JP5888599B2 - Sputtering target and high resistance transparent film manufacturing method - Google Patents

Sputtering target and high resistance transparent film manufacturing method Download PDF

Info

Publication number
JP5888599B2
JP5888599B2 JP2012055764A JP2012055764A JP5888599B2 JP 5888599 B2 JP5888599 B2 JP 5888599B2 JP 2012055764 A JP2012055764 A JP 2012055764A JP 2012055764 A JP2012055764 A JP 2012055764A JP 5888599 B2 JP5888599 B2 JP 5888599B2
Authority
JP
Japan
Prior art keywords
sputtering
target
zinc oxide
film
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012055764A
Other languages
Japanese (ja)
Other versions
JP2013189669A (en
Inventor
張 守斌
守斌 張
佑一 近藤
佑一 近藤
理恵 森
理恵 森
山口 剛
山口  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012055764A priority Critical patent/JP5888599B2/en
Priority to TW102104368A priority patent/TWI554627B/en
Priority to CN201380003991.2A priority patent/CN103958729A/en
Priority to PCT/JP2013/055650 priority patent/WO2013137020A1/en
Priority to KR20147021430A priority patent/KR20140138614A/en
Publication of JP2013189669A publication Critical patent/JP2013189669A/en
Application granted granted Critical
Publication of JP5888599B2 publication Critical patent/JP5888599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/784Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Description

本発明は、DC(直流)スパッタリングで高抵抗な酸化亜鉛の透明膜を成膜可能かつ高い機械的強度を有し、長時間スパッタに適するスパッタリングターゲット及び高抵抗透明膜並びにその製造方法に関するものである。   The present invention relates to a sputtering target and a high resistance transparent film that can form a transparent film of high resistance zinc oxide by DC (direct current) sputtering, have high mechanical strength, and are suitable for long-time sputtering, and a method for manufacturing the same. is there.

近年、化合物半導体による薄膜太陽電池が実用に供せられるようになり、この化合物半導体による薄膜太陽電池は、ソーダライムガラス基板の上にプラス電極となるMo電極層を形成し、このMo電極層の上にCu−In−Ga−Se四元系合金膜からなる光吸収層が形成され、このCu−In−Ga−Se四元系合金膜からなるこの光吸収層の上にZnS、CdS、酸化亜鉛などからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成された基本構造を有している。   In recent years, thin film solar cells using compound semiconductors have been put to practical use. In this thin film solar cell using compound semiconductors, a Mo electrode layer serving as a positive electrode is formed on a soda lime glass substrate. A light absorption layer made of a Cu—In—Ga—Se quaternary alloy film is formed thereon, and ZnS, CdS, oxidation is formed on the light absorption layer made of this Cu—In—Ga—Se quaternary alloy film. It has a basic structure in which a buffer layer made of zinc or the like is formed, and a transparent electrode layer to be a negative electrode is formed on the buffer layer.

上記バッファ層などに採用される酸化亜鉛膜は、均一かつ緻密な膜組織と高電気抵抗とが要求されている。例えば、特許文献1では、酸化亜鉛膜の体積抵抗率が10Ω・cm以上であることが記載されている。この酸化亜鉛膜を形成する方法としては、主にスパッタリング法が知られている。例えば、特許文献2には、ターゲット中の酸化亜鉛の平均粒子サイズが15〜100μmであり、直流スパッタが可能な酸化亜鉛ターゲットが提案されている。 A zinc oxide film employed for the buffer layer or the like is required to have a uniform and dense film structure and high electrical resistance. For example, Patent Document 1 describes that the volume resistivity of a zinc oxide film is 10 4 Ω · cm or more. As a method for forming this zinc oxide film, a sputtering method is mainly known. For example, Patent Document 2 proposes a zinc oxide target in which the average particle size of zinc oxide in the target is 15 to 100 μm and capable of direct current sputtering.

一方、特許文献3では、純酸化亜鉛ターゲットを用い、RF(高周波)スパッタリングにより高い電気抵抗を示すi−ZnO膜を作製する技術が言及されており、一方、アルミニウム等を添加した酸化亜鉛ターゲットを用い、導電性がかなり低い透明導電酸化物層を形成する方法が開示されている。また、好ましい実施形態として、太陽電池に使用される高導電性層と低導電性層との双方を同一ターゲット材料のスパッタリングによって生成し、高導電性層が不活性ガス雰囲気中で、低導電性層が酸素又は混合不活性ガス−酸素プロセス雰囲気中で生成させることが提案されている。
なお、太陽電池用高導電性透明導電膜を形成するターゲットとしては、特許文献4に示されているように、一般的に、酸化亜鉛にアルミニウム又はガリウムを0.3%〜数原子%添加している。
On the other hand, Patent Document 3 mentions a technique for producing an i-ZnO film exhibiting high electrical resistance by RF (high frequency) sputtering using a pure zinc oxide target, while a zinc oxide target added with aluminum or the like is referred to. A method of forming a transparent conductive oxide layer that is used and that is much less conductive is disclosed. Further, as a preferred embodiment, both a high conductive layer and a low conductive layer used in a solar cell are produced by sputtering of the same target material, and the high conductive layer has a low conductivity in an inert gas atmosphere. It has been proposed that the layer be formed in an oxygen or mixed inert gas-oxygen process atmosphere.
As a target for forming a highly conductive transparent conductive film for solar cells, as shown in Patent Document 4, generally 0.3% to several atomic percent of aluminum or gallium is added to zinc oxide. ing.

特開2005−123272号公報JP 2005-123272 A 特開2011−111642号公報JP 2011-111642 A 特開2009−21607号公報JP 2009-21607 A 特開2008−110911号公報JP 2008-110911 A

上記従来の技術には、以下の課題が残されている。
すなわち、従来、高抵抗な酸化亜鉛膜を成膜するには、酸化亜鉛ターゲットを用いてRFスパッタリングを行っているが、RFスパッタリングはDCスパッタリングに比べて成膜速度が遅いという不都合がある。しかしながら、従来の酸化亜鉛ターゲットは、高抵抗であるため、DCスパッタリングを行うことが困難であった。
一方、DCスパッタ可能な特許文献2の技術においては、酸化亜鉛ターゲットを構成する酸化亜鉛粒子を従来よりも大幅に大きく設定することで、粒界が少なくなり、粒界数に比例する絶縁電圧が低下して一定の高電圧で急激に電気抵抗が低下することにより、DCスパッタリングを実現している。しかしながら、酸化亜鉛ターゲットの結晶組織の増大により、ターゲットの緻密化が不十分になり、ターゲットの機械的強度が低下してしまう不都合があった。さらに、長時間スパッタする場合にノジュールが発生し、スパッタ時間の増加に従って異常放電が急増する問題が完全に解決できなかった。
また、特許文献3の技術では、酸化亜鉛とアルミニウムとの双方を含有するセラミックターゲット、又は数質量%のアルミニウムを含むZn−Alからなる金属ターゲットを用いて、酸素を含有するスパッタリングプロセス雰囲気中で、導電性がかなり低い酸化亜鉛層の形成方法が提案されている。しかしながら、この方法で得られた膜の抵抗は最大1.64×10Ω・cmに過ぎず、特許文献1で開示された酸化亜鉛膜の体積抵抗率1×10Ω・cmを達成できていない。
The following problems remain in the conventional technology.
That is, conventionally, to form a high-resistance zinc oxide film, RF sputtering is performed using a zinc oxide target, but RF sputtering has a disadvantage that the film formation rate is slower than DC sputtering. However, since the conventional zinc oxide target has high resistance, it is difficult to perform DC sputtering.
On the other hand, in the technique of Patent Document 2 capable of DC sputtering, by setting the zinc oxide particles constituting the zinc oxide target to be significantly larger than before, the number of grain boundaries is reduced, and the insulation voltage proportional to the number of grain boundaries is reduced. The DC sputtering is realized by lowering the electric resistance rapidly at a constant high voltage. However, due to an increase in the crystal structure of the zinc oxide target, there is a disadvantage that the target becomes insufficiently densified and the mechanical strength of the target is lowered. Furthermore, nodules are generated when sputtering is performed for a long time, and the problem that abnormal discharge rapidly increases as the sputtering time increases cannot be solved completely.
Moreover, in the technique of patent document 3, using the ceramic target containing both zinc oxide and aluminum, or the metal target which consists of Zn-Al containing several mass% aluminum, in the sputtering process atmosphere containing oxygen A method of forming a zinc oxide layer having a very low conductivity has been proposed. However, the maximum resistance of the film obtained by this method is only 1.64 × 10 3 Ω · cm, and the volume resistivity 1 × 10 4 Ω · cm of the zinc oxide film disclosed in Patent Document 1 can be achieved. Not.

