒子の組成分布が不均一になる場合がある。   If the average primary particle size of the alumina (hydrate) particles is small, the alumina (hydrate) particles are aggregated and the composition distribution of the spinel-type lithium / manganese composite oxide particles finally obtained becomes non-uniform. There is a case.

アルミナ(水和物)粒子の平均一次粒子径が大きすぎると、二酸化マンガン粒子(A)への付着量が低下するためかゼータ電位が高くなる(つまりマイナス電荷が小さく、場合によってプラス電荷になる)とともにコロイド的な性質が不充分となり粒子間の反発力が小さくなり、分散液の降伏応力値が小さくなる。このため二酸化マンガン一次粒子が容易に凝集し、時間とともに粗大凝集粒子化するとともに、このような噴霧乾燥用混合物分散液を噴霧乾燥し、高温で焼成した場合は格子欠陥が増加するためかMnの溶出が増加する場合があり、また、得られるスピネル型リチウム・マンガン複合酸化物粒子は粒子密度が低く、格子定数の変動幅が大きく、しかも圧縮弾性率が低く圧縮弾性率の変動係数が大きくなり、このような粒子を用いた二次電池は充放電容量、サイクル特性が不充分となる場合がある。   If the average primary particle size of the alumina (hydrate) particles is too large, the zeta potential will increase because the amount of adhesion to the manganese dioxide particles (A) will decrease (that is, the negative charge is small, and in some cases it becomes a positive charge). ) And the colloidal properties become insufficient, the repulsive force between the particles becomes small, and the yield stress value of the dispersion becomes small. For this reason, the primary particles of manganese dioxide aggregate easily and become coarse aggregated particles with time, and if the mixture dispersion for spray drying is spray dried and baked at a high temperature, the lattice defects may increase. Elution may increase, and the resulting spinel-type lithium-manganese composite oxide particles have a low particle density, a large variation in lattice constant, a low compression modulus, and a large coefficient of variation in compression modulus. Secondary batteries using such particles may have insufficient charge / discharge capacity and cycle characteristics.

平均一次粒子径は、アルミナ水和物微粒子の透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について幅および長さを測定し、幅と長さの和の1/2を一次粒子の粒子径とし、その平均値とした。   For the average primary particle size, a transmission electron micrograph (TEM) of alumina hydrate fine particles was taken, the width and length of 100 particles were measured, and ½ of the sum of the width and length was the primary particle. And the average value.

また、アルミナ(水和物)二次粒子の平均二次粒子径は1,000nm以下、さらには800nm以下の範囲にあることが好ましい。
アルミナ(水和物)二次粒子の平均二次粒子径が大きすぎると、アルミナ粒子の分散性が不十分となり、加えて二酸化マンガン一次粒子(A)との混合状態が不均一となり、最終的に得られるスピネル型リチウム・マンガン複合酸化物粒子の組成分布が不均一になり、この場合はAlのドーピングが不充分になる場合があり、Alを用いる効果、すなわち結晶構造の転移抑制、格子欠陥の生成抑制が不充分となり、このためMnの溶出が増大し、放充電容量、サイクル特性が不充分となる場合がある。
The average secondary particle diameter of the alumina (hydrate) secondary particles is preferably 1,000 nm or less, more preferably 800 nm or less.
If the average secondary particle size of the alumina (hydrate) secondary particles is too large, the dispersibility of the alumina particles will be insufficient, and in addition, the mixed state with the manganese dioxide primary particles (A) will become non-uniform, resulting in a final The composition distribution of the spinel-type lithium-manganese composite oxide particles obtained is uneven, and in this case, the doping of Al may be insufficient, and the effects of using Al, that is, the suppression of crystal structure transition, lattice defects Insufficient suppression of the production of Mn, thus increasing the elution of Mn, resulting in insufficient discharge and charge capacity and cycle characteristics.

アルミナ(水和物)二次粒子の平均二次粒子径は、アルミナゾル(アルミナ水和物微粒子分散体)にイオン交換水加えて稀釈し、固形分濃度0.5質量%の分散体を調製し、動的散乱方による粒子径分布測定装置(大塚電子株式会社製:PAR-III)を用いて測定した。   The average secondary particle size of the alumina (hydrate) secondary particles is diluted by adding ion exchange water to alumina sol (alumina hydrate fine particle dispersion) to prepare a dispersion having a solid content concentration of 0.5% by mass. The particle size distribution was measured by a dynamic scattering method (Otsuka Electronics Co., Ltd .: PAR-III).

ホウ素化合物
本発明ではLi、Mn以外の第2の元素としてBを用いる。Bの化合物としてホウ酸、ホウ酸塩、酸化ホウ素等を用いることができる。
Boron Compound In the present invention, B is used as the second element other than Li and Mn. As the compound of B, boric acid, borate, boron oxide or the like can be used.

このようなホウ素化合物を用いると、後述する工程(c)で焼成する際に比較的低温で酸化物(B23)となり、融点が低いためにスピネル結晶の生成過程でB23が融剤として作用し、スピネル結晶の生成および成長が促進され、さらにスピネル結晶粒子同士の焼結が促進され、比表面積の低いスピネル型リチウム・マンガン複合酸化物粒子を得ることができ、正極活物質として用いた際に生じる粒子表面での電解質の分解等の副反応を抑制することができる。また、同時に粒子密度の高いスピネル型リチウム・マンガン複合酸化物粒子を得ることができ、正極活物質として用いた際に単位体積当たりの充放電容量が高く、サイクル特性に優れている。 When such a boron compound is used, it becomes an oxide (B 2 O 3 ) at a relatively low temperature when fired in the step (c) described later, and since the melting point is low, B 2 O 3 is formed in the spinel crystal formation process. Acts as a flux, promotes the formation and growth of spinel crystals, further promotes the sintering of the spinel crystal particles, and can provide spinel-type lithium / manganese composite oxide particles having a low specific surface area. It is possible to suppress side reactions such as decomposition of the electrolyte on the particle surface that occur when used as a catalyst. At the same time, spinel-type lithium / manganese composite oxide particles having a high particle density can be obtained, and when used as a positive electrode active material, the charge / discharge capacity per unit volume is high and the cycle characteristics are excellent.

Al、B以外の元素の化合物
本発明では、上記したAl、B以外の元素としてNa、Be、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Ni、Cu、Ag、Zn、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Bi、La等の元素を含んでいてもよく、(a)工程では、かかる元素化合物を併用することができる。化合物としては、無機酸塩や有機酸塩、キレート類などが使用される。
Compounds of Elements Other than Al and B In the present invention, Na, Be, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo are used as the elements other than Al and B described above. , W, Fe, Co, Ni, Cu, Ag, Zn, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, Bi, La, and the like may be included. (A) Step Then, such elemental compounds can be used in combination. As the compound, inorganic acid salts, organic acid salts, chelates and the like are used.

工程(a)では、前記した二酸化マンガン粒子(A)、リチウム化合物、アルミナゾルおよびホウ素化合物を、Li:Mn:Al:Bの原子比が(x+y):(2−y−z):z1:z2(但し、x=1.0〜1.2、0<y≦0.2、1<x+y≦1.2、z1=0.01〜0.2、z2=0.0005〜0.05、z=z1+z2)の比率となるように混合して固形分濃度が5〜50重量%の範囲にある噴霧乾燥用混合物分散液を調製する。     In the step (a), the manganese dioxide particles (A), the lithium compound, the alumina sol, and the boron compound are mixed with a Li: Mn: Al: B atomic ratio of (x + y) :( 2-yz): z1: z2. (However, x = 1.0 to 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, z1 = 0.01 to 0.2, z2 = 0.005 to 0.05, z = Z1 + z2) to prepare a spray-drying mixture dispersion having a solid content in the range of 5 to 50% by weight.

上記元素の混合量は一般式Li(x+y)Mn(2-y-z)(z1+z2)4で表したとき、z1は0.01〜0.2、好ましくは0.02〜0.18の範囲から選ばれ、z2は0.0005〜0.05、好ましくは0.001〜0.04の範囲から選ばれる。 When the amount of the above elements is expressed by the general formula Li (x + y) Mn (2-yz) M (z1 + z2) O 4 , z1 is 0.01 to 0.2, preferably 0.02 to 0. .18, and z2 is selected from the range of 0.0005 to 0.05, preferably 0.001 to 0.04.

Alの原子比z1が前記範囲にあれば、格子欠陥の生成を抑制することができ、Mnの溶出を抑制でき、このため放充電容量、サイクル特性に優れたスピネル型リチウム・マンガン複合酸化物粒子を得ることができる。   If the atomic ratio z1 of Al is within the above range, the generation of lattice defects can be suppressed, and the elution of Mn can be suppressed. Therefore, the spinel-type lithium / manganese composite oxide particles having excellent discharge capacity and cycle characteristics Can be obtained.

Alの原子比z1が前記下限よりも小さい場合は、結晶構造の転移抑制、格子欠陥の生成抑制、Mnの溶出抑制が不充分となり、このようなスピネル型リチウム・マンガン複合酸化物粒子を用いた場合は、充放電容量、サイクル特性が不充分となる場合がある。   When the atomic ratio z1 of Al is smaller than the lower limit, the suppression of crystal structure transition, the generation of lattice defects, and the suppression of elution of Mn are insufficient, and such spinel type lithium / manganese composite oxide particles were used. In some cases, the charge / discharge capacity and cycle characteristics may be insufficient.

Alの原子比z1が前記上限を越えると、Mnの含有量が低下するために正極材として用いたときに単位重量当たりの充放電容量が低下する傾向がある。
また、Bの原子比z2が前記範囲にあれば、スピネル型リチウム・マンガン複合酸化物粒子の生成および成長が促進され、さらにスピネル型リチウム・マンガン複合酸化物粒子同士の焼結が促進され、比表面積の低いスピネル型リチウム・マンガン複合酸化物粒子を得ることができ、正極活物質として用いた際に生じる粒子表面での電解質の分解等の副反応を抑制することができる。また、同時に粒子密度の高いスピネル型リチウム・マンガン複合酸化物粒子を得ることができ、正極活物質として用いた際に単位体積当たりの充放電容量が高く、サイクル特性に優れている。
If the atomic ratio z1 of Al exceeds the above upper limit, the Mn content decreases, so that when used as a positive electrode material, the charge / discharge capacity per unit weight tends to decrease.
If the atomic ratio z2 of B is in the above range, the generation and growth of spinel-type lithium / manganese composite oxide particles are promoted, and further, the sintering of the spinel-type lithium / manganese composite oxide particles is promoted. Spinel-type lithium / manganese composite oxide particles having a low surface area can be obtained, and side reactions such as decomposition of the electrolyte on the particle surface when used as a positive electrode active material can be suppressed. At the same time, spinel-type lithium / manganese composite oxide particles having a high particle density can be obtained, and when used as a positive electrode active material, the charge / discharge capacity per unit volume is high and the cycle characteristics are excellent.

本発明にかかわるスピネル型リチウム・マンガン複合酸化物粒子におけるLiの量(x+y)は、上記の一般式において、1.0〜1.2の範囲から選ばれる。リチウムイオン電池の正極材として用いられるスピネル型のリチウム・マンガン複合酸化物におけるLiの理論量は1、すなわち(x+y)=1(y=0)である。このとき、Mnは元素(M)のみと置換していると考えられる。Liが理論量の1を越える場合[(x+y)>1]、その過剰量の一部または全部(y)に見合う分だけMn量を少なくすれば、過剰Liの一部または全部が元素(M)等と同様にMnと置換した構造をとると考えられる。このときの置換量は0<y≦0.2である。   The amount of Li (x + y) in the spinel type lithium / manganese composite oxide particles according to the present invention is selected from the range of 1.0 to 1.2 in the above general formula. The theoretical amount of Li in the spinel-type lithium-manganese composite oxide used as the positive electrode material of the lithium ion battery is 1, that is, (x + y) = 1 (y = 0). At this time, it is considered that Mn is substituted only for the element (M). When Li exceeds the theoretical amount of 1 [(x + y)> 1], if the amount of Mn is reduced by an amount corresponding to a part or all of the excess amount (y), a part or all of the excess Li is elemental (M ) And the like, and is considered to have a structure substituted with Mn. The substitution amount at this time is 0 <y ≦ 0.2.

