JP5598717B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5598717B2
JP5598717B2 JP2010282961A JP2010282961A JP5598717B2 JP 5598717 B2 JP5598717 B2 JP 5598717B2 JP 2010282961 A JP2010282961 A JP 2010282961A JP 2010282961 A JP2010282961 A JP 2010282961A JP 5598717 B2 JP5598717 B2 JP 5598717B2
Authority
JP
Japan
Prior art keywords
water
supply passage
unit
water level
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010282961A
Other languages
English (en)
Other versions
JP2012133915A (ja
Inventor
元彦 薮谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2010282961A priority Critical patent/JP5598717B2/ja
Priority to EP11193644.9A priority patent/EP2466677B1/en
Priority to US13/331,498 priority patent/US20120156579A1/en
Publication of JP2012133915A publication Critical patent/JP2012133915A/ja
Application granted granted Critical
Publication of JP5598717B2 publication Critical patent/JP5598717B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料を改質させる改質用水蒸気となる原料水を溜めるタンクを有する燃料電池システムに関する。
燃料電池システムは、一般的には、燃料電池と、原料水を蒸発させて水蒸気を生成させる蒸発部と、蒸発部で生成された水蒸気を用いて燃料を改質させてアノード流体を形成する改質部と、蒸発部に供給される原料水を溜めるタンクと、タンク内の原料水を蒸発部に供給させる供給通路と、供給通路に設けられた水搬送用のポンプとを備えている。ポンプが駆動すると、タンク内の原料水は供給通路を搬送され、高温の蒸発部に供給され、蒸発部において水蒸気とされる。その水蒸気は改質部に供給されて、燃料を水蒸気改質させてアノード流体(水素含有ガス)を形成する。上記したシステムでは、発電運転の開始にあたり、改質部に原料水を供給するタイミングが重要である。
特許文献1は、改質器の内部に温度センサを設け、温度センサの出力値にて改質器における水の有無を検知する技術を開示している。この場合、上記センサ温度が、改質器内部の水供給部の雰囲気温度よりも低いときには、改質器の内部に水有りと判定される。上記センサ温度が、改質器内部の水供給部雰囲気温度とほぼ同じであるとき、改質器の内部は水無しと判定される。
また、特許文献2は、改質用の原料水を供給させるショットポンプと改質器との間に、フロースイッチを設け、フロースイッチにてショットポンプの間欠流れを検出し、その検出信号から、単位時間当たりの原料水の供給量を算出する技術を開示している。
特許文献3は、水蒸気の原料とされる原料水を溜めるタンク内の原料水の水位変化量を検知するセンサを設け、タンク内の原料水の水位変化量に基づいて、原料水ポンプの駆動をフィードバック制御することにより、改質部の蒸発部に供給させる原料水の流量を調整する燃料電池用の改質装置を開示する。
特許文献4は、水蒸気の原料とされる原料水を溜めるタンク内に圧力センサを設置し、タンク内の原料水の変化量を圧力センサでモニタし、原料水ポンプの駆動を圧力センサの信号に基づいてフィードバック制御する液体送出制御システムを開示する。
特許文献5は、水蒸気の原料とされる原料水を改質器に供給させるポンプの起動時に、ポンプから吐出された水を水タンクに戻し、その後、改質器に水を送るよう回路を切替えることで、ポンプ起動時における水に含まれる空気が改質部へ流入することを防ぐ燃料電池システムを開示する。
特開2008−243594号公報 特開2008−159466号公報 特開2004-288505号公報 特開2005−276544号公報 特開2008−273822号公報
上記した技術によれば、発電運転の開始にあたり、燃料を改質させる水蒸気となる原料水を蒸発部ひいては改質部に供給するタイミングが重要である。原料水を蒸発部ひいては改質部に供給させるタイミングが遅延すると、蒸発部への給水が遅延し、改質部が過剰に高温となるおそれがある。この場合、コーキング(燃料の炭化現象)が改質部に発生するおそれがあり、改質触媒を劣化させるおそれがある。これに対して、原料水を蒸発部ひいては改質部に供給させるタイミングが速すぎると、改質部において過剰の水濡れが発生するおそれがある。この場合、改質触媒の活性度が低下するおそれがある。
本発明は上記した実情に鑑みてなされたものであり、システムの発電運転の開始にあたり、燃料を改質させる水蒸気となる原料水を蒸発部ひいては改質部に供給させるタイミングを良好に設定させ、これにより改質部におけるコーキングの抑制、および、改質部における過剰の水濡れの抑制に貢献できる燃料電池システムを提供することを課題とする。
本発明に係る燃料電池システムは、アノードにアノード流体が供給され、カソードにカソード流体が供給されて発電する燃料電池と、着火により燃焼が開始される燃焼部と、燃焼部の熱により原料水を蒸発させて水蒸気を生成させる蒸発部と、燃焼部の熱と蒸発部で生成された前記水蒸気とを用いて燃料を改質させてアノード流体を形成する改質部と、前記蒸発部に供給される原料水を溜めるタンクと、タンクの出口ポートと蒸発部の入口ポートとを連通させタンク内の原料水を前記入口ポートから蒸発部に供給させる供給通路と、供給通路において蒸発部の入口ポートの直前の水の水位を検知する水センサと、供給通路に設けられ前記水蒸気を生成させるために前記タンク内の水を蒸発部に搬送させる水搬送源と、水搬送源を制御する制御部とを具備しており、
燃料電池の発電運転の開始にあたり、燃焼部の着火前に、制御部は、供給通路において原料水収容空間が形成されている状態において、水搬送源を回転させることによりタンク内の原料水を供給通路に供給させ、且つ、水センサの検知信号に基づいて供給通路における原料水の水位を監視しつつ原料水の水位を蒸発部の入口ポートの直前に設定させるように水搬送源の回転を制御させる原料水水位設定処理を実施し、さらに、制御部は、原料水水位設定処理の開始時に、水搬送源を逆回転させることにより供給通路内の原料水をタンクに戻す処理を実行する。
本発明に係る燃料電池システムによれば、燃料電池の発電運転の開始にあたり、燃焼部の着火前に、制御部は、水センサの検知信号に基づいて供給通路における原料水の水位を監視しつつ、原料水の水位を蒸発部の入口ポートの直前に設定させるように水搬送源の回転を制御させる。その後、燃焼部に燃料と空気が供給されて燃焼部が着火部により着火される。このように燃焼部が着火された後、蒸発部、改質部は高温となるため、制御部は、燃料電池の発電運転を開始させる。
上記したように供給通路における原料水の水位を蒸発部の入口ポートの直前に設定させれば、燃料電池の発電運転にあたり、燃料を改質器に供給させるタイミングと、原料水を蒸発部に供給させるタイミングとを互いに適度に対応させることができる。このため、燃焼部の着火後に原料水を蒸発部に供給させるタイミングが遅延することが抑制される。よって、コーキング(燃料の炭化現象)が改質部に発生するおそれが抑制され、改質触媒を劣化させるおそれが抑制される。あるいは、燃焼部の着火後に、原料水を蒸発部に供給させるタイミングが速すぎることが抑制され、改質部において過剰の水濡れが発生するおそれが抑制される。
本発明に係る燃料電池システムによれば、燃焼部の着火許可前に、制御部は、水センサの検知信号に基づいて供給通路における原料水の水位を監視しつつ、原料水の水位を蒸発部の入口ポートの直前に設定させるように水搬送源の回転を制御させる。その後、燃焼部に燃料と空気が供給されて燃焼部が着火部により着火される。このように燃焼部が着火された後、蒸発部、改質部は高温となるため、制御部は、燃料電池の発電運転を開始させる。上記したように燃料電池の発電運転にあたり、燃料を改質器に供給させるタイミングと、原料水を蒸発部に供給させるタイミングとを互いに合わせることができる。システムの発電運転の開始にあたり、改質部におけるコーキングの抑制、改質部における過剰の水濡れの抑制に貢献できる。
実施形態1に係り、燃料電池システムを示す図である。 供給通路のうち蒸発部の入口ポートの直前に設けられている水位センサ付近を模式的に示す図である。 供給通路のうち蒸発部の入口ポートの直前に設けられている水位センサ付近を模式的に示す図である。 実施形態5に係り、制御部が実行する原料水水位設定処理のフローチャートである。 実施形態6に係り、制御部が実行する原料水水位設定処理のフローチャートである。 実施形態7に係り、制御部が実行する原料水水位設定処理のフローチャートである。
さらに、制御部は、原料水水位設定処理の開始時に、水搬送源を逆回転させることにより供給通路内の原料水をタンクに戻す処理を実行する。この場合、供給通路内の原料水の全部をタンクに戻し、供給通路を空の状態とすることが好ましい。場合によっては、供給通路内の原料水の一部をタンクに戻すことにしても良い。
システムが発電停止した時刻からの経過時間につれて、供給通路における原料水の水位は次第に低下する。しかし、システムが発電運転を停止した時刻からの時間経過が短いと、供給通路における原料水の水位の低下は少ないため、原料水水位設定処理を実行する必要性が乏しい。更に、原料水水位設定処理の実行にはある程度時間を必要とするため、システムの発電開始指令からの時間がそれだけ長くなり、好ましくない。そこで、好ましい形態によれば、燃料電池の発電運転の開始にあたり、制御部は、システムが発電運転を停止した時刻から第1所定時間経過する前には、供給通路における原料水の水位の低下は少ないため、制御部は、原料水水位設定処理を実行せずに燃焼部の着火を許可する。この場合、原料水水位設定処理が実行されないため、システムの発電運転の開始指令時刻から迅速に発電運転を行うことができる。これに対して、システムが発電運転を停止した時刻から第1所定時間経過した後には、供給通路における原料水の水位の低下は多い。この場合、供給通路における原料水の水位の低下は無視できない。この場合、制御部は、供給通路の原料水の水位を高い精度で認識していることが好ましい。そこで、システムが発電運転を停止した時刻から第1所定時間経過した後には、制御部は、原料水水位設定処理を実行し、供給通路における原料水の水位を一定に設定した後に、燃焼部の着火が許可されることが好ましい。
システムの発電運転が停止されている場合において、システムが発電運転を停止してからの経過時間につれて、改質部の温度が次第に低下すると共に、供給通路における原料水の水位が定位置から次第に低下する。そこで、好ましい形態によれば、改質部の温度に関する基準温度を検知する温度センサが設けられている。この場合、燃料電池の発電運転の開始にあたり、温度センサで検知した改質部の温度Txが閾値温度T11以上であるときには、システム停止時刻からの経過時間が短く、供給通路における原料水の水位の低下が少ないと考えられる。このため制御部は、原料水水位設定処理を実行せずに燃焼部の着火を許可する。これに対して、温度センサで検知した改質部の温度Txが閾値温度T11未満であるときには、温度Txが低めであり、システム停止時刻からの経過時間が長く、供給通路における原料水の水位の低下が多いと考えられる。そこでこのような場合には、制御部は、原料水水位設定処理を実行し、供給通路の原料水の水位を蒸発部の入口ポートの直前に設定した後に、燃焼部の着火を許可する。ここで、改質部に供給される燃料等にもよるが、改質部の運転温度が400℃以上℃であるときには、閾値温度T11は例えば100〜110℃の範囲内の任意値にできる。但しこれに限定されるものではない。
必要に応じて、制御部は、原料水水位設定処理の実行途中において、水搬送源の水搬送速度を減速させる減速処理を実行することができる。供給通路において、蒸発部の入口ポートの直前の位置に水位を設定させ易い。または、制御部は、原料水水位設定処理の実行途中において、水搬送源の水搬送を一時的に停止させ、その後再開させる中断処理を実行することができる。この場合、空気泡の巻き込みが抑えられる。
[実施形態1]
図1は実施形態1の概念を示す。図1に示すように、燃料電池システムは、燃料電池1と、液相状の水を蒸発させて水蒸気を生成させる蒸発部2と、蒸発部2で生成された水蒸気を用いて燃料を改質させてアノード流体を形成する改質部3と、蒸発部2と改質部3を加熱する燃焼部105と、蒸発部2に供給される液相状の水を溜めるタンク4と、これらを収容するケース5とを有する。燃料電池1は、イオン伝導体を挟むアノード10とカソード11とをもち、例えば、SOFCとも呼ばれる固体酸化物形燃料電池(運転温度:例えば400℃以上)を適用できる。アノード10側から排出されたアノード排ガスはアノード排ガス路103を介して、燃焼部105に供給される。カソード11側から排出されたカソード排ガスはカソード排ガス路104を介して、燃焼部105に供給される。燃焼部105は前記アノード排ガスとカソード排ガスとを燃焼させ蒸発部2と改質部3を加熱させる。燃焼部105には燃焼排ガス路75が設けられ、燃焼部105における燃焼後のガスおよび、未燃焼のガスを含む燃焼排ガスが燃焼排ガス路75を介して大気中に放出される。
改質部3は、セラミックス等の担体に改質触媒を担持させて形成されており、蒸発部2に隣設されている。改質部3および蒸発部2は改質器2Aを構成しており、燃料電池1と共に断熱壁19で包囲され、発電モジュール18を形成している。改質部3の内部には、改質部3の温度を検知する基準温度センサ33が、燃焼部105の内部には、燃料を着火させるヒータである着火部35が設けられている。着火部35は燃焼部105の燃料に着火できるものであれば何でも良い。基準温度センサ33の信号は制御部100に入力される。基準温度とは、原料水水位設定処理を実行するか否かの基準となる温度を意味する。制御部100は着火部35を作動させて燃焼部105を着火させて高温化させる。制御部100は警報器102をもつ。
発電運転時には、改質器2Aは改質反応に適するように断熱壁19内において加熱される。発電運転時には、蒸発部2は水を加熱させて水蒸気とさせ得るように加熱される。燃料電池1がSOFCタイプの場合には、アノード10側から排出されたアノード排ガスとカソード11側から排出されたカソード排ガスが燃焼部105で燃焼するため、改質部3および蒸発部2は同時に加熱される。燃料通路6は、燃料源63からの燃料を改質器2Aに供給させるものであり、燃料ポンプ60および脱硫器62をもつ。燃料電池1のカソード11には、カソード流体(空気)をカソード11に供給させるためのカソード流体通路70が繋がれている。カソード流体通路70には、カソード流体搬送用の水搬送源として機能するカソードポンプ71が設けられている。
図1に示すように、ケース5は外気に連通する吸気口50と排気口51とをもち、更に、第1室である上室空間52と、第2室である下室空間53とをもつ。燃料電池1は、改質部3および蒸発部2と共に、ケース5の上側つまり上室空間52に収容されている。ケース5の下室空間53には、改質部3で改質される液相状の水を溜めるタンク4が収容されている。タンク4には、電気ヒータ等の加熱機能をもつ加熱部40が設けられている。加熱部40は、タンク4に貯留されている水を加熱させるものであり、電気ヒータ等で形成できる。外気温度等の環境温度が低いとき等には、制御部100からの指令に基づいて、タンク4の水は加熱部40により所定温度(例えば5℃、10℃、20℃)以上に加熱され、凍結が抑制される。
図1に示すように、下室空間53側のタンク4の出口ポート4pと上室空間52側の蒸発部2の入口ポート2iとを連通させる供給通路8が、配管としてケース5内に設けられている。図1に示すように、ケース5内において、タンク4は蒸発部2の下側に配置されているため、供給通路8は基本的には縦方向に沿って延びる。
供給通路8は、タンク4内に溜められている水をタンク4の出口ポート4pから蒸発部2に供給させる通路である。供給通路8には、タンク4内の水を蒸発部2まで搬送させる水搬送源として機能するポンプ80が設けられている。ポンプ80はギヤポンプ等を例示できる。ポンプ80はこれを駆動させる電気式のモータ82をもつ。ポンプ80は高い水シール性をもち、供給通路8においてポンプ80の吐出ポート80pよりも下流上方の下流通路8dに水が存在する場合であっても、その水はポンプ80よりも上流側の上流通路8uに漏れることが基本的には抑制されている。従って、燃料電池システムの運転停止直後には、図2、3に示すように供給通路8においてポンプ80の吐出ポート80pよりも下流の下流通路8dの定位置に水W1の水位W10が存在する。しかし燃料電池システムの運転停止直後から長い時間が経過すると、重力等の影響で、その水は極く微量づつポンプ80の上流側の上流通路8u、更にはタンク4側に漏れることが確認されている。
本実施形態によれば、ポンプ80を駆動させるモータ82は正回転および逆回転可能とされている。すなわち、モータ82は、正方向に回転駆動してタンク4内の水を出口ポート4pから蒸発部2の入口ポート2iに向けて搬送させる正モードと、逆方向に回転駆動して供給通路8の水を出口4pからタンク4内に戻す逆モードとに切り替え可能とされている。従って、モータ82を有するポンプ80は、タンク4内の水を蒸発部2に搬送させる正モードと、供給通路8の水をタンク4内に戻す逆モードとに切り替え可能とされている。モータ82を駆動回路を介して制御するための制御部100が設けられている。モータ82としては、正回転および逆回転可能なモータであれば何でも良いが、ステッピングモータ、DCモータが好ましい。制御部100はモータ82を介してポンプ80を制御する。更に、制御部100はポンプ71,79,60を駆動させるモータを介してポンプ71,79,60を制御する。
システムの運転時において、ポンプ80が正モードで駆動すると、タンク4内の水は、タンク4の出口ポート4pから蒸発部2の入口ポート2iに向けて供給通路8内を搬送され、蒸発部2で加熱されて水蒸気とされる。水蒸気は燃料通路6から供給される燃料(ガス状が好ましいが、場合によっては液相状としても良い)と共に改質部3に移動する。改質部3において燃料は、水蒸気で改質されてアノード流体(水素含有ガス)となる。アノード流体はアノード流体通路73を介して燃料電池1のアノード10に供給される。更にカソード流体(酸素含有ガス、ケース5内の空気)がカソード流体通路70を介して燃料電池1のカソード11に供給される。これにより燃料電池1が発電する。燃料電池1で排出された排ガスは、燃焼部105で燃焼し、燃焼排ガスが燃焼排ガス路75を介して大気中に放出される。
燃焼排ガス通路75には、凝縮機能をもつ熱交換器76が設けられている。貯湯槽77に繋がる貯湯通路78および貯湯ポンプ79が設けられている。貯湯通路78は往路78aおよび復路78cをもつ。貯湯槽77の低温の水は、貯湯ポンプ79の駆動により、貯湯槽77の吐出ポート77pから吐出されて往路78aを通過し、熱交換器76に至り、熱交換器76の熱交換作用により加熱される。熱交換器76で加熱された水は、復路78cを介して帰還ポート77iから貯湯槽77に帰還する。このようにして貯湯槽77の水は温水となる。前記した排ガスに含まれていた水蒸気は、熱交換器76で凝縮されて凝縮水となる。凝縮水は、熱交換器76から延設された凝縮水通路42を介して重力等により浄水部43に供給される。浄水部43はイオン交換樹脂等の水浄化剤43aを有するため、凝縮水の不純物は除去される。不純物が除去された水は水タンク4に移動し、水タンク4に溜められる。ポンプ80が正モードで駆動すると、水タンク4内の水は供給通路8を介して高温の蒸発部2に供給され、蒸発部2で水蒸気とされて改質部3に供給され、改質部3において燃料を改質させる改質反応として消費される。
図2は、供給通路8のうち蒸発部2の入口ポート2iの手前に水位センサ87として、静電容量式センサまたは電気抵抗式センサが設けられている状態の一例を示す。静電容量式センサは、水の存在と不存在とにおける静電容量変化に基づいて供給通路8の水W1の水位W10を検知する。図3は、供給通路8のうち蒸発部2の入口ポート2iの手前に水位センサ87として圧力センサが設けられている状態の一例を示す。圧力センサは供給通路8のうち検知部87xよりも上方に位置する水の圧力に基づく水頭圧を検知する。圧力センサは、水の存在と不存在とにおける水頭圧変化に基づいて水W1の水位W10を検知する。水位センサ87の検知信号は制御部100に入力される。
さて、燃料電池システムの発電運転が停止されている場合には、蒸発部2で水蒸気を生成させる必要がないため、タンク4の水が供給通路8に供給されることが制限される。この場合、ポンプ80のシール性が良好である。このため、発電運転の停止時刻t10から短時間であれば、供給通路8においてポンプ80の吐出ポート80pよりも下流側の下流通路8dの水が、ポンプ80の上流側の上流通路8uに直ちに漏れることがない。但し、本実施形態によれば、ポンプ80の構造上、供給通路8においてポンプ80の吐出ポート80pよりも下流通路8dの水がポンプ80の上流通路8u側に、単位時間あたり極く微量づつ漏れることになる。従って、システムの停止時刻t10から長時間が経過すると、供給通路8においてポンプ80の吐出ポート80pよりも下流通路8dの水がポンプ80の上流通路8u側に少しずつ漏れ、供給通路8に保持されている水W1の水位W10の高さ位置が定位置から少しずつ低下するおそれがある。更に、供給通路8のうち下流通路8dに残留する水W1が蒸発して水位W10の高さ位置が定位置から低下することもある。
この場合、システムの発電運転を次に再開させるとき、水W1の水位W10の高さ位置の低下の影響で、水W1を蒸発部2に供給させるタイミングが変化するおそれがある。この場合、前述したように、水W1を蒸発部2に供給させるタイミングが正規タイミングに対して遅延すると、蒸発部2への給水が遅延するため、改質部3が異常高温となり、コーキング(燃料の炭化現象)が改質部3に発生するおそれがあり、改質触媒の劣化を誘発させるおそれがある。あるいは、水W1を蒸発部2に供給させるタイミングが正規タイミングに対して速すぎると、蒸発部2および改質部3において過剰の水濡れが発生するおそれがある。この場合、改質部3に担持されている改質触媒の活性度が低下するおそれがある。
そこで本実施形態によれば、燃料電池1の発電運転の再開にあたり、燃焼部105の着火前(燃焼部105の着火許可前)に、制御部100は、供給通路8において原料水収容空間が形成されている状態において、ポンプ80を回転させることによりタンク4内の原料水を供給通路8に供給させることにより、原料水水位設定処理を実施する。原料水水位設定処理においては、制御部100は、水センサ87の検知信号に基づいて、供給通路8における水W1の実際の水位W10を監視しつつ、供給通路8における水W1の水位8Wを蒸発部2の入口ポート2iの直前の定位置に設定させるようにポンプ80の回転を制御させる。
すなわち、水センサ87が水を検知しないときには、制御部100は、ポンプ80を正回転させて、タンク4内の水を少量ずつ供給通路8に供給させる。水センサ87が水を検知すると、これをトリガー信号として、制御部100はポンプ80の正回転を停止させる。この結果、制御部100は供給通路8の水W1の水位W10を蒸発部2の入口ポート2iの直前の定位置に設定させる。
ここで、『蒸発部2の入口ポート2iの直前』とは、タンク4の出口ポート4pと蒸発部2の入口ポート2iとの間に延設された供給通路8の全長を100として相対表示するとき、蒸発部2の入口ポート2iを起点としてタンク4に向けて0.01〜15の範囲内の任意値を意味する。例えば、0.1〜10の範囲内の任意値、0.5〜5の範囲内の任意値にできる。
本実施形態によれば、上記したように制御部100は、供給通路8における原料水W1の水位W10を蒸発部2の入口ポート2iの直前の定位置に設定させる。その後、制御部100は、システムを起動させるべく、燃焼部105の着火操作を許可し、燃料ポンプ60を駆動させて燃料を燃料通路6から改質部3、アノード10、アノード排ガス路103を介して、燃焼部105に供給される。またカソードポンプ71を駆動させて空気をカソード流体通路70からカソード11、カソード排ガス路104を介して、燃焼部105に供給される。その後着火部35をオンさせて燃焼部105を着火させる。すると、燃焼部105の着火に伴い燃焼が発生し、蒸発部2は高温となり水は水蒸気となり、改質部3は高温となり、燃料の改質反応に適する温度となる。但し、本実施形態によれば、制御部100は、上記した原料水水位設定処理の開始の初期時において、ポンプ80を逆回転させることにより供給通路8内の原料水をタンク4に戻し、供給通路8内を空の状態とする戻し処理を実行することが好ましい。供給通路8が空の状態は、供給通路8の基準状態(0点状態)である。この場合、供給通路8の前記直前の部位まで通路長および通路容積は既知である。このため、モータ82の駆動時間およびモータ82への給電量を制御すれば、駆動時間および給電量に基づいてタンク4の水を供給通路8のうち蒸発部2の入口ポート2iの直前の位置まで水W1の水位W10として容易に到達させ得る。
上記したように供給通路8に残留している水W1をタンク4に戻せば、その水W1に含まれている塵埃等をタンク4の底部に溜めることが可能となる。この場合、塵埃等が蒸発部2を介して改質部3に供給されることが抑制され、改質部3の改質触媒等の保護性を更に高め得る。また、供給通路8の水が長期間にわたり保持されている場合には、供給通路8内の水W1の品質が変動するおそれがあるが、供給通路8の水W1をタンク4に戻せば、タンク4の水で希釈化できる。
本実施形態によれば、燃焼部105が着火され、システムの状態が発電運転に移行したときには、制御部100は、ポンプ80を間欠的に駆動させて供給通路8内の水を間欠的に蒸発部2に供給させる。この場合、制御部100は、発電運転時において、水センサ87の間欠的な検知信号により水の存在を検知し易くなるため、ポンプ80の駆動が正常であること、即ち、水蒸気となり得る原料水が蒸発部2に正常に供給されていることを間欠的に検知できる。但し、ポンプ80を連続的に駆動させて供給通路8内の水を連続的に蒸発部2に供給させても良い。この場合においても、ポンプ80を回転させることによりタンク4内の水を供給通路8に供給させ、且つ、水センサ87の検知信号に基づいて供給通路8における水W1の実際の水位W10を監視しつつ、水W1の水位W10の目標値を蒸発部2の入口ポート2iの直前の定位置に設定させるようにポンプ80の正回転を制御させる。
なお本実施形態によれば、供給通路8には流量計が設けられていない。その理由としては、流量計は高価であること、流量計への異物等の巻き込みが存在し得ること、ポンプ80の脈動等が発生することによる誤検知が存在し得ること、本システムの単位時間あたりの水W1の最低流量(例えば0.3〜30cc/min程度、0.5〜30cc/min)の計測は必ずしも容易ではないこと等である。但し、場合によっては、供給通路8に流量計を設けても良い。
[実施形態2]
本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。本実施形態によれば、制御部100は、上記した原料水水位設定処理の開始時の初期に、ポンプ80を逆回転させることにより供給通路8内の水W1の一部をタンク4に戻す戻し処理を実行する。但し、供給通路8内を空の状態とさせる実施形態1と異なり、供給通路8内を空の状態とはしない。この場合、水抜き時間が短縮される。制御部100は、戻し処理を実行した後、モータ82の駆動時間およびモータ82への給電量を制御することによりポンプ80を正回転させ、タンク4の水を供給通路8のうち蒸発部2の入口ポート2iの直前の定位置まで水W1の水位W10を到達させ得る。供給通路8のうち蒸発部2の入口ポート2iの直前の定位置まで水W1の水位W10を到達させたことが水センサ87により検知されたら、制御部100はポンプ80の回転を停止させる。
[実施形態3]
本実施形態は前記した各実施形態と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。ポンプ80を回転させるモータとしては、ステッピングモータ82sが採用されている。ステッピングモータ82sの正モードの駆動時間taおよび正モードにおいてステッピングモータ82aへ給電されるパルス総数量Naは、供給通路8が空の状態(基準状態)のとき、供給通路8の水を供給通路8のうち蒸発部2の入口ポート2iの直前の位置(水センサ87で水が検知される位置)まで到達させ得るように設定されている。
これに対して、ステッピングモータ82sの逆モードの駆動時間tcおよび逆モードにおいてステッピングモータ82aへ給電されるパルス総数量Ncは、供給通路8のうち蒸発部2の入口ポート2iの直前の位置(水センサ87で水が検知される位置)まで供給されている水W1をタンク4に戻して供給通路6を空の状態(基準状態)させるように設定されている。
燃料電池1の発電運転の再開にあたり、燃焼部105の着火前に、制御部100は、供給通路8において原料水収容空間が形成されている状態において、ポンプ80を正回転させ。これによりタンク4内の原料水を供給通路8に供給させ、原料水水位設定処理を実施する。原料水水位設定処理においては、制御部100は、水センサ87の検知信号に基づいて、供給通路8における水W1の実際の水位W10を監視しつつ、供給通路8における水W1の水位8Wを蒸発部2の入口ポート2iの直前の定位置に設定させるように、ポンプ80の正回転を制御させる。すなわち、水センサ87が水を検知しないときには、制御部100はポンプ80を正回転させて、供給通路8に水を供給させる。水センサ87が水を検知すると、これをトリガー信号として、制御部100はポンプ80の正回転を停止させる。この結果、供給通路8の水W1の水位W10を蒸発部2の入口ポート2iの直前の定位置に設定させる。
本実施形態によれば、このように供給通路8における原料水W1の水位W10を蒸発部2の入口ポート2iの直前に設定させた後、制御部100は燃料ポンプ60を駆動させて燃料通路6から改質部3に燃料を供給させると共に、着火部35をオンさせて燃焼部105の着火操作を行う。すると、着火に伴い改質部3は高温となり、燃料の改質反応に適する温度となる。
[実施形態4]
本実施形態は実施形態1〜3と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。本実施形態によれば、水センサ87が水を検知しないときには、制御部100はポンプ80を正回転させて、供給通路8に水を少量ずつ供給させる。水センサ87が水を検知すると、これをトリガー信号として、制御部100はポンプ80の正回転を停止させる。この結果、制御部100は供給通路8の水W1の水位W10を蒸発部2の入口ポート2iの直前の定位置に設定させる。水センサ87が圧力センサであれば、圧力センサの検知する出力値が過剰に大きい場合には、水頭圧が大きいことになる。この場合、圧力センサの検知部87x(図3参照)の上方の水位は高すぎることになる。このため、制御部100は、圧力センサの検知する出力値が所定値よりも過剰に大きい場合には、逆回転可能なモータ82(ステッピングモータ82s)を逆回転させ、ひいてはポンプ80を逆回転させ、供給通路8の水W1の減少させて水位W10を下降させる。このように制御部100は、水センサ87の検知信号に基づいて、モータ82を正回転および逆回転させることにより、供給通路8の水W1の水位W10を蒸発部2の入口ポート2iの直前の定位置に設定させる。
[実施形態5]
図4は実施形態5を示す。本実施形態は実施形態1〜4と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。図4は制御部100のCPUが実行するフローチャートを示す。まず、制御部100は、システムの発電開始の指令が出力されているかを判定し(ステップS102)、更に、現時点が着火前か否かを判定する(ステップS104)。発電開始指令が出力されており(ステップS102のYES)、且つ、着火前であれば(ステップS104のYES)、ポンプ80を逆モードとしてモータ82を逆回転させてポンプ80を逆回転させ、供給通路8の水抜き処理を実行する(ステップS106)。カウンタBを1インクリメントする(ステップS108)。水抜き処理が完了していなければ(ステップS110のNO)、カウンタBを閾値Bxと比較する。カウンタBが閾値Bx未満であれば(ステップS112の YES)、ポンプ80の逆モードを引き続き継続させ、水抜き処理を継続させる(ステップS106)。供給通路8の水抜きが完了していないにも拘わらず、カウンタBが閾値Bx以上となれば(ステップS112のNO)、供給通路8の詰まり、ポンプ80の故障等が推定されるため、制御部100は水抜き異常の信号を出力し(ステップS128)、メインルーチンにリターンする。水拭き処理の完了は、例えば、供給通路8内が大気圧となること、ポンプ80の逆モードにおける駆動時間または給電パルス総数に基づいて検知できる。
カウンタBが閾値Bx未満で供給通路8の水抜きが完了すれば(ステップS110のYES)、水抜き処理は良好である。水抜き処理が完了すれば、所定時間Δte待機する。主として、モータ82の正逆モードの切り替えなどのためである。その後、制御部100はポンプ80を正モードとさせ、モータ82を正回転させてポンプ80を正回転させてタンク4内の水を供給通路8に供給させ(ステップS116)、カウンタAを1インクリメントする(ステップS118)。制御部100は、水センサ87の信号に基づいて、供給通路8の水W1の水位W10が蒸発部2の入口ポート2iの直前の定位置に到達しているか否かを判定する(ステップS120)。水センサ87の検知結果に基づいて、供給通路8の水W1の水位W10が蒸発部20の入口ポート20iの直前の定位置に到達していないとき(ステップS120のNO)、カウンタAを閾値Axと比較する(ステップS122)。供給通路8の水W1の水位W10が蒸発部20の入口ポート20iの直前の定位置に到達しておらず(ステップS120のNO)、カウンタAが閾値Ax未満であれば(ステップS122のYES)、ポンプ80の正モードを継続させる(ステップS116)。水センサ87がオンしていないにも拘わらず、すなわち、供給通路8の水W1の水位W10が蒸発部20の入口ポート20iの直前の定位置に到達していないにもかかわらず、カウンタAが閾値Ax以上となれば(ステップS122のNO)、供給通路8の水漏れ、ポンプ80の故障等が推定されるため、制御部100は水供給異常の信号を出力する(ステップS126)。水センサ87の検知結果に基づいて、供給通路8の水が蒸発部2の入口ポート2iの直前の定位置に到達していると判定されるときには(ステップS120のYES)、制御部100は正モードを停止し、モータ82およびポンプ80の正回転を停止させる(ステップS138)。その後、制御部100は燃焼部105の着火許可の信号を出力し(ステップS140)、その他の処理を実行し(ステップS142)、メインルーチンにリターンする。
[実施形態6]
本実施形態は実施形態1〜5と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。ポンプ80を駆動させるモータとしては、正回転および逆回転可能なステッピングモータ82s(図1参照)とされている。システムが発電停止した時刻t10からの時間の経過につれて、供給通路8における水W1の実際の水位W10は次第に低下する。しかし、システムが発電運転を停止した時刻からの時間経過が短いと、供給通路8における水W1の水位W10の低下は少ないため、原料水水位設定処理する必要性が乏しい。更に、原料水水位設定処理はある程度時間を必要とするため、システムの発電開始指令からの時間が長くなり、好ましくない。
そこで、本実施形態によれば、燃料電池1の発電運転の開始にあたり、制御部100は、システムが発電運転を停止した時刻t10から第1所定時間経過t11する前には、供給通路8における水W1の水位W10の低下は少ないため、制御部100は、原料水水位設定処理を実行せずに燃焼部105の着火を許可する。この場合、原料水水位設定処理が実行されないため、システムの発電運転の開始指令が出力された時刻から迅速に発電運転を行うことができる。
これに対して、システムが発電運転を停止した時刻t10から第1所定時間経過t11(例えば3時間以上の長時間)経過した後には、供給通路8における水W1の水位W10の低下は多い。この場合、供給通路8における水W1の水位W10の低下は無視できない量となる。しかし、制御部100は、供給通路8の水W1の水位W10を高い精度で認識していることが好ましい。そこで、システムが発電運転を停止した時刻t10から第1所定時間t11経過した後には、制御部100は、原料水水位設定処理を実行し、供給通路8における水W1の水位W10を定位置に設定した後に、燃料ポンプ60が駆動して改質部3に燃料が供給されると共に燃焼部105が着火される。
図5は制御部100のCPUが実行するフローチャートの一例を示す。制御部100は、時間を計測させるタイマー機能を有する。まず、制御部100は、システムの発電開始の指令が出力されているかを判定する(ステップS202)。次に、現時点が着火前か否かを判定する(ステップS204)。発電開始指令が出力されており(ステップS202のYES)、且つ、現時点が着火前であれば(ステップS204のYES)、制御部100は、システムの前回の発電停止の時刻t10から経過している時間tmを読み込む(ステップS206)。システムの前回の発電運転を停止した時刻からの時間tmが短いと、供給通路8における水W1の水位W10の低下は少ないため、原料水水位設定処理を実行する必要性が乏しい。
そこで、本実施形態によれば、燃料電池1の発電運転の開始にあたり、制御部100は、システムが発電運転を停止した時刻t10からの経過時間tmが第1所定時間経過t11よりも短いときには(ステップS208のYES)、供給通路8における水W1の水位W10の低下は少ないため、制御部100は、原料水水位設定処理を実行せずに(ステップS210)、燃焼部105の着火許可信号を出力し(ステップS212)、更に、その他の処理を行い(ステップS214)、メインルーチンに戻る。この場合、原料水水位設定処理が実行されないため、システムの発電運転の開始指令時刻からできるだけ迅速に発電運転は開始される利点が得られる。
これに対して、システムが発電運転を停止した時刻t10から経過した経過時間tmが第1所定時間経過t11よりも長いとき(ステップS208のNO)、供給通路8における水W1の水位W10の低下は多いと推定される。この場合、供給通路8における水W1の水位W10の低下は無視できない。このため、水センサ87の検知結果に基づいて、供給通路8の水W1の水位W10が蒸発部2の入口ポート2iの直前の定位置に到達していることが確認されるまで、制御部100は原料水水位設定処理を実行する(ステップS222,S224)。そして、水センサ87のオンが確認され、供給通路8の水W1の水位W10が蒸発部2の入口ポート2iの直前に到達していることが確認されたら(ステップS224のYES)、制御部100は燃焼部105の着火を許可する信号を出力し(ステップS212)、更にその他の処理を行い(ステップS214)、メインルーチンにリターンする。この場合、原料水水位設定処理が実行されているため、供給通路8における水W1の水位W10が蒸発部2の入口ポート2iの直前の定位置に到達している。
[実施形態7]
図6は実施形態7を示す。本実施形態は前記した各実施形態1〜6と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。システムの発電運転が停止されている場合において、システムが発電運転を停止した時刻t10から経過した経過時間につれて、改質部3の温度が次第に低下すると共に、供給通路8における水W1の実際の水位W10が次第に低下する。そこで、改質部3に関する基準温度をパラメータとすべく、改質部3に関する基準温度を検知する基準温度センサ33が改質部3に設けられている。基準温度センサ33の検知信号は制御部100に入力される。この場合、システムの発電運転の開始にあたり、制御部100は、基準温度センサ33で検知した温度Txが閾値温度T11以上であるときには、改質部3はまだ残熱をもち、高温であり、ひいてはシステム停止時刻t10からの経過時間が短く、供給通路8における水W1の水位W10の低下が少なく、低下が無視できるものと考えられる。このため制御部100は、原料水水位設定処理を実行せずに、燃焼部105の着火を許可する。
これに対して、基準温度センサ33で検知した温度Txが閾値温度T11未満であるときには、改質部3の温度Txが低めであり、システム停止時刻t10からの経過時間が長く、供給通路8における水W1の水位W10の低下量が多いと考えられる。そこで制御部100は、原料水水位設定処理を実行し、供給通路8の水W1の水位W10を蒸発部2の入口ポート2iの直前の定位置に設定し、その後、燃焼部105の着火を許可する。ここで、改質部3の種類にもよるが、閾値温度T11は100〜110℃の範囲内の任意値にできるが、この温度範囲内に限定されるものではない。
図6は、制御部100のCPUが実行するフローチャートの一例を示す。まず、制御部100は、システムの発電開始の指令が出力されているかを判定する(ステップS302)。次に、現時点が着火前か否かを判定する(ステップS304)。発電開始指令が出力されており(ステップS302のYES)、且つ、現時点が着火前であれば(ステップS304のYES)、制御部100は、改質部3の内部の温度を検知する基準温度センサ33の検知温度Txを読み込む(ステップS306)。基準温度センサ33の検知温度Txが高温であるとき、システムの前回の発電運転を停止した時刻t10から経過した経過時間tmが短い。この場合、供給通路8における水W1の水位W10の低下はほとんどなく、新しく原料水水位設定処理を実行する必要性が乏しい。そこで、本実施形態によれば、燃料電池1の発電運転の開始にあたり、制御部100は、基準温度センサ33の検知温度Txが閾値温度T11よりも高温であるときには(ステップS308のYES)、制御部100は、原料水水位設定処理を実行せずに(ステップS310)、燃焼部105の着火を許可し(ステップS312)、その他の処理を行い(ステップS314)、メインルーチンに戻る。この場合、原料水水位設定処理が実行されないため、システムの発電運転の開始指令時刻からできるだけ迅速に発電運転は開始される利点が得られる。
これに対して、基準温度センサ33の検知温度Txが閾値温度T11未満であるとき(ステップS308のNO)、システムが発電運転を停止した時刻t10からの経過時間が長く、供給通路8における水W1の水位W10の低下は、無視できない程多いと推定される。この場合、供給通路8における水W1の水位W10の低下は無視できない。このため、水センサ87のオンが確認されるまで、即ち、供給通路8において水W1の水位W10が蒸発部2の入口ポート2iの直前の定位置に到達していることが確認されていないときには、制御部100は、原料水水位設定処理を実行する(ステップS322,324)。その後、水センサ87のオンが確認され、すなわち、供給通路8において水が蒸発部2の入口ポート2iの直前の定位置に到達していることが確認されたら(ステップS324のYES)、制御部100は燃焼部105の着火を許可し(ステップS312)、その他の処理を行い(ステップS314)、メインルーチンにリターンする。この場合、原料水水位設定処理が実行されているため、供給通路8において水W1の水位W10が蒸発部2の入口ポート2iの直前の定位置に到達している。
[実施形態8]
本実施形態は前記した実施形態と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。更に本実施形態は次の特徴をもつ。供給通路8が空の状態のとき、供給通路8の通路長および通路容積は、配管の長さおよび内径等に基づくため既知である。原料水水位設定処理において、タンク4内の水を供給通路8に供給させるにあたりモータ82の回転速度を変化させることができる。具体的には、供給通路8が空の状態のとき、タンク4の出口ポート4pから水センサ87が検知する水位の位置までの供給通路8の通路長が100として相対表示されるとき、タンク4の出口ポート4pから中間値(例えば50〜95の範囲内の任意値)までの通路長については、モータ82(ステッピングモータ82s)の回転速度をVaとする。それ以降のモータ82(ステッピングモータ82s)の回転速度をVcとする。このとき、VcをVaよりも減速させてVc<Vaにできる。Vc/Va=0.1〜0.9の範囲内の任意値とすることができる。この場合、供給通路8を流れる水が水センサ87に近づくと、制御部100は、モータ82(ステッピングモータ82s)の回転速度を段階的(2段階、3段階、またはそれ以上の段階)に減速させる減速処理を実行し、供給通路8の水が水センサ87に近づくにつれて水の供給速度を減速させる。このため、供給通路8を流れる水の慣性力が水センサ87付近で低減され、水の過剰供給が抑制され易い。従って燃焼部105の着火前に、タンク4の水が蒸発部2の入口ポート2iに過剰進入することが抑制される。よって改質部3の過剰水濡れが抑制される。なお、供給通路8を流れる水が水センサ87に近づくにつれて、制御部100は、モータ82(ステッピングモータ82s)の回転速度を連続的に次第に減速させるように制御しても良い。
[実施形態9]
本実施形態は前記した実施形態と基本的には同様の構成および同様の作用効果を有するため、図1〜図3を準用する。更に本実施形態は次の特徴をもつ。供給通路8が空の状態のとき、供給通路8の通路長および通路容積は、配管の長さおよび内径等に基づくため既知である。原料水水位設定処理の実行途中において、タンク内の水を供給通路8に供給させるにあたり、モータ82の正回転をいったん停止させることができる。具体的には、供給通路8が空の状態のとき、タンク4の出口ポート4pから水センサ87までの供給通路8の通路長が100として相対表示されるとき、タンク4の出口ポート4pから中間値(タンク4の出口ポート4pからタンク4に向けて例えば30〜80の範囲内の任意値)までの通路長については、モータ82(ステッピングモータ82s)を連続的に正回転させる。その後、所定時間Δtk分モータ82(ステッピングモータ82s)を停止させ、ポンプ80の駆動を一時的に停止させる中断処理を実行させる。所定時間Δtkが経過した後、モータ82(ステッピングモータ82s)を再び正回転させてポンプ80を正回転させ、供給通路8内への水の供給を再開させる。この場合、空気泡が供給通路6に巻き込んでいるときであっても、上記したように供給通路6への給水をいったん中断し、その後に再開すれば、所定時間Δtk中に、空気泡を供給通路6の水面上方に浮上させることが期待できる。この場合、空気泡の影響を避けつつ、供給通路6のうち蒸発部2の入口ポート2iの直前の位置に水W1の水位W10を高精度で定位置に設定できる。中断処理後には、モータ82の回転速度をそれまでよりも遅くできる。水位W10を定位置に正確に設定させるためである。
[その他]
本発明は上記し且つ図面に示した各実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。加熱部40はタンク4に設けられているが、これに限らず、凝縮水通路42に設けられていても良い。場合によっては、温暖地などでは、加熱部40を廃止しても良い。燃料電池1は、場合によっては、PEFCとも呼ばれる固体高分子形燃料電池(運転温度:例えば70〜100℃)でも良いし、PAFCとも呼ばれるリン酸形燃料電池でも良く、他のタイプの燃料電池でも良い。要するに、気相または液相の燃料を水蒸気改質させる水蒸気を原料水から形成する蒸発部を有する燃料電池システムであれば良い。水位センサ87については、検知原理は特に制限されるものではなく、物理センサでも、化学センサでも良く、要するに水を検知できれば良い。燃料も特に制限されず、都市ガス、プロパンガス、バイオガス、LPG、CNG、灯油、ガソリン、アルコール等を利用できる。水搬送源としては、モータで駆動させるポンプ80に限定されず、水搬送能力をもつものであれば何でも良い。
上記した記載から次の技術的思想が把握される。
[付記項1]アノード流体およびカソード流体が供給されて発電する燃料電池と、着火により燃焼が開始される燃焼部と、燃焼部の熱により水を蒸発させて水蒸気を生成させる蒸発部と、燃焼部の熱と蒸発部で生成された前記水蒸気を用いて燃料を改質させてアノード流体を形成する改質部と、蒸発部に供給される水を溜めるタンクと、タンクに供給される水またはタンクに貯留されている水を加熱させる加熱部と、タンクと蒸発部とを連通させタンク内の水を蒸発部に供給させる供給通路と、供給通路に設けられタンク内の水を蒸発部に搬送させる水搬送源と、水搬送源を制御する制御部とを具備する燃料電池システム。水搬送源が駆動すると、タンク内の水は蒸発部に供給される。
1は燃料電池、10はアノード、11はカソード、2Aは改質器、2は蒸発部、105は燃焼部、3は改質部、33は基準温度センサ、35は着火部、4はタンク、40は加熱部、5はケース、57は温度センサ、6は燃料通路、70はカソード流体通路、73はアノード流体通路、75は燃焼排ガス通路、77は貯湯槽、8は供給通路、W1は水、W10は水位、80はポンプ(水搬送源)、82はモータ、82sはステッピングモータ(モータ)、87は水センサ、100は制御部を示す。

Claims (4)

  1. アノードにアノード流体が供給され、カソードにカソード流体が供給されて発電する燃料電池と、着火により燃焼が開始される燃焼部と、前記燃焼部の熱により原料水を蒸発させて水蒸気を生成させる蒸発部と、前記燃焼部の熱と蒸発部で生成された前記水蒸気とを用いて燃料を改質させて前記アノード流体を形成する改質部と、前記蒸発部に供給される原料水を溜めるタンクと、前記タンクの出口ポートと前記蒸発部の入口ポートとを連通させ前記タンク内の原料水を前記入口ポートから前記蒸発部に供給させる供給通路と、前記供給通路において前記蒸発部の前記入口ポートの直前の水の水位を検知する水センサと、前記供給通路に設けられ前記水蒸気を生成させるために前記タンク内の水を前記蒸発部に搬送させる水搬送源と、前記水搬送源を制御する制御部とを具備しており、
    前記燃料電池の発電運転の開始にあたり、前記燃焼部の着火前に、
    前記制御部は、前記供給通路において原料水収容空間が形成されている状態において、前記水搬送源を回転させることにより前記タンク内の原料水を前記供給通路に供給させ、且つ、前記水センサの検知信号に基づいて前記供給通路における原料水の水位を監視しつつ原料水の水位を前記蒸発部の前記入口ポートの直前に設定させるように前記水搬送源の回転を制御させる原料水水位設定処理を実施し、さらに、前記制御部は、前記原料水水位設定処理の開始時に、前記水搬送源を逆回転させることにより前記供給通路内の原料水を前記タンクに戻す処理を実行する燃料電池システム。
  2. 請求項において、前記燃料電池の発電運転の開始にあたり、前記制御部は、(i)システムが発電運転を停止した時刻から第1所定時間経過する前には、前記原料水水位設定処理を実行せずに前記燃焼部の着火を許可し、(ii)システムが発電運転を停止した時刻から前記第1所定時間経過した後には、前記原料水水位設定処理を実行した後、前記燃焼部の着火を許可する燃料電池システム。
  3. 請求項において、前記改質部に関する基準温度を検知する基準温度センサが設けられており、前記燃料電池の発電運転の開始にあたり、前記制御部は、(i)前記基準温度センサで検知した温度Txが閾値温度T11以上であるときには、前記原料水水位設定処理を実行せずに前記燃焼部の着火を許可し、(ii)前記基準温度センサで検知した温度Txが閾値温度T11未満であるときには、前記原料水水位設定処理を実行した後、前記燃焼部の着火を許可する燃料電池システム。
  4. 請求項1〜のうちの一項において、前記制御部は、前記原料水水位設定処理の実行途中において、前記水搬送源の水搬送速度を減速させる減速処理、または、前記水搬送源の水搬送を一時的に停止させ、その後再開させる中断処理を実行する燃料電池システム。
JP2010282961A 2010-12-20 2010-12-20 燃料電池システム Expired - Fee Related JP5598717B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010282961A JP5598717B2 (ja) 2010-12-20 2010-12-20 燃料電池システム
EP11193644.9A EP2466677B1 (en) 2010-12-20 2011-12-15 Fuel cell system
US13/331,498 US20120156579A1 (en) 2010-12-20 2011-12-20 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282961A JP5598717B2 (ja) 2010-12-20 2010-12-20 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2012133915A JP2012133915A (ja) 2012-07-12
JP5598717B2 true JP5598717B2 (ja) 2014-10-01

Family

ID=45346340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282961A Expired - Fee Related JP5598717B2 (ja) 2010-12-20 2010-12-20 燃料電池システム

Country Status (3)

Country Link
US (1) US20120156579A1 (ja)
EP (1) EP2466677B1 (ja)
JP (1) JP5598717B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179547A1 (en) 2015-12-07 2017-06-14 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792666B2 (ja) 2012-03-12 2015-10-14 アイシン精機株式会社 燃料電池システム
JP2014022232A (ja) * 2012-07-19 2014-02-03 Toto Ltd 固体酸化物型燃料電池
JP5994980B2 (ja) * 2012-07-19 2016-09-21 Toto株式会社 固体酸化物型燃料電池
EP2687481A3 (en) * 2012-07-19 2014-12-17 Toto Ltd. Solid oxide fuel cell device comprising a reformer
JP5327491B1 (ja) * 2012-07-19 2013-10-30 Toto株式会社 固体酸化物型燃料電池
US11085805B2 (en) 2013-10-30 2021-08-10 S1 Technologies, Inc. System and method for identifying a fuel loss
US11100456B2 (en) 2013-10-30 2021-08-24 S1 Technologies, Inc. System and method for determining volume of fluid in a tank
CA2959583C (en) * 2013-10-30 2017-09-05 S1 Technologies, Inc. System and method for determining volume of fluid in a tank
DE102014212835A1 (de) * 2014-07-02 2016-01-07 Volkswagen Aktiengesellschaft Brennstoffzellenvorrichtung mit Wasser übertragendem Anodengaspfad und Verfahren zum Betreiben einer Brennstoffzelle
JP6476696B2 (ja) 2014-09-30 2019-03-06 アイシン精機株式会社 燃料電池システム
JP6897301B2 (ja) * 2017-05-15 2021-06-30 株式会社アイシン 燃料電池システム
JP6984170B2 (ja) * 2017-05-18 2021-12-17 株式会社アイシン 燃料電池システム
JP6946788B2 (ja) * 2017-07-06 2021-10-06 株式会社アイシン 燃料電池システム
JP6972872B2 (ja) * 2017-10-04 2021-11-24 株式会社アイシン 燃料電池システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030322B2 (ja) * 2002-02-27 2008-01-09 荏原バラード株式会社 燃料処理装置、燃料電池発電システム、燃料処理方法及び燃料電池発電方法
JP2004288505A (ja) 2003-03-24 2004-10-14 Osaka Gas Co Ltd 燃料電池用の改質装置
US7028700B2 (en) * 2003-04-04 2006-04-18 Texaco, Inc. Method and apparatus for level control in a water tank of a fuel reformer
JP2005276544A (ja) 2004-03-24 2005-10-06 Aisin Seiki Co Ltd 液体送出制御システムおよびそのシステムを利用した燃料電池システム
JP2005276578A (ja) * 2004-03-24 2005-10-06 Aisin Seiki Co Ltd 流体供給システム
JP2007335332A (ja) * 2006-06-16 2007-12-27 Ebara Ballard Corp 燃料電池システム
JP5366357B2 (ja) * 2006-06-30 2013-12-11 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法および燃料電池システム
JP4959322B2 (ja) 2006-12-25 2012-06-20 京セラ株式会社 液体供給装置及びその運転方法、燃料電池装置及びその運転方法
JP5132143B2 (ja) * 2006-12-25 2013-01-30 京セラ株式会社 燃料電池装置
JP5121269B2 (ja) 2007-03-27 2013-01-16 京セラ株式会社 燃料電池装置
JP5285946B2 (ja) 2007-04-06 2013-09-11 パナソニック株式会社 水素生成装置の運転方法、及び燃料電池システムの運転方法
JP5057295B2 (ja) * 2008-10-24 2012-10-24 東芝ホームテクノ株式会社 燃料電池装置
JP2010238591A (ja) * 2009-03-31 2010-10-21 Toto Ltd 燃料電池システム
CN102379057B (zh) * 2009-04-01 2015-01-21 松下电器产业株式会社 燃料电池***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179547A1 (en) 2015-12-07 2017-06-14 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation system

Also Published As

Publication number Publication date
EP2466677A1 (en) 2012-06-20
US20120156579A1 (en) 2012-06-21
EP2466677B1 (en) 2013-07-10
JP2012133915A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5598717B2 (ja) 燃料電池システム
JP4267570B2 (ja) ヒータ内蔵型ガスセンサの作動開始方法および作動停止方法
EP2963725B1 (en) Fuel cell system
US9559371B2 (en) Fuel cell system
JP2012028165A (ja) 燃料電池システム
JP5065794B2 (ja) 燃料電池システム
JP2007122911A (ja) 燃料電池システム
EP2639872B1 (en) Fuel cell system
JP5320414B2 (ja) 燃料電池システム
JP2005317410A (ja) 車輌用燃料電池装置
JP6446949B2 (ja) 燃料電池システム
JP5853643B2 (ja) 燃料電池システム
JP5148681B2 (ja) 燃料電池システム
JP5879970B2 (ja) 燃料電池システム
JP2009117056A (ja) 燃料電池システム
JP5861565B2 (ja) 燃料電池システム
JP2013114851A (ja) 燃料電池システム
JP2019091658A (ja) 燃料電池システム
JP6946788B2 (ja) 燃料電池システム
JP7176271B2 (ja) コージェネレーションシステム
JP2009187703A (ja) 燃料電池システム
JP2008123929A (ja) 燃料電池システム
JP2020080262A (ja) 燃料電池システム
JP5737581B2 (ja) 燃料電池システム
JP2009129886A (ja) 加湿制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R151 Written notification of patent or utility model registration

Ref document number: 5598717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees