JP5602820B2 - Manufacturing method of ZnO sintered body - Google Patents

Manufacturing method of ZnO sintered body Download PDF

Info

Publication number
JP5602820B2
JP5602820B2 JP2012256664A JP2012256664A JP5602820B2 JP 5602820 B2 JP5602820 B2 JP 5602820B2 JP 2012256664 A JP2012256664 A JP 2012256664A JP 2012256664 A JP2012256664 A JP 2012256664A JP 5602820 B2 JP5602820 B2 JP 5602820B2
Authority
JP
Japan
Prior art keywords
zno
powder
sintered body
particle size
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012256664A
Other languages
Japanese (ja)
Other versions
JP2013063907A (en
Inventor
昇 宮田
知之 小倉
紀子 齊藤
真仁 井口
佳孝 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2012256664A priority Critical patent/JP5602820B2/en
Publication of JP2013063907A publication Critical patent/JP2013063907A/en
Application granted granted Critical
Publication of JP5602820B2 publication Critical patent/JP5602820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、太陽電池、タッチパネル等の透明電極に用いられる透明導電膜をスパッタリング法で形成するためのスパッタリングターゲット材料に用いられるZnO焼結体の製造方法に関するものである。   The present invention relates to a method for producing a ZnO sintered body used for a sputtering target material for forming a transparent conductive film used for transparent electrodes such as solar cells and touch panels by a sputtering method.

近年、低コストで高い透明性、導電性および化学的安定性を有するZnO透明導電膜が注目されている。ZnO系の透明導電膜の形成方法としては、緻密で膜質の良い膜が得られやすい、スパッタリング法が最も適していると考えられ、スパッタリングターゲット材料に用いられるZnO焼結体が種々検討されている。   In recent years, a ZnO transparent conductive film having high transparency, conductivity, and chemical stability at low cost has attracted attention. As a method of forming a ZnO-based transparent conductive film, a sputtering method is considered to be most suitable because a dense and good film quality can be easily obtained, and various ZnO sintered bodies used for sputtering target materials have been studied. .

例えば、特許文献1では、1〜9原子%の硼素を含有し、実質的に亜鉛と硼素の複合酸化物からなることを特徴とするZnO系焼結体が開示されている。   For example, Patent Document 1 discloses a ZnO-based sintered body characterized by containing 1 to 9 atomic% of boron and substantially consisting of a composite oxide of zinc and boron.

特許文献1によれば、焼結密度が4.8g/cm以上であって、亜鉛と硼素の複合酸化物の結晶平均粒径が4〜15μmであること、硼素の偏析径が10μm以下であること、焼結体内部に存在する空孔の最大径が5μm以下であることを達成することによって、長期的に異常放電の発生が少ない焼結体を得ることができるとされている。 According to Patent Document 1, the sintered density is 4.8 g / cm 3 or more, the crystal average particle diameter of the composite oxide of zinc and boron is 4 to 15 μm, and the segregation diameter of boron is 10 μm or less. In addition, by achieving that the maximum diameter of the pores existing inside the sintered body is 5 μm or less, it is said that a sintered body with less occurrence of abnormal discharge in the long term can be obtained.

特開平11−158607号公報Japanese Patent Laid-Open No. 11-158607

しかしながら、このような硼素を添加したZnO焼結体は、緻密化し難いという問題があった。またスパッタリングターゲットとして用いたときに得られる膜の抵抗のバラツキが大きくなる問題があった。   However, the ZnO sintered body to which such boron is added has a problem that it is difficult to densify. In addition, there is a problem that variation in resistance of a film obtained when used as a sputtering target becomes large.

本発明は、これらの問題に鑑みてなされたものであり、膜特性の均一性に優れた透明導電膜作製用のZnO焼結体の製造方法を提供するものである。   This invention is made | formed in view of these problems, and provides the manufacturing method of the ZnO sintered compact for transparent conductive film preparation excellent in the uniformity of a film | membrane characteristic.

