JP5604843B2 - High-density carbon nanotube aggregate and method for producing the same - Google Patents

High-density carbon nanotube aggregate and method for producing the same Download PDF

Info

Publication number
JP5604843B2
JP5604843B2 JP2009228520A JP2009228520A JP5604843B2 JP 5604843 B2 JP5604843 B2 JP 5604843B2 JP 2009228520 A JP2009228520 A JP 2009228520A JP 2009228520 A JP2009228520 A JP 2009228520A JP 5604843 B2 JP5604843 B2 JP 5604843B2
Authority
JP
Japan
Prior art keywords
sheet
density
cnt
aggregation
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009228520A
Other languages
Japanese (ja)
Other versions
JP2010105909A (en
Inventor
健治 町田
俊造 末松
賢次 玉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009228520A priority Critical patent/JP5604843B2/en
Publication of JP2010105909A publication Critical patent/JP2010105909A/en
Application granted granted Critical
Publication of JP5604843B2 publication Critical patent/JP5604843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、高密度カーボンナノチューブ集合体及びその製造方法に関するものである。   The present invention relates to a high-density carbon nanotube aggregate and a method for producing the same.

従来から、カーボンナノチューブ(以下、CNTと呼ぶ)を溶媒に撹拌、分散させ、紙等の多孔質体でフィルタリングして、紙状にしたCNT集合体(CNTペーパー)は、燃料電池の電極等、種々の電極材として用いられている。また、透過性が現れるまで超薄膜化したCNT集合体は、ガラス基板上に形成することで透明電極となり、ディスプレイ用途などへの応用が期待されている。   Conventionally, carbon nanotubes (hereinafter referred to as CNT) are stirred and dispersed in a solvent, filtered with a porous material such as paper, and made into a paper-like CNT aggregate (CNT paper) such as an electrode of a fuel cell, It is used as various electrode materials. In addition, a CNT aggregate that has been made ultrathin until transparency appears is formed on a glass substrate to become a transparent electrode, and is expected to be applied to display applications.

例えば、特許文献1には、電気二重層キャパシタ用分極性材料として、CNTを用いた試みが示されている。しかしながら、特許文献1に記載された発明においては、樹脂成分であるバインダーを用いているため、容量特性の良い電極が得られないといった問題点があった。   For example, Patent Document 1 shows an attempt to use CNT as a polarizable material for an electric double layer capacitor. However, the invention described in Patent Document 1 has a problem in that an electrode having good capacity characteristics cannot be obtained because a binder which is a resin component is used.

これを改善するために、特許文献2に示すように、導電性ファイバー、あるいは導電性チューブを、バインダーや導電補助材料などの材料を用いず、電極基板にその長手方向を略平行に付着接合させる提案もなされている。しかし、この特許文献2の発明は、導電性ファイバーあるいは導電性チューブを電気泳動法などの電着法を用いて電極基板に付着接合させるというものであり、電極基板に付着接合させるときに、導電性ファイバーあるいは導電性チューブを有機溶媒に分散させた溶液を超音波で撹拌しながら行うなど、複雑で手間のかかるものであった。   In order to improve this, as shown in Patent Document 2, a conductive fiber or a conductive tube is bonded and joined to the electrode substrate in a substantially parallel manner without using a material such as a binder or a conductive auxiliary material. Proposals have also been made. However, the invention of Patent Document 2 is such that a conductive fiber or a conductive tube is adhered and bonded to an electrode substrate by using an electrodeposition method such as electrophoresis. For example, a solution in which a conductive fiber or a conductive tube is dispersed in an organic solvent is stirred with ultrasonic waves.

そこで、本出願人は上記の問題点を解決すべく、特許文献3に示すような発明を完成させた。すなわち、特許文献3に示した電気二重層キャパシタ用電極は、CNTを抄紙成型したシートが、集電体を構成し表面に凹凸部のある基材と、その凹凸部により一体化されていることを特徴とするものである。   Therefore, the present applicant has completed the invention as shown in Patent Document 3 in order to solve the above problems. That is, in the electrode for electric double layer capacitor shown in Patent Document 3, a sheet obtained by paper-making CNT is integrated with a base material having a concavo-convex portion on the surface and forming a current collector, and the concavo-convex portion. It is characterized by.

また、CNTを抄紙成型したシートが、集電体を構成するエッチング箔の表面に形成された凹凸部によってエッチング箔と一体化されていることを特徴とするものである。また、基板上の触媒粒子を核として成長させたCNTが、エッチング箔の表面に形成された凹凸部によって該エッチング箔と一体化されていることを特徴とするものである。   In addition, a sheet obtained by paper-making CNT is integrated with the etching foil by an uneven portion formed on the surface of the etching foil constituting the current collector. Further, the CNT grown with the catalyst particles on the substrate as a nucleus is integrated with the etching foil by the uneven portion formed on the surface of the etching foil.

特開2005−136020号公報JP 2005-136020 A 特開2006−222175号公報JP 2006-222175 A 特願2008−086002号公報Japanese Patent Application No. 2008-086002

しかしながら、特許文献3に示された電気二重層キャパシタ用電極よりさらに電気的特性に優れた電極を得ることができる電極材料の開発が切望されていた。   However, development of an electrode material capable of obtaining an electrode having further superior electrical characteristics than the electrode for an electric double layer capacitor disclosed in Patent Document 3 has been desired.

本発明は、上述したような従来技術の課題を解決するために提案されたものであって、その目的は、容量特性に優れた電極を得ることができる高密度CNT集合体及びその製造方法を提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and an object of the present invention is to provide a high-density CNT aggregate capable of obtaining an electrode having excellent capacity characteristics and a method for manufacturing the same. It is to provide.

本発明の高密度CNT集合体は、前記CNTが単層CNTである場合、単層カーボンナノチューブがそのミクロ凝集の大きさの標準偏差δが10nm以下となるように、前記単層カーボンナノチューブの配向が偏りなく高分散された状態でシート状に堆積して圧延処理し、圧延処理後の密度が1.1〜1.5g/cm 3 であることを特徴とし、前記CNTが多層CNTである場合、多層カーボンナノチューブがそのミクロ凝集の大きさの標準偏差δが10nm以下となるように、前記多層カーボンナノチューブの配向が偏りなく高分散された状態でシート状に堆積して圧延処理し、圧延処理後の密度が0.5〜1.2g/cm 3 であることを特徴とする。
In the high-density CNT aggregate of the present invention, when the CNTs are single-walled CNTs, the single-walled carbon nanotubes are aligned so that the standard deviation δ of the size of the micro-aggregation of the single-walled carbon nanotubes is 10 nm or less. When the CNTs are multilayer CNTs, characterized in that they are deposited and rolled into a sheet in a highly dispersed state without unevenness, and the density after the rolling process is 1.1 to 1.5 g / cm 3 The multi-walled carbon nanotubes are deposited and rolled into a sheet shape in a highly dispersed state with the orientation of the multi-walled carbon nanotubes being uniformly distributed so that the standard deviation δ of the size of the micro-aggregation is 10 nm or less. The latter density is 0.5 to 1.2 g / cm 3 .