分散液に使用される溶媒として、揮発性のものであれば特に制限されないが、通常、水、低級アルコールなどが使用され、好ましくは水である。
このような組成を有する噴霧乾燥用混合物分散液の濃度は固形分として5〜50重量%、さらには10〜40重量%の範囲にあることが好ましい。
The solvent used in the dispersion is not particularly limited as long as it is volatile, but usually water, lower alcohols and the like are used, preferably water.
The concentration of the spray-drying mixture dispersion having such a composition is preferably in the range of 5 to 50% by weight, more preferably 10 to 40% by weight as the solid content.

噴霧乾燥用混合物分散液の濃度が薄すぎると生産効率が低く、噴霧乾燥用混合物分散液の濃度が濃すぎても、噴霧乾燥して得られる粒子の中に凹部を有していたり、お碗状の粒子が存在し、これを高温で焼成して得られる粒子の粒子緻密が変動しやすく、正極材として用いた際に電極の強度、密度等が低下する場合があり、また、放電容量、サイクル特性等が不充分となる場合があった。  If the concentration of the mixture dispersion for spray drying is too low, the production efficiency will be low, and even if the concentration of the mixture dispersion for spray drying is too high, the particles obtained by spray drying may have recesses, Particles are present, and the particle density of the particles obtained by firing at high temperature is likely to fluctuate, and when used as a positive electrode material, the strength, density, etc. of the electrode may decrease, and the discharge capacity, In some cases, the cycle characteristics were insufficient.

本発明では、噴霧乾燥用混合物分散液の降伏応力値を5〜500Pa、好ましくは10〜400Paの範囲に調整する。
本発明においては、所定範囲の粒子径を有する二酸化マンガン粒子が、アルミナゾルの存在により表面に所定量の表面電荷を有するようになり、その結果、二酸化マンガン粒子(A)がゆるく凝集して、分散液が三次元ゲル構造を形成しているものと考えられる。
In the present invention, the yield stress value of the spray-drying mixture dispersion is adjusted to a range of 5 to 500 Pa, preferably 10 to 400 Pa.
In the present invention, manganese dioxide particles having a particle diameter in a predetermined range have a predetermined amount of surface charge on the surface due to the presence of alumina sol, and as a result, the manganese dioxide particles (A) loosely aggregate and disperse. It is considered that the liquid forms a three-dimensional gel structure.

このような三次元ゲル構造を形成した分散液に対し、周波数一定で剪断応力を加えると、最初は弾性率(貯蔵弾性率および損失弾性率)がほぼ一定値に保ち、弾性体としての性質を示すが、応力を増加させていくと、ある応力で急激に弾性率が低下する。すなわち降伏応力値が存在する。   When a shear stress is applied to a dispersion having such a three-dimensional gel structure at a constant frequency, initially the elastic modulus (storage elastic modulus and loss elastic modulus) is maintained at a substantially constant value, and the properties as an elastic body are maintained. As shown, when the stress is increased, the elastic modulus rapidly decreases at a certain stress. That is, there is a yield stress value.

本発明では、三次元ゲル構造を形成した分散液に有する降伏応力値に注目し、この値を所定範囲に調整すれば分散液の調製から噴霧乾燥までの時間経過による分散液の経時変化、すなわち粒子の凝集、粗大化、さらには粒子の沈降を抑制することができ、調製時と同じ条件で噴霧乾燥することを可能にした。その結果、粒子密度が高く、結晶の格子定数の変動幅が小さく、しかも圧縮弾性率の変動係数の小さいリチウム・マンガン複合酸化物を得ることができる。   In the present invention, paying attention to the yield stress value of the dispersion having a three-dimensional gel structure, if this value is adjusted to a predetermined range, the change over time of the dispersion over time from preparation of the dispersion to spray drying, that is, Aggregation, coarsening of particles, and sedimentation of particles can be suppressed, and spray drying can be performed under the same conditions as in preparation. As a result, it is possible to obtain a lithium-manganese composite oxide having a high particle density, a small variation range of the lattice constant of the crystal, and a small coefficient of variation of the compressive modulus.

通常、粒子が相互作用していれば、沈降しにくいと考えられ、この一つの尺度として、降伏値を採用したのが本発明である。通常、分散液は沈降などの影響により経時変化が大きい。この経時変化を少なくするために、調製後直ちに、噴霧乾燥することも考えられるが、これには噴霧乾燥能力を大きくしたり、分散液調製を小規模で繰り返すという解消方法しかなく、前者では、粒子径のコントロールが難しく、後者では生産効率が悪く、しかも、調製ごとの種々の性状のバラつきが大きい。このような製法では、得られるスピネル型リチウム・マンガン系複合酸化物粒子の格子定数に影響を及ぼしやすく、格子定数の変動は、電池性能にも影響が大きく、このため、規格外品が増えることもある。しかしながら、このような経時変化に伴う問題点を見出したのが本発明者であり、本発明によれば、このような経時変化に対する対応することなく、かかる課題を解消できる。   Usually, it is considered that the particles are not easily settled if the particles are interacting with each other, and the present invention adopts the yield value as one measure. Usually, the dispersion has a large change over time due to the influence of sedimentation and the like. In order to reduce this change over time, spray drying may be considered immediately after preparation, but this only has a solution to increase spray drying capacity or repeat dispersion preparation on a small scale. It is difficult to control the particle diameter, and the latter has poor production efficiency, and also has various variations in properties from preparation to preparation. In such a method, the lattice constant of the obtained spinel-type lithium / manganese composite oxide particles is likely to be affected, and fluctuations in the lattice constant also have a large effect on battery performance, which increases non-standard products. There is also. However, the present inventors have found a problem associated with such a change with time, and according to the present invention, such a problem can be solved without dealing with such a change with time.

降伏応力値が低いと、噴霧乾燥用混合物分散液中の粒子成分が容易に沈降し、噴霧乾燥により得られる粒子の成分、成分の分布、格子定数や粒子径などの物理性状が変動する場合がある。降伏応力値が高すぎると噴霧乾燥が困難になる場合がある。   If the yield stress value is low, the particle components in the dispersion mixture for spray drying easily settle, and the physical properties such as the particle components obtained by spray drying, the distribution of the components, the lattice constant and the particle diameter may vary. is there. If the yield stress value is too high, spray drying may be difficult.

なお、降伏応力値の測定は粘度・粘弾性測定装置(英弘精機(株)製:商品名、レオストレス RS600)を用い、f(周波数)=1.0Hzの条件で測定することができる。
また、噴霧乾燥用混合物分散液のpHは9〜14、さらには11〜13の範囲にあることが好ましい。
The yield stress value can be measured under the condition of f (frequency) = 1.0 Hz using a viscosity / viscoelasticity measuring apparatus (manufactured by Eiko Seiki Co. , Ltd .: trade name, Rheo Stress RS600).
The pH of the spray-drying mixture dispersion is preferably in the range of 9 to 14, more preferably 11 to 13.

噴霧乾燥用混合物分散液のpHが9未満の場合は、アルミナゾル、ホウ素化合物が難溶性化合物として存在するようになり、噴霧乾燥により得られる粒子の成分分布が不均一になる場合がある。必要に応じてpHを調整する場合、アンモニア、アミン類などの最終的に粒子に残存しない塩基性化合物を用いることが好ましい。   When the pH of the mixture dispersion for spray drying is less than 9, the alumina sol and boron compound may be present as poorly soluble compounds, and the component distribution of particles obtained by spray drying may become non-uniform. When adjusting the pH as necessary, it is preferable to use a basic compound such as ammonia or amines that does not finally remain in the particles.

噴霧乾燥用混合物分散液のpHが前記範囲にあれば、噴霧乾燥用混合物分散液の降伏応力値が概ね前記範囲となり、噴霧乾燥用混合物分散液中に存在する成分の分散性が十分であり、凝集、沈降等が抑制され、経時的な組成変化が抑制され、噴霧乾燥により得られる粒子の成分分布が均一になるとともに、最終的に得られるスピネル型リチウム・マンガン複合酸化物粒子の比表面積、粒子密度等の品質変動が抑制され、マンガン溶出量、充放電容量、サイクル特性等の性能に優れ、かつ変動の小さいリチウムイオン二次電池を得ることができる。   If the pH of the spray-drying mixture dispersion is within the above range, the yield stress value of the spray-drying mixture dispersion is approximately within the above range, and the dispersibility of the components present in the spray-drying mixture dispersion is sufficient, Aggregation, sedimentation, etc. are suppressed, compositional change over time is suppressed, the component distribution of particles obtained by spray drying is uniform, and the specific surface area of the spinel-type lithium / manganese composite oxide particles finally obtained, Quality fluctuations such as particle density are suppressed, and a lithium ion secondary battery having excellent performance such as manganese elution amount, charge / discharge capacity, cycle characteristics and the like and small fluctuations can be obtained.

噴霧乾燥用混合物分散液における二酸化マンガン粒子(A)のゼータ電位は−60〜−5mV、さらには−40〜−10mVの範囲にあることが好ましい。
二酸化マンガン粒子(A)のゼータ電位が−60mVよりも低くなる(マイナス荷電が強くなる)と、アルミナ水和物粒子との表面電位差が大きくなり、二酸化マンガン粒子(A)表面にアルミナ水和物粒子が付着、吸着することなく、完全に分離状態となり、噴霧乾燥して得られる粒子の成分分布が不均一になる。
本発明で、ゼータ電位は超音波式粒度分布測定装置(Dispersion Technology社製:DT-1200)を用いて測定した。
The zeta potential of the manganese dioxide particles (A) in the mixture dispersion for spray drying is preferably in the range of −60 to −5 mV, more preferably −40 to −10 mV.
When the zeta potential of the manganese dioxide particles (A) is lower than -60 mV (the negative charge becomes stronger), the surface potential difference from the alumina hydrate particles becomes large, and the alumina hydrate on the surface of the manganese dioxide particles (A). The particles are completely separated without adhering or adsorbing, and the component distribution of the particles obtained by spray drying becomes non-uniform.
In the present invention, the zeta potential was measured using an ultrasonic particle size distribution analyzer (manufactured by Dispersion Technology: DT-1200).

噴霧乾燥用混合物分散液は、あらかじめ粒子径分布を調整した二酸化マンガン粒子分散液に、リチウム化合物、アルミナゾルおよびホウ素化合物を混合してもよいが、好ましくは、二酸化マンガン粒子、リチウム化合物、アルミナゾルおよびホウ素化合物を混合したのち、粉砕して調製することが望ましい。   The mixture dispersion for spray drying may be prepared by mixing lithium compound, alumina sol and boron compound with manganese dioxide particle dispersion whose particle size distribution has been adjusted in advance. Preferably, manganese dioxide particles, lithium compound, alumina sol and boron are mixed. It is desirable to prepare by mixing and then grinding the compound.

粉砕はビーズなどの媒体を使用した粉砕機が特に制限されることなく使用でき、ビーズ径は、通常0.05〜5mmφ、さらには、0.1〜45mmφの範囲にあることが望ましい。この範囲のビーズ径であれば、上記範囲平均粒子径(一次、二次)および粒子径分布を調整できる。   The pulverization can be performed without any particular limitation using a pulverizer using a medium such as beads, and the bead diameter is preferably 0.05 to 5 mmφ, more preferably 0.1 to 45 mmφ. If the bead diameter is within this range, the above-mentioned range average particle diameter (primary, secondary) and particle diameter distribution can be adjusted.

処理時間は、5分〜5時間、さらには、10分〜3時間の範囲にあることが好ましい。処理時間が上記範囲にあれば、本発明所定の平均粒子径、粒子径分布を有する二酸化マンガン粒子(A)を得ることができる。   The treatment time is preferably in the range of 5 minutes to 5 hours, more preferably 10 minutes to 3 hours. When the treatment time is in the above range, manganese dioxide particles (A) having a predetermined average particle size and particle size distribution of the present invention can be obtained.

また、例えば、先ず、大きな径のビーズで粉砕した後、順次小さな径のビーズで粉砕するとより均一な粒子径分布とすることができる。
このような噴霧乾燥用混合物分散液は、噴霧乾燥される。なお、調製後、10時間以内であれば、前記分散液物性は大きく変化しない。より好ましくは、8時間以内に噴霧乾燥することが望ましい。なお、従来の分散液では、短時間で物性が変化してしまうために、調製後短時間で噴霧乾燥する必要があったが、本発明では、前記したように、特定の降伏応力値を有しているために、見かけゲル状となっており、このような経時変化が少ない。
Further, for example, first, after pulverizing with large-diameter beads, pulverizing with small-diameter beads sequentially, a more uniform particle size distribution can be obtained.
Such a spray-drying mixture dispersion is spray-dried. In addition, if it is less than 10 hours after preparation, the said dispersion liquid physical property will not change a lot. More preferably, it is desirable to perform spray drying within 8 hours. In addition, since the properties of conventional dispersions change in a short time, it was necessary to perform spray drying in a short time after preparation. In the present invention, as described above, a specific yield stress value is required. Therefore, it looks like a gel and there is little such change with time.