本発明は、これらの問題を解決するため、以下の(1)〜(3)を提供する。
(1)ZnO粉末とB粉末とを混合、焼成及び粉砕してZn13粉末を得る工程と、平均粒径が0.5〜1μmのZnO粉末と平均粒径が0.2〜0.5μmのZn13粉末とを混合、成形、焼成してZnO焼結体を得る工程と、を含むZnO焼結体の製造方法。
(2)ZnO粉末とB粉末の混合比はmol比で4:6〜7:3であり、ZnO粉末とB粉末とを大気雰囲気中、800〜1000℃にて焼成を行う(1)記載のZnO焼結体の製造方法。
(3)得られたZn13粉末とZnO粉末をBの含有割合がB換算で0.01〜3.0mol%になるように混合する(1)又は(2)記載のZnO焼結体の製造方法。
In order to solve these problems, the present invention provides the following (1) to (3).
(1) A step of obtaining Zn 4 B 6 O 13 powder by mixing, firing and pulverizing ZnO powder and B 2 O 3 powder, and ZnO powder having an average particle size of 0.5 to 1 μm and an average particle size of 0 A step of mixing, forming and firing a Zn 4 B 6 O 13 powder of 2 to 0.5 μm to obtain a ZnO sintered body.
(2) The mixing ratio of ZnO powder and B 2 O 3 powder is 4: 6 to 7: 3 in terms of molar ratio, and the ZnO powder and B 2 O 3 powder are baked at 800 to 1000 ° C. in an air atmosphere. The manufacturing method of the ZnO sintered compact as described in (1) performed.
(3) The obtained Zn 4 B 6 O 13 powder and ZnO powder are mixed so that the B content is 0.01 to 3.0 mol% in terms of B 2 O 3 (1) or (2) Manufacturing method of ZnO sintered body.

(1)のようにZnO焼結体のB源をZn13とすれば、Bを均一に分散して、Bの固溶、置換をし易くして、微細な焼結粒径の組織を持ち、粒径のばらつきが小さい均一化されたZnO焼結体を得ることができる。 If the B source of the ZnO sintered body is Zn 4 B 6 O 13 as in (1), B is uniformly dispersed to facilitate the solid solution and substitution of B, and the fine sintered particle size A homogenized ZnO sintered body having a structure with a small variation in particle size can be obtained.

さらに、ZnO粉末の平均粒径が0.5〜1μmであり、Zn13粉末の平均粒径は0.2〜0.5μmであるので、Zn13粉末の平均粒径は主原料ZnOの平均粒径に対して1/2以下となる。そのため、熱処理前の成形体の段階での均一かつ広範囲なBの分布が得られ、Bを均一かつ高い割合でZnOに固溶させることができる。これにより、Bの容易に固溶、置換も起きるため、Bの固溶と粒径が均一なターゲット用のZnO焼結体を得ることが可能となる。 Furthermore, since the average particle diameter of the ZnO powder is 0.5-1 μm and the average particle diameter of the Zn 4 B 6 O 13 powder is 0.2-0.5 μm, the average particle diameter of the Zn 4 B 6 O 13 powder The diameter is ½ or less of the average particle diameter of the main raw material ZnO. Therefore, a uniform and wide distribution of B at the stage of the molded body before the heat treatment can be obtained, and B can be dissolved in ZnO at a uniform and high ratio. As a result, since B is easily dissolved and replaced, it is possible to obtain a ZnO sintered body for a target in which the solid solution of B and the particle size are uniform.

(2)の場合、Zn13単相の複合酸化物が得られる。なお、Zn13粉末には、Zn(BOが微量に含まれていても良い。 In the case of (2), a Zn 4 B 6 O 13 single-phase composite oxide is obtained. The Zn 4 B 6 O 13 powder may contain a trace amount of Zn 3 (BO 3 ) 2 .

(3)の場合、得られたZnO焼結体を成膜すれば低抵抗な膜を得ることができる。   In the case of (3), a low resistance film can be obtained by depositing the obtained ZnO sintered body.

以下、本発明のZnO焼結体の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the ZnO sintered compact of this invention is demonstrated in detail.

本発明のZnO焼結体の製造方法で製造されるZnO焼結体におけるB(硼素)の含有割合はB換算で0.01〜3.0mol%、より好ましくは0.01〜1.5mol%である。 The content ratio of B (boron) in the ZnO sintered body produced by the method for producing a ZnO sintered body of the present invention is 0.01 to 3.0 mol%, more preferably 0.01 to 1 in terms of B 2 O 3. 0.5 mol%.