本発明の高密度CNT集合体の製造方法は、CNTを所定量の溶媒中に混ぜて撹拌することにより、そのミクロ凝集の大きさの標準偏差δが10nm以下となるように高分散された分散溶液を得た後、その溶液を100〜280MPaで超高圧処理し、得られた高分散溶液をろ過、乾燥することによりシート化し、このシートをさらに0.01〜100t/cm2のプレス圧力で圧延して、高密度化したCNT集合体を得ることを特徴とする。 The method for producing a high-density CNT aggregate of the present invention is a dispersion in which CNTs are highly dispersed so that the standard deviation δ of the size of micro-aggregation is 10 nm or less by mixing and stirring in a predetermined amount of solvent. After obtaining the solution, the solution was subjected to ultra-high pressure treatment at 100 to 280 MPa, and the resulting highly dispersed solution was filtered and dried to form a sheet. The sheet was further subjected to a press pressure of 0.01 to 100 t / cm 2. Rolling to obtain a densified CNT aggregate.

本発明によれば、容量特性に優れた電極を得ることができる高密度CNT集合体及びその製造方法を提供することができる。特に、ミクロ凝集の大きさの標準偏差δが10nm以下となるように高分散された結果、集合体内のCNTが一方向に配向することなく均質な状態となるため、その電気的、強度的な特性が集合体のどの方向でも均等に現れる。従って、この高密度CNTを電気二重層キャパシタ用分極性材料として使用した場合に、密度、電気伝導度、容量密度などの特性に優れた電気二重層キャパシタを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the high density CNT aggregate | assembly which can obtain the electrode excellent in the capacity | capacitance characteristic, and its manufacturing method can be provided. In particular, as a result of high dispersion so that the standard deviation δ of the size of micro-aggregation is 10 nm or less, the CNTs in the aggregate are in a homogeneous state without being oriented in one direction. Properties appear equally in any direction of the aggregate. Therefore, when this high-density CNT is used as a polarizable material for an electric double layer capacitor, an electric double layer capacitor excellent in characteristics such as density, electric conductivity and capacity density can be obtained.

従来例1の表面形態を示す図面代用写真。The drawing substitute photograph which shows the surface form of the prior art example 1. 実施例2の表面形態を示す図面代用写真。The drawing substitute photograph which shows the surface form of Example 2. FIG. 従来例5の表面形態を示す図面代用写真。The drawing substitute photograph which shows the surface form of the prior art example 5. 実施例6の表面形態を示す図面代用写真。9 is a drawing substitute photograph showing a surface form of Example 6.

以下、本発明を実施するための形態を、各技術的事項ごとに説明する。   Hereinafter, the form for implementing this invention is demonstrated for every technical matter.

(1)高密度CNT集合体の製造方法
所定量のCNT(単層CNT又は多層CNT)を、所定量のイソプロピルアルコール中に混ぜ、ホモジナイザーにより撹拌することにより分散溶液を得る。この溶液を所定の金属チャンバーに導入し、100〜280MPaの超高圧を印加する。この超高圧処理によって得られた高分散溶液を、PTFE濾紙(直径:35mm、平均細孔0.2μm)を用いて減圧ろ過し、抄紙成型によりシート化し、このシートをロールプレス、垂直プレス等によってさらに0.01〜100t/cm2のプレス圧力で圧延して、高密度化したシート(高密度CNT集合体)を得る。
(1) Method for producing high-density CNT aggregate A predetermined amount of CNT (single-wall CNT or multi-wall CNT) is mixed in a predetermined amount of isopropyl alcohol, and stirred with a homogenizer to obtain a dispersion solution. This solution is introduced into a predetermined metal chamber, and an ultrahigh pressure of 100 to 280 MPa is applied. The highly dispersed solution obtained by this ultra-high pressure treatment is filtered under reduced pressure using PTFE filter paper (diameter: 35 mm, average pore size 0.2 μm), and formed into a sheet by papermaking, and this sheet is obtained by a roll press, a vertical press or the like. Furthermore, it rolls with the press pressure of 0.01-100 t / cm < 2 >, and obtains the sheet (high-density CNT aggregate) densified.

ここで、本明細書において、「高密度CNT集合体」とは、CNTが高分散されて堆積した、密度が0.5〜1.5g/cm3であるCNT集合体をいい、「高密度CNTシート」とは、この高密度CNT集合体をシート化したものをいう。 Here, in this specification, the “high density CNT aggregate” means a CNT aggregate having a density of 0.5 to 1.5 g / cm 3 in which CNTs are highly dispersed and deposited. The “CNT sheet” refers to a sheet formed from this high-density CNT aggregate.

(2)CNT
本発明の電極材料に用いられるCNTとしては、単層CNTと多層CNTの双方を使用することができ、これらを混合して使用しても良い。
(2) CNT
As the CNT used in the electrode material of the present invention, both single-walled CNTs and multilayered CNTs can be used, and these may be mixed and used.

多層CNTとしては、アーク放電法、レーザー蒸発法、化学気相成長(CVD)法等により得られたCNTを使用することができる。直径は4〜50nm、好ましくは5〜30nmであり、長さは0.5〜100μm、比表面積が50〜300m2-1、CNTの純度が80〜100%のものを使用することができる。 As the multilayer CNT, CNT obtained by an arc discharge method, a laser evaporation method, a chemical vapor deposition (CVD) method, or the like can be used. The diameter is 4 to 50 nm, preferably 5 to 30 nm, the length is 0.5 to 100 μm, the specific surface area is 50 to 300 m 2 g −1 , and the purity of CNT is 80 to 100%. .

単層CNTとしては、アーク放電法、レーザー蒸発法、化学気相成長(CVD)法等により得られたCNTを使用することができる。直径は0.5〜4nm、好ましくは0.8〜3.5nmであり、長さは0.5〜100μm、比表面積が200〜600m2-1、CNTの純度が80〜100%のものを使用することができる。 As the single-walled CNT, CNT obtained by an arc discharge method, a laser evaporation method, a chemical vapor deposition (CVD) method, or the like can be used. The diameter is 0.5 to 4 nm, preferably 0.8 to 3.5 nm, the length is 0.5 to 100 μm, the specific surface area is 200 to 600 m 2 g −1 , and the purity of CNT is 80 to 100%. Can be used.

(3)密度
多層CNTを用いて上記の方法により得られる高密度CNT集合体の密度は、0.5〜1.2g/cm3であることが好ましく、単層CNTを用いて上記の方法により得られる高密度CNT集合体の密度は、1.1〜1.5g/cm3であることが好ましい。それぞれ、上記の範囲内のものを電極材料として用いると、良好な電気的特性を有する電気二重層キャパシタ用電極等を得ることができる。
(3) Density The density of the high-density CNT aggregate obtained by the above method using multi-walled CNTs is preferably 0.5 to 1.2 g / cm 3 , and by the above method using single-walled CNTs. The density of the obtained high-density CNT aggregate is preferably 1.1 to 1.5 g / cm 3 . When a material within the above range is used as an electrode material, an electrode for an electric double layer capacitor having good electrical characteristics can be obtained.

(4)超高圧処理
超高圧処理は、上記のようにして得られた分散溶液を所定の金属チャンバーに導入し、100〜280MPaの超高圧を印加する。なお、金属チャンバーとしては、スリット式チャンバー、ボール衝突チャンバー等を用いることができる。
(4) Ultra High Pressure Treatment In the ultra high pressure treatment, the dispersion solution obtained as described above is introduced into a predetermined metal chamber, and an ultra high pressure of 100 to 280 MPa is applied. As the metal chamber, a slit chamber, a ball collision chamber, or the like can be used.

上記のようにして超高圧を印加することにより、分散溶液と金属チャンバーの壁面、分散溶液と金属チャンバー内に設置されたスリット、あるいは、分散溶液と金属チャンバー内に導入されたボール等が高エネルギーで衝突し、これによりCNTのマクロ凝集がほぐれ、より高分散する。また、超高圧を印加することにより、溶液同士も高エネルギーで混じり合うため、これによってもCNTのマクロ凝集がほぐれ、より高分散する。   By applying an ultra-high pressure as described above, the dispersion solution and the walls of the metal chamber, the slits installed in the dispersion solution and the metal chamber, or the balls introduced into the dispersion solution and the metal chamber, etc. have high energy. This causes the CNT macro-aggregation to be loosened and more highly dispersed. Further, by applying an ultra-high pressure, the solutions are also mixed with high energy, so that the macro-aggregation of the CNTs is also loosened and the dispersion is further dispersed.

(5)シート化処理
シート化処理は、上記の超高圧処理によって得られた高分散溶液を、PTFE濾紙(直径:35mm、平均細孔0.2μm)を用いて減圧ろ過し、抄紙成型してシートを得た後、このシートを60℃で、3時間減圧乾燥を行う。
(5) Sheeting treatment In the sheeting treatment, the highly dispersed solution obtained by the above ultra-high pressure treatment is filtered under reduced pressure using PTFE filter paper (diameter: 35 mm, average pore size 0.2 μm), and papermaking is then performed. After obtaining the sheet, the sheet is dried under reduced pressure at 60 ° C. for 3 hours.

(6)圧延処理
圧延処理は、2本のロールの間を通して圧延するロールプレスや、上下から平行に圧力を加える垂直プレス等を用いて行い、プレスする圧力は0.01〜100t/cm2が好ましい。その理由は、圧力が弱すぎると高密度化が十分ではなく、高すぎると、CNTシートに欠陥ができるためである。
(6) Rolling treatment The rolling treatment is performed using a roll press that rolls between two rolls, a vertical press that applies pressure in parallel from above and below, and the pressing pressure is 0.01 to 100 t / cm 2. preferable. The reason is that if the pressure is too weak, densification is not sufficient, and if it is too high, the CNT sheet is defective.

(7)マクロ凝集とミクロ凝集
CNTは、チャンバー中か、基板上に、CVD法で、微細なチューブを作製する。一本は1〜2nmであるが、作製時に凝集して、10〜50nmの束になってしまう。これを本願では、ミクロ凝集またはバンドルと呼ぶ。その後、これらのミクロ凝集を集合させると、その大きさは10〜100μmになる。これを本願ではマクロ凝集と名づける。
(7) Macro agglomeration and micro agglomeration CNTs produce fine tubes in a chamber or on a substrate by CVD. Although one is 1-2 nm, it will aggregate at the time of preparation and will become a bundle of 10-50 nm. This is referred to herein as micro-aggregation or bundle. Then, when these microaggregations are assembled, the size becomes 10 to 100 μm. This is termed macroaggregation in the present application.

このマクロ凝集を含ませた溶液を、本願の超高圧処理による分散処理によって、分散させると、大きさが5〜50nmのミクロ凝集にほぐれて分散され、この溶液を紙抄き(抄紙)することによって、5〜50nmのミクロ凝集の集合体(シート)が形成される。この状態で、高分散しているので、密度も高密度化している。さらに、このシートをプレスで圧延するとミクロ凝集内部の空間が減少して、さらに密度は高まる。   When the solution containing the macro agglomeration is dispersed by the dispersion treatment by the ultra high pressure treatment of the present application, the solution is loosened and dispersed by the micro agglomeration having a size of 5 to 50 nm. As a result, an aggregate (sheet) of microaggregation of 5 to 50 nm is formed. In this state, since it is highly dispersed, the density is also increased. Furthermore, when this sheet is rolled with a press, the space inside the micro-aggregation is reduced and the density is further increased.

以下、本発明の実施例を比較例と共に説明する。   Examples of the present invention will be described below together with comparative examples.

(1)多層CNTを用いた場合
(実施例1)
多層CNT(MWCNT:直径10nm、長さ1〜10ミクロン、300m2/g)を約500mg計り取り、2Lのイソプロピルアルコール中に混ぜ、ホモジナイザーにより2分間撹拌し、MWCNT/イソプロピルアルコール分散溶液を作製した。この溶液を所定の金属チャンバーに導入し、200MPaの超高圧を印加し、得られた高分散溶液を、PTFE濾紙(直径:35mm、平均細孔0.2μm)を用いて減圧ろ過し、抄紙成型によりシートを得た。このシートを60℃、減圧乾燥した。このシートを、ロールプレスを用いて、プレス圧力10t/cm2で圧延し、高密度化したシート(高密度CNT集合体)を作製した。
(1) When multilayer CNT is used (Example 1)
About 500 mg of multilayer CNT (MWCNT: diameter 10 nm, length 1 to 10 microns, 300 m 2 / g) was weighed and mixed in 2 L of isopropyl alcohol, and stirred for 2 minutes with a homogenizer to prepare a MWCNT / isopropyl alcohol dispersion solution. . This solution was introduced into a predetermined metal chamber, an ultra-high pressure of 200 MPa was applied, and the resulting highly dispersed solution was filtered under reduced pressure using PTFE filter paper (diameter: 35 mm, average pore 0.2 μm), and papermaking molding To obtain a sheet. This sheet was dried at 60 ° C. under reduced pressure. This sheet was rolled using a roll press at a pressing pressure of 10 t / cm 2 to produce a densified sheet (high-density CNT aggregate).

(実施例2)
超高圧処理の条件を220MPaとした以外は、上記実施例1と同様にして高密度化したシートを作製した。
(実施例3)
超高圧処理の条件を250MPaとした以外は、上記実施例1と同様にして高密度化したシートを作製した。
(実施例4)
超高圧処理の条件を280MPaとした以外は、上記実施例1と同様にして高密度化したシートを作製した。
(Example 2)
A high density sheet was produced in the same manner as in Example 1 except that the ultrahigh pressure treatment was performed at 220 MPa.
(Example 3)
A high density sheet was produced in the same manner as in Example 1 except that the ultrahigh pressure treatment was performed at 250 MPa.
Example 4
A high density sheet was produced in the same manner as in Example 1 except that the ultrahigh pressure treatment was performed at 280 MPa.

(比較例1)
圧延処理を行わなかった以外は、上記実施例1と同様にしてシート(CNT集合体)を作製した。
(比較例2)
圧延処理を行わなかった以外は、上記実施例2と同様にしてシートを作製した。
(比較例3)
圧延処理を行わなかった以外は、上記実施例3と同様にしてシートを作製した。
(比較例4)
圧延処理を行わなかった以外は、上記実施例4と同様にしてシートを作製した。
(Comparative Example 1)
A sheet (CNT aggregate) was produced in the same manner as in Example 1 except that the rolling treatment was not performed.
(Comparative Example 2)
A sheet was produced in the same manner as in Example 2 except that the rolling treatment was not performed.
(Comparative Example 3)
A sheet was produced in the same manner as in Example 3 except that the rolling treatment was not performed.
(Comparative Example 4)
A sheet was produced in the same manner as in Example 4 except that the rolling treatment was not performed.

(従来例1)
上記実施例1と同様に、多層CNT(MWCNT:直径10nm、長さ1〜10ミクロン、300m2/g)を約500mg計り取り、2Lのイソプロピルアルコール中に混ぜ、ホモジナイザーにより2分間撹拌し、MWCNT/イソプロピルアルコール分散溶液を作製した。この分散溶液を、PTFE濾紙(直径:35mm、平均細孔0.2μm)を用いて減圧ろ過し、抄紙成型によりシートを得た。このシートを60℃、減圧乾燥した。このシートを、ロールプレスを用いて、プレス圧力10t/cm2で圧延し、シート(CNT集合体)を作製した。
(Conventional example 1)
In the same manner as in Example 1 above, multilayer CNT (MWCNT: diameter 10 nm, length 1 to 10 microns, 300 m 2 / g) was weighed out, mixed in 2 L of isopropyl alcohol, stirred with a homogenizer for 2 minutes, and MWCNT. / An isopropyl alcohol dispersion solution was prepared. The dispersion was filtered under reduced pressure using PTFE filter paper (diameter: 35 mm, average pore 0.2 μm), and a sheet was obtained by papermaking. This sheet was dried at 60 ° C. under reduced pressure. This sheet was rolled using a roll press at a press pressure of 10 t / cm 2 to produce a sheet (CNT aggregate).

(従来例2)
上記圧延処理の条件を20t/cm2とした以外は、上記従来例1と同様にしてシートを作製した。
(従来例3)
上記圧延処理を行わず、上記従来例1と同様にしてシートを作製した。
(従来例4)
上記圧延処理を行わず、ホモジナイザー処理の時間を10分とした以外は、上記従来例1と同様にしてシートを作製した。
(Conventional example 2)
A sheet was produced in the same manner as in Conventional Example 1 except that the rolling treatment condition was 20 t / cm 2 .
(Conventional example 3)
A sheet was produced in the same manner as in Conventional Example 1 without performing the rolling treatment.
(Conventional example 4)
A sheet was produced in the same manner as in Conventional Example 1 except that the rolling treatment was not performed and the homogenizer treatment time was 10 minutes.

(試験結果)
上記のようにして作製した従来例1及び実施例2の各シートについて、その表面形態をSEM観察により確認したところ、それぞれ図1、図2に示すような結果が得られた。これらのSEM写真から明らかなように、実施例2においては、CNT同士のマクロ凝集がほぐれ、高分散していることが確認された。
(Test results)
About each sheet | seat of the prior art example 1 and Example 2 produced as mentioned above, when the surface form was confirmed by SEM observation, the result as shown in FIG. 1, FIG. 2 was obtained, respectively. As is apparent from these SEM photographs, in Example 2, it was confirmed that macroaggregation of CNTs was loosened and highly dispersed.

すなわち、図1及び図2の電子顕微鏡写真に基づいて、前記各シートのCNTのミクロ凝集の大きさを計測したところ、図1の従来例1のシートではミクロ凝集の大きさが1000〜50000nmであるのに対して、図2の実施例2のシートではミクロ凝集の大きさが10nm程度でほぼ均一になっていることが確認された。また、各シートにおけるミクロ凝集の変化は正規分布に近く、ある大きさに関しての偏りは見られなかった。すなわち、従来例1のシートと、実施例2のシートにおけるミクロ凝集は、それぞれ次のような特徴を有する。   That is, when the size of the micro-aggregation of CNT of each sheet was measured based on the electron micrographs of FIGS. 1 and 2, the micro-aggregation size of the sheet of Conventional Example 1 in FIG. On the other hand, in the sheet of Example 2 in FIG. 2, it was confirmed that the size of micro-aggregation was almost uniform at about 10 nm. Moreover, the change of the micro-aggregation in each sheet was close to a normal distribution, and no bias was observed with respect to a certain size. That is, the micro-aggregation in the sheet of Conventional Example 1 and the sheet of Example 2 has the following characteristics, respectively.