このような組成を有する噴霧乾燥用混合物分散液の濃度は固形分として5〜50重量%、さらには10〜40重量%の範囲にあることが好ましい。
噴霧乾燥用混合物分散液の固形分濃度が少ないと生産効率が低く、噴霧乾燥用混合物分散液の固形分濃度が高すぎると、噴霧乾燥して得られる粒子の中に凹部を有していたり、お碗状の粒子が存在し、これを高温で焼成して得られる粒子の粒子密度が変動しやすく、正極材として用いた際に電極の強度、密度等が低下する場合があり、また、放電容量、サイクル特性等が不充分となる場合がある。
The concentration of the spray-drying mixture dispersion having such a composition is preferably in the range of 5 to 50% by weight, more preferably 10 to 40% by weight as the solid content.
When the solid content concentration of the spray dispersion mixture dispersion is low, the production efficiency is low, and when the solid content concentration of the spray drying mixture dispersion is too high, the particles obtained by spray drying have concave portions, There are bowl-shaped particles, and the particle density of the particles obtained by firing this at high temperature is likely to fluctuate. When used as a positive electrode material, the strength, density, etc. of the electrode may decrease. Capacity, cycle characteristics, etc. may be insufficient.

[(b)噴霧工程]
ついで、噴霧乾燥用混合物分散液を熱風気流中に噴霧して乾燥する。
噴霧乾燥方法としては、前記噴霧乾燥用混合物の微小球状粒子が得られれば特に制限は無いが、噴霧乾燥法を採用することがこのましく、回転ディスク法、加圧ノズル法、2流体ノズル法、4流体ノズル法等従来公知の方法を採用することができる。ここで、噴霧乾燥とは微小液滴を形成し、乾燥して所望の粒子を形成できればよく、噴射法等も含んで意味している。 熱風気流の入口温度は180〜350℃、さらには190〜320℃の範囲にあることが好ましい。噴霧乾燥用混合物分散液を噴霧乾燥装置に供給する場合、必要に応じて過熱するが、一定圧力にすることが望ましい。
[(B) Spraying process]
Subsequently, the spray dispersion mixture dispersion is sprayed into a hot air stream and dried.
The spray drying method is not particularly limited as long as the fine spherical particles of the mixture for spray drying can be obtained, but it is preferable to employ the spray drying method, and the rotating disk method, the pressurized nozzle method, the two-fluid nozzle method. A conventionally known method such as a four-fluid nozzle method can be employed. Here, spray-drying means that fine droplets can be formed and dried to form desired particles, and includes spraying and the like. The inlet temperature of the hot air stream is preferably 180 to 350 ° C, more preferably 190 to 320 ° C. When supplying the spray-drying mixture dispersion to the spray-drying apparatus, the mixture is heated as necessary, but it is desirable to set the pressure constant.

熱風気流の入口温度が低すぎると、乾燥が不充分になることがあり、粒子内に水分が多く残存すると、高温焼成時に粒子内に微細な空隙の原因となり、得られるスピネル型リチウム・マンガン複合酸化物粒子の粒子密度が低下し、充放電容量、サイクル特性が不充分となる場合がある。   If the inlet temperature of the hot air stream is too low, drying may be insufficient. If a large amount of moisture remains in the particles, it will cause fine voids in the particles during high-temperature firing, resulting in a spinel-type lithium-manganese composite. In some cases, the particle density of the oxide particles decreases, and the charge / discharge capacity and cycle characteristics become insufficient.

熱風気流の入口温度が高すぎても、内部に空洞を有する粒子、あるいは粒子形状を維持してない非球状粒子が存在するようになり、これを焼成して得られるスピネル型リチウム・マンガン複合酸化物粒子の密度が低下し、充放電容量、サイクル特性が不充分となる場合がある。   Even if the inlet temperature of the hot air stream is too high, there are particles with cavities inside or non-spherical particles that do not maintain the particle shape, and spinel-type lithium-manganese composite oxidation obtained by firing this particle In some cases, the density of the product particles decreases, and the charge / discharge capacity and cycle characteristics become insufficient.

また、熱風気流の出口温度は80〜150℃、さらには90〜130℃の範囲にあることが好ましい。噴霧乾燥して得られる粒子の平均粒子径は概ね1〜30μmの範囲にある。   Moreover, it is preferable that the exit temperature of a hot air stream exists in the range of 80-150 degreeC, Furthermore, 90-130 degreeC. The average particle size of the particles obtained by spray drying is generally in the range of 1 to 30 μm.

[(c)焼成工程]
ついで、噴霧乾燥して得られた粒子を焼成する。
焼成する方法としては、所定範囲の組成を有し、結晶性に優れたスピネル型リチウム・マンガン複合酸化物粒子が得られれば特に制限はなく、トンネル炉、マッフル炉、ロータリーキルン等従来公知の方法を採用することができる。本発明では、密度が高く、格子定数、比表面積が所定の範囲にあり、且つ変動幅が小さいスピネル型リチウム・マンガン複合酸化物粒子が得られ、さらには、融着粒子が生成しないことから流動焼成法が好ましく、加えて粒子密度、格子定数、比表面積の変動幅が小さく、このようなスピネル型リチウム・マンガン複合酸化物粒子を正極材として用いたリチウム電池は充放電容量、サイクル特性に優れている。
[(c) Firing step]
Next, the particles obtained by spray drying are fired.
The firing method is not particularly limited as long as spinel type lithium / manganese composite oxide particles having a composition in a predetermined range and excellent crystallinity can be obtained. Conventionally known methods such as a tunnel furnace, a muffle furnace, and a rotary kiln are used. Can be adopted. In the present invention, spinel-type lithium / manganese composite oxide particles having a high density, a lattice constant, a specific surface area within a predetermined range, and a small fluctuation range can be obtained, and further, no fused particles are generated. The firing method is preferred, and the fluctuation range of particle density, lattice constant, and specific surface area is small, and lithium batteries using such spinel-type lithium-manganese composite oxide particles as the cathode material have excellent charge / discharge capacity and cycle characteristics. ing.

焼成温度は650〜900℃、さらには700〜850℃の範囲にあることが好ましい。
焼成温度が低いとスピネル結晶化の固相反応が遅く、二酸化マンガンが残存する場合があり、充放電容量、サイクル特性が不充分となる場合がある。
The firing temperature is preferably in the range of 650 to 900 ° C, more preferably 700 to 850 ° C.
If the firing temperature is low, the solid phase reaction of spinel crystallization is slow, manganese dioxide may remain, and charge / discharge capacity and cycle characteristics may be insufficient.

焼成温度が高すぎると、格子欠陥(特に酸素欠陥)が増加する傾向があり、正極材として使用した場合、Mnの溶出が増加し、放充電容量、サイクル特性が不充分になる場合がある。焼成して得られたスピネル型リチウム・マンガン複合酸化物は、充分に成長した結晶粒子からなり、その結晶粒子の大きさは、約0.1〜5.0μmの範囲にあり、このような結晶粒子が集合し、焼結して平均粒径が1〜30μmの球状微粒子を形成している。   If the firing temperature is too high, lattice defects (particularly oxygen defects) tend to increase, and when used as a positive electrode material, the elution of Mn increases, and the charge / discharge capacity and cycle characteristics may be insufficient. The spinel-type lithium-manganese composite oxide obtained by firing is composed of sufficiently grown crystal particles, and the size of the crystal particles is in the range of about 0.1 to 5.0 μm. The particles are aggregated and sintered to form spherical fine particles having an average particle diameter of 1 to 30 μm.

[(d)解砕工程]
前記工程(c)について、解砕工程(d)を行うことが好ましい。
工程(c)で得られる粒子には軽度に融着した粒子が存在する場合があり、そのまま電極の製造に使用した場合、正極集電体を損傷して不具合を生じたり、正極の密度が低下する場合がある。
[(d) Disintegration process]
About the said process (c), it is preferable to perform a crushing process (d).
The particles obtained in the step (c) may have slightly fused particles, and when used in the production of the electrode as they are, the positive electrode current collector is damaged to cause a malfunction or the density of the positive electrode is reduced. There is a case.

解砕方法としては、結晶性を損なうことなく平均粒子径(D3)が所定の範囲にあるスピネル型リチウム・マンガン複合酸化物粒子が得られれば特に制限はなく従来公知の方法を採用することができる。 The crushing method is not particularly limited as long as spinel-type lithium / manganese composite oxide particles having an average particle diameter (D 3 ) within a predetermined range can be obtained without impairing crystallinity, and a conventionally known method is adopted. Can do.

解砕後、必要に応じて、篩などの分級処理をおこなってもよい。
解砕して得られるスピネル型リチウム・マンガン複合酸化物粒子の平均粒子径(D3)は、10〜20μm、好ましくは13〜18μmである。
After crushing, classification treatment such as sieving may be performed as necessary.
The average particle diameter (D 3 ) of the spinel-type lithium / manganese composite oxide particles obtained by pulverization is 10 to 20 μm, preferably 13 to 18 μm.

解砕して得られる粒子の平均粒子径(D3)が小さすぎると、正極膜を作成するための電極用合剤の粘度が高くなり、電極膜形成性が低下する場合があり、さらにスピネル型リチウム・マンガン複合酸化物粒子の体積当たりの放電容量が不充分となる場合がある。また、電極膜の強度(圧縮強度)が不充分となる場合がある。また、平均粒子径(D3)が大きすぎると、導電剤および電解液との接触が不充分となり、充放電容量が不充分となる場合がある。 If the average particle size (D 3 ) of the particles obtained by pulverization is too small, the viscosity of the electrode mixture for preparing the positive electrode film may be increased, and the electrode film forming property may be lowered. The discharge capacity per volume of the type lithium / manganese composite oxide particles may be insufficient. Moreover, the strength (compressive strength) of the electrode film may be insufficient. On the other hand, if the average particle diameter (D 3 ) is too large, the contact with the conductive agent and the electrolytic solution may be insufficient, and the charge / discharge capacity may be insufficient.

また、得られるスピネル型リチウム・マンガン複合酸化物粒子の粒子径分布は2〜40μm、さらには3〜25μmの範囲にあることが好ましい。
スピネル型リチウム・マンガン複合酸化物粒子に粒子径が2μm未満の粒子が存在すると、正極膜を作成するための電極用合剤の粘度が顕著に高くなる場合があり、電極膜形成性が低下し、さらにスピネル型リチウム・マンガン複合酸化物粒子の体積当たりの放電容量が不充分となる場合がある。
Further, the particle size distribution of the obtained spinel type lithium / manganese composite oxide particles is preferably 2 to 40 μm, more preferably 3 to 25 μm.
When particles having a particle size of less than 2 μm are present in the spinel type lithium / manganese composite oxide particles, the viscosity of the electrode mixture for preparing the positive electrode film may be remarkably increased, and the electrode film formability is lowered. Further, the discharge capacity per volume of the spinel type lithium / manganese composite oxide particles may be insufficient.

スピネル型リチウム・マンガン複合酸化物粒子の粒子径が40μmを越える粒子が存在すると正極集電体を損傷する場合があり、また、導電剤および電解液との接触が不充分となり、充放電容量が不充分となる場合がある。   The presence of particles of spinel type lithium / manganese composite oxide particles having a particle diameter exceeding 40 μm may damage the positive electrode current collector, resulting in insufficient contact with the conductive agent and the electrolytic solution, and the charge / discharge capacity is reduced. It may be insufficient.

粒子径および粒子径分布の調整法は、分散液の供給速度、供給圧力、ディスクを使用する場合は回転数、乾燥温度などの噴霧乾燥条件、分散液の濃度、降伏応力値などを調整することによって可能である。   To adjust the particle size and particle size distribution, adjust the supply rate of the dispersion, supply pressure, spray drying conditions such as the rotational speed and drying temperature when using a disc, the concentration of the dispersion, the yield stress value, etc. Is possible.

以上の本発明の方法で得られるスピネル型リチウム・マンガン複合酸化物粒子は概略球状で、このような球状の微粒子を正極材として用いれば、正極材を含む電極用合剤をアルミ箔などに塗布する際にアルミ箔を傷つけるようなことがない。   The spinel-type lithium / manganese composite oxide particles obtained by the above-described method of the present invention are roughly spherical. If such spherical fine particles are used as a positive electrode material, an electrode mixture containing the positive electrode material is applied to an aluminum foil or the like. There is no such thing as damaging the aluminum foil.