Bの含有量がB換算で0.01mol%より少ない場合は、Znサイトに置換固溶するドーパントのBの量が少なすぎて、成膜しても低抵抗な膜が得られない。Bの含有量がB換算で0.01mol%以上であることで抵抗を下げることが可能である。一方、3.0mol%を超えると、膜の抵抗には変化がないが、固溶限界を超えた過剰のBがZnO焼結体の粒界に多量に残留することで焼結阻害を起こし、焼結体が十分に緻密化しないとか、スパッタリング時に放電を起こす原因となるので好ましくない。このような観点からBの含有割合は、1.5mol%以下がより好ましい。 When the content of B is less than 0.01 mol% in terms of B 2 O 3, the amount of B, which is a substitutional solid solution at the Zn site, is too small, and a low resistance film cannot be obtained even if the film is formed. . The resistance can be lowered when the B content is 0.01 mol% or more in terms of B 2 O 3 . On the other hand, if it exceeds 3.0 mol%, there is no change in the resistance of the film, but excessive B exceeding the solid solution limit causes sintering inhibition due to a large amount remaining in the grain boundary of the ZnO sintered body, This is not preferable because the sintered body does not become sufficiently dense or causes discharge during sputtering. From such a viewpoint, the content ratio of B is more preferably 1.5 mol% or less.

焼結体を構成するZnO粒子の平均結晶粒径は、2〜10μmであることが好ましい。焼結体の平均結晶粒径が10μm以上になるような焼結条件では粒成長が促進されるので均一な組織を形成するのが難しくなる。   The average crystal grain size of the ZnO particles constituting the sintered body is preferably 2 to 10 μm. Under the sintering conditions in which the average crystal grain size of the sintered body is 10 μm or more, grain growth is promoted, so that it becomes difficult to form a uniform structure.

ZnO焼結体のB源は、Zn13である。これは、Zn13がZnO焼結体の組織の均一化に作用するためである。 The B source of the ZnO sintered body is Zn 4 B 6 O 13 . This is because Zn 4 B 6 O 13 acts to make the structure of the ZnO sintered body uniform.

透明導電膜として用いられるスパッタ膜には抵抗均一性が求められているが、Bを添加したZnO焼結体をターゲット材としてそれを達成するには、焼結体を構成する粒子の結晶粒径が揃っていることとZnO中へのBの固容量が均一であることが望まれる。ZnOは焼結時に活性が非常に高く、低温でも簡単に粒成長を起こす。その際にB源としてBで添加すると、Bの分布の均一さにより粒成長の度合いが異なり、結晶粒径にバラツキを持った組織のZnO焼結体ができ易い。つまり、Bを添加したZnOでは、均一な微構造に制御された焼結体を作るのが難しい。当然、こうした焼結体をターゲット材として使用すると、焼結体を構成する粒子個々へのBの固溶の程度にばらつきが生じるために抵抗均一性に優れたスパッタ膜を得るのは難しい。 A sputtered film used as a transparent conductive film is required to have resistance uniformity. To achieve this by using a ZnO sintered body to which B 2 O 3 is added as a target material, the particles constituting the sintered body It is desired that the crystal grain size is uniform and that the solid volume of B in ZnO is uniform. ZnO has very high activity during sintering and easily causes grain growth even at low temperatures. In this case, when B 2 O 3 is added as a B source, the degree of grain growth varies depending on the uniformity of the distribution of B, and a ZnO sintered body having a structure with a variation in crystal grain size is easily formed. That is, with ZnO added with B 2 O 3 , it is difficult to produce a sintered body controlled to have a uniform microstructure. Naturally, when such a sintered body is used as a target material, it is difficult to obtain a sputtered film having excellent resistance uniformity because the degree of solid solution of B in each particle constituting the sintered body varies.

したがって、Bの分散を均一にして、Bの固溶、置換をし易くして、ZnOは微細な焼結粒径の組織を持ち、粒径のばらつきが小さい、ZnO焼結体とすることが有効である。このような知見のもと、BはZn13化合物の形で添加するのが好ましいという結論に至った。 Accordingly, the dispersion of B should be made uniform to facilitate the solid solution and substitution of B, and ZnO should have a fine sintered grain size structure with a small variation in grain size. It is valid. Based on these findings, it was concluded that B is preferably added in the form of a Zn 4 B 6 O 13 compound.