本発明は、前述の課題に鑑みてなされたもので、DCスパッタリングでも体積抵抗率:1×10Ω・cm以上の高抵抗な酸化亜鉛膜を作製可能かつ高い機械的強度を有し、長時間スパッタに適するスパッタリングターゲット及び高抵抗透明膜並びにその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and can produce a high-resistance zinc oxide film having a volume resistivity of 1 × 10 4 Ω · cm or more even by DC sputtering, and has a high mechanical strength. An object of the present invention is to provide a sputtering target and a high-resistance transparent film suitable for time sputtering, and a method for producing the same.

本発明者らは、長時間の連続DCスパッタリングにより酸化亜鉛ターゲットを用いて酸化亜鉛膜を製造するべく研究を行った。その結果、主成分の酸化亜鉛に微量なIn,Ga,Al,Bの正三価元素群から選ばれる1種類または1種類以上の元素を添加し、一定以上のターゲット密度にすることで、高い機械強度で、かつ長時間DCスパッタリングが可能であることを突き止めた。さらに、このスパッタリングターゲットを用い、スパッタガス中に3体積%以上の酸素を添加することで、高体積抵抗率及び高透明性の酸化亜鉛膜が得られることを見出した。   The present inventors have studied to manufacture a zinc oxide film using a zinc oxide target by long-time continuous DC sputtering. As a result, by adding one or more elements selected from the group of positive trivalent elements of In, Ga, Al, and B to the main component zinc oxide to achieve a target density higher than a certain level, a high machine It was found that DC sputtering was possible with a high strength for a long time. Furthermore, it has been found that a zinc oxide film having a high volume resistivity and high transparency can be obtained by using this sputtering target and adding 3% by volume or more of oxygen to the sputtering gas.

したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るスパッタリングターゲットでは、全金属成分量に対してIn,Ga,Al,Bの元素群から選ばれる1種類または2種類以上の元素を0.005〜0.095原子%、残部がZn及び不可避不純物からなる成分組成を有する酸化物焼結体からなり、前記酸化物焼結体の密度が、5.3g/cm以上であることを特徴とする。 Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems. That is, in the sputtering target according to the first invention, 0.005 to 0.095 atomic% of one or more elements selected from the element group of In, Ga, Al, and B with respect to the total metal component amount. The balance is made of an oxide sintered body having a component composition composed of Zn and inevitable impurities, and the density of the oxide sintered body is 5.3 g / cm 3 or more.

このスパッタリングターゲットでは、全金属成分量に対してIn,Ga,Al,Bの元素群から選ばれる1種類または2種類以上の元素を0.005〜0.095原子%、残部がZn及び不可避不純物からなる成分組成を有する酸化物焼結体からなり、前記酸化物焼結体の密度が、5.3g/cm以上であるので、DCスパッタリングでも体積抵抗率:1×10Ω・cm以上の高抵抗な酸化亜鉛膜が得られると共に、長時間スパッタが可能な高い機械的強度を有している。 In this sputtering target, 0.005 to 0.095 atomic% of one or more elements selected from the group of elements of In, Ga, Al, and B with respect to the total amount of metal components, the balance being Zn and inevitable impurities Since the oxide sintered body has a density of 5.3 g / cm 3 or more, the volume resistivity is 1 × 10 4 Ω · cm or more even in DC sputtering. And a high mechanical strength capable of sputtering for a long time.

特許文献2の技術が、酸化亜鉛ターゲットを構成する酸化亜鉛粒子を従来よりも大幅に大きく設定することでDCスパッタリングを実現したのに対し、本発明のスパッタリングターゲットでは、IIIb族元素であるIn,Ga,Al,Bを微量に添加することで、酸化亜鉛粒子の粒界で生じた導電障壁であるSchottky障壁が低減され、比較的低いスパッタ電圧においてもDC電流が流れるようになり、DCスパッタが可能となる。さらに、焼結中これらの添加元素が酸素亜鉛に固溶することにより、ターゲット密度を5.3g/cm以上にすることで、ターゲット中の気孔割合が低減し、電気が流れる通路になる酸化亜鉛の結晶粒と結晶粒とが接触する界面の面積が増加することにより、安定したDCスパッタが実現できる。すなわち、ターゲットに酸化亜鉛粒子の粒界層特性を改質できるIIIb族元素を微量に添加することにより、ターゲットの緻密化を促進し、粒界の導電性を向上することができ、安定したDCスパッタが実現できる。本発明では、特許文献2の酸化亜鉛粒子を単純に増大する方法より、ターゲット組織中の気孔発生が大幅に減少し、ターゲットの抗折強度が向上され、異常放電の少ない長時間安定なDCスパッタを実現することができる。 Whereas the technique of Patent Document 2 realizes DC sputtering by setting the zinc oxide particles constituting the zinc oxide target to be significantly larger than the conventional one, the sputtering target of the present invention uses the group IIIb element In, By adding a small amount of Ga, Al, and B, the Schottky barrier, which is a conductive barrier generated at the grain boundary of zinc oxide particles, is reduced, and a DC current flows even at a relatively low sputtering voltage. It becomes possible. Further, these additional elements are dissolved in oxygen zinc during the sintering, so that the target density is set to 5.3 g / cm 3 or more, so that the porosity ratio in the target is reduced and oxidation becomes a passage through which electricity flows. Stable DC sputtering can be realized by increasing the area of the interface between the zinc crystal grains and the crystal grains. That is, by adding a small amount of a group IIIb element that can modify the grain boundary layer characteristics of the zinc oxide particles to the target, it is possible to promote densification of the target, improve the conductivity of the grain boundary, and achieve stable DC. Sputtering can be realized. In the present invention, the generation of pores in the target structure is greatly reduced, the bending strength of the target is improved, and the long-term stable DC sputtering with less abnormal discharge than the method of simply increasing the zinc oxide particles of Patent Document 2. Can be realized.

IIIb族元素群から選ばれる上記元素(以下、単にIIIb族元素群とも称す)を0.005原子%以上添加する理由は、酸化亜鉛粒子の粒界に十分なドナーを供給し、Schottky障壁を低減させるためである。IIIb族元素群は、ターゲットの焼結の過程中、粒界で移動する。この挙動により粒界に集中してくる気孔が焼結体の外部に排出されて、焼結体の密度が向上され、その結果、ターゲットのDCスパッタ安定性に貢献する。なお、0.005原子%より少ないと、粒界の導電性が十分に得られず、異常放電の発生回数が増加する。
一方、上記IIIb族元素群を0.095原子%を超えて添加すると、スパッタ条件を工夫しても、得られた膜の抵抗が低くなり、10Ω・cm以上の体積抵抗率が実現できなくなる。
The reason why the above element selected from the group IIIb element group (hereinafter also simply referred to as group IIIb element group) is added by 0.005 atomic% or more is to supply a sufficient donor to the grain boundary of the zinc oxide particles and reduce the Schottky barrier. This is to make it happen. The group IIIb element group moves at the grain boundary during the sintering process of the target. Due to this behavior, pores concentrated at the grain boundaries are discharged to the outside of the sintered body, and the density of the sintered body is improved. As a result, it contributes to the DC sputtering stability of the target. When the amount is less than 0.005 atomic%, the grain boundary conductivity cannot be sufficiently obtained, and the number of abnormal discharges increases.
On the other hand, when the group IIIb element group is added in an amount exceeding 0.095 atomic%, the resistance of the obtained film is lowered even if the sputtering conditions are devised, and a volume resistivity of 10 4 Ω · cm or more can be realized. Disappear.