スピネル型リチウム・マンガン複合酸化物粒子の平均粒径および粒子径分布は、レーザー回折散乱式粒子径分布測定装置(堀場製作所製:LA−950v2)を用いて測定した。   The average particle size and particle size distribution of the spinel type lithium / manganese composite oxide particles were measured using a laser diffraction / scattering type particle size distribution measuring apparatus (Horiba, Ltd .: LA-950v2).

得られるスピネル型リチウム・マンガン複合酸化物粒子の格子定数(Lc)は8.15000〜8.25000オングストローム、好ましくは8.16000〜8.24000オングストロームの範囲にあることが好ましい。   The lattice constant (Lc) of the obtained spinel-type lithium / manganese composite oxide particles is preferably in the range of 8.15000 to 8.25000 angstroms, preferably 8.16000 to 8.24000 angstroms.

格子定数(Lc)が小さいものは充放電容量が不充分となる場合がある。これは、スピネル型リチウム・マンガン複合酸化物粒子中のLiの比率が高く、Mnの比率が低いことと符合しているものと考えられる。格子定数(Lc)が高いものは、Mnの溶出量が増加し、サイクル特性が低下する傾向にあり、これは、スピネル型リチウム・マンガン複合酸化物粒子中のLiの比率が低く、Mnの比率が高いことと符合しているものと考えられる。本発明では、上記のように特定の降伏値を有する分散液を使用しているので、格子定数の変動幅が安定し、これによって、電池性能の変動を小さくすることができる。   When the lattice constant (Lc) is small, the charge / discharge capacity may be insufficient. This is considered to be consistent with the fact that the proportion of Li in the spinel-type lithium / manganese composite oxide particles is high and the proportion of Mn is low. When the lattice constant (Lc) is high, the elution amount of Mn increases and the cycle characteristics tend to deteriorate. This is because the ratio of Li in the spinel type lithium / manganese composite oxide particles is low and the ratio of Mn. Is considered to be consistent with the high price. In the present invention, since the dispersion having a specific yield value is used as described above, the fluctuation range of the lattice constant is stabilized, and thereby the fluctuation of the battery performance can be reduced.

このような格子定数(Lc)の標準偏差は0.00001〜0.00100オングストローム、さらには0.00001〜0.00095オングストロームの範囲にあることが好ましい。   The standard deviation of the lattice constant (Lc) is preferably in the range of 0.00001 to 0.00100 angstrom, more preferably 0.00001 to 0.00095 angstrom.

格子定数(Lc)の標準偏差が0.00001オングストローム未満のものは得ることが困難であり、0.00100オングストロームを越えると、前記放電容量、サイクル特性が変動したり、これら性能が不充分となる場合がある。   It is difficult to obtain a material having a standard deviation of the lattice constant (Lc) of less than 0.00001 angstrom, and if it exceeds 0.00100 angstrom, the discharge capacity and cycle characteristics fluctuate or the performance becomes insufficient. There is a case.

格子定数は、粉末X線回折装置(リガク社製:MultiFlex)によって2θ=15〜90°の範囲で回折パターンを測定し、最小二乗法により格子定数を求めた。
また、格子定数の標準偏差は、上記格子定数を用い、以下の式により算出した。
For the lattice constant, a diffraction pattern was measured in the range of 2θ = 15 to 90 ° with a powder X-ray diffractometer (manufactured by Rigaku Corporation: MultiFlex), and the lattice constant was determined by the least square method.
Further, the standard deviation of the lattice constant was calculated by the following formula using the above-mentioned lattice constant.

Figure 0005634828
得られるスピネル型リチウム・マンガン複合酸化物粒子の比表面積が0.1〜2.0m2/g、さらには0.1〜1.5m2/gの範囲にあることが好ましい。
Figure 0005634828
The specific surface area of the resulting spinel-type lithium-manganese composite oxide particles 0.1~2.0m 2 / g, more preferably in the range of 0.1~1.5m 2 / g.

比表面積が0.1m2/g未満では、正極材として用いたとき、スピネル型リチウム・マンガン複合酸化物微粒子と導電剤及び電解液との接触が不十分となり、比表面積が2.0m2/gより大きくなると微粒子の体積当たりの充放電容量の向上が見られなくなる。 If the specific surface area is less than 0.1 m 2 / g, when used as a positive electrode material, contact between the spinel-type lithium-manganese composite oxide particles and conductive agent and the electrolyte is insufficient, the specific surface area of 2.0 m 2 / If it exceeds g, the charge / discharge capacity per volume of fine particles is not improved.

比表面積の測定は、自動表面積測定装置(マウンテック社製:Macsorb HM model-1220)により測定した。
本発明で得られるリチウム・マンガン複合酸化物粒子の充填かさ密度(ABD:見かけ比重と言うことがある)は1.0〜1.6g/ml、より好ましくは、1.1〜1.6g/ml、さらには1.3〜1.5g/mlの範囲にある。
The specific surface area was measured by an automatic surface area measuring device (Mounttech's Macsorb HM model-1220).
The filling bulk density (ABD: apparent specific gravity) of the lithium-manganese composite oxide particles obtained in the present invention is 1.0 to 1.6 g / ml, more preferably 1.1 to 1.6 g / ml. ml, and in the range of 1.3 to 1.5 g / ml.

ここで、充填かさ密度(ABD)は、50mlのメスシリンダー上部開口部からリチウム・マンガン複合酸化物粒子25gを自重で落下させて充填し、粉体上部を水平面にしたときの容積(V1)を測り、次式により求めた。 Here, the filling bulk density (ABD) is the volume (V 1 ) when the lithium-manganese composite oxide particles 25g are dropped by their own weight from the 50 ml graduated cylinder upper opening and filled, and the powder upper part is made horizontal. Was obtained by the following equation.

充填かさ密度(ABD)(g/ml)=25/V1
ABDが小さすぎると、得られる正極膜の強度が不充分となる場合があり、さらに、単位体積あたりの活物質密度が不十分となる場合がある。
Filled bulk density (ABD) (g / ml) = 25 / V 1
If the ABD is too small, the strength of the resulting positive electrode film may be insufficient, and the active material density per unit volume may be insufficient.

ABDが大きすぎるとは、正極形成に混合して用いる導電材との接触が不充分となる場合があり、また、電解質ないし電解液との接触が不充分となり、充放電容量が不充分となる場合がある。   If the ABD is too large, the contact with the conductive material used for the positive electrode formation may be insufficient, and the contact with the electrolyte or the electrolyte may be insufficient, resulting in insufficient charge / discharge capacity. There is a case.

リチウム・マンガン複合酸化物粒子の圧縮充填密度(CBD:真比重と言うことがある)は、1.5〜2.1g/ml、より好ましくは1.8〜2.1g/ml、さらには1.9〜2.1g/mlの範囲にある。   The compression packing density (CBD: sometimes referred to as true specific gravity) of the lithium-manganese composite oxide particles is 1.5 to 2.1 g / ml, more preferably 1.8 to 2.1 g / ml, and even 1 It is in the range of .9 to 2.1 g / ml.

ここで、圧縮充填密度(CBD)は、50mlのメスシリンダーにリチウム・マンガン複合酸化物粒子25gを充填し、木製のテーブル上で3分間タッピングした後の容積(V2)を測り、次式により求めた。
圧縮充填密度(CBD)(g/ml)=25/V2
Here, the compression packing density (CBD) is measured by measuring the volume (V 2 ) after filling a 50 ml graduated cylinder with 25 g of lithium-manganese composite oxide particles and tapping on a wooden table for 3 minutes. Asked.
Compressed packing density (CBD) (g / ml) = 25 / V 2

CBDが小さいと、得られる正極膜の強度が不充分となる場合があり、さらに、単位体積あたりの活物質密度が不十分となる場合がある。CBDが大きすぎても、正極膜の形成に混合して用いる導電材との接触が不充分となる場合があり、また、電解質ないし電解液との接触が不充分となり、充放電容量が不充分となる場合がある。   If the CBD is small, the strength of the obtained positive electrode film may be insufficient, and the active material density per unit volume may be insufficient. Even if the CBD is too large, the contact with the conductive material used for the formation of the positive electrode film may be insufficient, and the contact with the electrolyte or the electrolyte may be insufficient, resulting in insufficient charge / discharge capacity. It may become.

また、前記CBDとABDの比CBD/ABDは、1.1〜1.8、さらには1.1〜1.7の範囲にあることが好ましい。CBD/ABDが前記比率未満の場合は有機溶媒への分散性が不充分となる場合がある。CBD/ABDが前記比率を越えると、正極用合剤のペーストを調製する場合、有機溶媒を多く必要としたり、粘性が安定せず、正極膜形成性が低下する場合がある。   The CBD / ABD ratio CBD / ABD is preferably in the range of 1.1 to 1.8, more preferably 1.1 to 1.7. When CBD / ABD is less than the above ratio, dispersibility in an organic solvent may be insufficient. When CBD / ABD exceeds the above ratio, when preparing a paste for a positive electrode mixture, a large amount of organic solvent may be required, the viscosity may not be stable, and the positive electrode film formability may be reduced.

リチウム・マンガン複合酸化物粒子の10%圧縮弾性率は20〜200kgf/mm2、さらには40〜180kgf/mm2の範囲にあることが好ましい。
10%圧縮弾性率が20kgf/mm2未満の場合は、正極膜を作成する際、リチウム・マンガン複合酸化物粒子が圧壊される場合があり、正極膜の膜厚が不均一になる場合がある。また、10%圧縮弾性率が200kgf/mm2を越えると、正極膜を作成する際に極板を損傷する場合がある。
The 10% compression modulus of the lithium / manganese composite oxide particles is preferably in the range of 20 to 200 kgf / mm 2 , more preferably 40 to 180 kgf / mm 2 .
When the 10% compression elastic modulus is less than 20 kgf / mm 2 , the lithium-manganese composite oxide particles may be crushed when the positive electrode film is formed, and the film thickness of the positive electrode film may become uneven. . On the other hand, if the 10% compression modulus exceeds 200 kgf / mm 2 , the electrode plate may be damaged when forming the positive electrode film.

上記10%圧縮弾性率のばらつき、即ち変動係数(CV値)は5〜30%、さらには5〜20%の範囲にあることが好ましい。10%圧縮弾性率の変動係数(CV値)がこの範囲の下限を超えて小さいものは得ることが困難であり、上限を超えて大きすぎると、破壊される粒子が生じたり、極板を損傷する箇所が生じたりする場合がある。 このような10%圧縮弾性率、10%圧縮弾性率の変動係数(CV値)の測定は以下の方法で測定することができる。   The variation in the 10% compression modulus, that is, the coefficient of variation (CV value) is preferably in the range of 5 to 30%, more preferably 5 to 20%. It is difficult to obtain a material with a coefficient of variation (CV value) of 10% compressive modulus exceeding the lower limit of this range, and if it exceeds the upper limit, it is difficult to obtain a particle that is destroyed or damages the electrode plate. There may be places to do. The measurement of the coefficient of variation (CV value) of such 10% compression modulus and 10% compression modulus can be performed by the following method.

10%圧縮弾性率
10%圧縮弾性率は、測定器として微小圧縮試験機(島津製作所製:MCTM−200)を用い、試料として粒子径がDである1個の粒子を用い、試料に一定の負荷速度で荷重を負荷し、圧縮変位が粒子径の10%となるまで粒子を変形させ、10%変位時の荷重と圧縮変位(mm)を求め、粒径および求めた圧縮荷重、圧縮変位を次式に代入して計算によって求める。
K=(3/√2)×F×-3/2×D-1/2
ここで、
K:10%圧縮弾性率(kgf/mm2
F:圧縮荷重(kg)
S:圧縮変位(mm)
D:粒子径(mm) である。
本明細書では、10個の粒子について、それぞれ、10%圧縮弾性率を測定し、これらの平均値で粒子の10%圧縮弾性率を評価した。
10% compressive elastic modulus 10% compressive elastic modulus is fixed to a sample using a micro compression tester (manufactured by Shimadzu Corporation: MCTM-200) as a measuring instrument, and using one particle having a particle diameter of D as a sample. A load is applied at a load speed, the particles are deformed until the compression displacement becomes 10% of the particle diameter, the load and the compression displacement (mm) at the time of 10% displacement are obtained, and the particle diameter and the obtained compression load and displacement are determined. Substituting into the following formula and calculating.
K = (3 / √2) × F × S −3/2 × D −1/2
here,
K: 10% compression elastic modulus (kgf / mm 2 )
F: Compression load (kg)
S: Compression displacement (mm)
D: Particle diameter (mm).
In this specification, 10% compression elastic modulus was measured for each of the 10 particles, and the average value of these particles evaluated the 10% compression elastic modulus of the particles.