Zn13をB源として添加するのは、Zn13がBの固溶源として働く他に一部がそのピン止め効果により粒成長を抑制する効果が極めて大きいためである。ZnOとBの混合粉末を仮焼して容易に得られるのはZnB、ZnとZn13の3つの複合酸化物であるが、ZnBとZnは低融点が原因と考えられる溶出を焼結時に起こし易く、ZnOを十分に緻密化させることが難しいためである。 Zn 4 B 6 O 13 is added as a B source because Zn 4 B 6 O 13 works as a solid solution source of B and a part thereof has an extremely large effect of suppressing grain growth due to its pinning effect. is there. Although the obtained easily by calcining a mixed powder of ZnO and B 2 O 3 is 3 composite oxide ZnB 2 O 4, Zn 3 B 2 O 6 and Zn 4 B 6 O 13, ZnB 2 This is because O 4 and Zn 3 B 2 O 6 tend to cause elution, which is considered to be caused by a low melting point, during sintering, and it is difficult to sufficiently densify ZnO.

また、本発明では、Zn13のBがZnOに固溶する結果、ZnO焼結体をX線回折測定したときに、複合酸化物が検出されないことが好ましい。上述のように、固溶限界を超えた過剰のBがZnO焼結体の粒界に多量に残留することで焼結阻害を起こし、焼結体が十分に緻密化しなかったり、スパッタリング時に放電を起こしたりする原因となるので好ましくない。 In the present invention, as a result of B in Zn 4 B 6 O 13 being dissolved in ZnO, it is preferable that no complex oxide is detected when the ZnO sintered body is measured by X-ray diffraction. As described above, excessive B exceeding the solid solution limit remains in a large amount at the grain boundary of the ZnO sintered body, causing sintering inhibition, and the sintered body is not sufficiently densified, or discharge is generated during sputtering. This is not preferable because it may cause

次に本発明のZnO焼結体の製造方法について説明する。   Next, the manufacturing method of the ZnO sintered compact of this invention is demonstrated.

B源のZn13粉末は、ZnO粉末とB粉末とを混合、焼成及び粉砕して得られる。ここで用いられるZn13粉末作製用のZnO粉末は、平均粒径0.5〜1.0μmのものを用いることが好ましい。また、高純度のものを用いることが好ましく、その純度は99%以上、より好ましくは99.8%以上の原料粉末を用いることが望ましい。B粉末としては、平均粒径0.5〜2.0μmのものを用いることが好ましい。また、上記ZnO粉末同様、高純度のものを用いることが好ましく、その純度は99%以上、より好ましくは99.8%以上の原料粉末を用いることが望ましい。 The Zn 4 B 6 O 13 powder of the B source is obtained by mixing, firing and pulverizing ZnO powder and B 2 O 3 powder. The ZnO powder for producing Zn 4 B 6 O 13 powder used here is preferably one having an average particle diameter of 0.5 to 1.0 μm. Moreover, it is preferable to use a high-purity one, and it is desirable to use a raw material powder having a purity of 99% or more, more preferably 99.8% or more. As the B 2 O 3 powder, one having an average particle diameter of 0.5 to 2.0 μm is preferably used. Further, like the ZnO powder, it is preferable to use a high-purity one, and it is desirable to use a raw material powder having a purity of 99% or more, more preferably 99.8% or more.

ZnO粉末とB粉末の混合比は、mol比で4:6〜7:3とすることができる。このような混合比とし、焼成条件を適切に制御すれば、Zn13単相の複合酸化物が得られる。なお、Zn13粉末には、Zn(BOが微量に含まれていても良い。 The mixing ratio of the ZnO powder and the B 2 O 3 powder can be 4: 6 to 7: 3 in terms of a molar ratio. When such a mixing ratio is used and the firing conditions are appropriately controlled, a Zn 4 B 6 O 13 single-phase composite oxide can be obtained. The Zn 4 B 6 O 13 powder may contain a trace amount of Zn 3 (BO 3 ) 2 .

原料粉末の混合方法は特に限定されず、湿式及び乾式のボールミル、振動ミル等を用いることができる。   The mixing method of the raw material powder is not particularly limited, and wet and dry ball mills, vibration mills, and the like can be used.

焼成は、大気雰囲気中、800〜1000℃にて行うことができる。以上の作製条件によりZn13単相の複合酸化物が得られる。 Firing can be performed at 800 to 1000 ° C. in an air atmosphere. A Zn 4 B 6 O 13 single-phase composite oxide is obtained under the above manufacturing conditions.

アルミナボール等を媒体としてこの粉末をミル粉砕することで、添加物用として所望の粒度分布を持つZn13粉末が得られる。効果的にZn13のピン止め効果を発揮させるためには、添加するZn13粉末の粒径が小さく、かつ狭い粒度分布を持つことが好ましい。Zn13粉末の平均粒径は、0.2〜0.5μmに制御する。これは、Bを均一かつ高い割合でZnOに固溶させるには、熱処理前の成形体の段階での均一かつ広範囲なBの分布が必要で、そのためにはZn13粉末の平均粒径は主原料ZnOの平均粒径に対して1/2以下であることが好ましいためである。こうすることで容易に固溶置換も起きるために、Bの固溶と粒径が均一なターゲット用のZnO焼結体を得ることが可能となる。 By milling the powder using alumina balls or the like as a medium, Zn 4 B 6 O 13 powder having a desired particle size distribution can be obtained for the additive. In order to effectively exert the pinning effect of Zn 4 B 6 O 13 is, Zn 4 B 6 O 13 particle size of the powder is smaller to be added, and preferably has a narrow particle size distribution. The average particle size of the Zn 4 B 6 O 13 powder is controlled to 0.2 to 0.5 μm. This is because, in order to dissolve B in a uniform and high proportion in ZnO, a uniform and wide distribution of B at the stage of the molded body before the heat treatment is required. For this purpose, the average of Zn 4 B 6 O 13 powder This is because the particle size is preferably ½ or less of the average particle size of the main raw material ZnO. By doing so, solid solution substitution easily occurs, so that it becomes possible to obtain a ZnO sintered body for a target in which the solid solution of B and the particle size are uniform.

また、Zn13粉末の粒度分布は、レーザー回折式粒度分布測定におけるD10の粒径とD90の粒径の比D90/D10が20以下、より好ましくは10以下とすることが望ましい。なお、明細書において平均粒径とは、レーザー回折式粒度分布測定におけるメディアン径(D50)である。 The particle size distribution of the Zn 4 B 6 O 13 powder is preferably such that the ratio D90 / D10 of the particle size of D10 to the particle size of D90 in laser diffraction particle size distribution measurement is 20 or less, more preferably 10 or less. In the specification, the average particle diameter is a median diameter (D50) in laser diffraction particle size distribution measurement.

次に、こうして得られたZn13粉末とZnO粉末を、Bの含有割合がB換算で0.01〜3.0mol%になるように秤量、混合した後、プレス成形等で粉末成形体を作製して、大気雰囲気等で焼成することでZnO焼結体が得られる。 Next, the thus obtained Zn 4 B 6 O 13 powder and ZnO powder are weighed and mixed so that the B content is 0.01 to 3.0 mol% in terms of B 2 O 3 , and then press-molded. A ZnO sintered body can be obtained by preparing a powder compact with the above and firing it in an air atmosphere or the like.

焼結体を得るためのZnO粉末は、平均粒径0.5〜1.0μmのものを用いる。また、高純度のものを用いることが好ましく、その純度は99%以上、より好ましくは99.8%以上の原料粉末を用いることが望ましい。   As the ZnO powder for obtaining a sintered body, one having an average particle diameter of 0.5 to 1.0 μm is used. Moreover, it is preferable to use a high-purity one, and it is desirable to use a raw material powder having a purity of 99% or more, more preferably 99.8% or more.

焼結温度は1100〜1500℃であることが好ましい。1100℃未満で焼結した場合、ZnOは緻密化するもののZnO中へのBの固溶が十分に進まないために低抵抗化しないおそれがあるので好ましくない。1500℃より高いとZnOの分解が顕著になり密度低下を引き起こす可能性があるので好ましくない。   The sintering temperature is preferably 1100 to 1500 ° C. When sintered at a temperature lower than 1100 ° C., ZnO becomes dense, but the solid solution of B in ZnO does not advance sufficiently, so that there is a possibility that the resistance will not be lowered. A temperature higher than 1500 ° C. is not preferable because ZnO is significantly decomposed and may cause a decrease in density.

保持時間は2〜20時間であることが好ましい。2時間より短いと、十分に緻密化しないおそれがあるために好ましくない。20時間を越えると、長時間化による粒成長が著しくなる場合があるために好ましくない。焼結雰囲気は特に限定されないが、例えば大気中、酸素中、不活性ガス雰囲気中での焼成とすることができる。特に焼結中に酸化物の蒸発による重量減少、組成ずれの低減のためには大気中等の酸化雰囲気での焼結が好適である。また焼結雰囲気の圧力は限定されず、減圧、常圧から数気圧の加圧まで任意に適用できる。   The holding time is preferably 2 to 20 hours. If it is shorter than 2 hours, it may not be sufficiently densified, which is not preferable. Exceeding 20 hours is not preferable because grain growth due to longer time may become remarkable. Although the sintering atmosphere is not particularly limited, for example, the firing can be performed in air, oxygen, or an inert gas atmosphere. In particular, sintering in an oxidizing atmosphere such as in the air is suitable for reducing weight loss due to evaporation of oxide and reducing composition deviation during sintering. The pressure of the sintering atmosphere is not limited, and any pressure can be applied from reduced pressure, normal pressure to several atmospheric pressure.

ZnO焼結体は、スパッタリングターゲット材としてバッキングプレートに接合される前に、研削加工が施される。このとき、研削歪みが生じることから、歪みを除去するために、研削加工後に仮焼することが好ましい。仮焼は、600〜800℃で行うことができる。このような温度範囲であれば、十分に歪みが除去でき、焼結体の粒成長等も起きないので好ましい。   The ZnO sintered body is subjected to grinding before being joined to the backing plate as a sputtering target material. At this time, since grinding distortion occurs, it is preferable to calcine after grinding in order to remove the distortion. Calcination can be performed at 600 to 800 ° C. Such a temperature range is preferable because distortion can be sufficiently removed and grain growth of the sintered body does not occur.

以下、本発明の実施例を比較例とともに具体的に挙げ、本発明をより詳細に説明する。   EXAMPLES Hereinafter, the Example of this invention is specifically given with a comparative example, and this invention is demonstrated in detail.

[実施例1]
ZnO粉末(純度99.8%、平均粒径0.7μm)とB粉末(純度99.9%、平均粒径0.5μm)とをmol比で6:4の割合で秤量、混合した後、大気雰囲気中、900℃で焼成することで、Zn13単相の複合酸化物を得た。これを、アルミナボールを媒体として24時間ボールミル粉砕した。得られた粉末の平均粒径をレーザー回折式粒度分布測定したところ0.4μmであり、これを添加物用のZn13粉末とした。
[Example 1]
ZnO powder (purity 99.8%, average particle size 0.7 μm) and B 2 O 3 powder (purity 99.9%, average particle size 0.5 μm) were weighed and mixed at a molar ratio of 6: 4. After that, it was fired at 900 ° C. in an air atmosphere to obtain a Zn 4 B 6 O 13 single-phase composite oxide. This was ball milled for 24 hours using alumina balls as a medium. When the average particle size of the obtained powder was measured by laser diffraction particle size distribution, it was 0.4 μm, which was designated as Zn 4 B 6 O 13 powder for additives.

このZn13粉末とZnO粉末(純度99.8%、平均粒径0.7μm)を、Bの含有割合がB換算で2.0mol%になるように秤量、混合した後、プレス成形により直径100mm、厚さ6mmの粉末成形体を作製した。これを大気雰囲気中、1350℃、10時間焼成して、ZnO焼結体を得た。焼結体の平均結晶粒径を、焼結体表面を鏡面研磨後、研磨面を熱腐食したあとにSEM観察し、線インターセプト法によって求めたところ、7μmであった。また、焼結体の密度をアルキメデス法により測定したところ5.4g/cmであった。 This Zn 4 B 6 O 13 powder and ZnO powder (purity 99.8%, average particle size 0.7 μm) were weighed and mixed so that the B content was 2.0 mol% in terms of B 2 O 3 . Thereafter, a powder compact having a diameter of 100 mm and a thickness of 6 mm was produced by press molding. This was fired in air at 1350 ° C. for 10 hours to obtain a ZnO sintered body. The average crystal grain size of the sintered body was 7 μm when the surface of the sintered body was mirror-polished and the polished surface was thermally corroded and then observed by SEM and determined by the line intercept method. Moreover, it was 5.4 g / cm < 3 > when the density of the sintered compact was measured by the Archimedes method.

得られたZnO焼結体を直径60mm、厚さ4mmの円盤状に加工した後、700℃にて仮焼してスパッタリングターゲットを作製した。このスパッタリングターゲットを用いてDCマグネトロンスパッタリング法によって膜厚300nmの成膜を行った。スパッタリング条件は、投入電力200W、Arガス圧0.3Paとした。   The obtained ZnO sintered body was processed into a disk shape having a diameter of 60 mm and a thickness of 4 mm, and then calcined at 700 ° C. to prepare a sputtering target. Using this sputtering target, a film having a thickness of 300 nm was formed by DC magnetron sputtering. The sputtering conditions were an input power of 200 W and an Ar gas pressure of 0.3 Pa.

成膜後、ZnO膜の10ヶ所について、膜抵抗率を4端子法によって測定した。結果を表1に示す。10ヶ所の膜抵抗は平均が2.5 ×10−3Ω・cmに対して最大が2.6×10−3Ω・cm、最小が2.3×10−3Ω・cmと、バラツキの小さい良好なZnO膜が得られた。 After the film formation, the film resistivity was measured at 10 points of the ZnO film by the 4-terminal method. The results are shown in Table 1. The film resistance at 10 locations averages 2.5 × 10 −3 Ω · cm, the maximum is 2.6 × 10 −3 Ω · cm, and the minimum is 2.3 × 10 −3 Ω · cm, which varies widely. A small and good ZnO film was obtained.

[実施例2〜5]
同様にして表1に示すようにZnO粉末とZn13粉末の粒径、Bの含有割合(B換算量mol%)を変化させてZnO焼結体を作製し、実施例1と同じ評価をした。いずれの場合とも膜抵抗のバラツキは10%以内と良好なZnO膜が得られた。
[Examples 2 to 5]
Similarly, as shown in Table 1, ZnO powder and Zn 4 B 6 O 13 powder were changed in particle size and B content ratio (B 2 O 3 equivalent mol%) to produce a ZnO sintered body, The same evaluation as in Example 1 was performed. In either case, the film resistance variation was within 10%, and a good ZnO film was obtained.

[比較例1〜3]
同様にして表1に示すようにZnO粉末とZn13粉末の粒径、複合酸化物の種類を変化させて焼結体を作製し、実施例1と同じ評価をした。比較例1については、低抵抗化は示したものの膜抵抗のバラツキが大きくなった。比較例2、3については、複合酸化物の低融点化によりZnOが十分に緻密化しなかったために、得られた膜も低抵抗にならなかった。
[Comparative Examples 1-3]
Similarly, as shown in Table 1, sintered bodies were produced by changing the particle sizes of ZnO powder and Zn 4 B 6 O 13 powder and the type of composite oxide, and the same evaluation as in Example 1 was performed. As for Comparative Example 1, although the reduction in resistance was shown, the variation in film resistance increased. In Comparative Examples 2 and 3, since the ZnO was not sufficiently densified due to the low melting point of the composite oxide, the obtained film did not have a low resistance.

Figure 0005602820
Figure 0005602820

なお、実施例のZnO焼結体についてBの複合酸化物の有無を調べるためにX線回折測定(リガク社製X線回折装置MultiFlexを使用。CuKα線源、加速電圧40kV、40mA)を行ったが、ZnO以外は検出されなかった。また、ZnOへのBの固溶がX線回折ピークのピークシフトにより確認された。   In addition, in order to investigate the presence or absence of the complex oxide of B for the ZnO sintered body of the example, an X-ray diffraction measurement (using an X-ray diffractometer MultiFlex manufactured by Rigaku Corporation. CuKα radiation source, acceleration voltage 40 kV, 40 mA) was performed. However, other than ZnO was not detected. Moreover, the solid solution of B in ZnO was confirmed by the peak shift of the X-ray diffraction peak.

Claims (3)

ZnO粉末とB粉末とを混合、焼成及び粉砕してZn13粉末を得る工程と、平均粒径が0.5〜1μmのZnO粉末と平均粒径が0.2〜0.5μmのZn13粉末とを混合、成形、焼成してZnO焼結体を得る工程と、を含むZnO焼結体の製造方法。 A step of mixing, firing and pulverizing ZnO powder and B 2 O 3 powder to obtain Zn 4 B 6 O 13 powder, ZnO powder having an average particle size of 0.5 to 1 μm, and an average particle size of 0.2 to And a step of mixing, molding, and firing 0.5 μm Zn 4 B 6 O 13 powder to obtain a ZnO sintered body. ZnO粉末とB粉末の混合比はmol比で4:6〜7:3であり、ZnO粉末とB粉末とを大気雰囲気中、800〜1000℃にて焼成を行う請求項1記載のZnO焼結体の製造方法。 The mixing ratio of the ZnO powder and the B 2 O 3 powder is 4: 6 to 7: 3 in terms of a molar ratio, and the ZnO powder and the B 2 O 3 powder are fired at 800 to 1000 ° C. in an air atmosphere. 1. A method for producing a ZnO sintered body according to 1. 得られたZn13粉末とZnO粉末をBの含有割合がB換算で0.01〜3.0mol%になるように混合する請求項1又は2記載のZnO焼結体の製造方法。 The ZnO sintered body according to claim 1 or 2, wherein the obtained Zn 4 B 6 O 13 powder and ZnO powder are mixed so that the B content is 0.01 to 3.0 mol% in terms of B 2 O 3. Manufacturing method.
JP2012256664A 2012-11-22 2012-11-22 Manufacturing method of ZnO sintered body Active JP5602820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256664A JP5602820B2 (en) 2012-11-22 2012-11-22 Manufacturing method of ZnO sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256664A JP5602820B2 (en) 2012-11-22 2012-11-22 Manufacturing method of ZnO sintered body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009070918A Division JP2010222176A (en) 2009-03-23 2009-03-23 ZnO SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2013063907A JP2013063907A (en) 2013-04-11
JP5602820B2 true JP5602820B2 (en) 2014-10-08

Family

ID=48187778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256664A Active JP5602820B2 (en) 2012-11-22 2012-11-22 Manufacturing method of ZnO sintered body

Country Status (1)

Country Link
JP (1) JP5602820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081953A (en) * 2023-01-03 2023-05-09 武汉理工大学 Zinc-boron binary ultralow-temperature sintered microcrystalline glass and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125452A (en) * 1990-09-17 1992-04-24 Meidensha Corp Quantitative analysis of silicon in ceramics due to icp method
JPH11158607A (en) * 1997-11-28 1999-06-15 Sumitomo Metal Mining Co Ltd Zno sintered compact and its production
JPH11171539A (en) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd Zno-base sintered compact and its production
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
JPH11322332A (en) * 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
DE10222746A1 (en) * 2002-05-23 2003-12-04 Philips Intellectual Property Dielectric composition based on barium titanate
EP1512156A1 (en) * 2002-05-24 2005-03-09 Philips Intellectual Property & Standards GmbH Hybrid electronic device comprising a low-temperature-cofired-ceramic ltcc-tape
JP2004175616A (en) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd Zinc oxide-type sintered compact and its manufacturing method

Also Published As

Publication number Publication date
JP2013063907A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
KR101274279B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
EP2301904B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
TWI700261B (en) Sn-Zn-O series oxide sintered body and its manufacturing method
JP2007223849A (en) Gallium oxide-based sintered compact and method of manufacturing the same
JP2013507526A (en) Tin oxide ceramic sputtering target and method for producing the same
WO2012077512A1 (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
EP2767610B1 (en) ZnO-Al2O3-MgO sputtering target and method for the production thereof
JP5888599B2 (en) Sputtering target and high resistance transparent film manufacturing method
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP5602820B2 (en) Manufacturing method of ZnO sintered body
JP2010202896A (en) Sputtering target and production method of the same
JP6582698B2 (en) Oxide sintered body and sputtering target
JP2010222176A (en) ZnO SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP2010285321A (en) Method for manufacturing zinc oxide-based sintered compact for sputtering target
KR102404834B1 (en) Oxide sintered compact, method for producing same, and sputtering target
JP2015160760A (en) Oxide sintered compact and oxide transparent conductive film
JP5497479B2 (en) Sputtering target
JP6396837B2 (en) Sintered body for ZnO-MgO based sputtering target and method for producing the same
JP6468158B2 (en) ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same
TW201943677A (en) Sn-zn-o oxide sintered body and method for production thereof
TWI748971B (en) Sn-Zn-O series oxide sintered body and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250