なお、本発明のターゲットにおけるIIIb族元素群の添加のメカニズムは、特許文献3に記載の技術におけるメカニズムとは異なる。すなわち、特許文献3では、アルミニウム等を添加した酸化亜鉛ターゲットまたは、数質量%のアルミニウムを含むZn−Alからなる金属ターゲットを用いて導電性がかなり低い透明導電酸化物層を形成する方法が開示されているが、その好ましい実施形態として、太陽電池に使用される高導電性層と低導電性層との双方を同一ターゲット材料のスパッタリングによって生成し、高導電性層が不活性ガス雰囲気中で、低導電性層が酸素又は混合不活性ガス−酸素プロセス雰囲気中で生成させることとされている。   Note that the mechanism of addition of the group IIIb element group in the target of the present invention is different from the mechanism in the technique described in Patent Document 3. That is, Patent Document 3 discloses a method of forming a transparent conductive oxide layer having a very low conductivity using a zinc oxide target to which aluminum or the like is added or a metal target made of Zn-Al containing several mass% of aluminum. However, as a preferred embodiment, both the high conductivity layer and the low conductivity layer used in the solar cell are produced by sputtering of the same target material, and the high conductivity layer is in an inert gas atmosphere. The low-conductivity layer is formed in an oxygen or mixed inert gas-oxygen process atmosphere.

太陽電池に使用される高導電性層形成用スパッタリングターゲットは、一般的には特許文献4で開示されているように、アルミニウム、ガリウム等の元素を0.3原子%以上添加した酸化亜鉛焼結体となっている。また、特許文献3で開示されているように、数質量%のアルミニウムを含むZn−Alからなる金属ターゲットを用いて反応スパッタで作製されている。
しかしながら、アルミニウムを代表とするこれらのIIIb族元素を0.3原子%以上添加すると、スパッタ膜中において正三価元素によるZnサイトの置換が発生し、これに伴って生成したキャリアにより、膜に導電性が生ずる。たとえスパッタ時に大量の酸素を添加したとしても、IIIb族元素によるZnサイトの置換とキャリアの生成を阻止することはできず、その結果、10Ω・cm以上の体積抵抗率を有する酸化亜鉛膜が得られない。
As disclosed in Patent Document 4, a sputtering target for forming a highly conductive layer used in a solar cell is generally zinc oxide sintered to which an element such as aluminum or gallium is added in an amount of 0.3 atomic% or more. It is a body. Further, as disclosed in Patent Document 3, it is fabricated by reactive sputtering using a metal target made of Zn—Al containing aluminum of several mass%.
However, when these group IIIb elements, typically aluminum, are added in an amount of 0.3 atomic% or more, substitution of Zn sites by positive trivalent elements occurs in the sputtered film, and the resulting carriers make the film conductive. Sex occurs. Even if a large amount of oxygen is added at the time of sputtering, substitution of the Zn site by the group IIIb element and generation of carriers cannot be prevented, and as a result, a zinc oxide film having a volume resistivity of 10 4 Ω · cm or more Cannot be obtained.

これに対して本発明では、IIIb族元素の添加量を0.095原子%以下に制限している。このように添加量が少ない場合、膜中において酸化亜鉛の粒界に位置することとなり、キャリア形成への寄与が非常に少ないので、10Ω・cm以上の体積抵抗率を実現することができる。
なお、IIIb族元素群の添加量を0.095原子%以下とする場合、粒界に気孔が多数含まれる低密度のターゲットでは、導電性が不十分となって安定に長時間DCスパッタできなくなることがある。そのため、本発明では、ターゲット密度を5.3g/cm以上とした。
本発明のターゲット中に添加されるIIIb族元素は、全部がZnO中に固溶していることが最も好ましく、一部がIIIb族元素の酸化物または複合酸化物としてZnO粒子の粒界に存在してもよい。
On the other hand, in the present invention, the amount of Group IIIb element added is limited to 0.095 atomic% or less. Thus, when the addition amount is small, it is located at the grain boundary of zinc oxide in the film, and the contribution to carrier formation is very small, so that a volume resistivity of 10 4 Ω · cm or more can be realized. .
In addition, when the addition amount of the group IIIb element group is 0.095 atomic% or less, a low-density target in which many pores are included in the grain boundary, the conductivity becomes insufficient, and DC sputtering cannot be stably performed for a long time. Sometimes. Therefore, in the present invention, the target density is set to 5.3 g / cm 3 or more.
Most preferably, the group IIIb elements added to the target of the present invention are all in solid solution in ZnO, and some of them are present at the grain boundaries of the ZnO particles as oxides or complex oxides of group IIIb elements. May be.

第2の発明に係るスパッタリングターゲットは、第1の発明において、前記酸化物焼結体中の酸化亜鉛粒子の平均粒径が、8〜50μmであることを特徴とする。
すなわち、このスパッタリングターゲットでは、酸化物焼結体中の酸化亜鉛粒子の平均粒径が、8〜50μmであるので、比較的低いスパッタ電圧を印加すると、酸化亜鉛粒子の粒界で生じた導電障壁が絶縁破壊して電流が流れ、DCスパッタリングが可能になり、さらに、粒界気孔起因とする異常放電やノジュールの形成を大幅に低減できる。
The sputtering target according to the second invention is characterized in that, in the first invention, the average particle diameter of the zinc oxide particles in the oxide sintered body is 8 to 50 μm.
That is, in this sputtering target, the average particle diameter of the zinc oxide particles in the oxide sintered body is 8 to 50 μm. Therefore, when a relatively low sputtering voltage is applied, the conductive barrier generated at the grain boundaries of the zinc oxide particles. As a result, dielectric breakdown occurs, current flows, DC sputtering becomes possible, and abnormal discharge and nodule formation caused by grain boundary pores can be greatly reduced.

なお、上記酸化亜鉛粒子の平均粒径が8μm未満であると、DCスパッタリングが不安定になりやすく、50μmを超えると粒成長による粒界気孔が大きくなり、ターゲットの抗折強度が低下し、割れやすくなってしまう。
上記第1の発明ではSchottky障壁を低減する効果を有するが、添加量が少ないため、特許文献4に記載されているように粒界を完全に導電化させることができなく、酸化亜鉛粒子の平均粒径が8μmより小さいと、酸化亜鉛ターゲットをスパッタできるスパッタ電圧が非常に大きくなり、安定した異常放電の少ないDCスパッタリングができ難い。
If the average particle diameter of the zinc oxide particles is less than 8 μm, DC sputtering tends to be unstable, and if it exceeds 50 μm, the grain boundary pores due to grain growth increase, the bending strength of the target decreases, and cracking occurs. It becomes easy.
Although the first invention has the effect of reducing the Schottky barrier, since the addition amount is small, the grain boundary cannot be made completely conductive as described in Patent Document 4, and the average of zinc oxide particles When the particle size is smaller than 8 μm, the sputtering voltage capable of sputtering the zinc oxide target becomes very large, and it is difficult to perform DC sputtering with less stable abnormal discharge.

第3の発明に係るスパッタリングターゲットは、第1又は第2の発明において、比抵抗が、0.01Ω・cm以上であることを特徴とする。
すなわち、このスパッタリングターゲットでは、比抵抗が0.01Ω・cm以上であるので、10Ω・cm以上の膜体積抵抗率を有する酸化亜鉛膜が得られやすい。
The sputtering target according to the third invention is characterized in that, in the first or second invention, the specific resistance is 0.01 Ω · cm or more.
That is, in this sputtering target, since the specific resistance is 0.01 Ω · cm or more, a zinc oxide film having a film volume resistivity of 10 4 Ω · cm or more is easily obtained.

第4の発明に係る高抵抗透明膜は、第1から第3のいずれかの発明に係るスパッタリングターゲットを用いてDCスパッタリングにより成膜され、体積抵抗率が、1×10Ω・cm以上であることを特徴とする。 The high-resistance transparent film according to the fourth invention is formed by DC sputtering using the sputtering target according to any one of the first to third inventions, and has a volume resistivity of 1 × 10 4 Ω · cm or more. It is characterized by being.