10%圧縮弾性率変動係数(CV値)
CV(%)=〔10%圧縮弾性率標準偏差(σ)/平均10%圧縮弾性率(Kn)〕x100
Coefficient of variation of 10% compression modulus (CV value)
CV (%) = [10% compression modulus standard deviation (σ) / average 10% compression modulus (K n )] × 100

Figure 0005634828
つぎに、本発明に係るリチウム・マンガン複合酸化物粒子について説明する。
Figure 0005634828
Next, the lithium-manganese composite oxide particles according to the present invention will be described.

[リチウム・マンガン複合酸化物粒子]
本発明に係るリチウム・マンガン複合酸化物粒子は、下記の一般式で示されるスピネル型リチウム・マンガン複合酸化物粒子であって、比表面積が0.1〜2.0m2/gの範囲にあり、平均粒子径(D3)が10〜20μmの範囲にあり、粒子径分布が2〜40μmの範囲にあり、充填かさ密度(ABD)が1.0〜1.6g/mlの範囲にあり、圧縮充填密度(CBD)が1.5〜2.1g/mlの範囲に、CBDとABDとの比CBD/ABDが1.1〜1.8の範囲にあり、格子数が8.15000〜8.25000オングストロームの範囲にあり、該格子定数の標準偏差が0.00092オングストローム以下、の範囲にあり、10%圧縮弾性率が20〜200kgf/mm2の範囲にあり、10%圧縮弾性率の変動係数(CV値)が5〜30%の範囲にあることを特徴としている。
Li(x+y)Mn(2-y-z)z4
(但し、x=1.0〜1.2、0<y≦0.2、1<x+y≦1.2、MはAlおよびBで、z1(Al組成)=0.01〜0.2、z2(B組成)=0.0005〜0.05、z1+z2=Z)
[Lithium / manganese composite oxide particles]
The lithium-manganese composite oxide particles according to the present invention are spinel type lithium-manganese composite oxide particles represented by the following general formula, and the specific surface area is in the range of 0.1 to 2.0 m 2 / g. The average particle size (D 3 ) is in the range of 10-20 μm, the particle size distribution is in the range of 2-40 μm, and the bulk density (ABD) is in the range of 1.0-1.6 g / ml, a range compression packing density (CBD) of 1.5~2.1g / ml, in the range of the ratio CBD / ABD between CBD and ABD is 1.1 to 1.8, the lattice constants are 8.15000~ It is in the range of 8.25000 angstroms, the standard deviation of the lattice constant is in the range of 0.00092 angstroms or less, the 10% compression modulus is in the range of 20 to 200 kgf / mm 2 , and the 10% compression modulus is Coefficient of variation (CV value There has been characterized to be in the range of 5-30%.
Li (x + y) Mn (2-yz) M z O 4
(However, x = 1.0 to 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, M is Al and B, z1 (Al composition) = 0.01 to 0.2, z2 (B composition) = 0.005 to 0.05, z1 + z2 = Z)

本発明に係るリチウム・マンガン複合酸化物粒子には、Li、Mn以外の元素MとしてAlおよびBを含んでいる。Alの原子比z1は0.01〜0.2、さらには0.02〜0.18の範囲にあることが好ましい。ホウ素の原子比z2は0.0005〜0.05、好ましくは0.001〜0.04の範囲にあることが好ましい。   The lithium-manganese composite oxide particles according to the present invention contain Al and B as elements M other than Li and Mn. The atomic ratio z1 of Al is preferably in the range of 0.01 to 0.2, more preferably 0.02 to 0.18. The atomic ratio z2 of boron is preferably in the range of 0.0005 to 0.05, preferably 0.001 to 0.04.

スピネル型リチウム・マンガン複合酸化物粒子におけるLiの量(x+y)は、上記の一般式において、1.0〜1.2の範囲から選ばれる。
スピネル型リチウム・マンガン複合酸化物粒子の平均粒子径(D3)は10〜20μm、さらには13〜18μmの範囲にあることが好ましい。
The amount (x + y) of Li in the spinel type lithium / manganese composite oxide particles is selected from the range of 1.0 to 1.2 in the above general formula.
The average particle size (D 3 ) of the spinel type lithium / manganese composite oxide particles is preferably in the range of 10 to 20 μm, more preferably 13 to 18 μm.

また、スピネル型リチウム・マンガン複合酸化物粒子の粒子径分布は2〜40μm、さらには3〜30μmの範囲にあることが好ましい。
本発明の方法で得られるスピネル型リチウム・マンガン複合酸化物粒子は球状で、このような球状の微粒子を正極材として用いれば、正極材を含む電極用合剤をアルミ箔などに塗布する際にアルミ箔を傷つけるようなことがない。
The particle size distribution of the spinel type lithium / manganese composite oxide particles is preferably in the range of 2 to 40 μm, more preferably 3 to 30 μm.
The spinel-type lithium / manganese composite oxide particles obtained by the method of the present invention are spherical, and if such spherical fine particles are used as a positive electrode material, an electrode mixture containing the positive electrode material is applied to an aluminum foil or the like. There will be no damage to the aluminum foil.

つぎに、スピネル型リチウム・マンガン複合酸化物粒子の格子定数(Lc)は8.15000〜8.25000オングストローム、好ましくは8.16000〜8.24000オングストロームの範囲にあることが好ましい。   Next, the lattice constant (Lc) of the spinel type lithium / manganese composite oxide particles is preferably in the range of 8.15000 to 8.25000 angstroms, and preferably in the range of 8.16000 to 8.24000 angstroms.

このような格子定数(Lc)の標準偏差は0.00001〜0.00100オングストローム、さらには0.00001〜0.00095オングストロームの範囲にあることが好ましい。   The standard deviation of the lattice constant (Lc) is preferably in the range of 0.00001 to 0.00100 angstrom, more preferably 0.00001 to 0.00095 angstrom.

格子定数(Lc)の標準偏差が0.00001オングストローム未満のものは得ることが困難であり、0.00100オングストロームを越えると、前記放電容量、サイクル特性が変動したり、これら性能が不充分となる場合がある。   It is difficult to obtain a material having a standard deviation of the lattice constant (Lc) of less than 0.00001 angstrom, and if it exceeds 0.00100 angstrom, the discharge capacity and cycle characteristics fluctuate or the performance becomes insufficient. There is a case.

つぎに、スピネル型リチウム・マンガン複合酸化物粒子の比表面積が0.1〜2.0m2/g、さらには0.1〜1.5m2/gの範囲にあることが好ましい。
また、リチウム・マンガン複合酸化物粒子の充填かさ密度(ABD)は1.1〜1.6g/ml、さらには1.3〜1.5g/mlの範囲にあることが好ましい。
Next, the specific surface area of the spinel-type lithium-manganese composite oxide particles 0.1~2.0m 2 / g, more preferably in the range of 0.1~1.5m 2 / g.
The bulk density (ABD) of the lithium-manganese composite oxide particles is preferably 1.1 to 1.6 g / ml, more preferably 1.3 to 1.5 g / ml.

リチウム・マンガン複合酸化物粒子の圧縮充填密度(CBD)は1.8〜2.1g/ml、さらには1.9〜2.1g/mlの範囲にあることが好ましい。
また、前記CBDとABDの比CBD/ABDは1.1〜1.8、さらには1.1〜1.5の範囲にあることが好ましい。
The compression packing density (CBD) of the lithium-manganese composite oxide particles is preferably in the range of 1.8 to 2.1 g / ml, more preferably 1.9 to 2.1 g / ml.
The CBD / ABD ratio CBD / ABD is preferably 1.1 to 1.8, more preferably 1.1 to 1.5.

リチウム・マンガン複合酸化物粒子の10%圧縮弾性率は20〜200kgf/mm2、さらには40〜180kgf/mm2の範囲にあることが好ましい。
上記10%圧縮弾性率のばらつき、即ち変動係数(CV値)は5〜30%、さらには5〜20%の範囲にあることが好ましい。
The 10% compression modulus of the lithium / manganese composite oxide particles is preferably in the range of 20 to 200 kgf / mm 2 , more preferably 40 to 180 kgf / mm 2 .
The variation in the 10% compression modulus, that is, the coefficient of variation (CV value) is preferably in the range of 5 to 30%, more preferably 5 to 20%.

本発明に係るスピネル型リチウム・マンガン複合酸化物粒子は、前記した本発明に係るスピネル型リチウム・マンガン複合酸化物粒子の製造方法によって得られたスピネル型リチウム・マンガン複合酸化物粒子であることが好ましい。
つぎに、本発明に係るリチウムイオン二次電池について説明する。
The spinel type lithium / manganese composite oxide particles according to the present invention are spinel type lithium / manganese composite oxide particles obtained by the method for producing the spinel type lithium / manganese composite oxide particles according to the present invention. preferable.
Next, the lithium ion secondary battery according to the present invention will be described.

[リチウムイオン二次電池]
本発明に係るリチウムイオン二次電池は、電解質層と、正極集電体(1)上に形成された正極活物質層からなる正極と、電解質層中の積層する負極集電体(2)上に形成された負極活物質層からなる負極と、該正極と該負極とを隔絶するセパレーターとからなるリチウムイオン二次電池であって、該正極に本発明に係るスピネル型リチウム・マンガン複合酸化物粒子を正極材(正極活物質)として用いたことを特徴としている。
[Lithium ion secondary battery]
The lithium ion secondary battery according to the present invention includes an electrolyte layer, a positive electrode composed of a positive electrode active material layer formed on the positive electrode current collector (1), and a negative electrode current collector (2) laminated in the electrolyte layer. A lithium ion secondary battery comprising a negative electrode comprising a negative electrode active material layer formed on the electrode and a separator separating the positive electrode from the negative electrode, wherein the positive electrode comprises a spinel-type lithium / manganese composite oxide according to the present invention. The particles are used as a positive electrode material (positive electrode active material).

本発明のリチウム二次電池で用いる負極活物質には、従来公知のものを特に制限なく使用することができる。たとえば、金属リチウム並びにリチウムまたはリチウムイオンを吸蔵放出可能な物質を用いることができる。例えば、金属リチウム、リチウム/アルミニウム合金、リチウム/スズ合金、リチウム/鉛合金および電気化学的にリチウムイオンを挿入・脱離する炭素系材料が例示され、電気化学的にリチウムイオンを挿入・脱離する炭素系材料が安全性および電池の特性の面から特に好適である。また、本発明のリチウム二次電池で用いる電解質としては、特に制限はないが、例えば、カーボネート類、スルホラン類、ラクトン類、エーテル類等の有機溶媒中にリチウム塩を溶解したものや、リチウムイオン導電性の固体電解質を用いることができる。   A conventionally well-known thing can be especially used for a negative electrode active material used with the lithium secondary battery of this invention without a restriction | limiting. For example, metallic lithium and a substance capable of occluding and releasing lithium or lithium ions can be used. Examples include lithium metal, lithium / aluminum alloy, lithium / tin alloy, lithium / lead alloy, and carbon-based materials that electrochemically insert and desorb lithium ions, and electrochemically insert and desorb lithium ions. The carbon-based material to be used is particularly suitable from the viewpoints of safety and battery characteristics. The electrolyte used in the lithium secondary battery of the present invention is not particularly limited. For example, an electrolyte obtained by dissolving a lithium salt in an organic solvent such as carbonates, sulfolanes, lactones, and ethers, or lithium ions A conductive solid electrolyte can be used.

本発明では、以上の正極材(正極活物質)、負極活物質およびリチウム塩含有非水電解質を用いて、安定な高性能なリチウム二次電池を得ることができる。
以下、実施例により本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
In the present invention, a stable high-performance lithium secondary battery can be obtained using the above positive electrode material (positive electrode active material), negative electrode active material, and lithium salt-containing nonaqueous electrolyte.
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example.

[実施例]
以下実施例により本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[Example]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

[実施例1]
スピネル型リチウム・マンガン複合酸化物粒子(1)の調製
電解二酸化マンガン粉末(γ−MnO2、純度60.64%)、アルミナゾル(日揮触媒化成(株)製:AS−3、平均一次粒子径8nm、平均二次粒子径250nm、Al23濃度7.1重量%)、水酸化リチウム(日本化学工業(株)製:LiOH、純度58.6重量%)、ホウ酸(和光純薬(株)製:H3BO3、純度99.0重量%)を、Li:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の割合で湿式粉砕器に充填し、純水を加えてスラリー固形分濃度が33重量%となるよう仕込み、1.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(1)を調製した。噴霧乾燥用混合物分散液(1)のpHは12.7であった。また、降伏応力値は22Paであった。
[Example 1]
Preparation of spinel type lithium / manganese composite oxide particles (1) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%), alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: AS-3, average primary particle size 8 nm) , Average secondary particle size 250 nm, Al 2 O 3 concentration 7.1 wt%), lithium hydroxide (manufactured by Nippon Chemical Industry Co., Ltd .: LiOH, purity 58.6 wt%), boric acid (Wako Pure Chemical Industries, Ltd.) ): H 3 BO 3 , purity 99.0% by weight) at a ratio of Li: Mn: Al: B = 1.07: 1.82: 0.1: 0.01 (atomic ratio) And charged with pure water to a slurry solids concentration of 33% by weight, treated with 1.0 mmΦ beads at a rotational speed of 2500 rpm for 1 hour, and pure water was added to the solid content. A spray-drying mixture dispersion (1) having a concentration of 20% by weight was prepared. The pH of the mixture dispersion (1) for spray drying was 12.7. The yield stress value was 22 Pa.

粒子径分布測定装置(HORIBA(株)製:LA−950v2)により二酸化マンガン粒子(A)の平均一次粒子径(D1)を測定し、結果を表に示す。また、噴霧乾燥用混合物分散液(1)中の二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。 The average primary particle diameter (D 1 ) of the manganese dioxide particles (A) was measured with a particle size distribution analyzer (manufactured by HORIBA Ltd .: LA-950v2), and the results are shown in the table. Further, the zeta potential of the manganese dioxide particles (A) in the mixture dispersion (1) for spray drying was measured, and the results are shown in the table.

ついで、噴霧乾燥用混合物分散液(1)をスプレードライヤーで噴霧乾燥した。スプレードライヤーの条件は、熱風入口温度200℃、出口温度100℃とした。
得られた乾燥粉末を空気流通下830℃で6時間焼成することにより、Li:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子を得た。
Subsequently, the spray dispersion mixture dispersion (1) was spray-dried with a spray dryer. The conditions of the spray dryer were a hot air inlet temperature of 200 ° C. and an outlet temperature of 100 ° C.
The obtained dry powder is fired at 830 ° C. for 6 hours under air flow to have a composition of Li: Mn: Al: B = 1.07: 1.82: 0.1: 0.01 (atomic ratio). Spinel-type lithium-manganese composite oxide particles were obtained.

ついで、調理用ミキサーに仕込み、30秒間解砕し、ついで、電磁式篩振とう機を用いて篩目開き45μm、振幅3.0mmの条件で1分間分級を行い、篩下を回収し正極材スピネル型リチウム・マンガン複合酸化物粒子(1)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(1)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Next, it is charged in a mixer for cooking and pulverized for 30 seconds. Then, classification is performed for 1 minute using a magnetic sieve shaker under conditions of a sieve opening of 45 μm and an amplitude of 3.0 mm. Spinel-type lithium-manganese composite oxide particles (1) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (1) were measured, and the results are shown in the table.

性能評価
スピネル型リチウム・マンガン複合酸化物粒子(1)を正極活物質として含む正極を用いてリチウムイオン電池(1)を作成し、電池性能を評価した。
Performance Evaluation A lithium ion battery (1) was prepared using a positive electrode containing spinel type lithium / manganese composite oxide particles (1) as a positive electrode active material, and the battery performance was evaluated.

まず、スピネル型リチウム・マンガン複合酸化物粒子(1)と導電材としてのアセチレンブラックおよびバインダーとしてのポリ四フッ化エチレンパウダーを、75:20:5の重量比で混合し、乳鉢で混練して正極用合剤を調製した。この合剤を展伸ローラーで厚さ0.1mmのシートとし、16mmφに型抜きした後、グローブボックス内で乾燥して試験用正極(1)を作成した。   First, spinel-type lithium / manganese composite oxide particles (1), acetylene black as a conductive material, and polytetrafluoroethylene powder as a binder are mixed at a weight ratio of 75: 20: 5 and kneaded in a mortar. A positive electrode mixture was prepared. This mixture was made into a sheet having a thickness of 0.1 mm with a spreading roller, die-cut to 16 mmφ, and dried in a glove box to prepare a test positive electrode (1).

正極(1)と金属リチウム箔(厚さ0.2mm)を、セパレーター(商品名:セルガード)を介してコイン型電池ケースに積層し、体積比1:1のエチレンカーボネートとジメチルカーボネート混合溶媒に1mol/lのLiPF6を溶解した電解液を注入して試験用電池(1)を作成した。
試験用電池(1)について、放電容量、高温サイクル特性および高温劣化試験を行った。
A positive electrode (1) and a metal lithium foil (thickness: 0.2 mm) are stacked on a coin-type battery case via a separator (trade name: Celgard), and 1 mol of ethylene carbonate and dimethyl carbonate mixed solvent with a volume ratio of 1: 1. A test battery (1) was prepared by injecting an electrolytic solution in which 1 / L LiPF 6 was dissolved.
The test battery (1) was subjected to discharge capacity, high temperature cycle characteristics, and high temperature deterioration test.

(1)放電容量
定電流で0.5mA/cm2の電流密度、充電電位4.3Vまで、放電電位3.0Vまでの電位規制の条件で、まず重量当たりの放電容量を測定したのち、次式により体積当たりの放電容量を算出した。
体積当たりの放電容量=重量当たりの放電容量×充填密度
(2)高温サイクル特性
試験用電池を60℃の恒温槽に設置し、上記と同一の条件で30回の充放電試験を行い、高温サイクル特性を次式の容量維持率で評価した。
容量維持率(%)=(1回目の重量当たり放電容量/30回目の重量当たり放電容量)×100
(1) Discharge capacity First, after measuring the discharge capacity per weight under the conditions of a constant current of 0.5 mA / cm 2 , a charge potential of 4.3 V, and a potential regulation of 3.0 V, the next The discharge capacity per volume was calculated from the equation.
Discharge capacity per volume = discharge capacity per weight × packing density (2) High-temperature cycle characteristics The test battery is placed in a constant temperature bath at 60 ° C., and 30 charge / discharge tests are performed under the same conditions as described above. The characteristics were evaluated by the capacity retention rate of the following equation.
Capacity retention rate (%) = (discharge capacity per first weight / discharge capacity per 30th weight) × 100

[実施例2]
スピネル型リチウム・マンガン複合酸化物粒子(2)の調製
実施例1と同様にして固形分濃度が33重量%のスラリーを調製し、0.5mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(2)を調製した。噴霧乾燥用混合物分散液(2)のpHは12.6」であった。また、降伏応力値は320Paであった。
[Example 2]
Preparation of Spinel Type Lithium Manganese Composite Oxide Particles (2) A slurry with a solid content concentration of 33% by weight was prepared in the same manner as in Example 1 and 0.5 mmΦ beads were used for 1 hour under the conditions of 2500 rpm. After the treatment, pure water was added thereto to prepare a spray-drying mixture dispersion (2) having a solid content of 20% by weight. The pH of the mixture dispersion (2) for spray drying was 12.6 ". The yield stress value was 320 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(2)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(2)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(2)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (2) for spray drying was spray dried with a spray dryer, calcined, crushed and classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium / manganese composite oxide particles (2) having a composition of 82: 0.1: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (2) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(2)を用いた試験用電池(2)を作成し、性能評価を行い、結果を表に示す。   In addition, a test battery (2) using spinel type lithium / manganese composite oxide particles (2) was prepared, performance evaluation was performed, and the results are shown in the table.

[実施例3]
スピネル型リチウム・マンガン複合酸化物粒子(3)の調製
実施例1と同様にして固形分濃度が33重量%のスラリーを調製し、3.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(3)を調製した。噴霧乾燥用混合物分散液(3)のpHは12.8であった。また、降伏応力値は13Paであった。
[Example 3]
Preparation of Spinel Type Lithium Manganese Composite Oxide Particles (3) A slurry having a solid content concentration of 33% by weight was prepared in the same manner as in Example 1 and 3.0 mmΦ beads were used for 1 hour at a rotation speed of 2500 rpm. After the treatment, pure water was added thereto to prepare a spray-drying mixture dispersion (3) having a solid concentration of 20% by weight. The pH of the mixture dispersion (3) for spray drying was 12.8. Moreover, the yield stress value was 13 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(3)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(3)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(3)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (3) for spray drying was spray dried with a spray dryer, calcined, crushed, classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium / manganese composite oxide particles (3) having a composition of 82: 0.1: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (3) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(3)を用いた試験用電池(3)を作成し、性能評価を行い、結果を表に示す。   In addition, a test battery (3) using spinel type lithium / manganese composite oxide particles (3) was prepared, performance evaluation was performed, and the results are shown in the table.

[実施例4]
スピネル型リチウム・マンガン複合酸化物粒子(4)の調製
電解二酸化マンガン粉末(γ−MnO2 、純度60.64%)、アルミナゾル(日揮触媒化成(株)製:AS−3、平均一次粒子径8nm、平均二次粒子径250nm、Al23濃度7.1重量%)、水酸化リチウム(日本化学工業(株)製:LiOH、純度58.6重量%)、ホウ酸(和光純薬(株)製:H3BO3、純度99.0重量%)を、Li:Mn:Al:B=1.07:1.77:0.15:0.01(原子比)の割合で湿式粉砕器に充填し、純水を加えてスラリー固形分濃度が33重量%となるよう仕込み、1.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(4)を調製した。噴霧乾燥用混合物分散液(4)のpHは12.5であった。また、降伏応力値は52Paであった。
[Example 4]
Preparation of spinel type lithium / manganese composite oxide particles (4) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%), alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: AS-3, average primary particle size 8 nm) , Average secondary particle size 250 nm, Al 2 O 3 concentration 7.1 wt%), lithium hydroxide (manufactured by Nippon Chemical Industry Co., Ltd .: LiOH, purity 58.6 wt%), boric acid (Wako Pure Chemical Industries, Ltd.) ): H 3 BO 3 , purity 99.0% by weight) at a ratio of Li: Mn: Al: B = 1.07: 1.77: 0.15: 0.01 (atomic ratio) And charged with pure water to a slurry solids concentration of 33% by weight, treated with 1.0 mmΦ beads at a rotational speed of 2500 rpm for 1 hour, and pure water was added to the solid content. A spray dispersion mixture dispersion (4) having a concentration of 20% by weight was prepared. The pH of the mixture dispersion (4) for spray drying was 12.5. The yield stress value was 52 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(4)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.77:0.15:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(4)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(4)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (4) for spray drying was spray dried with a spray dryer, calcined, crushed, classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium / manganese composite oxide particles (4) having a composition of 77: 0.15: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (4) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(4)を用いた試験用電池(4)を作成し、性能評価を行い、結果を表に示す。   In addition, a test battery (4) using spinel type lithium / manganese composite oxide particles (4) was prepared, performance evaluation was performed, and the results are shown in the table.

[実施例5]
スピネル型リチウム・マンガン複合酸化物粒子(5)の調製
電解二酸化マンガン粉末(γ−MnO2 、純度60.64%)、アルミナゾル(日揮触媒化成(株)製:AS−3、平均一次粒子径8nm、平均二次粒子径250nm、Al23濃度7.1重量%)、水酸化リチウム(日本化学工業(株)製:LiOH、純度58.6重量%)、ホウ酸(和光純薬(株)製:H3BO3、純度99.0重量%)を、Li:Mn:Al:B=1.07:1.74:0.18:0.01(原子比)の割合で湿式粉砕器に充填し、純水を加えてスラリー固形分濃度が33重量%となるよう仕込み、1.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(5)を調製した。噴霧乾燥用混合物分散液(5)のpHは12.3であった。また、降伏応力値は104Paであった。
[Example 5]
Preparation of spinel type lithium / manganese composite oxide particles (5) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%), alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: AS-3, average primary particle size 8 nm) , Average secondary particle size 250 nm, Al 2 O 3 concentration 7.1 wt%), lithium hydroxide (manufactured by Nippon Chemical Industry Co., Ltd .: LiOH, purity 58.6 wt%), boric acid (Wako Pure Chemical Industries, Ltd.) ): H 3 BO 3 , purity 99.0% by weight) at a ratio of Li: Mn: Al: B = 1.07: 1.74: 0.18: 0.01 (atomic ratio) And charged with pure water to a slurry solids concentration of 33% by weight, treated with 1.0 mmΦ beads at a rotational speed of 2500 rpm for 1 hour, and pure water was added to the solid content. A mixture dispersion (5) for spray drying having a concentration of 20% by weight was prepared. The pH of the mixture dispersion (5) for spray drying was 12.3. The yield stress value was 104 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(5)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.74:0.18:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(5)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(5)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (5) for spray drying was spray dried with a spray dryer, calcined, crushed, classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium-manganese composite oxide particles (5) having a composition of 74: 0.18: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (5) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(5)を用いた試験用電池(5)を作成し、性能評価を行い、結果を表に示す。 In addition, a test battery (5) using spinel type lithium / manganese composite oxide particles (5) was prepared, performance evaluation was performed, and the results are shown in the table.

[比較例1]
スピネル型リチウム・マンガン複合酸化物粒子(R1)の調製
実施例1と同様にして固形分濃度が33重量%のスラリーを調製し、0.1mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(R1)を調製した。噴霧乾燥用混合物分散液(R1)のpHは12.5であった。また、降伏応力値は570Paであった。
[Comparative Example 1]
Preparation of Spinel Type Lithium Manganese Composite Oxide Particles (R1) A slurry with a solid content concentration of 33% by weight was prepared in the same manner as in Example 1, and 0.1 mmΦ beads were used for 1 hour under the condition of 2500 rpm. After the treatment, pure water was added thereto to prepare a spray-drying mixture dispersion (R1) having a solid content of 20% by weight. The pH of the mixture dispersion (R1) for spray drying was 12.5. The yield stress value was 570 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(R1)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(R1)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(R1)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (R1) for spray drying was spray dried with a spray dryer, calcined, crushed, classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium / manganese composite oxide particles (R1) having a composition of 82: 0.1: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (R1) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(R1)を用いた試験用電池(R1)を作成し、性能評価を行い結果を表に示す。   In addition, a test battery (R1) using spinel type lithium / manganese composite oxide particles (R1) was prepared, performance evaluation was performed, and the results are shown in the table.

[比較例2]
スピネル型リチウム・マンガン複合酸化物粒子(R2)の調製
実施例1と同様にして固形分濃度が33重量%のスラリーを調製し、5.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(R2)を調製した。噴霧乾燥用混合物分散液(R2)のpHは12.8であった。また、降伏応力値は4 Paであった。
[Comparative Example 2]
Preparation of Spinel Type Lithium / Manganese Composite Oxide Particles (R2) A slurry having a solid content concentration of 33% by weight was prepared in the same manner as in Example 1 and 5.0 mmΦ beads were used for 1 hour under the conditions of 2500 rpm. This was treated, and pure water was added thereto to prepare a spray-drying mixture dispersion (R2) having a solid concentration of 20% by weight. The pH of the mixture dispersion (R2) for spray drying was 12.8. The yield stress value was 4 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(R2)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(R2)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(R2)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (R2) for spray-drying was spray-dried with a spray dryer, calcined, crushed, classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium / manganese composite oxide particles (R2) having a composition of 82: 0.1: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (R2) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(R2)を用いた試験用電池(R2)を作成し、性能評価を行い、結果を表に示す。   Also, a test battery (R2) using spinel type lithium / manganese composite oxide particles (R2) was prepared, performance evaluation was performed, and the results are shown in the table.

[比較例3]
スピネル型リチウム・マンガン複合酸化物粒子(R3)の調製
電解二酸化マンガン粉末(γ−MnO2 、純度60.64%)、アルミナゾル(日揮触媒化成(株)製:AS−3、平均一次粒子径8nm、平均二次粒子径250nm、Al23濃度7.1重量%)、水酸化リチウム(日本化学工業(株)製:LiOH、純度58.6重量%)、ホウ酸(和光純薬(株)製:H3BO3、純度99.0重量%)を、Li:Mn:Al:B=1.07:1.912:0.008:0.01(原子比)の割合で湿式粉砕器に充填し、純水を加えてスラリー固形分濃度が33重量%となるよう仕込み、1.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(R3)を調製した。噴霧乾燥用混合物分散液(R3)のpHは12.9であった。また、降伏応力値は3Paであった。
[Comparative Example 3]
Preparation of spinel type lithium / manganese composite oxide particles (R3) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%), alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: AS-3, average primary particle size 8 nm) , Average secondary particle size 250 nm, Al 2 O 3 concentration 7.1 wt%), lithium hydroxide (manufactured by Nippon Chemical Industry Co., Ltd .: LiOH, purity 58.6 wt%), boric acid (Wako Pure Chemical Industries, Ltd.) ): H 3 BO 3 , purity 99.0% by weight) at a ratio of Li: Mn: Al: B = 1.07: 1.912: 0.008: 0.01 (atomic ratio) And charged with pure water to a slurry solids concentration of 33% by weight, treated with 1.0 mmΦ beads at a rotational speed of 2500 rpm for 1 hour, and pure water was added to the solid content. Prepare a spray dispersion mixture dispersion (R3) with a concentration of 20% by weight. . The pH of the mixture dispersion (R3) for spray drying was 12.9. The yield stress value was 3 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(R3)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.912:0.008:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(R3)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(R3)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (R3) for spray drying was spray dried with a spray dryer, calcined, crushed and classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel-type lithium / manganese composite oxide particles (R3) having a composition of 912: 0.008: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (R3) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(R3)を用いた試験用電池(R3)を作成し、性能評価を行い、結果を表に示す。   Further, a test battery (R3) using spinel type lithium / manganese composite oxide particles (R3) was prepared, performance evaluation was performed, and the results are shown in the table.

[比較例4]
スピネル型リチウム・マンガン複合酸化物粒子(R4)の調製
電解二酸化マンガン粉末(γ−MnO2 、純度60.64%)、アルミナゾル(日揮触媒化成(株)製:AS−3、平均一次粒子径8nm、平均二次粒子径250nm、Al23濃度7.1重量%)、水酸化リチウム(日本化学工業(株)製:LiOH、純度58.6重量%)、ホウ酸(和光純薬(株)製:H3BO3、純度99.0重量%)を、Li:Mn:Al:B=1.07:1.42:0.5:0.01(原子比)の割合で湿式粉砕器に充填し、純水を加えてスラリー固形分濃度が33重量%となるよう仕込み、1.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(R4)を調製した。噴霧乾燥用混合物分散液(R4)のpHは12.5であった。また、降伏応力値は620Paであった。
[Comparative Example 4]
Preparation of spinel type lithium / manganese composite oxide particles (R4) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%), alumina sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: AS-3, average primary particle size 8 nm) , Average secondary particle size 250 nm, Al 2 O 3 concentration 7.1 wt%), lithium hydroxide (manufactured by Nippon Chemical Industry Co., Ltd .: LiOH, purity 58.6 wt%), boric acid (Wako Pure Chemical Industries, Ltd.) ): H 3 BO 3 , purity 99.0% by weight) at a ratio of Li: Mn: Al: B = 1.07: 1.42: 0.5: 0.01 (atomic ratio) And charged with pure water to a slurry solids concentration of 33% by weight, treated with 1.0 mmΦ beads at a rotational speed of 2500 rpm for 1 hour, and pure water was added to the solid content. A spray-drying mixture dispersion (R4) having a concentration of 20% by weight was prepared. The pH of the spray-drying mixture dispersion (R4) was 12.5. The yield stress value was 620 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(R4)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.42:0.5:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(R4)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(R4)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (R4) for spray drying was spray dried with a spray dryer, calcined, crushed, classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium / manganese composite oxide particles (R4) having a composition of 42: 0.5: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (R4) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(R4)を用いた試験用電池(R4)を作成し、性能評価を行い、結果を表に示す。   In addition, a test battery (R4) using spinel type lithium / manganese composite oxide particles (R4) was prepared, performance evaluation was performed, and the results are shown in the table.

[比較例5]
スピネル型リチウム・マンガン複合酸化物粒子(R5)の調製
電解二酸化マンガン粉末(γ−MnO2 、純度60.64%)、実施例1で用いたアルミナゾルを噴霧乾燥して得たアルミナ粉末(日揮触媒化成(株)製:AP−3、平均一次粒子径8nm、平均二次粒子径5500nm、Al23濃度99.0重量%)、水酸化リチウム(日本化学工業(株)製:LiOH、純度58.6重量%)、ホウ酸(和光純薬(株)製:H3BO3、純度99.0重量%)を、Li:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の割合で湿式粉砕器に充填し、純水を加えてスラリー固形分濃度が33重量%となるよう仕込み、1.0mmΦのビーズを用い、回転数2500rpmの条件で1時間処理し、これに純水を加えて固形分濃度20重量%の噴霧乾燥用混合物分散液(R5)を調製した。噴霧乾燥用混合物分散液(R5)のpHは12、8であった。また、降伏応力値は4Paであった。
[Comparative Example 5]
Preparation of Spinel Type Lithium-Manganese Composite Oxide Particles (R5) Electrolytic manganese dioxide powder (γ-MnO 2 , purity 60.64%), alumina powder obtained by spray drying alumina sol used in Example 1 (JGC Catalyst) Kasei Co., Ltd .: AP-3, average primary particle diameter 8 nm, average secondary particle diameter 5500 nm, Al 2 O 3 concentration 99.0 wt%, lithium hydroxide (Nippon Chemical Industry Co., Ltd .: LiOH, purity 58.6% by weight), boric acid (Wako Pure Chemical Industries, Ltd .: H 3 BO 3 , purity 99.0% by weight), Li: Mn: Al: B = 1.07: 1.82: 0. Filled into a wet pulverizer at a ratio of 1: 0.01 (atomic ratio), charged with pure water to a slurry solids concentration of 33% by weight, using 1.0 mmΦ beads, and rotating at 2500 rpm For 1 hour, and then add pure water to add solid content 0 wt% of the spray-drying mixture dispersion (R5) was prepared. The pH of the mixture dispersion (R5) for spray drying was 12,8. The yield stress value was 4 Pa.

また、二酸化マンガン粒子(A)の平均一次粒子径(D1)、二酸化マンガン粒子(A)のゼータ電位を測定し、結果を表に示す。
ついで、実施例1と同様にして噴霧乾燥用混合物分散液(R5)をスプレードライヤーで噴霧乾燥し、焼成し、解砕し、分級してLi:Mn:Al:B=1.07:1.82:0.1:0.01(原子比)の組成を有するスピネル型リチウム・マンガン複合酸化物粒子(R5)を調製した。
スピネル型リチウム・マンガン複合酸化物粒子(R5)の平均粒径(D3)、粒子径分布、比表面積、ABD、CBD、格子定数および10%圧縮弾性率を測定し、結果を表に示す。
Further, the average primary particle diameter (D 1 ) of the manganese dioxide particles (A) and the zeta potential of the manganese dioxide particles (A) were measured, and the results are shown in the table.
Subsequently, the mixture dispersion (R5) for spray drying was spray dried with a spray dryer, calcined, crushed and classified in the same manner as in Example 1, and Li: Mn: Al: B = 1.07: 1. Spinel type lithium-manganese composite oxide particles (R5) having a composition of 82: 0.1: 0.01 (atomic ratio) were prepared.
The average particle size (D 3 ), particle size distribution, specific surface area, ABD, CBD, lattice constant and 10% compression modulus of the spinel type lithium / manganese composite oxide particles (R5) were measured, and the results are shown in the table.

また、スピネル型リチウム・マンガン複合酸化物粒子(R5)を用いた試験用電池(R5)を作成し、性能評価を行い、結果を表に示す。   In addition, a test battery (R5) using spinel type lithium / manganese composite oxide particles (R5) was prepared, performance evaluation was performed, and the results are shown in the table.

Figure 0005634828
Figure 0005634828

Figure 0005634828
Figure 0005634828

Claims (8)

下記の工程(a)〜(c)からなることを特徴とするスピネル型リチウム・マンガン複合酸化物粒子の製造方法;
(a)リチウム化合物、平均一次粒子径(D1)が0.1μm≦(D 1 )≦1μmの範囲にある二酸化マンガン粒子(A)、アルミナゾルおよびホウ素化合物を、Li:Mn:Al:Bの原子比が(x+y):(2−y−z):z1:z2(但し、1.0≦x≦1.2、0<y≦0.2、1<x+y≦1.2、0.01≦z1(Al)≦0.2、0.0005≦z2(B)≦0.05、z=z1+z2)の比率となり、固形分濃度が、5≦固形分濃度≦50重量%の範囲にあり、散液の降伏応力値が5Pa≦降伏応力値≦500Paの範囲にあり、
pHが9≦pH≦14の範囲にある噴霧乾燥用混合物分散液を調製する工程。
(b)噴霧乾燥する工程。
(c)焼成する工程。
A process for producing spinel-type lithium-manganese composite oxide particles comprising the following steps (a) to (c);
(A) Lithium compound, manganese dioxide particles (A) having an average primary particle diameter (D 1 ) in the range of 0.1 μm ≦ (D 1 ) ≦ 1 μm, alumina sol, and boron compound, Li: Mn: Al: B The atomic ratio of (x + y) :( 2-yz): z1: z2 (where 1.0 ≦ x ≦ 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, 0. 01 ≦ z1 (Al) ≦ 0.2, 0.0005 ≦ z2 (B) ≦ 0.05, z = z1 + z2), and the solid content concentration is in the range of 5 ≦ solid content concentration ≦ 50% by weight. to Yes, the yield stress value of the partial dispersion liquid is in the range of 5 Pa ≦ yield stress value ≦ 500 Pa,
preparing a spray-drying mixture dispersion having a pH in a range of 9 ≦ pH ≦ 14 .
(B) A step of spray drying.
(C) A step of firing.
前記工程(c)についで、さらに下記工程(d)を行うことを特徴とする請求項1に記載のスピネル型リチウム・マンガン複合酸化物粒子の製造方法;
(d)平均粒子径(D3)が10μm≦(D 3 )≦20μmの範囲にあり、粒子径分布が2μm≦粒子径分布≦40μmとなるように解砕する工程。
The method for producing spinel-type lithium / manganese composite oxide particles according to claim 1, wherein the following step (d) is further performed following the step (c).
(D) A step of crushing so that the average particle size (D 3 ) is in the range of 10 μm ≦ (D 3 ) ≦ 20 μm, and the particle size distribution is 2 μm ≦ particle size distribution ≦ 40 μm.
前記工程(a)における二酸化マンガン粒子(A)のゼータ電位が−60mV≦ゼータ電位≦−5mVの範囲にあることを特徴とする請求項1または2に記載のスピネル型リチウム・マンガン複合酸化物粒子の製造方法。 The spinel-type lithium-manganese composite oxide according to claim 1 or 2, wherein the zeta potential of the manganese dioxide particles (A) in the step (a) is in the range of -60 mV ≤ zeta potential ≤ -5 mV . Particle production method. 充填かさ密度(ABD)が1.0g/ml≦(ABD)≦1.6g/mlの範囲にあり、圧縮充填密度(CBD)が1.5g/ml≦(CBD)≦2.1g/mlの範囲に、CBDとABDとの比CBD/ABDが1.1≦CBD/ABD≦1.8の範囲にあることを特徴とする請求項1〜3のいずれかに記載のスピネル型リチウム・マンガン複合酸化物粒子の製造方法。 The filling bulk density (ABD) is in the range of 1.0 g / ml ≦ (ABD) ≦ 1.6 g / ml, and the compression packing density (CBD) is 1.5 g / ml ≦ (CBD) ≦ 2.1 g / The spinel-type lithium-ion according to any one of claims 1 to 3, wherein a ratio CBD / ABD of CBD to ABD is in a range of 1.1 ≦ CBD / ABD ≦ 1.8 in a range of ml. A method for producing manganese composite oxide particles. 10%圧縮弾性率が20kgf/mm 2 ≦10%圧縮弾性率≦200kgf/mm2の範囲にあり、10%圧縮弾性率の変動係数(CV値)が5%≦(CV値)≦30%の範囲にあることを特徴とする請求項1〜4のいずれかに記載のスピネル型リチウム・マンガン複合酸化物粒子の製造方法。 10% compressive elasticity modulus is in the range of 20 kgf / mm 2 ≦ 10% compressive elasticity modulus ≦ 200kgf / mm 2, coefficient of variation of 10% compressive elasticity modulus (CV value) is 5% ≦ (CV value) ≦ 30% The method for producing spinel-type lithium-manganese composite oxide particles according to any one of claims 1 to 4, wherein: 下記の一般式で示されるスピネル型リチウム・マンガン複合酸化物粒子であって、
比表面積が0.1 2 /g≦比表面積≦2.0m2/gの範囲にあり、
平均粒子径(D3)が10μm≦(D 3 )≦20μmの範囲にあり、
粒子径分布が2μm≦粒子径分布≦40μmの範囲にあり、
充填かさ密度(ABD)が1.0g/ml≦(ABD)≦1.6g/mlの範囲にあり、
圧縮充填密度(CBD)が1.5g/ml≦(CBD)≦2.1g/mlの範囲に、
CBDとABDとの比CBD/ABDが1.1≦CBD/ABD≦1.8の範囲にあり、
格子定数が8.15000≦格子定数≦8.25000オングストロームの範囲にあり、
該格子定数の標準偏差が0.00092オングストローム以下であり、
10%圧縮弾性率が20kgf/mm 2 ≦10%圧縮弾性率≦200kgf/mm2の範囲にあり、
10%圧縮弾性率の変動係数(CV値)が5%≦(CV値)≦30%の範囲にあることを特徴とするリチウム・マンガン複合酸化物粒子。
Li(x+y)Mn(2-y-z)z4
(但し、1.0≦x≦1.2、0<y≦0.2、1<x+y≦1.2、MはAlおよびBで、0.01≦z1(Al)≦0.2、0.0005≦z2(B)≦0.05、z=z1+z2
Spinel-type lithium / manganese composite oxide particles represented by the following general formula:
The specific surface area is in the range of 0.1 m 2 / g ≦ specific surface area ≦ 2.0 m 2 / g,
The average particle diameter (D 3 ) is in the range of 10 μm ≦ (D 3 ) ≦ 20 μm,
The particle size distribution is in the range of 2 μm ≦ particle size distribution ≦ 40 μm,
The filling bulk density (ABD) is in the range of 1.0 g / ml ≦ (ABD) ≦ 1.6 g / ml,
The compression packing density (CBD) is in the range of 1.5 g / ml ≦ (CBD) ≦ 2.1 g / ml,
The ratio CBD / ABD between CBD and ABD is in the range 1.1 ≦ CBD / ABD ≦ 1.8,
The lattice constant is in the range of 8.15000 ≦ lattice constant ≦ 8.25000 angstroms;
The standard deviation of the lattice constant is 0.00092 angstrom or less,
10% compressive elasticity modulus is in the range of 20 kgf / mm 2 ≦ 10% compressive elasticity modulus ≦ 200kgf / mm 2,
Lithium-manganese composite oxide particles, wherein the coefficient of variation (CV value) of 10% compression modulus is in the range of 5 % ≦ (CV value) ≦ 30%.
Li (x + y) Mn (2-yz) M z O 4
(However, 1.0 ≦ x ≦ 1.2, 0 <y ≦ 0.2, 1 <x + y ≦ 1.2, M is Al and B, 0.01 ≦ z1 (Al) ≦ 0.2, 0 .0005 ≦ z2 (B) ≦ 0.05, z = z1 + z2 )
請求項1〜5のいずれかに記載のスピネル型リチウム・マンガン複合酸化物粒子の製造方法によって製造されたことを特徴とする請求項6に記載のリチウム・マンガン複合酸化物粒子。   The lithium-manganese composite oxide particles according to claim 6, wherein the lithium-manganese composite oxide particles are produced by the method for producing spinel-type lithium / manganese composite oxide particles according to claim 1. 請求項1〜5のいずれかに記載の製造方法によって製造されたスピネル型リチウム・マンガン複合酸化物粒子を正極材として用いたことを特徴とするリチウムイオン二次電池。   6. A lithium ion secondary battery using spinel-type lithium / manganese composite oxide particles produced by the production method according to claim 1 as a positive electrode material.
JP2010244499A 2010-10-29 2010-10-29 Manufacturing method and use of spinel type lithium manganese composite oxide particles Active JP5634828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244499A JP5634828B2 (en) 2010-10-29 2010-10-29 Manufacturing method and use of spinel type lithium manganese composite oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244499A JP5634828B2 (en) 2010-10-29 2010-10-29 Manufacturing method and use of spinel type lithium manganese composite oxide particles

Publications (2)

Publication Number Publication Date
JP2012096949A JP2012096949A (en) 2012-05-24
JP5634828B2 true JP5634828B2 (en) 2014-12-03

Family

ID=46389318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244499A Active JP5634828B2 (en) 2010-10-29 2010-10-29 Manufacturing method and use of spinel type lithium manganese composite oxide particles

Country Status (1)

Country Link
JP (1) JP5634828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116746A (en) * 2010-11-10 2012-06-21 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520927A (en) * 2012-05-25 2015-07-23 バシウム・カナダ・インコーポレーテッド Electrode materials for lithium electrochemical cells
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
TWI615358B (en) 2013-07-26 2018-02-21 Lg化學股份有限公司 Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
PL3567658T3 (en) * 2018-05-09 2021-06-14 Haldor Topsøe A/S Doped lithium positive electrode active material and process for manufacture thereof
CN116425204B (en) * 2023-04-28 2024-03-22 巴斯夫杉杉电池材料有限公司 Spinel type lithium manganate, preparation method thereof and lithium ion battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124522B2 (en) * 1997-10-08 2008-07-23 日揮化学株式会社 Lithium / manganese composite oxide, production method and use thereof
JP2001048545A (en) * 1999-08-09 2001-02-20 Mitsubishi Chemicals Corp Production of lithium-manganese multiple oxide and secondary battery using the same
JP5199522B2 (en) * 1999-08-17 2013-05-15 日揮触媒化成株式会社 Spinel-type lithium / manganese composite oxide, its production method and use
JP2002326818A (en) * 2001-05-08 2002-11-12 Mitsubishi Chemicals Corp Production method of slurry and production method of lithium transition metal compound oxide
JP4019729B2 (en) * 2001-06-29 2007-12-12 日亜化学工業株式会社 Lithium manganese composite oxide powder
JP5278994B2 (en) * 2008-01-25 2013-09-04 Necエナジーデバイス株式会社 Lithium secondary battery
JP5322259B2 (en) * 2008-02-06 2013-10-23 Necエナジーデバイス株式会社 Positive electrode for secondary battery and lithium secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116746A (en) * 2010-11-10 2012-06-21 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide

Also Published As

Publication number Publication date
JP2012096949A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5634828B2 (en) Manufacturing method and use of spinel type lithium manganese composite oxide particles
CA2778286C (en) Nickel-cobalt-manganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4804045B2 (en) Method for producing lithium iron composite oxide
JP2021517721A (en) How to Prepare Positive Electrode Material for Rechargeable Lithium Ion Batteries
WO2015025795A1 (en) Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
JP7125302B2 (en) Manufacturing method of NASICON type negative electrode active material particles for sodium ion secondary battery
US20150180025A1 (en) Lithium Metal Complex Oxide
JP5888762B2 (en) COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, POSITIVE ACTIVE MATERIAL, POSITIVE ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2019023148A (en) Method for producing transition metal hydroxide particles, method for producing lithium transition metal composite oxide, method for producing positive electrode for lithium secondary battery, method for producing lithium secondary battery, and transition metal hydroxide particles
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
WO2003083969A1 (en) Positive electrode material for lithium secondary cell and secondary cell using the same, and method for producing positive electrode material for lithium secondary cell
JP7108504B2 (en) Olivine-type lithium-based oxide primary particles for mixed positive electrode active material and method for producing the same
WO2021153546A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing same
JP2022545945A (en) Mixed lithium transition metal oxide coated with exothermically produced zirconium-containing oxide
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JP6008610B2 (en) Positive electrode material for secondary battery and secondary battery using the positive electrode material
WO2021106448A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing same
JP6205895B2 (en) Olivine-type transition metal lithium silicate compound and method for producing the same
CA3182054A1 (en) Positive electrode active material for non-aqueous electrolyte secondarybattery and method for producing the same
JP6197202B2 (en) Electrode material and membrane
JP7089983B2 (en) Method for manufacturing NASICON type negative electrode active material particles for sodium ion secondary battery
JP7473828B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250