(1) 最小値
従来例1…1000nm
実施例2…10nm
(2) 最大値
従来例1…50000nm
実施例2…10nm
(3) 平均値
従来例1…25000nm
実施例2…10nm
(4) 標準偏差
従来例1…8200nm
実施例2…0nm
(1) Minimum value Conventional example 1… 1000nm
Example 2 ... 10 nm
(2) Maximum value Conventional example 1… 50000nm
Example 2 ... 10 nm
(3) Average value Conventional example 1… 25000nm
Example 2 ... 10 nm
(4) Standard deviation Conventional example 1 ... 8200nm
Example 2 ... 0 nm

このように、実施例2のシートでは、従来例1に比較して、細い径のCNTがシート全体に均一に分散していること(ミクロ凝集状態であること)が確認された。しかも、単に径の標準偏差が小さいだけでなく、電子顕微鏡写真から明らかなように、ミクロ凝集したCNTの方向性に偏りがないことも確認された。   Thus, in the sheet of Example 2, it was confirmed that CNTs having a small diameter were uniformly dispersed throughout the sheet (in a micro-aggregated state) as compared with Conventional Example 1. Moreover, it was confirmed that not only the standard deviation of the diameter was small, but also the directionality of the micro-aggregated CNT was not biased, as is apparent from the electron micrograph.

また、上記の実施例、比較例及び従来例の各シートについて、密度、電気伝導度、容量密度、及び電解液含浸後の密度を測定したところ、表1に示すような結果が得られた。   Further, when the density, electrical conductivity, capacity density, and density after impregnation with the electrolyte were measured for the sheets of the above-described Examples, Comparative Examples, and Conventional Examples, the results shown in Table 1 were obtained.

なお、容量密度は、実施例、比較例及び従来例の各シートにアルミニウム集電体を貼り付けて電極とし、ラミネートセルを作製して充放電試験を行い、容量密度を算出した。電解液には1Mテトラエチルアンモニウムテトラフルオロボレート・プロピレンカーボネート溶液を用いた。   The capacity density was calculated by pasting an aluminum current collector on each sheet of Examples, Comparative Examples, and Conventional Examples as an electrode, preparing a laminate cell, conducting a charge / discharge test, and calculating the capacity density. As the electrolytic solution, a 1M tetraethylammonium tetrafluoroborate / propylene carbonate solution was used.

また、電気伝導度は、実施例、比較例及び従来例の各シートを、1cm×1cmの大きさにカットし、四探針法により測定した。さらに、電解液含浸後の密度は、実施例、比較例及び従来例の各シートを、1Mテトラエチルアンモニウムテトラフルオロボレート・プロピレンカーボネート溶液に真空下(−100kPa)で6時間浸漬し、含浸処理を行った後、該溶液から取り出し、密度を測定した。
In addition, the electrical conductivity was measured by a four-probe method by cutting each sheet of Examples, Comparative Examples, and Conventional Examples into a size of 1 cm × 1 cm. Further, the density after impregnation with the electrolytic solution was determined by immersing each sheet of Examples, Comparative Examples and Conventional Examples in 1M tetraethylammonium tetrafluoroborate / propylene carbonate solution under vacuum (−100 kPa) for 6 hours. Then, it was taken out from the solution and the density was measured.

表1から明らかなように、超高圧処理及び圧延処理の両方を実施した実施例1〜実施例4では、超高圧処理のみを実施した比較例1〜比較例4と比べて、密度、電気伝導度、容量密度のいずれにおいても極めて良好な結果が得られた。これは、圧延処理により、より高密度化が図れたためであると考えられる。このことは、圧延処理を行った従来例1・2の方が、圧延処理を行わなかった従来例3・4より、密度、電気伝導度、容量密度のいずれにおいても良好な結果が得られたことからも明らかである。   As is clear from Table 1, in Examples 1 to 4 in which both the ultra-high pressure treatment and the rolling treatment were performed, the density and electrical conductivity were compared with those in Comparative Examples 1 to 4 in which only the ultra-high pressure treatment was performed. Very good results were obtained both in terms of temperature and capacity density. This is considered to be because higher density was achieved by the rolling process. This indicates that the conventional examples 1 and 2 that were subjected to the rolling treatment had better results than the conventional examples 3 and 4 that were not subjected to the rolling treatment in any of density, electrical conductivity, and capacity density. It is clear from that.

また、実施例1〜実施例4は、圧延処理のみを実施した従来例1・2と比べて、密度、容量密度のいずれにおいても良好な結果が得られた。また、超高圧処理のみを実施した比較例1〜比較例4は、超高圧処理及び圧延処理のいずれも実施しなかった従来例3・4と比べて、密度、電気伝導度、容量密度のいずれにおいても良好な結果が得られた。これは、超高圧処理により、CNTのマクロ凝集がほぐれ、分散性が高まったためであると考えられる。   Moreover, in Examples 1 to 4, good results were obtained in both density and capacity density as compared with Conventional Examples 1 and 2 in which only the rolling treatment was performed. Further, Comparative Examples 1 to 4 in which only the ultra-high pressure treatment was performed were compared with the conventional examples 3 and 4 in which neither the ultra-high pressure treatment nor the rolling treatment was performed. Also good results were obtained. This is presumably because the macro-aggregation of CNT was loosened and the dispersibility was increased by the ultra-high pressure treatment.

また、電解液含浸による密度の低下は、従来例1においては電解液含浸前の75.0%に低下したのに対し、実施例2においては、電解液含浸前の83.3%に低下したに過ぎなかった。このことから、実施例2においては、電解液含浸後も高密度が維持され、高い容量密度が得られることが分かった。   Further, the decrease in density due to the electrolyte impregnation decreased to 75.0% before impregnation with the electrolyte in Conventional Example 1, whereas it decreased to 83.3% before impregnation with the electrolyte in Example 2. It was only. From this, it was found that in Example 2, the high density was maintained even after impregnation with the electrolytic solution, and a high capacity density was obtained.

(2)単層CNTを用いた場合
(実施例5)
単層CNT(SWCNT:直径1nm、長さ1〜10ミクロン、600m2/g)を約100mg計り取り、2Lのイソプロピルアルコール中に混ぜ、ホモジナイザーにより2分間撹拌し、SWCNT/イソプロピルアルコール分散溶液を作製した。この溶液を所定の金属チャンバーに導入し、200MPaの超高圧を印加し、得られた高分散溶液を、PTFE濾紙(直径:35mm、平均細孔0.2μm)を用いて減圧ろ過し、抄紙成型によりシートを得た。このシートを60℃、減圧乾燥した。このシートを、ロールプレスを用い、プレス圧力を10t/cm2として圧延し、高密度化したシート(高密度CNT集合体)を作製した。
(2) When single-walled CNT is used (Example 5)
Weigh about 100 mg of single-walled CNT (SWCNT: 1 nm in diameter, 1 to 10 microns in length, 600 m 2 / g), mix in 2 L of isopropyl alcohol, and stir for 2 minutes with a homogenizer to make a SWCNT / isopropyl alcohol dispersion. did. This solution was introduced into a predetermined metal chamber, an ultra-high pressure of 200 MPa was applied, and the resulting highly dispersed solution was filtered under reduced pressure using PTFE filter paper (diameter: 35 mm, average pore 0.2 μm), and papermaking molding To obtain a sheet. This sheet was dried at 60 ° C. under reduced pressure. This sheet was rolled using a roll press at a pressing pressure of 10 t / cm 2 to produce a densified sheet (high-density CNT aggregate).

(実施例6)
超高圧処理の条件を220MPaとした以外は、上記実施例5と同様にして高密度化したシートを作製した。
(実施例7)
超高圧処理の条件を250MPaとした以外は、上記実施例5と同様にして高密度化したシートを作製した。
(実施例8)
超高圧処理の条件を280MPaとした以外は、上記実施例5と同様にして高密度化したシートを作製した。
(Example 6)
A high density sheet was produced in the same manner as in Example 5 except that the ultrahigh pressure treatment was performed at 220 MPa.
(Example 7)
A high-density sheet was produced in the same manner as in Example 5 except that the ultrahigh pressure treatment was performed at 250 MPa.
(Example 8)
A high-density sheet was produced in the same manner as in Example 5 except that the ultra-high pressure treatment was performed at 280 MPa.

(比較例5)
圧延処理を行わなかった以外は、上記実施例5と同様にしてシート(CNT集合体)を作製した。
(比較例6)
圧延処理を行わなかった以外は、上記実施例6と同様にしてシートを作製した。
(比較例7)
圧延処理を行わなかった以外は、上記実施例7と同様にしてシートを作製した。
(比較例8)
圧延処理を行わなかった以外は、上記実施例8と同様にしてシートを作製した。
(Comparative Example 5)
A sheet (CNT aggregate) was produced in the same manner as in Example 5 except that the rolling treatment was not performed.
(Comparative Example 6)
A sheet was produced in the same manner as in Example 6 except that the rolling treatment was not performed.
(Comparative Example 7)
A sheet was produced in the same manner as in Example 7 except that the rolling treatment was not performed.
(Comparative Example 8)
A sheet was produced in the same manner as in Example 8 except that the rolling treatment was not performed.

(従来例5)
上記実施例5と同様に、単層CNT(SWCNT:直径1nm、長さ1〜10ミクロン、600m2/g)を約100mg計り取り、2Lのイソプロピルアルコール中に混ぜ、ホモジナイザーにより2分間撹拌し、SWCNT/イソプロピルアルコール分散溶液を作製した。この分散溶液を、PTFE濾紙(直径:35mm、平均細孔0.2μm)を用いて減圧ろ過し、抄紙成型によりシートを得た。このシートを60℃、減圧乾燥した。このシートを、ロールプレスを用いて、プレス圧力10t/cm2で圧延し、シート(CNT集合体)を作製した。
(Conventional example 5)
In the same manner as in Example 5, about 100 mg of single-walled CNT (SWCNT: diameter 1 nm, length 1 to 10 microns, 600 m 2 / g) was weighed and mixed in 2 L of isopropyl alcohol, and stirred for 2 minutes with a homogenizer. A SWCNT / isopropyl alcohol dispersion solution was prepared. The dispersion was filtered under reduced pressure using PTFE filter paper (diameter: 35 mm, average pore 0.2 μm), and a sheet was obtained by papermaking. This sheet was dried at 60 ° C. under reduced pressure. This sheet was rolled using a roll press at a press pressure of 10 t / cm 2 to produce a sheet (CNT aggregate).

(従来例6)
上記圧延処理の条件を20t/cm2とした以外は、上記従来例5と同様にしてシートを作製した。
(従来例7)
上記圧延処理を行わず、上記従来例5と同様にしてシートを作製した。
(従来例8)
上記圧延処理を行わず、ホモジナイザー処理の時間を10分とした以外は、上記従来例5と同様にしてシートを作製した。
(Conventional example 6)
A sheet was produced in the same manner as in Conventional Example 5 except that the rolling treatment condition was 20 t / cm 2 .
(Conventional example 7)
A sheet was produced in the same manner as in Conventional Example 5 without performing the rolling treatment.
(Conventional example 8)
A sheet was produced in the same manner as in Conventional Example 5 except that the rolling treatment was not performed and the homogenizer treatment time was 10 minutes.

(試験結果)
上記のようにして作製した従来例5及び実施例6の各シートについて、その表面形態をSEM観察により確認したところ、それぞれ図3、図4に示すような結果が得られた。これらのSEM写真から明らかなように、実施例6においては、CNT同士のマクロ凝集がほぐれ、高分散していることが確認された。
(Test results)
When the surface morphology of each sheet of Conventional Example 5 and Example 6 produced as described above was confirmed by SEM observation, the results shown in FIGS. 3 and 4 were obtained. As is apparent from these SEM photographs, in Example 6, it was confirmed that macroaggregation of CNTs was loosened and highly dispersed.

すなわち、図3及び図4の電子顕微鏡写真に基づいて、前記各シートのCNTのミクロ凝集の大きさを計測したところ、図3の従来例5のシートではミクロ凝集の大きさが1000〜100000nmであるのに対して、図4の実施例6のシートではミクロ凝集の大きさが4〜65nm程度でほぼ均一になっていることが確認された。また、各シートにおけるミクロ凝集の大きさの分布の変化は正規分布に近く、ある大きさに関しての偏りは見られなかった。すなわち、図3の従来例5のシートと、実施例6のシートにおけるミクロ凝集の大きさは、それぞれ次のような特徴を有する。   That is, based on the electron micrographs of FIGS. 3 and 4, the size of the micro-aggregation of the CNTs of each sheet was measured, and the size of the micro-aggregation in the conventional example 5 sheet of FIG. On the other hand, in the sheet of Example 6 in FIG. 4, it was confirmed that the size of the micro-aggregation was approximately uniform at about 4 to 65 nm. Further, the change in the distribution of the size of the micro-aggregation in each sheet was close to the normal distribution, and no bias was observed with respect to a certain size. That is, the size of micro-aggregation in the sheet of Conventional Example 5 and the sheet of Example 6 in FIG. 3 has the following characteristics, respectively.