第5の発明に係る高抵抗透明膜の製造方法は、第4の発明に係る高抵抗透明膜を製造する方法であって、前記スパッタリングターゲットを用いてDCスパッタリングする際のプロセス雰囲気中に、酸素を全ガス成分に対し3体積%以上含有させることを特徴とする。
すなわち、この高抵抗透明膜の製造方法では、スパッタリングターゲットを用いてDCスパッタリングする際のプロセス雰囲気中に、酸素を全ガス成分に対し3体積%以上含有させるので、10Ω・cm以上の体積抵抗率を有する高抵抗酸化亜鉛膜を安定して得ることができる。
なお、全ガス成分に対する酸素含有量が3体積%未満になると、形成された膜中の酸素欠損によるキャリアを完全に除去することができず、10Ω・cm未満の体積抵抗率を有する酸化亜鉛膜しか得られない。なお、ここで言うDCスパッタリングは、単純なDCスパッタリング、パルスDCスパッタリング、二重カソードからのMFスパッタリング及びRFを重畳したDCスパッタリングが含まれる。
A method for producing a high-resistance transparent film according to a fifth invention is a method for producing a high-resistance transparent film according to the fourth invention, wherein oxygen is contained in a process atmosphere when DC sputtering is performed using the sputtering target. Is contained in an amount of 3% by volume or more based on the total gas components.
That is, in this high resistance transparent film manufacturing method, oxygen is contained in a process atmosphere at the time of DC sputtering using a sputtering target in an amount of 3% by volume or more based on the total gas components, and thus a volume of 10 4 Ω · cm or more. A high resistance zinc oxide film having resistivity can be obtained stably.
When the oxygen content with respect to all gas components is less than 3% by volume, carriers due to oxygen vacancies in the formed film cannot be completely removed, and an oxidation having a volume resistivity of less than 10 3 Ω · cm. Only a zinc film can be obtained. The DC sputtering referred to here includes simple DC sputtering, pulse DC sputtering, MF sputtering from a double cathode, and DC sputtering with RF superimposed.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るスパッタリングターゲットによれば、全金属成分量に対してIn,Ga,Al,Bの元素群から選ばれる1種類または2種類以上の元素を0.005〜0.095原子%、残部がZn及び不可避不純物からなる成分組成を有する酸化物焼結体からなり、前記酸化物焼結体の密度が、5.3g/cm以上であるので、DCスパッタリングでも体積抵抗率:1×10Ω・cm以上の高抵抗な酸化亜鉛膜が得られると共に、長時間スパッタが可能な高い機械的強度を有している。
The present invention has the following effects.
That is, according to the sputtering target according to the present invention, 0.005 to 0.095 atomic% of one or more elements selected from the element group of In, Ga, Al, and B with respect to the total metal component amount. The balance is made of an oxide sintered body having a component composition composed of Zn and inevitable impurities, and the density of the oxide sintered body is 5.3 g / cm 3 or more. A high-resistance zinc oxide film of × 10 4 Ω · cm or more can be obtained, and it has high mechanical strength capable of sputtering for a long time.

本発明に係るスパッタリングターゲット及び高抵抗透明膜並びにその製造方法の実施例6(a)及び比較例1(b)において、焼結温度1400℃で焼成したターゲット断面のイメージクオリティマップを示す画像である。It is an image which shows the image quality map of the target cross section baked at sintering temperature 1400 degreeC in Example 6 (a) and Comparative Example 1 (b) of the sputtering target and high resistance transparent film which concern on this invention, and its manufacturing method. . 本発明に係る実施例6(a)及び比較例1(b)において、焼結温度1400℃で焼成したターゲットにおける酸化亜鉛粒子の粒径分布を示すグラフである。In Example 6 (a) which concerns on this invention, and Comparative Example 1 (b), it is a graph which shows the particle size distribution of the zinc oxide particle in the target baked with the sintering temperature of 1400 degreeC. 本発明に係る実施例6(a)及び比較例1(b)において、6時間連続スパッタにおける異常放電回数の積算値の変化を示すグラフである。In Example 6 (a) which concerns on this invention, and Comparative example 1 (b), it is a graph which shows the change of the integrated value of the frequency | count of abnormal discharge in 6-hour continuous sputtering.

以下、本発明に係るスパッタリングターゲット及び高抵抗透明膜並びにその製造方法における一実施形態を説明する。   Hereinafter, embodiments of the sputtering target, the high-resistance transparent film, and the manufacturing method thereof according to the present invention will be described.

本実施形態のスパッタリングターゲットは、高抵抗透明膜用であって、全金属成分量に対してIn,Ga,Al,Bの元素群(IIIb族元素群)から選ばれる1種類または2種類以上の元素を0.005〜0.095原子%、残部がZn及び不可避不純物からなる成分組成を有する酸化物焼結体からなり、前記酸化物焼結体の密度が、5.3g/cm以上に設定されている。 The sputtering target of the present embodiment is for a high-resistance transparent film, and includes one or more kinds selected from an element group of In, Ga, Al, and B (group IIIb element group) with respect to the total amount of metal components. It consists of an oxide sintered body having a component composition of 0.005 to 0.095 atomic% and the balance of Zn and inevitable impurities, and the density of the oxide sintered body is 5.3 g / cm 3 or more. Is set.

また、この高抵抗透明膜用スパッタリングターゲットは、酸化物焼結体中の酸化亜鉛粒子の平均粒径が8〜50μmであり、さらに、比抵抗が0.01Ω・cm以上とされている。なお、上記元素群のうちIn,Ga,Alは、酸化物として焼結体中に含有されている。また、Bは、少なくとも表面が酸化物となって含有されている。これら元素が酸化物として含有されていることは、EPMA(電子線マイクロアナライザ)による分析で確認することができる。   Moreover, this sputtering target for high resistance transparent films has an average particle diameter of zinc oxide particles in the oxide sintered body of 8 to 50 μm and a specific resistance of 0.01 Ω · cm or more. In the above element group, In, Ga, and Al are contained in the sintered body as oxides. Further, B is contained at least on the surface as an oxide. The inclusion of these elements as oxides can be confirmed by analysis with EPMA (electron beam microanalyzer).

さらに、本実施形態の高抵抗透明膜は、このスパッタリングターゲットを用いてDCスパッタリングにより成膜され、体積抵抗率が1×10Ω・cm以上である。
この高抵抗透明膜は、上記スパッタリングターゲットを用いてDCスパッタリングする際のプロセス雰囲気中に、酸素を全ガス成分に対し3体積%以上含有させて成膜することで得られる。
Furthermore, the high-resistance transparent film of this embodiment is formed by DC sputtering using this sputtering target, and has a volume resistivity of 1 × 10 4 Ω · cm or more.
This high-resistance transparent film can be obtained by depositing oxygen in an amount of 3% by volume or more based on the total gas components in the process atmosphere when DC sputtering is performed using the sputtering target.

なお、ターゲット密度(酸化物焼結体の密度)は、焼結体の重量と寸法とから計算する。また、酸化物焼結体中の酸化亜鉛粒子の平均粒径は、ターゲット断面をSEMを用いて観察し、イメージクオリティマップによって酸化亜鉛粒子またはIIIb族元素群を固溶した酸化亜鉛粒子の粒界を明確にした状態で、粒内のピクセル数から計算される面積と同じ面積の円の直径として求められたものであり、測定範囲周辺にかかる結晶粒は除外して計算したものである。さらに、ターゲットの比抵抗は四探針法で測定する。   The target density (the density of the oxide sintered body) is calculated from the weight and dimensions of the sintered body. The average particle size of the zinc oxide particles in the oxide sintered body is determined by observing the cross section of the target using an SEM, and the grain boundaries of the zinc oxide particles in which the zinc oxide particles or the group IIIb group of elements are dissolved by an image quality map Is obtained as a diameter of a circle having the same area as the area calculated from the number of pixels in the grain, and is calculated by excluding crystal grains around the measurement range. Furthermore, the specific resistance of the target is measured by a four-point probe method.

上述したように、焼結体密度は5.3g/cm以上が必要であり、さらに5.35g/cm以上がより好ましい。なお、5.3g/cm以下であると、粒界中の気孔を十分に排除することができず、粒界の導電不足で長時間安定なDCスパッタを実現できない。焼結体密度を5.3g/cm以上にするには、原料粉の粒径の最適化、焼結に用いる成形体の密度の向上、焼成温度と焼成プロファイル条件の最適化などを行うことで得られる。さらに、酸化亜鉛粒子の平均粒径:8〜50μmを確実に実現するためには、酸化亜鉛原料粉末の一次粒径が0.3〜5μm、成形密度を3.3g/cm以上、焼成温度を1250〜1450℃、焼成時間を1〜10時間にそれぞれ設定することが好ましい。 As described above, the sintered body density is required to be 5.3 g / cm 3 or more, and more preferably 5.35 g / cm 3 or more. In addition, when it is 5.3 g / cm 3 or less, pores in the grain boundary cannot be sufficiently eliminated, and long-term stable DC sputtering cannot be realized due to insufficient conductivity of the grain boundary. In order to increase the density of the sintered body to 5.3 g / cm 3 or more, optimization of the particle size of the raw material powder, improvement of the density of the compact used for sintering, optimization of the firing temperature and firing profile conditions, etc. It is obtained with. Furthermore, in order to reliably realize the average particle diameter of zinc oxide particles: 8 to 50 μm, the primary particle diameter of the zinc oxide raw material powder is 0.3 to 5 μm, the molding density is 3.3 g / cm 3 or more, and the firing temperature. Is preferably set to 1250 to 1450 ° C., and the firing time is set to 1 to 10 hours.

なお、ターゲット比抵抗は、IIIb族元素群の添加量、焼結体の密度および焼結方法に大きく影響される。黒鉛モールドを用いる真空ホットプレスのような酸化亜鉛中の酸素を大量に欠損させる方法では、比抵抗0.01Ω・cm未満のターゲットを作製することができるが、これを用いて上記高抵抗透明膜の成膜方法で、長期に大量の成膜を行う際、膜の体積抵抗率を1×10Ω・cm以上に安定化させることが困難となる。したがって、ターゲットの比抵抗を0.01Ω・cm以上にするには酸素が含有される雰囲気での焼成が好ましい。 The target specific resistance is greatly influenced by the amount of the group IIIb element group added, the density of the sintered body, and the sintering method. In a method of losing a large amount of oxygen in zinc oxide such as vacuum hot press using a graphite mold, a target having a specific resistance of less than 0.01 Ω · cm can be produced. When a large amount of film is formed for a long time by this film forming method, it is difficult to stabilize the volume resistivity of the film to 1 × 10 4 Ω · cm or more. Therefore, firing in an atmosphere containing oxygen is preferable in order to set the specific resistance of the target to 0.01 Ω · cm or more.

本実施形態のスパッタリングターゲットの製造方法は、一次粒子の平均粒径0.1〜3μmの酸化亜鉛粉末に、例えば一次粒子の平均粒径0.001〜1μmの上記IIIb族元素群の酸化物粉末を均一に混入し、成形して成形体とする工程と、該成形体を、1250〜1450℃の焼結温度で焼成して焼結体とする工程とを有している。
すなわち、このスパッタリングターゲットの製造方法では、酸化亜鉛の一次粒子の平均粒径を0.1〜3μmとし、上記IIIb族元素群の酸化物粉末における一次粒子の平均粒径を0.001〜1μmにすることによって、指定温度で焼結した酸化亜鉛焼結体の平均粒径を安定に8〜50μmにすることができ、異常放電の少ない高品質な直流スパッタ用の酸化亜鉛ターゲットを作製することができる。
The manufacturing method of the sputtering target according to the present embodiment includes a zinc oxide powder having an average primary particle size of 0.1 to 3 μm, for example, an oxide powder of the group IIIb element group having an average primary particle size of 0.001 to 1 μm. Are uniformly mixed and formed into a formed body, and the formed body is fired at a sintering temperature of 1250 to 1450 ° C. to form a sintered body.
That is, in this sputtering target manufacturing method, the average particle diameter of primary particles of zinc oxide is 0.1 to 3 μm, and the average particle diameter of primary particles in the oxide powder of the group IIIb element group is 0.001 to 1 μm. By doing so, the average particle diameter of the zinc oxide sintered body sintered at the specified temperature can be stably made 8 to 50 μm, and a high quality zinc oxide target for direct current sputtering with less abnormal discharge can be produced. it can.

上記スパッタリングターゲットを作製するための原料用酸化亜鉛の一次粒子の平均粒径は、水中に分散した当該原料を、レーザー回折・散乱光式粒子分析装置(例えば日機装社製マイクロトラックシリーズ)よって分析、計算する。IIIb族元素群の酸化物粉末を用いて添加する場合の当該酸化物の一次平均粒径も、同様な方法で測定することができる。   The average particle diameter of primary particles of zinc oxide for raw material for producing the sputtering target is analyzed by a laser diffraction / scattered light particle analyzer (for example, Microtrack series manufactured by Nikkiso Co., Ltd.). calculate. The primary average particle diameter of the oxide in the case of adding using the group IIIb element group oxide powder can also be measured by the same method.

また、上記IIIb族元素群の酸化物は、酸化亜鉛粉末又はそのスラリーに分散しやすいゾル液又はその前駆体のゾル液(例えば、川研ファインケミカル株式会社製水酸化アルミニウムゾル液 アルミゾル−10A)の形態、焼結過程中分解した目的酸化物の前駆体物質(例えば、IIIb族元素群の炭酸化物)の形態、又は上記前駆体の水溶液の形態等で添加することができる。本実施形態では、上記IIIb族元素群の添加量が非常に少なく、酸化亜鉛粉末への均一混入が難しいことから、特に、IIIb族元素群を含有するゾル液等、酸化亜鉛粉末からなるスラリーに均一分散しやすい形態での添加が好ましい。
Bにおいては、酸化物の代わりに、単体からなる粉末での添加も同様な効果が得られる。
Further, the oxide of the group IIIb element group is a sol solution that is easily dispersed in zinc oxide powder or a slurry thereof or a precursor sol solution (for example, an aluminum hydroxide sol solution manufactured by Kawaken Fine Chemical Co., Ltd., aluminum sol-10A). It can be added in the form, a precursor material of the target oxide decomposed during the sintering process (for example, a carbonate of the group IIIb element group), or an aqueous solution of the precursor. In the present embodiment, since the amount of the group IIIb element group added is very small and uniform mixing into the zinc oxide powder is difficult, particularly in a slurry made of zinc oxide powder such as a sol solution containing the group IIIb element group. Addition in a form that facilitates uniform dispersion is preferred.
In B, the same effect can be obtained by addition of a simple powder instead of the oxide.

上記製造方法の一例としては、酸化亜鉛粉末に所定のIIIb族元素群の酸化物を溶媒を介して均一に混合した後、バインダーを添加し、スプレードライ法で造粒し、その造粒粉を金型プレスで加圧成形することで成形体を作製する有バインダー成型法を採用することができる。この有バインダー成型法で成型した成形体は、脱型後、150〜550℃の熱処理温度で脱バインダー処理され、さらに高温(1250〜1450℃)で所定時間(1〜6時間)焼結すると本実施形態の酸化亜鉛ターゲットを得ることができる。   As an example of the above production method, a zinc oxide powder is uniformly mixed with an oxide of a predetermined group IIIb element group via a solvent, a binder is added, and granulation is performed by a spray drying method. A binder-containing molding method in which a molded body is produced by pressure molding with a mold press can be employed. The molded body molded by this binder molding method is debindered at a heat treatment temperature of 150 to 550 ° C. after demolding, and further sintered at a high temperature (1250 to 1450 ° C.) for a predetermined time (1 to 6 hours). The zinc oxide target of the embodiment can be obtained.

上記バインダーとしては、ポリビニルアルコール、ポリビニルブチラール、メチルセルロースあるいはアクリル樹脂を用いることができる。また、有機溶媒としてはエタノール又はアセトンを用いることができ、無機溶媒としては純水を用いることができる。さらに、溶媒を加えることによってバインダーを希釈し、粉末へ均一に分散させることが可能となる。   As the binder, polyvinyl alcohol, polyvinyl butyral, methyl cellulose, or an acrylic resin can be used. Moreover, ethanol or acetone can be used as the organic solvent, and pure water can be used as the inorganic solvent. Furthermore, by adding a solvent, the binder can be diluted and uniformly dispersed in the powder.

上記加圧成形時の成形圧は、例えば50(500kg/cm)MPaに設定される。
また、脱型後、焼成して酸化物焼結体を得る際の焼成温度は、1250〜1450℃の範囲内であって、焼成時間は1〜10時間が適切である。なお、焼成時間は、好ましくは3〜6時間がよい。なお、焼結雰囲気は、大気,酸素,不活性ガスと酸素との混合ガスの何れでもよい。
The molding pressure at the time of the pressure molding is set to 50 (500 kg / cm 2 ) MPa, for example.
Moreover, after demolding, the firing temperature when firing to obtain an oxide sintered body is within the range of 1250 to 1450 ° C., and the firing time is suitably 1 to 10 hours. The firing time is preferably 3 to 6 hours. The sintering atmosphere may be air, oxygen, or a mixed gas of inert gas and oxygen.

さらに、焼成工程は、溶媒および水分等の除去を目的とする予備乾燥として50〜150℃で5〜46時間の処理を行い、バインダーの焼失を目的とする脱バインダー処理として150〜550℃で5〜20時間の処理を行う。   Furthermore, the firing step is performed at 50 to 150 ° C. for 5 to 46 hours as preliminary drying for the purpose of removing the solvent, moisture and the like, and is performed at 150 to 550 ° C. for 5 hours as a debinding process for the purpose of burning out the binder. Process for ~ 20 hours.

