JP2011132095A - Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery - Google Patents

Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011132095A
JP2011132095A JP2009295274A JP2009295274A JP2011132095A JP 2011132095 A JP2011132095 A JP 2011132095A JP 2009295274 A JP2009295274 A JP 2009295274A JP 2009295274 A JP2009295274 A JP 2009295274A JP 2011132095 A JP2011132095 A JP 2011132095A
Authority
JP
Japan
Prior art keywords
particle powder
type compound
olivine
compound particle
granulated product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009295274A
Other languages
Japanese (ja)
Inventor
Minoru Yamazaki
実 山崎
Yoshiteru Kono
芳輝 河野
Seiji Okazaki
精二 岡崎
Toshiyuki Hakata
俊之 博多
Akihisa Kajiyama
亮尚 梶山
Kenji Okinaka
健二 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009295274A priority Critical patent/JP2011132095A/en
Publication of JP2011132095A publication Critical patent/JP2011132095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To simply produce an olivine-type compound particle powder having high tap density. <P>SOLUTION: The method for producing the olivine-type compound particle powder comprises adding and dispersing an iron compound, phosphoric acid or a phosphate salt, a lithium compound and a carbon component in water to make mixed slurry, granulating and drying the mixed slurry to obtain a granule composed of a mixture of the raw materials, firing the granule in an inert gas atmosphere at 400 to 800°C, and pulverizing the fired material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

充放電容量が大きく、充填性に優れたオリビン型化合物粒子粉末を簡便に得ることができる製造方法を提供する。   Provided is a production method capable of easily obtaining an olivine-type compound particle powder having a large charge / discharge capacity and excellent filling properties.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、安全性が高いという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and high safety has attracted attention.

最近、3.5V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質として、オリビン型LiFePOが高い充放電容量を有する電池として注目されてきている。しかし、この材料は、電気抵抗が本質的に大きく、電極としての充填性が悪い為、特性改善が求められている。 Recently, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 3.5 V class, olivine type LiFePO 4 has attracted attention as a battery having a high charge / discharge capacity. However, since this material has essentially high electrical resistance and poor filling properties as an electrode, improvement in characteristics is required.

即ち、オリビン型LiFePOは強固なりん酸4面体骨格と酸化還元に寄与する鉄イオンを中心にもつ酸素8面体とリチウムイオンから構成される。この結晶構造ため、充放電反応を繰り返すことによっても結晶構造は安定であり、サイクル特性は劣化しない特長がある。しかしリチウムイオンの移動経路が一次元的であることや自由電子が少ないという欠点が存在する。この課題を解決する為に、オリビン型LiFePOの一部にMn,Mg,Zr,Nb等を添加した材料の研究が行われてきたが、未だにこれらの課題を解決した材料は得られておらず、より電気抵抗の小さなものが求められている。 That is, olivine-type LiFePO 4 is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on iron ions contributing to redox, and lithium ions. Due to this crystal structure, the crystal structure is stable even when the charge / discharge reaction is repeated, and the cycle characteristics are not deteriorated. However, there are drawbacks in that the movement path of lithium ions is one-dimensional and there are few free electrons. In order to solve this problem, research has been conducted on materials in which Mn, Mg, Zr, Nb, etc. are added to a part of olivine-type LiFePO 4 , but no material that has solved these problems has yet been obtained. However, there is a demand for a material having a smaller electric resistance.

またLiFePOは、粉末を構成する一次粒子径が小さいほど、高レートでの充放電特性がよい特徴があるので、優れた特性のオリビン型LiFePO複合酸化物正極を得るにはそれらが密に凝集した二次粒子で、かつカーボンのような低電気抵抗物質でネットワークを形成するように集合状態を制御する必要がある。しかし、カーボン等と複合化された正極はかさ高く、単位体積当たりに充填できる実質的なリチウムイオン密度が低くなるといった欠点がある。 In addition, LiFePO 4 has a characteristic that the smaller the primary particle size constituting the powder, the better the charge / discharge characteristics at a high rate. Therefore, in order to obtain an olivine-type LiFePO 4 composite oxide positive electrode with excellent characteristics, they are densely packed. It is necessary to control the aggregation state so as to form a network with aggregated secondary particles and a low electrical resistance material such as carbon. However, the positive electrode combined with carbon or the like is bulky and has a drawback that a substantial lithium ion density that can be filled per unit volume is lowered.

そこで、単位体積当たりの充放電容量を確保するためには、不純物の少なく電気抵抗の小さなオリビン型LiFePOを得るとともに、小さな結晶子サイズの一次粒子が電気抵抗の小さな導電性補助剤を介して高い密度を持った二次集合体を形成することが必要とされている。 Therefore, in order to ensure the charge / discharge capacity per unit volume, olivine-type LiFePO 4 having a small amount of impurities and a small electric resistance is obtained, and primary particles having a small crystallite size are connected via a conductive auxiliary agent having a small electric resistance. There is a need to form secondary assemblies with high density.

従来、オリビン型化合物粒子粉末を得る方法として、各種原料を溶解した水溶液を噴霧熱分解して得る方法(特許文献1)、鉄粉、リチウム塩リン酸記化合物を有機酸水溶液に溶解し、溶液を乾燥させた後、焼成して得る方法(特許文献2)、原料成分を凝集粒子とした後、焼成する方法(特許文献3)、水熱反応を行って前駆体を得た後、噴霧乾燥して造粒物を得、該造粒物を焼成する方法(特許文献4)等が知られている。   Conventionally, as a method for obtaining olivine-type compound particle powder, a method obtained by spray pyrolysis of an aqueous solution in which various raw materials are dissolved (Patent Document 1), an iron powder, a lithium salt phosphate compound are dissolved in an organic acid aqueous solution, and a solution is obtained. After drying, the method obtained by baking (Patent Document 2), the method of baking after the raw material components are aggregated particles (Patent Document 3), the precursor obtained by hydrothermal reaction, spray drying A method of obtaining a granulated product and firing the granulated product (Patent Document 4) is known.

特開2004−14340号公報JP 2004-14340 A 特開2006−131485号公報JP 2006-131485 A 特開2007−230784号公報JP 2007-230784 A 特開2008−311067号公報JP 2008-311067 A

非水電解質二次電池用の正極活物質として、タップ密度が高いオリビン型化合物粒子粉末を簡便に得る製造方法は、現在、最も要求されているところであるが、未だ確立されていない。   As a positive electrode active material for a non-aqueous electrolyte secondary battery, a production method for easily obtaining an olivine type compound particle powder having a high tap density is currently most demanded, but has not yet been established.

即ち、前記特許文献1〜4記載の技術は、多数の工程を経てオリビン型化合物粒子粉末を製造するものであり、簡便にオリビン型化合物粒子粉末を製造できるとは言い難いものである。また、得られるオリビン型化合物粒子粉末は、高いタップ密度を有するとは言い難く、また、高密度が望まれる電極に対し、塗料化して塗布するための粉末としては適したものとは言い難いものである。   That is, the techniques described in Patent Documents 1 to 4 are for producing olivine-type compound particle powder through a number of steps, and it is difficult to say that olivine-type compound particle powder can be easily produced. Also, the obtained olivine type compound particle powder is unlikely to have a high tap density, and it is difficult to say that it is suitable as a powder for coating and applying to an electrode where high density is desired. It is.

そこで、本発明は、タップ密度が高いオリビン型化合物粒子粉末を簡便に製造することを技術的課題とする。   Then, this invention makes it a technical subject to manufacture easily the olivine type compound particle powder with a high tap density.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、オリビン型化合物粒子粉末の製造方法であって、鉄化合物、リン酸又はリン酸塩、リチウム化合物及び炭素成分を水中に添加・分散して混合スラリーとし、該混合スラリーを用いて造粒乾燥を行って前記原料の混合物からなる平均粒径が50〜250μmの造粒物を得、当該造粒物を不活性ガス雰囲気下、400〜800℃で焼成し、焼成物を粉砕することを特徴とするオリビン型化合物粒子粉末の製造方法である(本発明1)。   That is, the present invention is a method for producing olivine-type compound particle powder, wherein an iron compound, phosphoric acid or phosphate, a lithium compound and a carbon component are added and dispersed in water to form a mixed slurry, and the mixed slurry is used. Granulation drying is performed to obtain a granulated product having an average particle size of 50 to 250 μm composed of a mixture of the raw materials, the granulated product is fired at 400 to 800 ° C. in an inert gas atmosphere, and the fired product is pulverized. This is a method for producing olivine-type compound particle powder (Invention 1).

また、本発明は、本発明1記載のオリビン型化合物粒子粉末の製造方法において、前記造粒乾燥が吹き上げ式で、造粒物が吹き上げる気圧より重くなり造粒物の自重によって落下した造粒物を回収することからなるオリビン型化合物粒子粉末の製造方法である(本発明2)。   Further, the present invention is the method for producing olivine type compound particle powder according to the present invention 1, wherein the granulation drying is a blow-up type, and the granulated product becomes heavier than the pressure at which the granulated product blows up and falls due to the weight of the granulated product. It is a manufacturing method of the olivine type compound particle powder which consists of collect | recovering (invention 2).

また、本発明は、得られるオリビン型化合物粒子粉末のタップ密度が0.7〜3.5g/ccである本発明1又は2記載のオリビン型化合物粒子粉末の製造方法である(本発明3)。   Moreover, this invention is a manufacturing method of the olivine type compound particle powder of this invention 1 or 2 whose tap density of the obtained olivine type compound particle powder is 0.7-3.5 g / cc (this invention 3). .

また、本発明は、本発明1〜3のいずれかに記載の製造方法によって得られたオリビン型化合物粒子粉末を正極活物質またはその一部として用いた非水電解質二次電池である(本発明4)。   Further, the present invention is a nonaqueous electrolyte secondary battery using the olivine type compound particle powder obtained by the production method according to any one of the present inventions 1 to 3 as a positive electrode active material or a part thereof (the present invention). 4).

本発明に係るオリビン型化合物粒子粉末の製造方法は、簡便な方法によって製造できるので、オリビン型化合物粒子粉末の製造方法として好適である。   Since the manufacturing method of the olivine type compound particle powder according to the present invention can be manufactured by a simple method, it is suitable as a manufacturing method of the olivine type compound particle powder.

本発明に係る製造方法によって得られたオリビン型化合物粒子粉末は、タップ密度が高く、二次電池の電極を作製した際に電極密度を高くできるので、非水電解質二次電池用の正極活物質として好適である。   Since the olivine type compound particle powder obtained by the production method according to the present invention has a high tap density and can increase the electrode density when producing an electrode of a secondary battery, a positive electrode active material for a non-aqueous electrolyte secondary battery It is suitable as.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係るオリビン型化合物粒子粉末の製造方法について述べる。   The manufacturing method of the olivine type compound particle powder concerning this invention is described.

本発明に係るオリビン型化合物粒子粉末の製造方法は、鉄化合物、リン酸塩、リチウム化合物及び炭素成分を水中に分散・混合して原料スラリーとし、該原料スラリーを造粒乾燥して平均粒径が50〜250μmの造粒物を作製した後、不活性ガス雰囲気で焼成し、焼成物を粉砕して得ることができる。   The method for producing olivine-type compound particle powder according to the present invention comprises dispersing and mixing an iron compound, a phosphate, a lithium compound and a carbon component in water to form a raw material slurry, and granulating and drying the raw material slurry to obtain an average particle size Can be obtained by producing a granulated product having a particle size of 50 to 250 μm, followed by firing in an inert gas atmosphere and grinding the fired product.

本発明で用いる鉄化合物としては、ゲーサイト、ヘマタイト又はマグネタイトを用いることができる。鉄化合物は平均粒子径が0.05〜0.50μmが好ましい。鉄化合物のBET比表面積は5〜100m/gが好ましい。 As the iron compound used in the present invention, goethite, hematite or magnetite can be used. The iron compound preferably has an average particle size of 0.05 to 0.50 μm. The BET specific surface area of the iron compound is preferably 5 to 100 m 2 / g.

本発明で用いるリン酸塩としては、リン酸(HPO)、五酸化リン等が使用できる。 As the phosphate used in the present invention, phosphoric acid (H 3 PO 4 ), phosphorus pentoxide and the like can be used.

リチウム塩としては、水酸化リチウム(LiOH・HO)、炭酸リチウム等が使用できる。また、リン酸2水素リチウム、リン酸水素アンモニウム等も使用できる。 As the lithium salt, lithium hydroxide (LiOH.H 2 O), lithium carbonate, or the like can be used. Further, lithium dihydrogen phosphate, ammonium hydrogen phosphate and the like can also be used.

本発明で用いる炭素成分としては、焼成した後、導電性を付与できる化合物であり、例えば、デキストリン、PVA、ショ糖、クエン酸、アスコルビン酸、でんぷん、マンナン、トレハロース等などである。   The carbon component used in the present invention is a compound that can impart conductivity after firing, such as dextrin, PVA, sucrose, citric acid, ascorbic acid, starch, mannan, trehalose, and the like.

出発原料の混合割合は、Li/Feのモル比が0.9〜1.1、Fe/Pのモル比が0.9〜1.1が好ましい。炭素成分はFeに対しC/Feのモル比が0.4〜1.0が好ましい。   The mixing ratio of the starting materials is preferably such that the molar ratio of Li / Fe is 0.9 to 1.1 and the molar ratio of Fe / P is 0.9 to 1.1. The carbon component preferably has a C / Fe molar ratio of 0.4 to 1.0 with respect to Fe.

本発明においては、前記各種原料を水中に添加・分散して混合スラリーとする。   In the present invention, the various raw materials are added and dispersed in water to obtain a mixed slurry.

本発明において、前記各種原料を添加した混合スラリーの固形分濃度は5〜30wt%に制御することが好ましい。   In the present invention, the solid content concentration of the mixed slurry to which the various raw materials are added is preferably controlled to 5 to 30 wt%.

本発明においては前記混合スラリーを噴霧乾燥して造粒物を得る。本発明においては、平均粒径が50〜250μmの造粒物が得られる装置・条件を用いればよいが、例えば、商品名 スプリュード(連続スプレー流動造粒乾燥装置、大川原製作所製)を用いることが好ましい。本発明においては、造粒乾燥が吹き上げ式で、造粒物が吹き上げる気圧より重くなり造粒物の自重によって落下した造粒物を回収する装置であることが好ましい。   In the present invention, the mixed slurry is spray-dried to obtain a granulated product. In the present invention, an apparatus and conditions for obtaining a granulated product having an average particle diameter of 50 to 250 μm may be used. For example, a trade name “Sprud” (continuous spray fluidized granulation drying apparatus, manufactured by Okawara Seisakusho) may be used. preferable. In the present invention, the granulation drying is a blow-up type, and it is preferable that the apparatus collects the granulated product that is heavier than the pressure at which the granulated product blows and falls due to its own weight.

造粒乾燥に用いる装置の処理条件は、吹き込み温度:150〜200℃、風速:0.5〜0.8m/sec.程度が好ましい。   The processing conditions of the apparatus used for granulation drying are as follows: blowing temperature: 150 to 200 ° C., wind speed: 0.5 to 0.8 m / sec. The degree is preferred.

造粒物は、平均粒径が50〜250μmとすることが好ましい。   The granulated product preferably has an average particle size of 50 to 250 μm.

造粒物の組成は、仕込み組成とほぼ同様であり、Li/Feのモル比が0.9〜1.1、Fe/Pのモル比が0.9〜1.1が好ましい。炭素成分はFeに対しC/Feのモル比が0.4〜1.0が好ましい。なお、FeとLiとは複合化・化合物となっている必要は無い。   The composition of the granulated product is almost the same as the charged composition, and the molar ratio of Li / Fe is preferably 0.9 to 1.1 and the molar ratio of Fe / P is preferably 0.9 to 1.1. The carbon component preferably has a C / Fe molar ratio of 0.4 to 1.0 with respect to Fe. Note that Fe and Li do not have to be composites or compounds.

得られた造粒物は、不活性ガス雰囲気下で400〜800℃の温度範囲で焼成する。400℃未満の場合には固相反応および鉄イオンの還元反応が十分に進まず、オリビン型(LiFePO)以外の他の結晶相が残存し、800℃を超える場合には生成粒子の一次結晶子サイズが0.5μm以上となるので好ましくない。好ましい焼成温度は400℃〜700℃である。 The obtained granulated material is fired in a temperature range of 400 to 800 ° C. in an inert gas atmosphere. When the temperature is lower than 400 ° C., the solid phase reaction and the reduction reaction of iron ions do not proceed sufficiently, and other crystal phases other than the olivine type (LiFePO 4 ) remain, and when the temperature exceeds 800 ° C., the primary crystal of the generated particles Since the child size is 0.5 μm or more, it is not preferable. A preferable firing temperature is 400 ° C to 700 ° C.

焼成時の雰囲気は非酸化性または還元ガス雰囲気が好ましく、具体的には、窒素、水素等である。焼成時間は2〜20時間が好ましい。   The atmosphere during firing is preferably a non-oxidizing or reducing gas atmosphere, and specifically, nitrogen, hydrogen, or the like. The firing time is preferably 2 to 20 hours.

得られた焼成物は、所望の大きさとなるように粉砕すればよい。粉砕は常法に従って、行えばよい。粉砕に用いる装置としては、分級機能付粉砕装置、気流式微粉砕装置、アトマイザー(高速ハンマーミル)などを用いればよい。   What is necessary is just to grind | pulverize the obtained baked material so that it may become a desired magnitude | size. The pulverization may be performed according to a conventional method. As a device used for pulverization, a pulverizer with a classification function, an airflow type fine pulverizer, an atomizer (high-speed hammer mill) or the like may be used.

次に、本発明に係る製造方法によって得られるオリビン型化合物粒子粉末について述べる。   Next, the olivine type compound particle powder obtained by the production method according to the present invention will be described.

本発明におけるオリビン型化合物粒子粉末の組成は、LiFe1−yPO(0.90<x<1.30、0≦y<0.3、M:Mg、Zr、Mn、Ti、Ce、Cr、Co、Ni)である。
xが前記範囲外の場合には、高い電池容量のLiFePO複合酸化物を得ることができない。より好ましくは0.98≦x≦1.10である。
yが前記範囲外の場合には、初期充放電容量の低下が著しくなる。置換元素Mは、Mg、Zr、Mn、Ti、Ce、Coがより好ましい。より好ましくは0.001<y≦0.25であり、更により好ましくは0.005≦y≦0.20である。
The composition of the olivine type compound particle powder in the present invention is Li x Fe 1-y M y PO 4 (0.90 <x <1.30, 0 ≦ y <0.3, M: Mg, Zr, Mn, Ti , Ce, Cr, Co, Ni).
When x is out of the above range, a LiFePO 4 composite oxide having a high battery capacity cannot be obtained. More preferably, 0.98 ≦ x ≦ 1.10.
When y is outside the above range, the initial charge / discharge capacity is significantly reduced. The substitution element M is more preferably Mg, Zr, Mn, Ti, Ce, or Co. More preferably, 0.001 <y ≦ 0.25, and still more preferably 0.005 ≦ y ≦ 0.20.

本発明におけるオリビン型化合物粒子粉末の二次粒子(造粒物)の平均粒径は1.0〜50μmが好ましい。平均粒径が1.0μm未満の場合には、充填密度の低下や電解液との反応性が増加するため好ましくない。50μmを超える場合には、二次電池の電極用塗膜を形成する上では二次粒径が大きいものであり好ましくない。より好ましい二次粒子の平均粒径は1.2〜20.0μmである。   The average particle diameter of secondary particles (granulated material) of the olivine type compound particle powder in the present invention is preferably 1.0 to 50 μm. When the average particle size is less than 1.0 μm, the filling density is lowered and the reactivity with the electrolytic solution is increased. When the thickness exceeds 50 μm, the secondary particle diameter is large in forming a coating film for an electrode of a secondary battery, which is not preferable. More preferably, the average particle size of the secondary particles is 1.2 to 20.0 μm.

本発明に係るオリビン型化合物粒子粉末の二次粒子の粒子形状は、球状または扁平状であることが好ましい。   The particle shape of the secondary particles of the olivine type compound particle powder according to the present invention is preferably spherical or flat.

本発明に係るオリビン型化合物粒子粉末の炭素含有量は0.2〜10重量%が好ましく、炭素成分は二次粒子の内部及び/又は表面に存在することが好ましい。炭素含有量が0.2重量%未満の場合、電気抵抗率が大きくなる。また、炭素含有量が10重量%を超える場合、充填率が小さくなり、体積当たりの初期充放電容量が小さくなる。より好ましい炭素含有量は0.5〜8重量%である。   The carbon content of the olivine type compound particle powder according to the present invention is preferably 0.2 to 10% by weight, and the carbon component is preferably present inside and / or on the surface of the secondary particle. When the carbon content is less than 0.2% by weight, the electrical resistivity increases. Moreover, when carbon content exceeds 10 weight%, a filling rate becomes small and the initial stage charge / discharge capacity per volume becomes small. A more preferable carbon content is 0.5 to 8% by weight.

本発明に係るオリビン型化合物粒子粉末のBET比表面積は2〜30m/gが好ましい。BET比表面積値が2m/g未満の場合には、充放電レートが低下する。30m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。より好ましくは5〜25m/gである。 The BET specific surface area of the olivine type compound particle powder according to the present invention is preferably 2 to 30 m 2 / g. When the BET specific surface area value is less than 2 m 2 / g, the charge / discharge rate decreases. If it exceeds 30 m 2 / g, the filling density is decreased and the reactivity with the electrolytic solution is increased. More preferably, it is 5-25 m < 2 > / g.

本発明に係るオリビン型化合物粒子粉末のタップ密度は、0.7〜3.5g/ccが好ましい。タップ密度が0.7g/cc未満の場合、体積あたりの電池容量が少なくなる。タップ密度が3.5g/ccを超える場合ものは工業的に製造することが困難である。タップ密度は0.75〜2.0g/ccがより好ましい。   The tap density of the olivine type compound particle powder according to the present invention is preferably 0.7 to 3.5 g / cc. When the tap density is less than 0.7 g / cc, the battery capacity per volume decreases. When the tap density exceeds 3.5 g / cc, it is difficult to manufacture industrially. The tap density is more preferably 0.75 to 2.0 g / cc.

次に、本発明に係るオリビン型化合物粒子粉末からなる正極活物質を用いた正極について述べる。   Next, a positive electrode using a positive electrode active material comprising the olivine type compound particle powder according to the present invention will be described.

本発明に係るオリビン型化合物粒子粉末を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When producing a positive electrode using the olivine type compound particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明におけるオリビン型化合物粒子粉末を用いた正極の電極密度は1.50g/cm以上であることが好ましい。 The electrode density of the positive electrode using the olivine type compound particle powder in the present invention is preferably 1.50 g / cm 3 or more.

本発明に係るオリビン型化合物粒子粉末を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the olivine type compound particle powder according to the present invention includes the positive electrode, the negative electrode, and the electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイト等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係るオリビン型化合物粒子粉末を用いて製造した二次電池は、C/10の充放電レートで、初期放電容量が140〜160mAh/g、5Cの充放電レートで、初期放電容量が70〜110mAh/g程度である。   The secondary battery manufactured using the olivine-type compound particle powder according to the present invention has a charge / discharge rate of C / 10, an initial discharge capacity of 140 to 160 mAh / g, a charge / discharge rate of 5C, and an initial discharge capacity of 70. It is about -110 mAh / g.

<作用>
通常、原料スラリーをスプレードライ法によって、造粒物を作製した場合には、リチウムの組成(Li/Fe)が仕込み組成に対してずれることが知られている。そこで、過剰のリチウムを添加して組成を揃える必要があった。本発明に係るオリビン型化合物粒子粉末の製造方法では、造粒工程の前後におけるリチウムの組成ずれがないため、所望の組成を有する混合スラリーを調製することによって、そのまま目的とする組成のオリビン型化合物粒子粉末を製造することができるので、容易に組成を制御することができる。
また、本発明においては、混合スラリーの調製、造粒物の作製及び造粒物の焼成という少ない工程で製造でき、しかも、一度の焼成によって均一な組成を有し、しかも微細な組織構造とすることができるので、工業的にも優れた製造方法である。
<Action>
Usually, it is known that the composition of lithium (Li / Fe) is deviated from the charged composition when a granulated product is produced from the raw slurry by spray drying. Therefore, it was necessary to add excess lithium to make the composition uniform. In the method for producing olivine-type compound particle powder according to the present invention, since there is no compositional deviation of lithium before and after the granulation step, an olivine-type compound having a desired composition as it is is prepared by preparing a mixed slurry having a desired composition. Since the particle powder can be produced, the composition can be easily controlled.
Further, in the present invention, it can be produced by a small number of steps of preparation of a mixed slurry, preparation of a granulated product and firing of the granulated product, and it has a uniform composition and a fine structure by one firing. Therefore, it is an industrially excellent production method.

本発明の代表的な実施の形態は次の通りである。 A typical embodiment of the present invention is as follows.

造粒物及びオリビン型化合物粒子粉末の平均粒径(D50:体積基準の平均二次粒子径)は、日機装(株)MICROTRAC HRA−9320型 粒度分布計を用いて測定した。   The average particle diameter (D50: volume-based average secondary particle diameter) of the granulated product and olivine type compound particle powder was measured using a Nikkiso Co., Ltd. MICROTRAC HRA-9320 type particle size distribution meter.

鉄化合物粒子粉末の平均粒子径は以下の手順で測定を行った。まず、透過型電子顕微鏡を用いて粒子を観察し、個々の粒子が重ならず、ばらばらに分散している視野において倍率を調整し、写真を撮影した。次に、得られた写真を縦横4倍に拡大した後に、粒子約360個について長軸径及び短軸径を、DIGITIZER(型式:KD 4620、グラフテック株式会社製)を用いて測定し、それぞれ長軸径および短軸径の平均を算出し、その平均長軸径と平均短軸径の平均値を平均粒子径とした。   The average particle diameter of the iron compound particle powder was measured by the following procedure. First, the particles were observed using a transmission electron microscope, and the magnification was adjusted in a visual field in which the individual particles did not overlap and were dispersed, and a photograph was taken. Next, after enlarging the obtained photograph four times in length and width, the major axis diameter and minor axis diameter of about 360 particles were measured using DIGITIZER (model: KD 4620, manufactured by Graphtec Co., Ltd.). The average of the shaft diameter and the minor axis diameter was calculated, and the average value of the average major axis diameter and the average minor axis diameter was defined as the average particle diameter.

比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いてBET1点連続法により求めた比表面積である。   The specific surface area is a specific surface area determined by the BET one-point continuous method using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.

組成分析は発光プラズマ分析装置ICAP−6500[サーモフィッシャーサイエンティフィク社製]を用いて測定した。   The composition analysis was measured using an emission plasma analyzer ICAP-6500 [manufactured by Thermo Fisher Scientific Co.].

炭素量は、炭素・硫黄測定装置 EMIA−520FA [(株)堀場製作所製]を用いて測定した。   The amount of carbon was measured using a carbon / sulfur measuring apparatus EMIA-520FA [manufactured by Horiba, Ltd.].

X線回折は、X線回折装置RINT−2500[(株)リガク製]を用いて、Cu−Kα、50kV,200mAにより行った。   X-ray diffraction was performed with Cu-Kα, 50 kV, 200 mA using an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation].

タップ密度は、タップデンサーKYT−3000[(株)セイシン企業製]を用いて測定した。   The tap density was measured using a tap denser KYT-3000 [manufactured by Seishin Enterprise Co., Ltd.].

電極密度は、下記の電極シート化条件で作製したシートを16mmΦに打ち抜いた重さからアルミ箔の重さを引いた値を、打ち抜いたシートの面積とアルミ箔の厚みを引いたシートの厚さから算出した体積で割って算出した。計算式は下記のとおりである。
電極密度(g/cm)=(打ち抜きシート重量―アルミ箔重量)/(打ち抜きシート面積×(打ち抜きシート厚さーアルミ箔の厚さ))
The electrode density is the thickness of the sheet prepared by subtracting the weight of the aluminum foil from the weight of punching the sheet produced under the following electrode sheet conditions to 16 mmΦ, and subtracting the area of the punched sheet and the thickness of the aluminum foil. Calculated by dividing by the volume calculated from The calculation formula is as follows.
Electrode density (g / cm 3 ) = (Punched sheet weight−Aluminum foil weight) / (Punched sheet area × (Punched sheet thickness−Aluminum foil thickness))

オリビン型化合物粒子粉末を用いてコインセルによる初期充放電特性及び高温保存特性評価を行った。
まず、正極活物質としてオリビン型化合物粒子粉末を90重量%、導電材としてアセチレンブラックを3重量%及びグラファイトKS−16を3重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し150℃にて乾燥した。このシートを16mmφに打ち抜いた後、5t/cmで圧着し、電極厚みを50μmとしたものを正極に用いた。負極は16mmφに打ち抜いた金属リチウムとし、電解液は1mol/lのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いてCR2032型コインセルを作成した。
初期放電容量は、25℃の恒温槽中で、カットオフ電圧が3.0Vから4.3Vの間で、1/10Cの測定条件で初期充放電測定を行い算出した。
The initial charge / discharge characteristics and high-temperature storage characteristics of the coin cell were evaluated using olivine type compound particles.
First, 90% by weight of olivine type compound particle powder as a positive electrode active material, 3% by weight of acetylene black as a conductive material and 3% by weight of graphite KS-16, 4% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder And then applied to an Al metal foil and dried at 150 ° C. This sheet was punched to 16 mmφ, and then pressure-bonded at 5 t / cm 2 to make the electrode thickness 50 μm. A CR2032-type coin cell was prepared by using metallic lithium punched to 16 mmφ as a negative electrode and a solution obtained by mixing EC and DMC in which 1 mol / l LiPF 6 was dissolved in a volume ratio of 1: 2 as an electrolytic solution.
The initial discharge capacity was calculated by performing initial charge / discharge measurement under a measurement condition of 1/10 C in a thermostatic bath at 25 ° C. with a cutoff voltage between 3.0 V and 4.3 V.

[実施例1]
ゲーサイト微粒子(FeOOH:平均粒子径0.1μm、BET比表面積70m/g)、リン酸(HPO)、水酸化リチウム(LiOH・HO)及びデキストリンを水中に分散・混合して原料スラリーとした。このときの組成比は、Li/Feのモル比が1.0、Fe/Pのモル比が1.0であり、炭素成分はFeに対しC/Feのモル比が0.5であった。また、混合スラリーの固形分濃度は14.3wt%であった。
得られた混合スラリーを、商品名 スプリュード(連続スプレー流動造粒乾燥装置、大川原製作所製)に投入し、平均粒径が82μmの造粒物を得た。このときの条件は、吹き込み温度:150〜200℃、風速:0.5〜0.8m/sec.であった。
得られた造粒物の組成は、Li:Feが1:1であり、仕込み組成とほぼ同様であった。また、造粒物についてX線回折に構成相を確認したところ、ゲータイトとリン酸リチウム(LiPO)との混合物であることが確認された。
次に、得られた造粒物を不活性ガス中(窒素ガス)、650℃で2時間焼成した。次いで、分級機能付粉砕装置を用いて粉砕して、オリビン型化合物粒子粉末(LiFePO)を得た。
得られた焼成粉末についてX線回折に構成相を確認したところ、LiFePO単相であった。また、電子顕微鏡観察の結果、その構造は、LiFePOの結晶粒(一次粒子)の凝集体であり、その一次粒子の境界や、凝集体の表面に電気伝導度を付与するCが存在した。
[Example 1]
Disperse and mix goethite fine particles (FeOOH: average particle size 0.1 μm, BET specific surface area 70 m 2 / g), phosphoric acid (H 3 PO 4 ), lithium hydroxide (LiOH · H 2 O) and dextrin in water. The raw material slurry was obtained. At this time, the molar ratio of Li / Fe was 1.0, the molar ratio of Fe / P was 1.0, and the carbon component had a C / Fe molar ratio of 0.5 to Fe. . Moreover, the solid content concentration of the mixed slurry was 14.3 wt%.
The obtained mixed slurry was put into a trade name Sprud (continuous spray fluidized granulation dryer, manufactured by Okawara Seisakusho) to obtain a granulated product having an average particle size of 82 μm. The conditions at this time were as follows: blowing temperature: 150 to 200 ° C., wind speed: 0.5 to 0.8 m / sec. Met.
The composition of the obtained granulated product was Li: Fe 1: 1, which was almost the same as the charged composition. Moreover, when the constituent phase of the granulated product was confirmed by X-ray diffraction, it was confirmed to be a mixture of goethite and lithium phosphate (Li 3 PO 4 ).
Next, the obtained granulated product was fired in an inert gas (nitrogen gas) at 650 ° C. for 2 hours. Subsequently, it was pulverized using a pulverizer with a classification function to obtain olivine type compound particle powder (LiFePO 4 ).
When the constituent phase was confirmed by X-ray diffraction of the obtained fired powder, it was a LiFePO 4 single phase. Further, as a result of observation with an electron microscope, the structure was an aggregate of LiFePO 4 crystal grains (primary particles), and there was C imparting electrical conductivity to the boundaries of the primary particles and the surface of the aggregate.

得られたオリビン型化合物粒子粉末の諸特性を表2に示す。   Table 2 shows various properties of the obtained olivine-type compound particle powder.

実施例2〜4
製造条件を種々変更するとともに、所望の粒径となるように粉砕装置及び粉砕条件を種々変更して、オリビン型化合物粒子粉末を得た。このときの製造条件及び得られたオリビン型化合物粒子粉末の諸特性を表1及び表2に示す。なお、実施例4では焼成後の造粒物について気流式微粉砕装置を用いて粉砕した。
Examples 2-4
While changing manufacturing conditions variously, the grinding | pulverization apparatus and grinding | pulverization conditions were changed variously so that it might become a desired particle size, and the olivine type compound particle powder was obtained. Tables 1 and 2 show the production conditions at this time and various characteristics of the obtained olivine-type compound particle powder. In Example 4, the granulated product after firing was pulverized using an airflow fine pulverizer.

比較例1
固相法によって、オリビン型化合物粒子粉末を製造した。
即ち、ゲーサイト微粒子(FeOOH:平均粒子径0.1μm、BET比表面積70m/g)、水酸化リチウム(LiOH・HO)、リン酸(HPO)およびデキストリンを混合し、混合物を窒素雰囲気下、650℃で2時間焼成してオリビン型化合物粒子粉末を得た。
得られたオリビン型化合物粒子粉末の諸特性を表2に示す。
Comparative Example 1
An olivine type compound particle powder was produced by a solid phase method.
That is, goethite fine particles (FeOOH: average particle size 0.1 μm, BET specific surface area 70 m 2 / g), lithium hydroxide (LiOH · H 2 O), phosphoric acid (H 3 PO 4 ) and dextrin are mixed, and the mixture Was baked at 650 ° C. for 2 hours in a nitrogen atmosphere to obtain olivine-type compound particle powder.
Table 2 shows various properties of the obtained olivine-type compound particle powder.

比較例2
スプレードライ法を用いて、オリビン型化合物粒子粉末を製造した。
即ち、実施例1と同様に原料スラリーを調製し、そのスラリーをスプレードライヤーで乾燥造粒した。ただし、このときの原料スラリーの組成比は、Li/Feのモル比が1.10、Fe/Pのモル比が0.90であり、炭素成分はFeに対しC/Feのモル比が0.5であった。また、混合スラリーの固形分濃度は23.0wt%であった。また、得られた造粒物の平均粒径(D50)は17μmであった。
次に、得られた造粒物を不活性ガス中(窒素ガス)、650℃で2時間焼成して、オリビン型化合物粒子粉末(LiFePO)を得た。
Comparative Example 2
An olivine type compound particle powder was produced using a spray drying method.
That is, a raw material slurry was prepared in the same manner as in Example 1, and the slurry was dried and granulated with a spray dryer. However, the composition ratio of the raw slurry at this time is such that the molar ratio of Li / Fe is 1.10 and the molar ratio of Fe / P is 0.90, and the carbon component has a molar ratio of C / Fe to Fe of 0. .5. Moreover, the solid content concentration of the mixed slurry was 23.0 wt%. Moreover, the average particle diameter (D50) of the obtained granulated product was 17 μm.
Next, the obtained granulated product was fired in an inert gas (nitrogen gas) at 650 ° C. for 2 hours to obtain an olivine type compound particle powder (LiFePO 4 ).

得られたオリビン型化合物粒子粉末の諸特性を表2に示す。   Table 2 shows various properties of the obtained olivine-type compound particle powder.

Figure 2011132095
Figure 2011132095

Figure 2011132095
Figure 2011132095

以上の結果から、本発明に係る製造方法によって得られたオリビン型化合物粒子粉末は、電極密度が高く、また、初期容量が大きいので、非水電解質二次電池用正極活物質として有効であることが確認された。   From the above results, the olivine type compound particle powder obtained by the production method according to the present invention is effective as a positive electrode active material for a non-aqueous electrolyte secondary battery because it has a high electrode density and a large initial capacity. Was confirmed.

本発明に係るオリビン型化合物粒子粉末の製造方法は、タップ密度が高いオリビン型化合物粒子粉末を簡便に製造することができるので、オリビン型化合物粒子粉末の製造方法として好適である。

The method for producing olivine type compound particle powder according to the present invention is suitable as a method for producing olivine type compound particle powder because an olivine type compound particle powder having a high tap density can be easily produced.

Claims (4)

オリビン型化合物粒子粉末の製造方法であって、鉄化合物、リン酸又はリン酸塩、リチウム化合物及び炭素成分を水中に添加・分散して混合スラリーとし、該混合スラリーを用いて造粒乾燥を行って前記原料の混合物からなる平均粒径が50〜250μmの造粒物を得、当該造粒物を不活性ガス雰囲気下、400〜800℃で焼成し、焼成物を粉砕することを特徴とするオリビン型化合物粒子粉末の製造方法。   A method for producing olivine-type compound particle powder, in which an iron compound, phosphoric acid or phosphate, a lithium compound and a carbon component are added and dispersed in water to form a mixed slurry, and granulation drying is performed using the mixed slurry To obtain a granulated product having an average particle size of 50 to 250 μm comprising a mixture of the raw materials, firing the granulated product at 400 to 800 ° C. in an inert gas atmosphere, and grinding the fired product. Manufacturing method of olivine type compound particle powder. 請求項1記載のオリビン型化合物粒子粉末の製造方法において、前記造粒乾燥が吹き上げ式で、造粒物が吹き上げる気圧より重くなり造粒物の自重によって落下した造粒物を回収することからなるオリビン型化合物粒子粉末の製造方法。   In the manufacturing method of the olivine type compound particle powder according to claim 1, the granulation drying is a blow-up type, and the granulated product becomes heavier than the pressure at which the granulated product is blown up, and the granulated product dropped by its own weight is collected. Manufacturing method of olivine type compound particle powder. 得られるオリビン型化合物粒子粉末のタップ密度が0.7〜3.5g/ccである請求項1又は2記載のオリビン型化合物粒子粉末の製造方法。 The method for producing olivine-type compound particle powder according to claim 1 or 2, wherein the tap density of the obtained olivine-type compound particle powder is 0.7 to 3.5 g / cc. 請求項1〜3のいずれかに記載の製造方法によって得られたオリビン型化合物粒子粉末を正極活物質またはその一部として用いた非水電解質二次電池。
The non-aqueous electrolyte secondary battery using the olivine type compound particle powder obtained by the manufacturing method in any one of Claims 1-3 as a positive electrode active material or its part.
JP2009295274A 2009-12-25 2009-12-25 Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery Pending JP2011132095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295274A JP2011132095A (en) 2009-12-25 2009-12-25 Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295274A JP2011132095A (en) 2009-12-25 2009-12-25 Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2011132095A true JP2011132095A (en) 2011-07-07

Family

ID=44345265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295274A Pending JP2011132095A (en) 2009-12-25 2009-12-25 Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2011132095A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251873A (en) * 2010-06-02 2011-12-15 Sharp Corp Method for producing lithium-containing composite oxide
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
JP2013049583A (en) * 2011-08-30 2013-03-14 Nichia Corp Olivine-type lithium transition metal oxide and method for manufacturing the same
JP2013093316A (en) * 2011-10-04 2013-05-16 Semiconductor Energy Lab Co Ltd Manufacturing method of secondary particles and manufacturing method of electrode of power storage device
JP2014118343A (en) * 2012-12-19 2014-06-30 Nichia Chem Ind Ltd Production method of olivine-type lithium transition metal complex oxide
JP2015143189A (en) * 2015-04-23 2015-08-06 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and manufacturing method therefor
US9321648B2 (en) 2011-07-20 2016-04-26 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
JP2016517383A (en) * 2013-03-15 2016-06-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Lithium transition metal phosphate secondary aggregate and process for its production
JP2016517384A (en) * 2013-03-15 2016-06-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Lithium transition metal phosphate secondary aggregate and process for its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251873A (en) * 2010-06-02 2011-12-15 Sharp Corp Method for producing lithium-containing composite oxide
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
US9321648B2 (en) 2011-07-20 2016-04-26 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
JP2013049583A (en) * 2011-08-30 2013-03-14 Nichia Corp Olivine-type lithium transition metal oxide and method for manufacturing the same
JP2013093316A (en) * 2011-10-04 2013-05-16 Semiconductor Energy Lab Co Ltd Manufacturing method of secondary particles and manufacturing method of electrode of power storage device
JP2017045738A (en) * 2011-10-04 2017-03-02 株式会社半導体エネルギー研究所 Manufacturing method of positive electrode
JP2014118343A (en) * 2012-12-19 2014-06-30 Nichia Chem Ind Ltd Production method of olivine-type lithium transition metal complex oxide
JP2016517383A (en) * 2013-03-15 2016-06-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Lithium transition metal phosphate secondary aggregate and process for its production
JP2016517384A (en) * 2013-03-15 2016-06-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Lithium transition metal phosphate secondary aggregate and process for its production
US10707479B2 (en) 2013-03-15 2020-07-07 Johnson Matthey Public Limited Company Lithium transition metal phosphate secondary agglomerates and process for its manufacture
JP2015143189A (en) * 2015-04-23 2015-08-06 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5555978B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5610205B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP5980472B2 (en) Titanium dioxide, method for producing titanium dioxide, lithium ion battery, and electrode for lithium ion battery
JP2009117369A (en) Li-ni compound oxide particle powder for nonaqueous electrolyte secondary battery, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2009266813A (en) Olivine type composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and secondary battery
WO2015199168A1 (en) Positive electrode active substance particle powder for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6231966B2 (en) Electrode material and manufacturing method thereof, electrode, and lithium ion battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5881468B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2010168230A (en) Lithium phosphate powder, slurry containing lithium phosphate, method for producing electrode active material and lithium ion battery
JP6098670B2 (en) Method for producing titanium dioxide
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP6119796B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6389773B2 (en) Method for producing positive electrode material for lithium secondary battery
JP2018098018A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, negative electrode, and battery
JP2008123815A (en) Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2012059570A (en) Cathode active material for lithium secondary battery and method for manufacturing the same
JP6045194B2 (en) Method for producing lithium / manganese composite oxide, lithium / manganese composite oxide obtained by the production method, positive electrode active material for secondary battery containing the same, and lithium ion secondary battery using the same as positive electrode active material