(1) 最小値
従来例5…1000nm
実施例6…4nm
(2) 最大値
従来例5…100000nm
実施例…65nm
(3) 平均値
従来例5…50000nm
実施例…35nm
(4) 標準偏差
従来例5…17000nm
実施例…10nm
(1) Minimum value Conventional example 5 ... 1000nm
Example 6 4 nm
(2) Maximum value Conventional example 5 ... 100,000 nm
Example 6 65 nm
(3) Average value Conventional example 5… 50,000 nm
Example 6 ... 35 nm
(4) Standard deviation Conventional example 5… 17000nm
Example 6 ... 10 nm

このように、実施例6のシートでは、従来例5に比較して、ミクロ凝集の大きさが小さいCNTがシート全体に均一に分散していることが確認された。しかも、単にミクロ凝集の大きさの標準偏差が小さいだけでなく、電子顕微鏡写真から明らかなように、バンドルされたCNTの方向性に偏りがないことも確認された。   Thus, in the sheet of Example 6, it was confirmed that CNTs having a small size of micro-aggregation were uniformly dispersed throughout the sheet as compared with Conventional Example 5. Moreover, it was confirmed that not only the standard deviation of the size of the micro-aggregation was small, but also the directionality of the bundled CNTs was not biased, as is apparent from the electron micrograph.

なお、前記実施例2の多層CNT(マルチウォールCNT)は径が太いので、ほぐれやすい、分散しやすいために、ミクロ凝集が10nm程度とほぼ均一になるのに対して、実施例6の単層CNT(シングルウォールCNT)は径が細く凝集しやすいことから、ミクロ凝集の大きさにばらつきがあると思われる。   The multi-walled CNT (multiwall CNT) of Example 2 has a large diameter, so that it is easy to loosen and disperse, so that the micro-aggregation becomes almost uniform at about 10 nm, whereas the single-layered example of Example 6 Since CNT (single wall CNT) has a small diameter and tends to aggregate, it seems that the size of microaggregation varies.

また、上記の実施例、比較例及び従来例の各シートについて、密度、電気伝導度、容量密度、及び電解液含浸後の密度を測定したところ、表2に示すような結果が得られた。
Further, when the density, electrical conductivity, capacity density, and density after impregnation with the electrolyte were measured for the sheets of the above Examples, Comparative Examples, and Conventional Examples, the results shown in Table 2 were obtained.

表2から明らかなように、超高圧処理及び圧延処理の両方を実施した実施例5〜実施例8では、超高圧処理のみを実施した比較例5〜比較例8と比べて、密度、電気伝導度、容量密度のいずれにおいても極めて良好な結果が得られた。これは、圧延処理により、より高密度化が図れたためであると考えられる。このことは、圧延処理を行った従来例5・6の方が、圧延処理を行わなかった従来例7・8より、密度、電気伝導度、容量密度のいずれにおいても良好な結果が得られたことからも明らかである。   As is clear from Table 2, in Examples 5 to 8 where both the ultra-high pressure treatment and the rolling treatment were performed, the density and electrical conductivity were higher than those in Comparative Examples 5 to 8 where only the ultra-high pressure treatment was performed. Very good results were obtained both in terms of temperature and capacity density. This is considered to be because higher density was achieved by the rolling process. This indicates that the conventional examples 5 and 6 subjected to the rolling treatment gave better results in any of density, electrical conductivity and capacity density than the conventional examples 7 and 8 which did not perform the rolling treatment. It is clear from that.

また、実施例5〜実施例8は、圧延処理のみを実施した従来例5・6と比べて、密度、容量密度のいずれにおいても良好な結果が得られた。また、超高圧処理のみを実施した比較例5〜比較例8は、超高圧処理及び圧延処理のいずれも実施しなかった従来例7・8と比べて、密度、電気伝導度、容量密度のいずれにおいても良好な結果が得られた。これは、超高圧処理により、CNTのマクロ凝集がほぐれ、分散性が高まったためであると考えられる。   Further, in Examples 5 to 8, good results were obtained in both density and capacity density as compared with Conventional Examples 5 and 6 in which only the rolling treatment was performed. Further, Comparative Examples 5 to 8 in which only the ultra-high pressure treatment was performed were compared with the conventional examples 7 and 8 in which neither the ultra-high pressure treatment nor the rolling treatment was performed. Also good results were obtained. This is presumably because the macro-aggregation of CNT was loosened and the dispersibility was increased by the ultra-high pressure treatment.

また、電解液含浸による密度の低下は、従来例5においては電解液含浸前の80%に低下したのに対し、実施例6においては、電解液含浸前の91.7%に低下したに過ぎなかった。このことから、実施例6においては、電解液含浸後も高密度が維持され、高い容量密度が得られることが分かった。   Further, the decrease in density due to the electrolyte impregnation was reduced to 80% before the electrolytic solution impregnation in the conventional example 5, whereas it was only reduced to 91.7% before the electrolytic solution impregnation in the example 6. There wasn't. From this, in Example 6, it turned out that a high density is maintained even after electrolyte solution impregnation, and a high capacity density is obtained.

Claims (3)

単層カーボンナノチューブがそのミクロ凝集の大きさの標準偏差δが10nm以下となるように、前記単層カーボンナノチューブの配向が偏りなく高分散された状態でシート状に堆積して圧延処理し、圧延処理後の密度が1.1〜1.5g/cm3であることを特徴とする高密度カーボンナノチューブ集合体。 The single-walled carbon nanotubes are deposited and rolled in the form of a sheet with the orientation of the single-walled carbon nanotubes being highly dispersed without unevenness so that the standard deviation δ of the size of the micro-aggregation is 10 nm or less. An aggregate of high-density carbon nanotubes, wherein the density after treatment is 1.1 to 1.5 g / cm 3 . 多層カーボンナノチューブがそのミクロ凝集の大きさの標準偏差δが10nm以下となるように、前記多層カーボンナノチューブの配向が偏りなく高分散された状態でシート状に堆積して圧延処理し、圧延処理後の密度が0.5〜1.2g/cm3であることを特徴とする高密度カーボンナノチューブ集合体。 The multi-walled carbon nanotubes are deposited and rolled into a sheet with the orientation of the multi-walled carbon nanotubes being highly dispersed without unevenness so that the standard deviation δ of the size of the micro-aggregation is 10 nm or less. A high density carbon nanotube aggregate characterized by having a density of 0.5 to 1.2 g / cm 3 . 所定量のカーボンナノチューブを所定量のイソプロピルアルコール中に混ぜ、撹拌して得た溶液を100〜280MPaで超高圧処理し、得られたミクロ凝集の大きさの標準偏差δが10nm以下の分散溶液をろ過、乾燥することによりシート化し、このシートをさらに0.01〜100t/cm2のプレス圧力で圧延して、カーボンナノチューブ集合体を得ることを特徴とするカーボンナノチューブ集合体の製造方法。 A solution obtained by mixing a predetermined amount of carbon nanotubes in a predetermined amount of isopropyl alcohol and stirring is subjected to ultrahigh pressure treatment at 100 to 280 MPa, and a dispersion solution having a standard deviation δ of the size of micro-aggregation of 10 nm or less is obtained. A method for producing a carbon nanotube aggregate, which is formed into a sheet by filtration and drying, and further rolled with a press pressure of 0.01 to 100 t / cm 2 to obtain a carbon nanotube aggregate.
JP2009228520A 2008-09-30 2009-09-30 High-density carbon nanotube aggregate and method for producing the same Active JP5604843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228520A JP5604843B2 (en) 2008-09-30 2009-09-30 High-density carbon nanotube aggregate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008255514 2008-09-30
JP2008255514 2008-09-30
JP2009228520A JP5604843B2 (en) 2008-09-30 2009-09-30 High-density carbon nanotube aggregate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010105909A JP2010105909A (en) 2010-05-13
JP5604843B2 true JP5604843B2 (en) 2014-10-15

Family

ID=42295730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228520A Active JP5604843B2 (en) 2008-09-30 2009-09-30 High-density carbon nanotube aggregate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5604843B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303234B2 (en) * 2008-09-30 2013-10-02 日本ケミコン株式会社 High-density carbon nanotube aggregate and method for producing the same
JP5476862B2 (en) * 2009-08-27 2014-04-23 宇部興産株式会社 Fine carbon fiber with high bulk density and method for producing the same
JP6364764B2 (en) * 2013-12-24 2018-08-01 日本ケミコン株式会社 Production method of carbon composite sheet
JP2016072144A (en) * 2014-09-30 2016-05-09 日本ケミコン株式会社 Electrode, electrochemical device and method for producing the electrode
CN107001046B (en) 2014-12-25 2019-05-03 日本瑞翁株式会社 Carbon nano-tube film and its manufacturing method
JP2016190772A (en) * 2015-03-31 2016-11-10 日本ゼオン株式会社 Carbon film, and method for producing the same
WO2016157834A1 (en) 2015-03-31 2016-10-06 日本ゼオン株式会社 Carbon film and method for producing same
WO2016189873A1 (en) 2015-05-27 2016-12-01 日本ゼオン株式会社 Carbon film and method for producing same, as well as fibrous carbon nano structure dispersion and method for producing same
CN105047940B (en) * 2015-06-16 2018-06-08 南昌大学 A kind of preparation method of carbon nano-tube film
WO2016203746A1 (en) * 2015-06-19 2016-12-22 日本ゼオン株式会社 Electroconductive nonwoven fabric and process for producing same
CN106345319B (en) * 2016-08-25 2019-05-17 浙江大学 It is a kind of without support full carbon film of active carbon and its preparation method and application
JP6853550B2 (en) * 2017-03-02 2021-03-31 国立研究開発法人産業技術総合研究所 Carbon nanotube membranes and electronic devices
CN117125695A (en) 2017-09-28 2023-11-28 日本瑞翁株式会社 Method for producing carbon sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226294B1 (en) * 1999-07-21 2011-06-29 Hyperion Catalysis International, Inc. Methods of oxidizing multiwalled carbon nanotubes
JP4866982B2 (en) * 2004-06-30 2012-02-01 ナノフロンティアテクノロジー株式会社 Method for breaking carbon nanotube and carbon nanotube
CN101529542B (en) * 2006-09-12 2012-06-13 佛罗里达大学研究基金公司 Highly accessible, nanotube electrodes for large surface area contact applications
JP5458505B2 (en) * 2007-03-30 2014-04-02 日本ケミコン株式会社 Electrode for electric double layer capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010105909A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5604843B2 (en) High-density carbon nanotube aggregate and method for producing the same
Yang et al. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding
Chen et al. Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes
Lacey et al. Extrusion‐based 3D printing of hierarchically porous advanced battery electrodes
Jyothibasu et al. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application
Jadhav et al. Manganese dioxide/reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor
Wang et al. Polypyrrole composites with carbon materials for supercapacitors
Song et al. Three-dimensional carbon architectures for electrochemical capacitors
Song et al. Triethanolamine functionalized graphene-based composites for high performance supercapacitors
Fan et al. Carbon nanosheets: synthesis and application
Zhang et al. High capacitive performance of flexible and binder-free graphene–polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly
Futaba et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
JP5303235B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
Adusei et al. A scalable nano-engineering method to synthesize 3D-graphene-carbon nanotube hybrid fibers for supercapacitor applications
Wang et al. Intertwined Nanocarbon and Manganese Oxide Hybrid Foam for High‐Energy Supercapacitors
JP5303234B2 (en) High-density carbon nanotube aggregate and method for producing the same
Tian et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor
Thangappan et al. Synthesis, structural and electrochemical properties of Mn-MoO4/graphene nanocomposite electrode material with improved performance for supercapacitor application
KR102088436B1 (en) Reduced graphene oxide/carbon nanotube composite material having a sponge structure and method for manufacturing the same
KR101627016B1 (en) Highly dispersible carbon nano structures and method for preparation thereof, and polymer composite comprising the carbon nano structures
Xu et al. Electrochemical performance enhancement of flexible graphene supercapacitor electrodes by carbon dots modification and NiCo2S4 electrodeposition
Liu et al. Sodium metal-assisted carbonization of pyrrole to prepare N-doped porous carbons for high-rate performance supercapacitors
KR101728720B1 (en) Graphene composite comprising three dimensional carbon nanotube pillars and method of fabricating thereof
KR101744122B1 (en) Manufacturing method of crumpled graphene-carbon nanotube composite, crumpled graphene-carbon nanotube composite manufactured thereby and supercapacitor containing the composite
JP2010064925A (en) Conductive material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5604843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150