次に、このように作製した本実施形態のスパッタリングターゲットを用いてDCスパッタリングによって酸化亜鉛膜(高抵抗透明膜)を作製する方法について説明する。   Next, a method for producing a zinc oxide film (high resistance transparent film) by DC sputtering using the thus produced sputtering target of this embodiment will be described.

まず、直径125mm、厚さ5mmに加工後の上記スパッタリングターゲットを、無酸素銅製のバッキングプレートにIn半田を用いてボンディングする。このボンディングしたターゲットをスパッタに供する。
このスパッタは、DCスパッタ電源を用い、スパッタガスとしてArガスとOガスとの混合ガス中で行う。このときのガス圧は、例えば0.67Paに設定される。ArガスとOガスとの混合ガス中O/(Ar+O)の体積比は、ガスフローメーターの流量設定で設定する。また、スパッタ時の投入電力密度は、例えば2W/cmに設定される。また、上記スパッタリングターゲットで成膜する膜の厚みは、例えば100nmとする。ここで、投入電力密度とは、ターゲットに印加する電力(W)をターゲットの面積(cm)で除した値を示す。
First, the sputtering target processed to have a diameter of 125 mm and a thickness of 5 mm is bonded to an oxygen-free copper backing plate using In solder. This bonded target is subjected to sputtering.
This sputtering is performed using a DC sputtering power source in a mixed gas of Ar gas and O 2 gas as a sputtering gas. The gas pressure at this time is set to 0.67 Pa, for example. The volume ratio of O 2 / (Ar + O 2 ) in the mixed gas of Ar gas and O 2 gas is set by the flow rate setting of the gas flow meter. Further, the input power density at the time of sputtering is set to 2 W / cm 2 , for example. Moreover, the thickness of the film | membrane formed into a film with the said sputtering target shall be 100 nm, for example. Here, the input power density indicates a value obtained by dividing the power (W) applied to the target by the area (cm 2 ) of the target.

なお、上記スパッタガスにおけるArとOとの混合比率を変えることで、酸化亜鉛膜(高抵抗透明膜)の膜抵抗を変えることが可能である。例えば、スパッタガスを、Ar:90体積%、O:3体積%以上の割合に設定すると、膜抵抗:10〜1010Ω・cm(計測電圧10V)程度の高抵抗酸化亜鉛膜を成膜することができる。また、上記スパッタガスを、Oを入れずにArガスのみにしてスパッタリングを行うと、膜抵抗:10−2Ω・cm(計測電圧10V)の低抵抗酸化亜鉛膜となる。 Note that the film resistance of the zinc oxide film (high resistance transparent film) can be changed by changing the mixing ratio of Ar and O 2 in the sputtering gas. For example, when the sputtering gas is set to a ratio of Ar: 90% by volume and O 2 : 3% by volume or more, a high resistance zinc oxide film having a film resistance of about 10 4 to 10 10 Ω · cm (measurement voltage 10 V) is formed. Can be membrane. Further, when sputtering is performed using only Ar gas without adding O 2 , the low resistance zinc oxide film having a film resistance of 10 −2 Ω · cm (measurement voltage 10 V) is obtained.

このように本実施形態のスパッタリングターゲットでは、全金属成分量に対してIn,Ga,Al,Bの元素群から選ばれる1種類または2種類以上の元素を0.005〜0.095原子%、残部がZn及び不可避不純物からなる成分組成を有する酸化物焼結体からなり、前記酸化物焼結体の密度が、5.3g/cm以上であるので、DCスパッタリングでも体積抵抗率:1×10Ω・cm以上の高抵抗な酸化亜鉛膜が得られると共に、長時間スパッタが可能な高い機械的強度を有している。 Thus, in the sputtering target of this embodiment, 0.005 to 0.095 atomic% of one or more elements selected from the element group of In, Ga, Al, and B with respect to the total metal component amount, The balance is made of an oxide sintered body having a component composition consisting of Zn and inevitable impurities, and the density of the oxide sintered body is 5.3 g / cm 3 or more. A high-resistance zinc oxide film of 10 4 Ω · cm or more can be obtained, and it has high mechanical strength capable of sputtering for a long time.

また、酸化物焼結体中の酸化亜鉛粒子の平均粒径が、8〜50μmであるので、比較的低いスパッタ電圧を印加すると、酸化亜鉛粒子の粒界で生じた導電障壁が絶縁破壊して電流が流れ、DCスパッタリングが可能になり、さらに、粒界気孔起因とする異常放電やノジュールの形成を大幅に低減できる。
さらに、比抵抗が0.01Ω・cm以上であるので、10Ω・cm以上の膜体積抵抗率を有する酸化亜鉛膜が得られやすい。
また、本実施形態の高抵抗透明膜の製造方法では、上記スパッタリングターゲットを用いてDCスパッタリングする際のプロセス雰囲気中に、酸素を全ガス成分に対し3体積%以上含有させるので、10Ω・cm以上の体積抵抗率を有する高抵抗酸化亜鉛膜を安定して得ることができる。
In addition, since the average particle diameter of the zinc oxide particles in the oxide sintered body is 8 to 50 μm, when a relatively low sputtering voltage is applied, the conductive barrier generated at the grain boundary of the zinc oxide particles breaks down. Current flows, DC sputtering becomes possible, and abnormal discharge and nodule formation caused by grain boundary pores can be greatly reduced.
Furthermore, since the specific resistance is 0.01 Ω · cm or more, a zinc oxide film having a film volume resistivity of 10 4 Ω · cm or more is easily obtained.
In the manufacturing method of the high-resistance transparent film of the present embodiment, during the process atmosphere during the DC sputtering using the sputtering target, since the inclusion of oxygen to total gas components 3% or more, 10 4 Omega · A high resistance zinc oxide film having a volume resistivity of cm or more can be stably obtained.

上記本実施形態に基づいて作製した高抵抗透明膜用スパッタリングターゲットの実施例について、酸化物焼結体中の酸化亜鉛粒子の平均粒径等について評価した結果を、図1から図4を参照して説明する。   About the Example of the sputtering target for high resistance transparent films produced based on the said embodiment, the result evaluated about the average particle diameter etc. of the zinc oxide particle in oxide sinter is referred to FIGS. I will explain.

<実施例の作製>
本実施例の製造は、以下の条件で行った。
表1に示す平均一次粒径の酸化亜鉛100kgを、純水35kgと、酸化亜鉛二次粒子を分散するための分散剤1.5kg(例えば:高分子量ポリエステル酸のアマイドアミン塩、楠本化成株式会社製)と、表1に示す平均一次粒径のIIIb族元素群の酸化物粉末又はそのゾル液とを、内容積500Lのボールミルに充填した。さらに、このボールミルに直径φ10mmのジルコニアボール500kgを添加し、30rpmの回転速度で24時間ボールミルを行った。その後、ポリビニルアルコール系バインダー10kg(例えば、変性PVA、日本酢ビ・ポバール株式会社製)を添加し、さらに1時間のボールミルを行った。
<Production of Examples>
The manufacture of this example was performed under the following conditions.
100 kg of zinc oxide having an average primary particle size shown in Table 1, 35 kg of pure water, and 1.5 kg of a dispersant for dispersing zinc oxide secondary particles (for example: amide amine salt of high molecular weight polyester acid, Enomoto Kasei Co., Ltd.) And an oxide powder of group IIIb element group having an average primary particle size shown in Table 1 or a sol solution thereof was filled in a ball mill having an internal volume of 500 L. Further, 500 kg of zirconia balls having a diameter of 10 mm were added to this ball mill, and ball milling was performed for 24 hours at a rotation speed of 30 rpm. Thereafter, 10 kg of polyvinyl alcohol-based binder (for example, modified PVA, manufactured by Nippon Vinegar Poval Co., Ltd.) was added, and ball milling was further performed for 1 hour.

ボールミル終了後、得られたスラリーをスプレードライヤーを用いて乾燥造粒を行った。スプレードライヤーは熱風温度250℃、排気温度100℃程度に設定できるものを用いた(例えば、大川原加工機FOC−35)。スプレー吐出条件、熱風温度を調整することで、造粒顆粒の平均粒径50±20μm程度の顆粒を得た。
作製した顆粒を、直径200mmで厚み50mmの金型にムラなく均一に充填し、機械プレス機に投入し、表1に示す圧力で加圧、プレス成形した。加圧のキープ時間は1分間とした。
After completion of the ball mill, the obtained slurry was dried and granulated using a spray dryer. A spray dryer that can be set to a hot air temperature of 250 ° C. and an exhaust temperature of about 100 ° C. was used (for example, Okawara FOC-35). By adjusting the spray discharge conditions and the hot air temperature, granules having an average particle diameter of about 50 ± 20 μm were obtained.
The produced granule was uniformly filled in a mold having a diameter of 200 mm and a thickness of 50 mm, and was charged into a mechanical press, and pressed and press-molded with the pressure shown in Table 1. The pressurizing keep time was 1 minute.

成型した成形体を雰囲気制御可能な焼成炉に装入し、下記の焼成条件にて焼成した。なお、焼成時の雰囲気,焼成温度及び焼成時間は、表2に示す。
STEP1:室温→150℃(6時間)
STEP2:150℃→550℃(36時間)
STEP3:550℃→1000℃(3時間)
STEP4:1000℃→焼結温度(200℃/時間)
STEP5:焼結温度でのキープ
STEP6:焼結温度→室温(15時間)
The formed molded body was placed in a firing furnace capable of controlling the atmosphere and fired under the following firing conditions. Table 2 shows the firing atmosphere, firing temperature, and firing time.
STEP1: Room temperature → 150 ° C (6 hours)
STEP2: 150 ° C → 550 ° C (36 hours)
STEP3: 550 ° C → 1000 ° C (3 hours)
STEP 4: 1000 ° C. → Sintering temperature (200 ° C./hour)
STEP5: Keep at sintering temperature
STEP 6: Sintering temperature → room temperature (15 hours)

焼成した焼結体を、湿式研削機によって直径125mm、厚み5mmのターゲットに加工し、重量と寸法とを用いて体積密度を計算した後、体積抵抗を四探針法で測定した。次に、測定したターゲットを、In半田を用いて銅製バッキングプレートにボンディングした。さらに、これらの実施例について、ターゲット断面における酸化亜鉛粒子の平均粒径を測定した。なお、酸化亜鉛粒子の平均粒径は、上述した方法で求めた。また、ターゲット中に添加されたIIIb族元素の含有量をICP(高周波誘導結合プラズマ法)で測定した。   The fired sintered body was processed into a target having a diameter of 125 mm and a thickness of 5 mm by a wet grinding machine, and after calculating the volume density using the weight and dimensions, the volume resistance was measured by a four-probe method. Next, the measured target was bonded to a copper backing plate using In solder. Furthermore, about these Examples, the average particle diameter of the zinc oxide particle in a target cross section was measured. The average particle size of the zinc oxide particles was determined by the method described above. Further, the content of the group IIIb element added to the target was measured by ICP (high frequency inductively coupled plasma method).

粒子の観察は、電子後方散乱パターン(Electron Back Scattering Pattern:EBSP)解析機能のあるSEM(Carl Zeiss社製 Ultra55)を用いて行った。
なお、この条件は、測定範囲W500×H650μm、測定ステップ1.5μm、取り込み時間30msec/pointに設定した。また、SEM条件は、加速電圧15kV、ビーム電流2.5nA、WD15mmに設定した。さらに、データ処理条件は、最小粒界角度5°,Clean up type Grain Dilation,Grain Tolerance Angle 5°,Minimum Grain Size 5 pixels,Single Iteration Onに設定した。
以上の結果を表3に示す。
The particles were observed using SEM (Ultra 55 manufactured by Carl Zeiss) having an electron back scattering pattern (EBSP) analysis function.
The conditions were set to a measurement range of W500 × H650 μm, a measurement step of 1.5 μm, and an acquisition time of 30 msec / point. The SEM conditions were set to an acceleration voltage of 15 kV, a beam current of 2.5 nA, and a WD of 15 mm. Furthermore, the data processing conditions were set to a minimum grain boundary angle of 5 °, Clean up type Grain Dilation, Grain Tolerance Angle 5 °, Minimum Grain Size 5 pixels, and Single Iteration On.
The above results are shown in Table 3.

<比較例の作製>
本発明の比較例についても、以下の条件で作製した。
この比較例の作製では、ターゲットの焼結に用いる原料の混合を実施例と同様に行った。なお、比較例における添加材料の添加量等は、表4に示すように調整した。
また、比較例の製作において、ボールミル終了後の造粒や成形は実施例と同様に行った。なお、焼成時の焼成方法,雰囲気,焼成温度及び焼成時間は、表5に示す。
<Production of Comparative Example>
The comparative example of the present invention was also produced under the following conditions.
In the production of this comparative example, the raw materials used for target sintering were mixed in the same manner as in the example. The amount of additive material added in the comparative example was adjusted as shown in Table 4.
In the production of the comparative example, granulation and molding after completion of the ball mill were performed in the same manner as in the example. The firing method, atmosphere, firing temperature and firing time during firing are shown in Table 5.

次に、焼成した焼結体を実施例と同様に、加工、評価した。これらの結果を表6に示す。   Next, the fired sintered body was processed and evaluated in the same manner as in the examples. These results are shown in Table 6.

また、ターゲット断面のイメージクオリティマップ例について、代表的に実施例6の場合を図1の(a)に示すと共に、比較例1の場合を図1の(b)に示す。さらに、酸化亜鉛粒子の粒径分布のグラフについて、実施例6の場合を図2の(a)に示すと共に、比較例1の場合を図2の(b)に示す。   As for an image quality map example of the target cross section, the case of Example 6 is typically shown in FIG. 1A, and the case of Comparative Example 1 is shown in FIG. Further, regarding the graph of the particle size distribution of the zinc oxide particles, the case of Example 6 is shown in FIG. 2A and the case of Comparative Example 1 is shown in FIG.

また、上記実施例および比較例のターゲットによりDCスパッタリングした際の酸化亜鉛膜(高抵抗透明膜)の膜抵抗について測定した。この際のDCスパッタリング条件は、以下のように設定した。
スパッタテストは、上記直径125mm、厚み5mmのターゲットを用いて実施した。スパッタは、MKS社製直流電源RPG−50を用いて、直流(DC)のみにて成膜した。成膜時の投入電力は200W(3W/cm)、到達真空度5×10−4Pa、スパッタ全圧は0.67Paとした。成膜ガスはArとOとの混合ガスとし、流量は50sccmとした。
Further, the film resistance of the zinc oxide film (high resistance transparent film) when DC sputtering was performed using the targets of the above examples and comparative examples was measured. The DC sputtering conditions at this time were set as follows.
The sputter test was performed using the target having a diameter of 125 mm and a thickness of 5 mm. Sputtering was performed by direct current (DC) only using a DC power supply RPG-50 manufactured by MKS. The input power during film formation was 200 W (3 W / cm 2 ), the ultimate vacuum was 5 × 10 −4 Pa, and the total sputtering pressure was 0.67 Pa. The deposition gas was a mixed gas of Ar and O 2 and the flow rate was 50 sccm.

まず、表7及び表8に示すO/(Ar+O)体積%において、実施例及び比較例の各ターゲットを用いてガラス基板上(コーニング社 1737#)に100nm成膜し、得られた膜の体積抵抗率は、三菱化学製抵抗測定器ロレスター(シート抵抗10Ω/□以下の低抵抗の場合)、ハイレスター(シート抵抗10Ω/□以上の高抵抗の場合)を用いて測定した。さらに、当該ターゲットを指定された投入電力にて6時間の連続スパッタを実施し、異常放電の発生回数を評価した。これらの試験の結果は、表7及び表8にまとめて示す。さらに、比較のため、6時間連続スパッタ中の異常放電累計発生数量について、実施例6の場合を図3の(a)に示し、比較例1の場合を図3の(b)に示す。 First, in O 2 / (Ar + O 2 ) volume% shown in Table 7 and Table 8, a film obtained by depositing 100 nm on a glass substrate (Corning 1737 #) using each target of Examples and Comparative Examples. The volume resistivity is measured using a resistance meter Lorester manufactured by Mitsubishi Chemical (when the sheet resistance is 10 6 Ω / □ or less) or a high resister (when the sheet resistance is 10 7 Ω / □ or more). did. Furthermore, the target was subjected to continuous sputtering for 6 hours with the specified input power, and the number of occurrences of abnormal discharge was evaluated. The results of these tests are summarized in Tables 7 and 8. Further, for comparison, regarding the cumulative number of abnormal discharges generated during 6-hour continuous sputtering, the case of Example 6 is shown in FIG. 3A, and the case of Comparative Example 1 is shown in FIG.

この結果、本実施例のターゲットでは、異常放電なしで長時間DCスパッタできることを確認した。一方、一部の比較例のターゲットは異常放電が発生している。さらに、本実施例のターゲットによる膜の体積抵抗率がすべて10Ω・cm以上を達成した。一方、一部の比較例における膜体積抵抗率は10Ω・cmより低下していた。なお、実施例3、8、10においては、単純なDCスパッタはできず、パルスDCを用いてスパッタを実施した。比較例4、7もDCスパッタできなかったが、パルスDCでスパッタしたところ、比較例4のターゲットは短時間の放電後ターゲット表面に割れが発生し、比較例7は放電不可であった。 As a result, it was confirmed that the target of this example can perform DC sputtering for a long time without abnormal discharge. On the other hand, abnormal discharge occurs in some targets of the comparative examples. Furthermore, all the volume resistivity of the film | membrane by the target of a present Example achieved 10 < 4 > ohm * cm or more. On the other hand, the film volume resistivity in some comparative examples was lower than 10 4 Ω · cm. In Examples 3, 8, and 10, simple DC sputtering was not possible, and sputtering was performed using pulsed DC. Although Comparative Examples 4 and 7 could not be DC sputtered, when sputtered by pulse DC, the target of Comparative Example 4 was cracked on the target surface after a short discharge, and Comparative Example 7 was not dischargeable.

なお、本発明を、スパッタリングターゲットとして利用するためには、金属系不純物濃度:0.1原子%以下、抗折強度:150MPa以上、ターゲット各部位間の密度差が10%以下、スパッタ面の面粗さRaが3μm以下であることが好ましい。上記各実施例は、いずれもこれらの条件を満たしたものである。
また、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
In order to use the present invention as a sputtering target, the metal impurity concentration: 0.1 atomic% or less, the bending strength: 150 MPa or more, the density difference between each part of the target is 10% or less, the surface of the sputtering surface The roughness Ra is preferably 3 μm or less. Each of the above-described embodiments satisfies these conditions.
The technical scope of the present invention is not limited to the above-described embodiment and examples, and various modifications can be made without departing from the spirit of the present invention.

Claims (3)

全金属成分量に対してIn,Ga,Al,Bの元素群から選ばれる1種類または2種類以上の元素を0.005〜0.095原子%、残部がZn及び不可避不純物からなる成分組成を有する酸化物焼結体からなり、
前記酸化物焼結体の密度が、5.3g/cm以上であり、
比抵抗が、0.01Ω・cm以上であることを特徴とするスパッタリングターゲット。
A component composition consisting of 0.005 to 0.095 atomic% of one or more elements selected from the element group of In, Ga, Al, and B with the balance being Zn and inevitable impurities with respect to the total amount of metal components. An oxide sintered body having
The density of the oxide sintered body state, and are 5.3 g / cm 3 or more,
A sputtering target having a specific resistance of 0.01 Ω · cm or more .
請求項1に記載のスパッタリングターゲットにおいて、
前記酸化物焼結体中の酸化亜鉛粒子の平均粒径が、8〜50μmであることを特徴とするスパッタリングターゲット。
The sputtering target according to claim 1,
The sputtering target, wherein an average particle diameter of zinc oxide particles in the oxide sintered body is 8 to 50 μm.
請求項1又は2に記載のスパッタリングターゲットを用いたDCスパッタリングにより、体積抵抗率が、1×10Ω・cm以上である高抵抗透明膜を成膜することを特徴とする高抵抗透明膜の製造方法。 The DC sputtering using a sputtering target according to claim 1 or 2, volume resistivity, 1 × characterized by forming a high-resistance transparent film which is 10 4 Ω · cm or more high resistivity transparent film Production method.
JP2012055764A 2012-03-13 2012-03-13 Sputtering target and high resistance transparent film manufacturing method Expired - Fee Related JP5888599B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012055764A JP5888599B2 (en) 2012-03-13 2012-03-13 Sputtering target and high resistance transparent film manufacturing method
TW102104368A TWI554627B (en) 2012-03-13 2013-02-05 Sputtering target and high resistance transparent film manufacturing method
CN201380003991.2A CN103958729A (en) 2012-03-13 2013-03-01 Sputtering target, and high-resistance transparent film and method for producing the same
PCT/JP2013/055650 WO2013137020A1 (en) 2012-03-13 2013-03-01 Sputtering target, and high-resistance transparent film and method for production thereof
KR20147021430A KR20140138614A (en) 2012-03-13 2013-03-01 Sputtering target, and high-resistance transparent film and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055764A JP5888599B2 (en) 2012-03-13 2012-03-13 Sputtering target and high resistance transparent film manufacturing method

Publications (2)

Publication Number Publication Date
JP2013189669A JP2013189669A (en) 2013-09-26
JP5888599B2 true JP5888599B2 (en) 2016-03-22

Family

ID=49160935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055764A Expired - Fee Related JP5888599B2 (en) 2012-03-13 2012-03-13 Sputtering target and high resistance transparent film manufacturing method

Country Status (5)

Country Link
JP (1) JP5888599B2 (en)
KR (1) KR20140138614A (en)
CN (1) CN103958729A (en)
TW (1) TWI554627B (en)
WO (1) WO2013137020A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892016B2 (en) * 2012-09-19 2016-03-23 住友金属鉱山株式会社 Zinc oxide sputtering target and manufacturing method thereof
WO2016027540A1 (en) * 2014-08-22 2016-02-25 三井金属鉱業株式会社 Target material, target material manufacturing method, and board-like target
KR102321724B1 (en) 2017-07-11 2021-11-03 엘지디스플레이 주식회사 Lighting apparatus using organic light emitting diode and method of fabricating thereof
KR102321663B1 (en) 2017-07-11 2021-11-03 엘지디스플레이 주식회사 Lighting apparatus using organic light emitting diode and method of fabricating thereof
CN112218841A (en) * 2018-06-06 2021-01-12 杰富意矿物股份有限公司 Zinc oxide powder for use in zinc oxide sintered body, and processes for producing these
WO2019235525A1 (en) * 2018-06-06 2019-12-12 Jfeミネラル株式会社 Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297964A (en) * 1997-04-28 1998-11-10 Sumitomo Metal Mining Co Ltd Production of zno-ga2o3-based sintered compact for sputtering target
CN101208453B (en) * 2005-06-28 2010-05-19 日矿金属株式会社 Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
KR100957733B1 (en) * 2005-06-28 2010-05-12 닛코 킨조쿠 가부시키가이샤 Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP2009235541A (en) * 2008-03-28 2009-10-15 Hitachi Metals Ltd Method for producing zinc oxide based sintered target
WO2011010603A1 (en) * 2009-07-21 2011-01-27 日立金属株式会社 TARGET FOR ZnO-BASED TRANSPARENT CONDUCTIVE FILM AND METHOD FOR PRODUCING SAME
JP5549918B2 (en) * 2009-11-25 2014-07-16 三菱マテリアル株式会社 Zn sputtering target for DC sputtering and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013189669A (en) 2013-09-26
TW201402846A (en) 2014-01-16
WO2013137020A1 (en) 2013-09-19
TWI554627B (en) 2016-10-21
CN103958729A (en) 2014-07-30
KR20140138614A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5888599B2 (en) Sputtering target and high resistance transparent film manufacturing method
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP5376117B2 (en) ZnO sputtering target and manufacturing method thereof
JP5418751B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP6024545B2 (en) Zinc oxide-based sintered body, method for producing the same, and sputtering target
TWI513835B (en) ZnO-MgO sputtering target sintered body
JP5499453B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5418748B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5549918B2 (en) Zn sputtering target for DC sputtering and manufacturing method thereof
JP2009096713A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP5376116B2 (en) ZnO vapor deposition material and method for producing the same
JP5018831B2 (en) Method for producing zinc oxide-based sintered body for sputtering target
JP2009097091A (en) ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM OR THE LIKE
JP6357757B2 (en) Oxide sintered body, sputtering target and oxide film using the same
JP2009096714A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2010222176A (en) ZnO SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP5602820B2 (en) Manufacturing method of ZnO sintered body
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
TWI748971B (en) Sn-Zn-O series oxide sintered body and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5888599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees