JP5623070B2 - Supported catalyst - Google Patents

Supported catalyst Download PDF

Info

Publication number
JP5623070B2
JP5623070B2 JP2009290000A JP2009290000A JP5623070B2 JP 5623070 B2 JP5623070 B2 JP 5623070B2 JP 2009290000 A JP2009290000 A JP 2009290000A JP 2009290000 A JP2009290000 A JP 2009290000A JP 5623070 B2 JP5623070 B2 JP 5623070B2
Authority
JP
Japan
Prior art keywords
supported catalyst
chemical formula
intermetallic compound
sio
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009290000A
Other languages
Japanese (ja)
Other versions
JP2011131112A (en
Inventor
阿部 英樹
英樹 阿部
亜 許
亜 許
御手洗 容子
容子 御手洗
関戸信彰
信彰 関戸
ゴーウィンダッチャリ サラバナ
ゴーウィンダッチャリ サラバナ
松本 伸一
伸一 松本
平田 裕人
裕人 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toyota Motor Corp
Original Assignee
National Institute for Materials Science
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toyota Motor Corp filed Critical National Institute for Materials Science
Priority to JP2009290000A priority Critical patent/JP5623070B2/en
Publication of JP2011131112A publication Critical patent/JP2011131112A/en
Application granted granted Critical
Publication of JP5623070B2 publication Critical patent/JP5623070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Description

本発明は、酸化物担持体の表面にナノ粒子の形状を持った触媒活性点が担持された担持触媒に関する。   The present invention relates to a supported catalyst in which a catalytically active site having a nanoparticle shape is supported on the surface of an oxide carrier.

この種の担持触媒は、特許文献1、2及び4に示されるように、主に自動車排気ガス清浄化を目的として開発されて来た。従来の担持触媒においては、高比表面積を備えた酸化物担持体に貴金属や希少元素等の貴重元素からなる触媒活性点を分散・担持させることによって、貴重元素の使用量低減が図られて来た。 This type of supported catalyst has been developed mainly for the purpose of purifying automobile exhaust gas, as shown in Patent Documents 1, 2, and 4 . In conventional supported catalysts, the amount of valuable elements used has been reduced by dispersing and supporting catalytic active sites composed of precious metals and rare elements on an oxide carrier having a high specific surface area. It was.

近年の排ガス規制強化に伴い、担持触媒の需要は爆発的に増加している。前記特許文献は、主として触媒活性点の高分散化あるいは酸化物坦持体の高比表面積化によってこの需要に応えようとする技術であるが、その効果には限界があった。これとは別に、触媒活性点として、規則型金属間化合物ナノ粒子または合金ナノ粒子を使用することにより、貴重元素の使用量を抑えながら高い排気ガス清浄化触媒活性を実現しようとする試みも報告されている。しかしながら、触媒活性点として従来開発されてきた規則型金属間化合物または合金ナノ粒子はすべて、取り扱いが容易な水溶液中での還元反応に基づいて合成されており、したがって、標準電極電位(V)が、水素よりも高い還元電位(V>0)を持った金属元素を構成元素に持つ物質系に限定されてきた経緯がある。なお、規則型金属間化合物は燃料電池等の触媒として考慮されることがあった(特許文献3、及び非特許文献1〜3)。 With the recent tightening of exhaust gas regulations, the demand for supported catalysts has increased explosively. The above-mentioned patent document is a technique that attempts to meet this demand mainly by increasing the dispersion of the catalyst active sites or increasing the specific surface area of the oxide support, but its effect is limited. In addition to this, an attempt to achieve high exhaust gas cleaning catalytic activity while suppressing the amount of valuable elements by using regular intermetallic nanoparticles or alloy nanoparticles as catalytic active points is also reported. Has been. However, all the regular intermetallic compounds or alloy nanoparticles that have been conventionally developed as catalytic active sites are synthesized based on a reduction reaction in an aqueous solution that is easy to handle, and therefore the standard electrode potential (V) is There is a history of being limited to a substance system having a metal element having a reduction potential (V> 0) higher than that of hydrogen as a constituent element. In addition, the regular intermetallic compound may be considered as a catalyst for a fuel cell or the like (Patent Document 3 and Non-Patent Documents 1 to 3).

特開2008−49280号公報JP 2008-49280 A 特開2006−312161号公報JP 2006-312161 A 特開2006−501983号公報JP 2006-501983 A 国際公開WO2005/120686International Publication WO2005 / 120686

Chem.Comm. (2001)1080.Chem. Comm. (2001) 1080. J.Catalysis 258 (2008) 306−314.J. et al. Catalysis 258 (2008) 306-314. J.A.C.S 130 (2008) 5452−5458.J. et al. A. C. S130 (2008) 5452-5458.

本発明は、このような実情に鑑み、標準電極電位(V)が、水素よりも低い(V<0)金属元素を有する規則型金属間化合物を排気ガス清浄触媒として有用に用いる手段を提供することを目的とする。   In view of such circumstances, the present invention provides means for effectively using an ordered intermetallic compound having a metal element having a standard electrode potential (V) lower than that of hydrogen (V <0) as an exhaust gas cleaning catalyst. For the purpose.

発明1の担持触媒は、粒子状の酸化物担持体の表面に、当該酸化物担持体と比較して少量のナノ粒子状の触媒活性点が担持された担持触媒であって、前記触媒活性点が、下記化学式1に示す化学組成を有する規則型金属間化合物であることを特徴とする:
αβ …(化学式1)
(α:標準電極電位(V)が<0である金属元素、β:標準電極電位(V)が>0である金属元素。なお、水素(H)の標準電極電位は零とする。x+y=100:モル比、19≦y≦25)
The supported catalyst of the invention 1 is a supported catalyst in which a small amount of nanoparticulate catalytically active sites are supported on the surface of a particulate oxide carrier, compared to the oxide carrier. Is an ordered intermetallic compound having a chemical composition represented by the following chemical formula 1:
α x β y ( Chemical formula 1)
(Α: metal element whose standard electrode potential (V) is <0, β: metal element whose standard electrode potential (V) is> 0. Note that the standard electrode potential of hydrogen (H) is zero. X + y = 100: molar ratio, 19 ≦ y ≦ 25) .

発明2は、発明1の担持触媒において、酸化物担持体がシリカ粒子であることを特徴とする。   Invention 2 is characterized in that, in the supported catalyst of Invention 1, the oxide support is silica particles.

発明3は、発明1又は2の担持触媒において、前記αがPtであって、前記βがTiであることを特徴とする。   Invention 3 is the supported catalyst of Invention 1 or 2, characterized in that α is Pt and β is Ti.

発明4は、発明1から3の担持触媒に用いた規則型金属間化合物の製造方法であって、水素よりも2.0V以上低い還元電位を持つアルカリ金属のラジカル体を還元剤として用いたプリカーサーの同時還元によることを特徴とする。   Invention 4 is a method for producing an ordered intermetallic compound used in the supported catalyst of Inventions 1 to 3, wherein a precursor using an alkali metal radical having a reduction potential lower than hydrogen by 2.0 V or more as a reducing agent is used. It is characterized by the simultaneous reduction of.

発明5は、発明4の製造方法において、前記アルカリ金属のラジカル体が、以下の化学式2に示す組成を有することを特徴とする
NaC10 …(化学式2)。
Invention 5 is the production method of Invention 4, wherein the alkali metal radical has a composition represented by the following chemical formula 2 :
NaC 10 H 8 (chemical formula 2).

本発明は、前記化学式1を満たす化学組成を有する触媒活性点が、排ガス清浄化技術において最も重要な化学反応の一つである一酸化炭素清浄化反応(CO(一酸化炭素)→CO(二酸化炭素)転換反応)に対して高い触媒活性を発現するという新知見に基づく。本発明は、当該知見に基づき、独自のナノ粒子合成・分散・担持技術を駆使して、当該反応に対して高い触媒活性を備えた担持触媒を実現した点に特徴がある。 In the present invention, a carbon monoxide cleaning reaction (CO (carbon monoxide) → CO 2 (CO 2 )) in which a catalytic active point having a chemical composition satisfying the chemical formula 1 is one of the most important chemical reactions in the exhaust gas cleaning technology. Based on the new finding that high catalytic activity for carbon dioxide) conversion reaction). The present invention is characterized in that a supported catalyst having high catalytic activity for the reaction is realized by making full use of the unique nanoparticle synthesis / dispersion / support technology based on the knowledge.

試料AのpXRDデータ。横軸に2theta、縦軸に回折強度をプロットする。PXRD data for Sample A. 2 theta is plotted on the horizontal axis and the diffraction intensity is plotted on the vertical axis. (1):試料Aの透過電子顕微鏡像。挿入図に高倍率像を示す。(2):(1)と同じ領域をAnnular dark field(ADF)モードで観察した像。(1): Transmission electron microscope image of sample A. The inset shows the high magnification image. (2): An image obtained by observing the same area as in (1) in an annular dark field (ADF) mode. (1):低コントラストの球状物質に電子線を絞って得られたエネルギー分散型X線分析(EDS)分析結果。挿入図黄色円で示した部分に電子線を照射した。(2):黒色粒子に電子線を絞って得られたEDS分析結果。挿入図黄色円で示した部分に電子線を絞った。(1): Energy dispersive X-ray analysis (EDS) analysis result obtained by focusing an electron beam on a low contrast spherical material. The part indicated by the yellow circle in the inset was irradiated with an electron beam. (2): EDS analysis result obtained by focusing an electron beam on black particles. The electron beam was focused on the part indicated by the yellow circle in the inset. Pt0.25%/SiO、Pt0.50%/SiO、Pt1.0%/SiOおよびPtTi/SiOのCO清浄化触媒活性を示すグラフ。縦軸にCO→CO転換率をプロットする。 Pt0.25% / SiO 2, a graph showing the Pt0.50% / SiO 2, Pt1.0% / SiO 2 and Pt 3 Ti / SiO 2 of CO clean-up catalyst activity. The vertical axis plots the CO → CO 2 conversion.

本発明は、酸化物担持体の表面に、ナノ粒子の形状を持つ触媒活性点である規則型金属間化合物を担持した担持触媒に関するものである。   The present invention relates to a supported catalyst in which a regular intermetallic compound that is a catalytic active point having a nanoparticle shape is supported on the surface of an oxide carrier.

規則型金属間化合物としては、前記化学式1を満たすものであれば有用であるが、特に、αの金属元素として、Cu,Hg、As、Pt、Auのいずれか、βの金属元素として、Pb,Sn,Ni,Fe,Zn,Al、Ti、Mgのいずれかを用いるのが望ましい。   The regular intermetallic compound is useful as long as it satisfies the above chemical formula 1, but in particular, any of Cu, Hg, As, Pt, and Au as a metal element of α, and Pb as a metal element of β , Sn, Ni, Fe, Zn, Al, Ti, and Mg are preferably used.

また、本実施例では、この規則型金属間化合物を、水素よりも2.0V以上低い還元電位を持つアルカリ金属のラジカル体を還元剤として使用することにより、水素よりも低い還元電位を備えた金属元素(α)を構成元素に持つ規則型金属間化合物を合成した。特に、前記化学式(2)に示すSodium Naphithalideをアルカリ金属ラジカル体として用いたプリカーサーの同時還元により、規則型金属間化合物のナノ粒子を合成した。   In this example, this ordered intermetallic compound was provided with a reduction potential lower than that of hydrogen by using, as a reducing agent, an alkali metal radical having a reduction potential of 2.0 V or more lower than that of hydrogen. A regular intermetallic compound having a metal element (α) as a constituent element was synthesized. In particular, nanoparticles of ordered intermetallic compounds were synthesized by simultaneous reduction of a precursor using sodium naphthalide represented by the chemical formula (2) as an alkali metal radical.

本発明は、強力な還元剤の使用により、遷移金属元素と貴金属元素それぞれのプリカーサーを同時に還元することを可能にする。そのため、貴金属元素と遷移金属元素の原子割合が特定の数値である規則型金属間化合物を還元析出法で製造しようとする際、狙った組成のナノ粒子を析出させることができる。規則型金属間化合物ナノ粒子は、酸化物担持体表面上に高い分散度を保ちながら析出されるため、ナノ粒子同士の凝集および粒径の粗大化を抑制することができる。   The present invention makes it possible to simultaneously reduce the precursors of the transition metal element and the noble metal element by using a strong reducing agent. Therefore, when an ordered intermetallic compound in which the atomic ratio between the noble metal element and the transition metal element is a specific numerical value is to be produced by the reduction deposition method, nanoparticles having a targeted composition can be deposited. Since the regular intermetallic compound nanoparticles are deposited on the surface of the oxide carrier while maintaining a high degree of dispersion, aggregation of the nanoparticles and coarsening of the particle diameter can be suppressed.

この酸化物担持体の比表面積は1〜100m−1程度、好ましくは10〜100m−1程度とすることが望ましい。また、この酸化物担持体の表面に保持される触媒活性点の平均粒子径は50nm以下、好ましくは1〜5nmとすることが望ましい。触媒活性点の重量は、前記担持体の重量の0.1〜1%とすることが望ましい。また、PtTi(x+y=100:モル比)のyは、19≦y≦25とすることが望ましい。yが少なすぎた場合、目的反応に対する触媒活性は低下する。yが多すぎた場合にも、触媒活性点の相分離により、触媒活性は低下する。 The specific surface area of the oxide carrier is 1 to 100 m 2 g -1, preferably about desirably about 10 to 100 m 2 g -1. Further, the average particle diameter of the catalytically active sites held on the surface of the oxide carrier is preferably 50 nm or less, preferably 1 to 5 nm. The weight of the catalyst active site is preferably 0.1 to 1% of the weight of the support. Further, it is desirable that y of Pt x Ti y (x + y = 100: molar ratio) is 19 ≦ y ≦ 25. If y is too small, the catalytic activity for the target reaction decreases. Even if y is too much, the catalytic activity is lowered due to phase separation of the catalytic active point.

以下、実施例に基づき、本発明の内容を明らかにする。   Hereinafter, based on an Example, the content of this invention is clarified.

1.合成
合成操作は、すべて常温・常圧の不活性ガス雰囲気下(酸素・水分濃度<5ppm)で行った。
1. Synthesis All synthesis operations were performed in an inert gas atmosphere at normal temperature and pressure (oxygen / water concentration <5 ppm).

Pt(白金)および金属元素Ti(チタン)それぞれを含有する有機金属プリカーサー:Pt(1,5−cyclooctadience)ClおよびTiCl(tetrahydrofuran)を、それぞれ0.042mmolおよび0.17mmol当量秤量し、25mlのtetrahydrofuran(THF)中に溶解した。この溶液中に0.15gのシリカ(SiO)微粒子粉末を加え、30分間攪拌し、薄黄色の懸濁溶液を得た(これをA液と記す。)。 Organometallic precursors containing Pt (platinum) and the metal element Ti (titanium) respectively: Pt (1,5-cyclotadience) Cl 2 and TiCl 4 (tetrahydrofuran) 2 are weighed 0.042 mmol and 0.17 mmol respectively, Dissolved in 25 ml tetrahydrofuran (THF). In this solution, 0.15 g of silica (SiO 2 ) fine particle powder was added and stirred for 30 minutes to obtain a pale yellow suspension solution (this is referred to as “A solution”).

別途、50mlのTHF溶媒中に、1.5mmol当量の金属ナトリウムおよびナフタリンを加え、一晩攪拌し、黒緑色透明の溶液を得た(これは、組成式がNaC10のSodium Naphthalide溶液である。以下B液と記す。)。 Separately, 1.5 mmol equivalents of sodium metal and naphthalene were added to 50 ml of THF solvent and stirred overnight to obtain a black-green transparent solution (this was a sodium Naphthalide solution having a composition formula of NaC 10 H 8. (Hereinafter referred to as “Liquid B”).

(A液)と(B液)を混合したのち一晩攪拌し、プリカーサーの同時還元を行って、黒褐色の懸濁溶液を得た(これをC液と記す。)。   (Liquid A) and (Liquid B) were mixed and then stirred overnight, and the precursor was simultaneously reduced to obtain a black-brown suspension (this is referred to as liquid C).

減圧蒸留によって(C液)からTHFを除去し、沈殿物として黒褐色固体を得た(これをD体と記す。)。   THF was removed from (C liquid) by distillation under reduced pressure, and a black-brown solid was obtained as a precipitate (this is referred to as Form D).

(D体)に30mlのヘキサンを加え、超音波を2分間印加した(超音波洗浄器を使用)。   30 ml of hexane was added to (D-form), and ultrasonic waves were applied for 2 minutes (using an ultrasonic cleaner).

6000回転/分で10分間遠心分離を施し、上澄みと黒色沈殿物(これをE体と記す。)を分離したのち、上澄みを除去した。   Centrifugation was performed at 6000 rpm for 10 minutes to separate the supernatant and the black precipitate (this is referred to as E-form), and then the supernatant was removed.

(E体)に30mlのメタノールを加え、超音波を2分間印加した。6000回転/分で10分間遠心分離を施し、上澄みと黒色沈殿物(これをF体と記す。)を分離したのち、上澄みを除去した。   30 ml of methanol was added to (E body), and ultrasonic waves were applied for 2 minutes. Centrifugation was performed at 6000 rpm for 10 minutes to separate the supernatant and the black precipitate (this is referred to as Form F), and then the supernatant was removed.

上記メタノール添加・超音波印加・遠心分離・上澄み除去の一連の洗浄プロセスを総計4回行い、副反応物を除去した。   The series of washing processes including methanol addition, ultrasonic application, centrifugation, and supernatant removal were performed a total of four times to remove side reactants.

洗浄プロセス終了後、(F体)を真空乾燥した。乾燥に従い、(F体)の色は黒から灰白色へ変化した。   (F body) was vacuum-dried after completion | finish of a washing process. According to drying, the color of (F body) changed from black to grayish white.

乾燥後、(F体)を不活性ガス雰囲気から大気中に取り出した。大気中で安定な灰白色粉末試料(これを試料Aと記す。)を得た。   After drying, (F form) was taken out from the inert gas atmosphere into the air. A grayish white powder sample (this is referred to as Sample A) stable in the air was obtained.

2.試料同定
粉末X線回折(pXRD)、ICP分析、透過電子顕微鏡および透過電子顕微鏡付属のエネルギー分散型X線分析(EDS)によって、試料Aの同定を行った。
2. Sample Identification Sample A was identified by powder X-ray diffraction (pXRD), ICP analysis, transmission electron microscope and energy dispersive X-ray analysis (EDS) attached to the transmission electron microscope.

(2.1)pXRD
図1に、試料AのpXRD測定結果(CuKa線を使用)を示す。SiO(111)反射に該当する2q〜21°のピークの他に回折線を認めることはできない。試料Aの主相は、結晶性の低いSiOである。
(2.1) pXRD
FIG. 1 shows the pXRD measurement result of sample A (using CuKa line). In addition to the 2q to 21 ° peak corresponding to SiO 2 (111) reflection, no diffraction lines can be observed. The main phase of sample A is SiO 2 having low crystallinity.

(2.2)ICP分析
0.05gの粉末試料を酸溶解し、500mlに定容後、ICP分析法による化学組成評価を行った。試料Aは、Pt、TiおよびSiを、重量比Pt:Ti:Si=1:1:100で含有することが分かった。pXRDの結果と併せて、試料Aは、0.5重量%のPt、およびTiを含有したSiOであると結論される。
(2.2) ICP analysis A 0.05 g powder sample was acid-dissolved and the volume was adjusted to 500 ml, and then the chemical composition was evaluated by ICP analysis. Sample A was found to contain Pt, Ti and Si in a weight ratio Pt: Ti: Si = 1: 1: 100. Together with the pXRD results, it is concluded that Sample A is SiO 2 containing 0.5 wt% Pt and Ti.

(2.3)透過電子顕微鏡
試料Aをメタノール溶媒に超音波分散して懸濁溶液を得た。懸濁溶液に透過電子顕微鏡用グリッド(コロジオン膜附き銅(Cu)グリッド)を浸潤・乾燥し、透過電子顕微鏡用試料を得た。図2−1に、透過電子顕微鏡像(Bright field像)を示す。コントラストの低い直径10〜100nm程度の球状物質と共に、直径2〜3nmの黒色粒子が観察される。図2−2は、図2−1と同じ視野をAnnular dark field(ADF)モードで観察した画像である。図2−1の黒色粒子は、ADFモードにおいては白く明るい輝点として観察されることから、球状物質の構成元素に比べて重い元素を含有している相であることが分かる。
(2.3) Transmission Electron Microscope Sample A was ultrasonically dispersed in a methanol solvent to obtain a suspension solution. A transmission electron microscope grid (copper (Cu) grid-attached copper (Cu) grid) was infiltrated into the suspension solution and dried to obtain a transmission electron microscope sample. FIG. 2-1 shows a transmission electron microscope image (Bright field image). Black particles having a diameter of 2 to 3 nm are observed together with a spherical substance having a low contrast of about 10 to 100 nm in diameter. FIG. 2-2 is an image obtained by observing the same field of view as in FIG. 2-1 in an annular dark field (ADF) mode. The black particles in FIG. 2-1 are observed as white bright bright spots in the ADF mode, and thus it is understood that the black particles are phases containing heavier elements than the constituent elements of the spherical substance.

(2.4)EDS分析
図2−1に示された2種類の相:球状物質と黒色粒子それぞれに電子線を収束させ、発生する特性X線のエネルギーと強度を測定することにより、化学組成を評価した(EDS分析)。図3−1および図3−2に、球状物質および黒色粒子それぞれから得られたEDSプロファイルを示す。球状物質のEDSプロファイルには、グリッド由来のCu以外にSi由来の信号のみが認められる。
(2.4) EDS analysis The two types of phases shown in Fig. 2-1. Chemical composition by focusing the electron beam on each of the spherical material and black particles and measuring the energy and intensity of the generated characteristic X-rays. Was evaluated (EDS analysis). FIGS. 3A and 3B show EDS profiles obtained from the spherical material and the black particles, respectively. In the EDS profile of the spherical material, only signals derived from Si are recognized in addition to Cu derived from the grid.

球状物質は、EDS分析結果、pXRDおよびICP分析の結果を総合して、球状のSiO粒子であると結論できる。一方、黒色粒子のEDSプロファイルには、Cu、Si以外に、PtおよびTiの信号が認められる。PtおよびTiの信号強度からそれぞれの元素の存在比率を計算した結果、黒色粒子はPt:Ti=3:1(モル比)を備えた金属間化合物相:PtTiであることが分かった。 It can be concluded that the spherical substance is a spherical SiO 2 particle by combining the results of EDS analysis, pXRD and ICP analysis. On the other hand, in the EDS profile of black particles, signals of Pt and Ti are recognized in addition to Cu and Si. As a result of calculating the abundance ratio of each element from the signal intensities of Pt and Ti, it was found that the black particles had an intermetallic compound phase with Pt: Ti = 3: 1 (molar ratio): Pt 3 Ti.

以上の同定結果から、試料Aは、粒子径2〜3nmのPtTiナノ粒子が粒子径10〜100nmの球状SiO担持体表面に分散・担持された担持触媒(以降、PtTi/SiOと呼ぶ)であるものと結論される。 From the above identification results, Sample A is a supported catalyst in which Pt 3 Ti nanoparticles having a particle diameter of 2 to 3 nm are dispersed and supported on the surface of a spherical SiO 2 support having a particle diameter of 10 to 100 nm (hereinafter referred to as Pt 3 Ti / SiO 2 ).

3.CO清浄化触媒活性評価
CO清浄化反応に対するPtTi/SiOの触媒活性を測定した。垂直に配置した長さ400mm、内径φ8mmの石英反応管中央部に、10mmほどの厚みに石英綿を詰めた。石英反応管上部開口部から総量50mgの試料を導入し、石英綿の上面に均一に敷き詰めた。別の石英綿を、石英反応管上部開口部から、試料に接触するまで挿入した。これにより、試料は、厚み約10mmの石英綿で上下から挟み込まれる形になった。石英反応管を管状電気炉炉心に挿入した。石英反応管下部開口部から熱電対を挿入、熱電対先端を試料直下の石英綿に接触させ、試料の温度をモニターした。石英反応管下部開口部をCO・O(酸素)・He(ヘリウム)混合ガスラインに接続した。石英反応管上部開口部をガスクロマトグラフィのガスインレットポートに接続した。
3. Evaluation of CO cleaning catalyst activity The catalytic activity of Pt 3 Ti / SiO 2 for the CO cleaning reaction was measured. Quartz cotton was packed in a thickness of about 10 mm in a central part of a quartz reaction tube having a length of 400 mm and an inner diameter of 8 mm arranged vertically. A sample having a total amount of 50 mg was introduced from the upper opening of the quartz reaction tube, and was uniformly spread on the upper surface of quartz cotton. Another quartz cotton was inserted from the top opening of the quartz reaction tube until it contacted the sample. As a result, the sample was sandwiched from above and below by quartz cotton having a thickness of about 10 mm. A quartz reaction tube was inserted into the tubular electric furnace core. A thermocouple was inserted from the lower opening of the quartz reaction tube, and the tip of the thermocouple was brought into contact with quartz cotton directly under the sample, and the temperature of the sample was monitored. The lower opening of the quartz reaction tube was connected to a CO / O 2 (oxygen) / He (helium) mixed gas line. The upper opening of the quartz reaction tube was connected to the gas inlet port of gas chromatography.

石英反応管に、CO・O・He混合ガス(体積比2:1:97)を、1気圧下、毎分100mlで流した。インレットガスとして石英反応管下部開口部から導入された混合ガスは、試料部を通過した後、アウトレットガスとして上部開口部から排出され、ガスクロマトグラフィのガスインレットポートに達する。混合ガスを流しながら、管状電気炉に通電し、常温から340℃まで試料温度を上昇させた。25℃ごとに温度上昇を止め、定常温度とした。それぞれの定常温度で、ガスクロマトグラフィによるアウトレットガスの組成分析を行った。 A CO / O 2 / He mixed gas (volume ratio 2: 1: 97) was allowed to flow through the quartz reaction tube at a rate of 100 ml per minute at 1 atmosphere. The mixed gas introduced from the lower opening of the quartz reaction tube as the inlet gas passes through the sample portion, and is then discharged from the upper opening as the outlet gas and reaches the gas inlet port of the gas chromatography. While flowing the mixed gas, the tubular electric furnace was energized to raise the sample temperature from room temperature to 340 ° C. The temperature rise was stopped every 25 ° C. to obtain a steady temperature. The composition analysis of the outlet gas was performed by gas chromatography at each steady temperature.

比較のため、PtTi/SiOと同じ球状SiO粒子表面に、PtTiナノ粒子と同じ粒子径を持った純Ptナノ粒子を、SiOに対して0.25、0.5、1.0重量%で分散・担持させた3種類の標準試料(以降それぞれ、Pt0.25%/SiO、Pt0.50%/SiO、Pt1.0%/SiOと呼ぶ)を用いて、同じ測定を行った。 For comparison, the same spherical SiO 2 particle surface and Pt 3 Ti / SiO 2, the pure Pt nanoparticles having the same particle diameter as Pt 3 Ti nanoparticles, relative to SiO 2 0.25, 0.5, Using three types of standard samples dispersed and supported at 1.0% by weight (hereinafter referred to as Pt 0.25% / SiO 2 , Pt 0.50% / SiO 2 , Pt 1.0% / SiO 2 ), The same measurement was performed.

測定結果を表1と図4に示す。   The measurement results are shown in Table 1 and FIG.

図4は、アウトレットガス中のCOとインレットガス中のCOの体積比(転換率:conversionrate)を、温度の関数としてプロットしたものである。 FIG. 4 is a plot of the volume ratio of CO 2 in the outlet gas to CO in the inlet gas (conversion rate) as a function of temperature.

Pt0.25%/SiOの場合、転換率は常温から225℃まで0%である。試料温度を上げると、転換率は250℃近傍で有限の値となった後に増加し、300℃で約70%に達する。 In the case of Pt 0.25% / SiO 2 , the conversion rate is 0% from normal temperature to 225 ° C. When the sample temperature is raised, the conversion rate increases after reaching a finite value near 250 ° C., and reaches about 70% at 300 ° C.

Pt0.50%/SiOの場合、転換率は常温から200℃まで0%を保つ。試料温度を上げると、転換率は250℃近傍から増加しはじめ、290℃で約70%に達する。 In the case of Pt 0.50% / SiO 2 , the conversion rate keeps 0% from normal temperature to 200 ° C. When the sample temperature is raised, the conversion rate starts to increase from around 250 ° C. and reaches about 70% at 290 ° C.

250℃で転換率を比較すると、Pt0.25%/SiO、Pt0.50%/SiO、Pt1.0%/SiOそれぞれに対する転換率は、4.3、12、32%と、Ptの含有量に伴って単調に増加する。 When the conversion rate is compared at 250 ° C., the conversion rates for Pt 0.25% / SiO 2 , Pt 0.50% / SiO 2 and Pt 1.0% / SiO 2 are 4.3, 12, 32%, respectively. Monotonically increases with content.

一方PtTi/SiOの場合、125℃においてすでに有意の転換率を示す。転換率は温度上昇とともに増加し、250℃で39%を示したのち、300℃で100%に達する。 On the other hand, in the case of Pt 3 Ti / SiO 2, a significant conversion rate is already exhibited at 125 ° C. The conversion rate increases with increasing temperature, reaching 39% at 250 ° C and then reaching 100% at 300 ° C.

PtTi/SiOは、当量のPtを含有したPt0.50%/SiOと比較して、100℃以上低い温度で触媒活性を発現するだけでなく、250℃で転換率を比較した場合には3倍以上の転換率を示す。またPtTi/SiOは、重量比で2倍のPtを含有するPt1.0%/SiOと同じ温度で比較した場合、常にこれを上回る転換率を示す。 Pt 3 Ti / SiO 2 not only exhibits catalytic activity at a temperature lower by 100 ° C. or more than Pt 0.50% / SiO 2 containing an equivalent amount of Pt, but also when the conversion rate is compared at 250 ° C. Indicates a conversion rate of 3 times or more. Further, Pt 3 Ti / SiO 2 always shows a conversion rate exceeding this when compared at the same temperature as Pt 1.0% / SiO 2 containing Pt twice as much by weight.

本発明の担持触媒は、化石燃料排気ガスの主要毒性成分であるCOに対して高い清浄化触媒活性を発揮することから、以下の3例の産業利用が考えられる。   Since the supported catalyst of the present invention exhibits high cleaning catalytic activity for CO, which is a main toxic component of fossil fuel exhaust gas, the following three examples of industrial use are conceivable.

1. 自動車排気ガス清浄化触媒材料
本発明の担持触媒は、駆動直後のガソリンエンジンから燃料の不完全燃焼に伴って排出されるCOガスの清浄化に有効である。
1. Automotive Exhaust Gas Cleaning Catalyst Material The supported catalyst of the present invention is effective for cleaning CO gas discharged from a gasoline engine immediately after driving due to incomplete combustion of fuel.

2. ガスタービン排出ガス清浄化触媒材料
本発明の担持触媒は、発電所で利用されるガスタービン機関からの排出ガスの清浄化に有効である。
2. Gas turbine exhaust gas cleaning catalyst material The supported catalyst of the present invention is effective for cleaning exhaust gas from a gas turbine engine used in a power plant.

3. 燃料電池燃料中の不純物除去
本発明の担持触媒は、水素燃料駆動型の燃料電池において問題とされる燃料中不純物の酸化除去に有効である。
3. Removal of Impurities in Fuel Cell Fuel The supported catalyst of the present invention is effective for oxidizing and removing impurities in fuel, which is a problem in hydrogen fuel-driven fuel cells.

Claims (6)

粒子状の酸化物担持体の表面に、当該酸化物担持体と比較して少量の粒子状の触媒活性点が担持された排気ガス清浄用担持触媒であって、前記触媒活性点が、下記化学式1に示す化学組成を有する規則型金属間化合物の粒子であることを特徴とする、排気ガス清浄用担持触媒
αβ …(化学式1)
(α:Pt
β:Pb、Sn、Ni、Fe、Zn、Al、及びTiのいずれか、
x+y=100、かつ
19≦y≦25)
On the surface of the particulate oxide carrier, a small amount of grain child like catalyst active sites as compared with the oxide carrier is a carrying exhaust gas cleaning supported catalyst, wherein the catalyst active sites, the following A supported catalyst for cleaning exhaust gas, characterized in that it is particles of a regular intermetallic compound having a chemical composition represented by Chemical Formula 1 :
α x β y ( Chemical formula 1)
(Α: Pt ,
β: any of Pb, Sn, Ni, Fe, Zn, Al, and Ti,
x + y = 100 and 19 ≦ y ≦ 25) .
前記βが、Sn、Fe、Zn、及びTiのいずれかである、請求項1に記載の担持触媒。The supported catalyst according to claim 1, wherein β is any one of Sn, Fe, Zn, and Ti. 化物担持体がシリカ粒子であることを特徴とする、請求項1又は2に記載の担持触媒。 Wherein the oxides carrier is a silica particle, a supported catalyst according to claim 1 or 2. 記αがPtであり、かつ前記βがTiであることを特徴とする、請求項1〜3のいずれか一項に記載の担持触媒。 Wherein the pre-Symbol α is Ri Pt der, and the β is a Ti, supported catalyst according to any one of claims 1 to 3. 粒子状の酸化物担持体の表面に規則型金属間化合物の粒子が担持された担持触媒の製造方法であって、前記規則型金属間化合物が、下記化学式1に示す化学組成を有し、かつ前記規則型金属間化合物の粒子を、水素よりも2.0V以上低い還元電位を持つアルカリ金属のラジカル体を還元剤として用いたプリカーサーの同時還元によって前記粒子状の酸化物担持体表面上に析出させることを特徴とする、担持触媒の製造方法
α β …(化学式1)
(α:標準電極電位(V)が<0である金属元素、β:標準電極電位(V)が>0である金属元素。なお、水素(H)の標準電極電位は零とする。x+y=100:モル比、19≦y≦25)。
A method for producing a supported catalyst in which particles of an ordered intermetallic compound are supported on the surface of a particulate oxide support , wherein the ordered intermetallic compound has a chemical composition represented by the following chemical formula 1; the rule type particles of the intermetallic compound, the particulate oxide carrier surface it by the simultaneous reduction of the precursor was used as the reducing agent to a radical of an alkali metal having a low reduction potential than 2.0V than hydrogen characterized Rukoto precipitate above process for production of a supported catalyst:
α x β y (Chemical formula 1)
(Α: metal element whose standard electrode potential (V) is <0, β: metal element whose standard electrode potential (V) is> 0. Note that the standard electrode potential of hydrogen (H) is zero. X + y = 100: molar ratio, 19 ≦ y ≦ 25).
記アルカリ金属のラジカル体が、以下の化学式2に示す組成を有することを特徴とする、請求項5に記載の製造方法
NaC10 …(化学式2)。
Radical body before Symbol alkali metal, and having a composition shown in the following chemical formula 2, the manufacturing method according to claim 5:
NaC 10 H 8 (chemical formula 2).
JP2009290000A 2009-12-22 2009-12-22 Supported catalyst Expired - Fee Related JP5623070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290000A JP5623070B2 (en) 2009-12-22 2009-12-22 Supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290000A JP5623070B2 (en) 2009-12-22 2009-12-22 Supported catalyst

Publications (2)

Publication Number Publication Date
JP2011131112A JP2011131112A (en) 2011-07-07
JP5623070B2 true JP5623070B2 (en) 2014-11-12

Family

ID=44344438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290000A Expired - Fee Related JP5623070B2 (en) 2009-12-22 2009-12-22 Supported catalyst

Country Status (1)

Country Link
JP (1) JP5623070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047942B2 (en) 2006-07-06 2011-11-01 Kubota Corporation Speed change transmission apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199836B2 (en) * 2014-08-29 2017-09-20 トヨタ自動車株式会社 Exhaust gas purification catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026422A (en) * 1999-05-10 2001-01-30 Nippon Shokubai Co Ltd Production of gold-containing combined body
US7335245B2 (en) * 2004-04-22 2008-02-26 Honda Motor Co., Ltd. Metal and alloy nanoparticles and synthesis methods thereof
JP4490201B2 (en) * 2004-08-04 2010-06-23 Dowaホールディングス株式会社 Fine alloy particle powder having irregular surface and method for producing the same
JP2007123195A (en) * 2005-10-31 2007-05-17 Nissan Motor Co Ltd Method of manufacturing catalyst
JP2008273807A (en) * 2007-05-02 2008-11-13 Shinshu Univ Method for generating temperature controlled reaction field by heat generating material having high absorption of microwave and method for synthesizing functional nanoparticle and nano-carbon material
JP5187835B2 (en) * 2008-03-19 2013-04-24 独立行政法人物質・材料研究機構 catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047942B2 (en) 2006-07-06 2011-11-01 Kubota Corporation Speed change transmission apparatus

Also Published As

Publication number Publication date
JP2011131112A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
Ma et al. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction
Rao et al. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation
Velazquez-Hernandez et al. Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials
EP2749352B1 (en) Exhaust gas purification catalyst, and method for producing same
Faticanti et al. Pd supported on tetragonal zirconia: Electrosynthesis, characterization and catalytic activity toward CO oxidation and CH4 combustion
JP5794294B2 (en) Metal particles, exhaust gas purifying catalyst containing the same, and method for producing them
TW201100170A (en) Layered catalyst and method of making
Wang et al. Au–Cu–Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity
Lafaye et al. Synthesis and microscopic characterization of dendrimer-derived Ru/Al 2 O 3 catalysts
WO2018159644A1 (en) Pd-Ru SOLID SOLUTION NANOPARTICLES, PRODUCTION METHOD AND CATALYST THEREFOR, METHOD FOR CONTROLLING CRYSTAL STRUCTURE OF Pt-Ru SOLID SOLUTION NANOPARTICLES, Au-Ru SOLID SOLUTION NANOPARTICLES, AND METHOD FOR MANUFACTURING SAME
JP7028393B2 (en) An co-catalyst for an oxygen-generating photocatalyst, an oxygen-generating photocatalyst carrying the co-catalyst, and a complex and a method for producing the complex.
CN107442117B (en) A kind of exhaust gas catalytic conversion
JP5623070B2 (en) Supported catalyst
CN101380575B (en) High stability nano gold catalyst for CO normal temperature oxidation and preparation method thereof
Lim et al. The shape-controlled synthesis of gallium–palladium (GaPd 2) nanomaterials as high-performance electrocatalysts for the hydrogen evolution reaction
US8129304B2 (en) Intermetallic compound Ni3Al catalyst for reforming methanol and methanol reforming method using same
EP3730212A1 (en) Precious metal and precious metal alloy nanoparticles having a bimodal size distribution
JP4298425B2 (en) Carbon monoxide oxidation catalyst and method for producing the catalyst
CN109851473A (en) A kind of method that the efficient hydrogenolysis of glycerite prepares 1,3- propylene glycol
KR20170088145A (en) Method of preparing non-platinum catalyst for fuel cell
JP6553804B2 (en) Heterogeneous catalyst for acrylic acid production and method for producing acrylic acid using the same
RU2446009C1 (en) Method of preparing platinum-ruthenium electrocatalysts
Li et al. Facile preparation and highly efficient photocatalytic hydrogen evolution of novel Cu x Ni y nanoalloy/graphene nanohybrids
Azeredo et al. Co–Ru nanoalloy catalysts for the acceptorless dehydrogenation of alcohols
Keshavarz et al. Effect of HCl on the structure and catalytic activity of Pt/Al2O3 nanocatalyst prepared in microemulsion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees