JP5578782B2 - プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体 - Google Patents

プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体 Download PDF

Info

Publication number
JP5578782B2
JP5578782B2 JP2008318663A JP2008318663A JP5578782B2 JP 5578782 B2 JP5578782 B2 JP 5578782B2 JP 2008318663 A JP2008318663 A JP 2008318663A JP 2008318663 A JP2008318663 A JP 2008318663A JP 5578782 B2 JP5578782 B2 JP 5578782B2
Authority
JP
Japan
Prior art keywords
electrode
plasma
processing
resist
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008318663A
Other languages
English (en)
Other versions
JP2009267352A (ja
Inventor
昌伸 本田
理子 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008318663A priority Critical patent/JP5578782B2/ja
Priority to TW098110460A priority patent/TWI508162B/zh
Priority to CN 200910129594 priority patent/CN101552189B/zh
Priority to US12/414,920 priority patent/US8263499B2/en
Publication of JP2009267352A publication Critical patent/JP2009267352A/ja
Application granted granted Critical
Publication of JP5578782B2 publication Critical patent/JP5578782B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Plasma Technology (AREA)

Description

本発明は、容量結合型のプラズマ処理装置において被処理基板にエッチング加工を施すプラズマ処理方法に係り、特にエッチングマスクに用いるレジストパターンのエッチング耐性を強化して薄膜加工の精度向上・安定化をはかるプラズマ処理方法およびコンピュータ読み取り可能な記憶媒体に関する。
半導体デバイスやFPD(Flat Panel Display)の製造プロセスで用いられているエッチングは、リソグラフィ技術により形成したレジストパターンをマスクとして、被処理基板(半導体ウエハ、ガラス基板等)の表面の薄膜を所望の回路パターンに加工する。従来より、枚葉式のエッチングには容量結合型のプラズマエッチング装置が多用されている。
一般に、容量結合型のプラズマエッチング装置は、真空チャンバとして構成される処理容器内に上部電極と下部電極とを平行に配置し、下部電極の上に被処理基板を載置し、両電極間に高周波を印加する。そうすると、両電極の間で処理ガスの高周波放電によるプラズマが発生し、プラズマ中のラジカルやイオンによって基板表面に所望のパターンでエッチング加工が施される。
ところで、現在の最先端LSIプロセスでは、フォトリソグラフィにArFエキシマレーザ露光技術が用いられ、レジストにはArFエキシマレーザ光の波長(193nm)に適した化学増幅系のレジスト(ArFレジスト)が用いられている。しかしながら、ArFレジストは、高感度、高解像性を容易に得られる反面、プラズマ耐性またはエッチング耐性が弱く、しかも超微細な寸法でパターニングされるため、プラズマエッチング時にレジストパターンが倒れたり、表面が荒れたり、パターン側壁がでこぼこになって、いわゆるLER(Line Edge Roughness)やLWR(Line Width Roughness)等の凹凸変形や蛇行変形を来たすことが問題になっている。
これまで、ArFレジストのエッチング耐性を高めるための技法として、電子ビーム照射、UV照射、H2またはHBrプラズマ照射、イオンビーム照射等によってレジストを改質する方法が知られている。
特開2005−243681
しかしながら、上記のような従来のレジスト改質法は、いずれも専用の処理容器(チャンバ)を用いるものであり、装置コストの増大とスループットの低下を伴っている。また、露光前に、電子ビーム照射法、UV照射法あるいはイオンビーム照射法を用いると、レジストの光透過性が膜質変化によって変わり、露光性能を悪化させやすい。一方で、露光後は、イオンビーム照射法を用いるとイオン衝撃によってレジストパターンがダメージを受けやすく、電子ビーム照射法やUV照射法を用いるとレジストパターンがテーパ状の収縮変形やCD変化を起こしやすいといった問題がある。また、H2またはHBrプラズマ照射法は、チャンバ内に水素が残存してプロセスの再現性をとるのが難しく、運用安定性または量産性の面で課題がある。
本発明は、かかる従来技術の問題点に鑑みてなされたものであって、容量結合型のプラズマ処理装置を利用し、簡便かつ効果的なレジスト改質法によりレジストパターンのエッチング耐性を強化して、薄膜加工の精度・安定性を向上させるプラズマ処理方法およびコンピュータ読み取り可能な記憶媒体を提供することを目的とする。
上記の目的を達成するために、本発明の第1の観点におけるプラズマ処理方法は、真空可能な処理容器内でプラズマに曝される電極表面がSiを含有する第1の電極と第2の電極とを所定の間隔を空けて平行に配置し、前記第1の電極に対向させて被処理基板を第2の電極で支持し、前記処理容器内を所定の圧力に真空排気し、前記第1の電極と前記第2の電極との間の処理空間にエッチャントガスを含む第1の処理ガスを供給し、前記第1の電極または第2の電極に第1の高周波を印加して前記処理空間で前記第1の処理ガスのプラズマを生成し、前記プラズマの下で前記基板上の被加工膜をその被加工膜の上に形成されたレジストパターンをマスクとしてエッチングするプラズマ処理方法であって、前記レジストパターンのエッチング耐性を向上させるために、前記第1の電極と前記第2の電極との間の処理空間にCF 4 ガスを含む第2の処理ガスを供給するとともに前記第1の電極または前記第2の電極に前記第1の高周波を印加して、前記処理空間で前記第2の処理ガスのプラズマを生成し、前記処理容器内で前記基板から離れた場所でプラズマに曝される所定のDC印加部材に負極性の直流電圧を印加し、前記DC印加部材より放出された電子を前記基板上のレジストパターンに打ち込む工程とを有する。
上記第1の観点におけるプラズマ処理方法は、基板上の被加工膜に対するエッチング加工に先立って、同一のハードウェアを利用して、プラズマに晒される基板上のレジストパターンにγ放電によって第1の電極(対向電極)から放出される2次電子を打ち込んで電子の浸入した部分(表層部ないし内奥部)を改質する。同一のハードウェアを利用しつつも、本来のエッチング加工と独立して行うので、処理条件を任意に選定することが可能であり、特にDC印加部材に印加する負極性直流電圧の絶対値を任意に選定し、改質層の厚さを任意に制御することができる。また、従来技術の問題点、つまり基板上の被加工膜に対するエッチング加工に先立つプラズマ処理(前処理)として、イオンビーム照射法を用いる場合の問題点(イオン衝撃によってレジストパターンがダメージを受けやすいこと)、単独の電子ビーム照射法やUV照射法を用いる場合の問題点(レジストパターンがテーパ状の収縮変形やCD変化を起こしやすいこと)およびH2またはHBrプラズマ照射法を用いる場合の問題点(チャンバ内に水素が残存してプロセスの再現性をとるのが難しく、運用安定性または量産性の面で課題があること)を解決することができる。また、上記プラズマ処理(前処理)においては、第2の処理ガスがCF 4 ガスを含むことにより、この処理ガスの高周波放電におけるCF 4 ガスの解離・電離からハロゲン原子種つまりフッ素が生成され、このフッ素は第1の電極の電極面に付着しているポリマーのエッチングに費やされる。
好適には、DC印加部材より放出された電子が1000eV以上のエネルギーで前記レジストパターンに打ち込まれるように、負極性直流電圧の絶対値を好ましくは1000V以上に選定してよく、それによって厚さ数十nm以上の改質層を得ることができる。
さらに好ましくは、DC印加部材より放出された電子が1500eV以上のエネルギーでレジストパターンに打ち込まれるように、負極性直流電圧の絶対値を好ましくは1500V以上に選定してよく、それによって厚さ100nm以上の改質層が得られる。
また、上記レジスト改質処理において、第1の電極にプラズマ生成用の第1の高周波を所望のパワーで印加し、第2の電極にイオン引き込み制御用の第2の高周波を印加する場合は、第2の電極上のイオンシースがレジストパターンに打ち込まれる電子のエネルギーを低下させる方向に作用する。したがって、第2の電極上に形成される自己バイアスは極力低くてよく、100V以下が好ましい。また、第2高周波のパワーは極力低くてよく、好適には50W以下にしてよく、更に好適には0Wにするか、第2の電極には高周波を印加しないようにしてもよい。
また、本発明の好適な一態様においては、上記レジスト改質処理の後で被加工膜のエッチング処理の前に、同一の処理容器内でレジストパターンをパターン面と平行な横方向で所望のサイズに削るトリミング処理が行われる。このトリミング処理は、一種のプラズマエッチング加工であり、処理容器内を所定の圧力に真空排気する工程と、第1の電極と第2の電極との間の処理空間にエッチャントガスを含む第3の処理ガスを供給する工程と、第1の電極または第2の電極に第1の高周波を印加して処理空間で第3の処理ガスのプラズマを生成する工程と、生成されたプラズマの下でレジストパターンを所望のパターンまでエッチングする工程とを含む。この場合、処理対象のレジストパターンは、前工程のレジスト改質処理を受けて改質層のエッチング耐性またはプラズマ耐性が向上しているので、肩落ち等の形崩れが少なく、所望の縮小率で高精度のトリミング加工を受けることができる。
本発明のプラズマ処理方法において、DC印加部材は典型的には基板と真正面に向かい合う第1の電極であるが、基板と斜めに向かい合う部材(たとえば容器側壁)をDC印加部材に使用または兼用することも可能である。
第1の電極の材質は、Siを含有する導電材料を好適に使用できるが、被加工膜に対するエッチングのプロセスを基準に任意の材質を選定することができる。また、第1の電極がSi含有導電材料からなる場合は、その電極面にポリマーが堆積するのを防止して直流的な導電性を安定に保つうえで、レジスト改質処理用の第2の処理ガスとしてハロゲンガスを含むガス(たとえばフロロカーボンガス)を好適に使用することができる。
本発明の第2の観点におけるプラズマ処理方法は、真空可能な処理容器内で第1の電極と第2の電極とを所定の間隔を空けて平行に配置し、前記第1の電極に対向させて被処理基板を第2の電極で支持し、前記処理容器内を所定の圧力に真空排気し、前記第1の電極と前記第2の電極との間の処理空間にエッチャントガスを含む処理ガスを供給し、前記第1の電極または第2の電極に第1の高周波を印加して前記処理空間で前記処理ガスのプラズマを生成し、前記プラズマの下で前記基板上の被加工膜をその被加工膜の上に形成されたレジストパターンをマスクとしてエッチングするプラズマ処理方法であって、(1)前記処理容器内で前記基板に対して前記被加工膜のエッチングが行われている最中に、前記レジストパターンのエッチング耐性を向上させるように、前記処理容器内で前記基板から離れた場所でプラズマに曝される所定のDC印加部材に負極性の直流電圧を印加し、前記DC印加部材より放出された電子を前記基板上のレジストパターンに打ち込み、(2)前記被加工膜のエッチングと並行して前記レジストパターンがパターン面と平行な横方向で所望のサイズまで削られるように、前記処理容器内のガス圧力を100mTorr以上に選定し、エッチング時間を20秒以上に選定する。
本発明の第2の観点におけるプラズマ処理方法においては、基板上の被加工膜に対して本来のプラズマエッチング処理を施しながら、同一の処理容器内で同一のプラズマの下で基板上のエッチングマスクに用いられているレジストパターンに電子を打ち込んで改質効果によりそのエッチング耐性を強化させ、マスク選択比を向上させるとともに、ガス圧力を100mTorr以上およびエッチング時間を20秒以上に選定することにより、レジストパターンに肩落ちの少ないトリミング処理を施すことができる。
また、本発明におけるコンピュータ読み取り可能な記憶媒体は、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、前記制御プログラムは、実行時に、本発明の上記プラズマ処理方法が行われるようにプラズマ処理装置を制御する。
本発明のプラズマ処理方法またはコンピュータ読み取り可能な記憶媒体によれば、上記のような構成および作用により、容量結合型のプラズマエッチング装置を利用し、簡便かつ効果的なレジスト改質法によりレジストパターンのエッチング耐性を強化して、薄膜加工の精度・安定性を向上させることができる。
以下、添付図を参照して本発明の好適な実施の形態を説明する。
図1に、本発明のプラズマ処理方法で使用するプラズマ処理装置の構成を示す。このプラズマ処理装置は、容量結合型のプラズマエッチング装置として構成されており、たとえばアルミニウムまたはステンレス鋼等の金属製の円筒型チャンバ(処理容器)10を有している。チャンバ10は保安接地されている。
チャンバ10内には、被処理基板としてたとえば半導体ウエハWを載置する円板状のサセプタ12が下部電極として水平に配置されている。このサセプタ12は、たとえばアルミニウムからなり、チャンバ10の底から垂直上方に延びる絶縁性の筒状支持部14に支持されている。この筒状支持部14の外周に沿ってチャンバ10の底から垂直上方に延びる導電性の筒状支持部(内壁部)16とチャンバ10の側壁との間に環状の排気路18が形成されており、この排気路18の入口にリング状の排気リング(バッフル板)20が取り付けられ、排気路18の底に排気口22が設けられている。排気口22には排気管24を介して排気装置26が接続されている。排気装置26は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10内の処理空間を所望の真空度まで減圧することができる。チャンバ10の側壁には、半導体ウエハWの搬入出口を開閉するゲートバルブ28が取り付けられている。
サセプタ12には、高周波電源30が整合器32および下部給電棒36を介して電気的に接続されている。ここで、高周波電源30は、サセプタ12上の半導体ウエハWに対するイオンの引き込みに寄与する周波数(通常13.56MHz以下)の高周波LFを出力する。整合器32は、高周波電源30側のインピーダンスと負荷(主に電極、プラズマ、チャンバ)側のインピーダンスとの間でマッチングをとり、かつ自動的にマッチングポイントを調整できるように構成されている。
サセプタ12は半導体ウエハWよりも一回り大きな直径または口径を有している。サセプタ12の上には、処理対象の半導体ウエハWが載置され、その半導体ウエハWを囲むようにフォーカスリング(補正リング)38が設けられる。
サセプタ12の上面には、ウエハ吸着用の静電チャック40が設けられている。この静電チャック40は、膜状または板状の誘電体の中にシート状またはメッシュ状のDC電極を挟んでいる。該DC電極にはチャンバ10の外に配置される直流電源42がスイッチ44および高圧給電線46を介して電気的に接続されている。直流電源42より直流電圧がDC電極に印加されることにより、クーロン力で半導体ウエハWを静電チャック40上に吸着保持することができる。
サセプタ12の内部には、たとえば円周方向に延びる環状の冷媒室48が設けられている。この冷媒室48には、チラーユニット(図示せず)より配管50,52を介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によって静電チャック40上の半導体ウエハWの温度を制御できる。そして、サセプタ12に半導体ウエハWを熱的に結合させるたに、伝熱ガス供給部(図示せず)からの伝熱ガスたとえばHeガスが、ガス供給管54およびサセプタ12内部のガス通路56を介して静電チャック40と半導体ウエハWとの接触界面に供給される。
チャンバ10の天井には、サセプタ12と平行に向かい合ってシャワーヘッドを兼ねる上部電極60が設けられている。この上部電極(シャワーヘッド)60は、サセプタ12と向かい合う電極板62と、この電極板62をその背後(上)から着脱可能に支持する電極支持体64を有し、電極支持体64の内部にガス拡散室66を設け、このガス拡散室66からサセプタ12側に貫ける多数のガス吐出孔68を電極支持体64および電極板62に形成している。電極板62とサセプタ12との間の空間がプラズマ生成空間または処理空間PSとなる。ガス拡散室66は、ガス供給管70を介して処理ガス供給部72に接続されている。
上部電極60において、処理時にプラズマに曝される電極板62の材質は重要である。この電極板62は、この実施形態では、DC印加部材として機能するため、電極表面が直流的な導電性を維持でき、かつプラズマからのイオンの入射によってスパッタされてもプロセスに悪影響を与えないような材質が好ましく、たとえばSi、SiC等のSi含有導電材やC(カーボン)を好適に使用できる。電極支持体64はたとえばアルマイト処理されたアルミニウムで構成されてよい。上部電極60とチャンバ10との間にはリング状の絶縁体65が挿入され、上部電極60は電気的にフローティング状態でチャンバ10に取り付けられている。
上部電極60には、高周波電源74が整合器76および上部給電棒78を介して電気的に接続されている。この高周波電源74は、プラズマの生成に寄与する周波数(通常40MHz以上)の高周波HFを出力する。整合器76は、高周波電源74側のインピーダンスと負荷(主に電極、プラズマ、チャンバ)側のインピーダンスとの間でマッチングをとり、かつ自動的にマッチングポイントを調整できるように構成されている。
チャンバ10の外に設置される可変直流電源80の出力端子は、スイッチ82および直流給電ライン84を介して上部電極60に電気的に接続されている。可変直流電源80はたとえば−2000〜+1000Vの直流電圧VDCを出力できるように構成されている。
直流給電ライン84の途中に設けられるフィルタ回路86は、可変直流電源80からの直流電圧VDCをスルーで上部電極60に印加する一方で、サセプタ12から処理空間PSおよび上部電極60を通って直流給電ライン84に入ってきた高周波を接地ラインへ流して可変直流電源80側へは流さないように構成されている。
また、チャンバ10内で処理空間PSに面する適当な箇所としてたとえばバッフル板20の上面あるいは導電性支持部材16の頂部付近あるいは上部電極60の半径方向外側に、たとえばSi,SiC等の導電性材料からなるリング状のDCグランドパーツ(直流接地電極)88が取り付けられている。このDCグランドパーツ88は、接地ライン90を介して常時接地されている。
このプラズマ処理装置内の各部たとえば排気装置26、高周波電源30,74、スイッチ44,82、処理ガス供給部72、可変直流電源80、チラーユニット(図示せず)、伝熱ガス供給部(図示せず)等の個々の動作および装置全体の動作(シーケンス)は、たとえばマイクロコンピュータからなる制御部110(図19)によって制御される。
このプラズマ処理装置において、サセプタ12上の半導体ウエハWに対してエッチング加工を行なうには、処理ガス供給部72よりエッチャントガスを含む処理ガスを所定の流量でチャンバ10内に導入し、排気装置26によりチャンバ10内の圧力を設定値に調節する。さらに、高周波電源74よりプラズマ生成用の第1高周波HF(40MHz以上)を整合器76および上部給電棒78を介して上部電極60に印加すると同時に、高周波電源30よりイオン引き込み制御用の第2高周波LF(13.56MHz以下)を整合器32および下部給電棒36を介してサセプタ12に印加する。また、スイッチ44をオンにし、静電吸着力によって、静電チャック40と半導体ウエハWとの間の接触界面に伝熱ガス(Heガス)を閉じ込める。シャワーヘッド60より吐出された処理ガスは両電極12,60間で高周波の放電によってプラズマ化し、このプラズマで生成されるラジカルやイオンによって半導体ウエハW上の被エッチング膜が所望のパターンにエッチングされる。
このプラズマ処理装置は、高周波電源74より上部電極60に40MHz以上(より好ましくは60MHz以上)というプラズマ生成に適した比較的高い周波数の第1高周波HFを印加することにより、プラズマを好ましい解離状態で高密度化し、より低圧の条件下でも高密度プラズマを形成することができる。それと同時に、サセプタ12に13.56MHz以下というイオン引き込みに適した比較的低い周波数の第2高周波LFを印加することにより、半導体ウエハWの被エッチング膜に対して選択性の高い異方性のエッチングを施すことができる。もっとも、プラズマ生成用の第1高周波HFは如何なるプラズマプロセスでも必ず使用されるが、イオン引き込み制御用の第2高周波LFはプロセスによっては使用されないことがある。
さらに、プラズマエッチングの最中に上部電極60に可変直流電源80より直流電圧が(通常は−900V〜0Vの範囲内で)印加されることにより、プラズマ着火安定性、レジスト選択性、エッチング速度、エッチング均一性等を向上させることもできる。
上記のようなプラズマエッチングにおいて、半導体ウエハW表面の被加工膜をパターニングするためのエッチングマスクには、該被加工膜の上に予めフォトリソグラフィによって形成されているレジストパターンが用いられる。ここで、フォトリソグラフィが高解像度を得るために露光用ビームにたとえばArFエキシマレーザ光(波長193nm)を採用するときは、それに適した高感度な化学増幅系のレジスト(ArFレジスト)が用いられる。
[第1の実施形態]
次に、本発明の第1の実施形態におけるプラズマ処理方法を説明する。この実施形態では、チャンバ10に搬入された処理対象の半導体ウエハWに対して、上記のような被加工膜に対するプラズマエッチング処理に先立ち、前処理として、レジストパターンに対してレジスト改質処理とトリミング処理を順次行う。
図2につき、多層レジスト法におけるトリミング処理の一例を説明する。図中、最上層(第1層)の膜100はArFレジストのレジストパターン、第2層の膜102はBARC(反射防止膜:第1の被エッチング膜)、第3層の膜104は最終マスクとなるSiN層(第2の被エッチング膜)、最下層の膜106は本来(最終)の被加工膜たとえばSiO2層(第3の被エッチング膜)である。SiN膜104およびBARC102の成膜にはCVD(化学的真空蒸着法)あるいはスピンオンによる塗布法が用いられ、フォトレジスト100のパターニングにはフォトリソグラフィが用いられる。
トリミング処理は、図2の(A)に示すように、フォトリソグラフィで形成されたレジストパターン100をパターン面と平行な横方向で削って図2の(B)に示すような一回り細い所望サイズのパターンに成形する加工である。この細く成形されたレジストパターン100をマスクにしてBARC102およびSiN膜104を順次エッチングすると、図2の(C)に示すようにレジストパターン100と同じ細いパターンをSiN膜104に作成または転写することができる。この後は、図示省略するが、アッシングによりレジストパターン100およびBARC102の残膜を取り除いて、SiNパターン104をマスクとして下地膜(SiO2層)106をエッチングする。
レジストプロセスにおいて最初から所望の細めのサイズでレジストパターンを形成しようとすると、フォトリソグラフィ工程の中(特に現像時)でレジスト倒壊を起こすことがある。そのような場合は、フォトリソグラフィ工程の後に上記のようなトリミング処理によってレジストパターンを目的の寸法まで細める手法がとられている。かかるトリミング処理は、本来の被加工膜をエッチングするためのプラズマエッチング装置を利用して実施できる。
ところが、従来は、ArFレジストのエッチング耐性(プラズマ耐性)が弱いため、トリミング処理のためのプラズマエッチングを行うことによってレジストパターン100が肩崩れ等の形状変化を起こしながら過分に削られやすく、トリミングの加工精度が良くなかった。
そこで、この実施形態では、トリミング処理に先立ち、同じプラズマ処理装置(図1)内でレジストパターン100のエッチング耐性を強化するためのレジスト改質処理を行う。このレジスト改質処理は、図3に示すように、レジストパターン100に高エネルギーの電子e-を打ち込んで、ArFレジストの樹脂を表層から望ましくは内奥まで深く変質させるものであり、一種のプラズマ処理として行われる。
すなわち、処理ガス供給部72より所定の処理ガスを適当な流量でチャンバ10内に導入し、排気装置26によりチャンバ10内の圧力を設定値に調節し、高周波電源74よりプラズマ生成用の第1高周波HF(40MHz以上)を整合器76および上部給電棒78を介して上部電極60に印加する。また、必要に応じて、高周波電源30よりイオン引き込み制御用の第2高周波LF(13.56MHz以下)を整合器32および下部給電棒36を介してサセプタ12に印加する。また、スイッチ44をオンにし、静電吸着力によって、静電チャック40と半導体ウエハWとの間の接触界面に伝熱ガス(Heガス)を閉じ込める。シャワーヘッド60より吐出された処理ガスが両電極12,60間で高周波放電により解離・電離してプラズマPRが生成される。
ここで、図4に示すように、可変直流電源80より直流電圧VDCを負極性の高圧(後述するように、好ましくは絶対値で1000V以上、更に好ましくは絶対値で1500V以上)で上部電極60に印加すると、上部電極60とプラズマPRとの間に形成される上部イオンシースSHUが厚くなり、そのシース電圧VUは直流電圧VDCに略等しい大きさになる。これにより、プラズマPR中のイオン(+)が上部イオンシースSHUの電界で加速されて上部電極60(電極板62)にぶつかる際のイオン衝撃エネルギーが増し、γ放電によって電極板62より放出される2次電子e-が多くなる。そして、電極板62より放出された2次電子e-は、上部イオンシースSHUの電界でイオンとは逆方向に加速されてプラズマPRを通り抜け、さらに下部イオンシースSHLを横断して、図3に示すようにサセプタ12上の半導体ウエハW表面のレジストパターン100に所定の高エネルギーで打ち込まれる。この際、2次電子e-は、電界の無いプラズマPRの中を等速度で通過するが、下部イオンシースSHL内では逆向きの電界で減速され、電子エネルギーの一部を失う。したがって、サセプタ12上に形成される下部イオンシースSHLのシース電圧VLまたは自己バイアスVdcは低いほどよく、通常は100V以下が望ましい。したがって、サセプタ12に印加される第2高周波LF(13.56MHz以下)のパワーを50W以下に選定してよく、より好ましくは0Wにしてよい。
この実施形態におけるレジスト改質処理法によれば、図4の原理から、上部電極60に印加する負極性直流電圧VDCの絶対値を大きくするほど、半導体ウエハW上のレジストパターンに打ち込まれる電子のエネルギーを大きくし、レジストパターンにおける電子の浸入深さ、つまり改質深さを大きくすることができる。
図5に、この実施形態におけるレジスト改質処理の実験で得られた改質効果をSEM写真で示す。主な処理条件は下記のとおりである。
レジスト: アクリレートベース用のArFレジスト
処理前のレジスト膜厚: 261nm
処理ガス: CF4=100sccm
チャンバ内の圧力: 100mTorr
高周波電力: 60MHz/13MHz=1000/30W
直流電圧VDC: 0V,−500V,−1000V,−1500V(4通り)
処理時間: 60秒
図5に示すように、上記レジスト改質処理によって得られた最終改質層の厚みは、VDC=0Vのときは0nm、VDC=−500Vのときは22nm、VDC=−1000Vのときは83nm、VDC=−1500Vのときは173nmであった。また、初期状態(処理前)のレジスト表面からの改質厚さは、VDC=0Vのときは0nm、VDC=−500Vのときは19nm、VDC=−1000Vのときは61nm、VDC=−1500Vのときは113nmであった。
図5に示すようにレジスト改質処理によってレジストの膜厚(特に改質層)が増大するのは、レジストの高分子が電子のエネルギーを吸収して組成変化や構造変化、架橋反応などを起こすためである。また、処理ガスにフロロカーボンガス(CF4)を用いたのは、上部電極60の電極板62に堆積しやすいポリマーをフッ素のエッチング作用により除去して電極面を清浄に保つことを重視したためである。上部電極60におけるイオン照射および2次電子放出だけを考慮するのであれば、Ar等の稀ガスやO2,N2等のガスも使用可能である。
因みに、VDC=−1500Vでレジスト改質処理を行った後のレジストパターンを斜め切削して段差測定をしたところ、図6に示すような測定結果が得られ、図5のSEM写真と同じ深さ(173nm)で段差(界面)を確認できた。
また、フーリエ変換赤外分光法(FTIR)によってレジスト改質処理前後の赤外吸収スペクトルを調べた結果、図7Aおよび図7Bに示すように、レジスト改質処理によって(改質効果が大きいほど)、アダマンチル基(C11−H17)、ラクトン基(C452)等が大幅に減少しており、化学反応が進んでいることが裏付けられている。
一般的には、電子がレジストに打ち込まれたときの電子エネルギーと電子浸入深さとの間には、図8に示すような関数(グラフ)で略比例関係にあることが理論的に知られている。この理論によれば、電子エネルギーが600eVのときの浸入深さは約30nmであり、電子エネルギーが1000eVのときの浸入深さは約50nmであり、電子エネルギーが1500eVのときの浸入深さは約120nmである。
また、図9に、レジストパターンへの電子の打ち込みにおいて電子が停止した深さと停止した電子の割合との関係(シミュレーション)をグラフで示す。このグラフによれば、電子エネルギーが500eVのときは少なくとも約30nm(最大で約50nm)まで浸入し、電子エネルギーが1000eVのときは少なくとも約60nm(最大で約90nm)まで浸入し、電子エネルギーが1500eVのときは少なくとも約110nm(最大で約170nm)まで浸入する。
図10に、上記シミュレーションによる電子の浸入深さ(図9)と上記実験結果の改質深さ(図5)との関係を示す。図示のように、両者の間には良好な符合関係がある。
なお、図4の原理から、この実施形態のレジスト改質処理において、サセプタ12上の半導体ウエハW表面のレジストパターン100に打ち込まれる電子のエネルギーは、上部イオンシースSHUのシース電圧VUと下部イオンシースSHLのシース電圧VLとの差分(VU−VL)によって規定されることがわかる。ここで、上部シース電圧VUは上部電極60に印加される負極性直流電圧VDCに略等しく、下部シース電圧VLはサセプタ12上に生成される自己バイアス電圧Vdcに略等しい。したがって、サセプタ12上の自己バイアス電圧Vdcがたとえば100Vである場合、レジストパターンにおける改質深さを確実に60nm以上にしたいときは負極性直流電圧VDCの絶対値を1100V以上に設定してよく、改質深さを確実に110nm以上にしたいときは負極性直流電圧VDCの絶対値を1600V以上に設定してよい。
サセプタ12にイオン引き込み制御用の第2高周波LFを印加しない場合は、自己バイアス電圧Vdcは負極性直流電圧VDCに比して無視できるほど小さく、これを0Vとみなせば、たとえば改質深さを確実に110nm以上にしたいときは負極性直流電圧VDCの絶対値を1500V以上に設定してよい。
図11に、この実施形態において半導体ウエハW上のレジストパターンに対して上記のようなレジスト改質処理を施してからトリミング処理を行った場合の結果(パターン断面形状)を比較例と対比してSEM写真で示す。このトリミング処理における主な処理条件は下記のとおりである。
処理ガス: N2/O2=100/20sccm
チャンバ内の圧力: 10mTorr
高周波電力: 60MHz/13MHz=1000/0W
処理時間: 17秒
図11の(B)に示すように、上記のようなレジスト改質処理を行わずにトリミング処理を行った場合(比較例)は、レジストパターンが肩崩れの形状変化を起こしながら目的の寸法(内側の点線で示す輪郭)よりも過分に削られることがわかる。
これに対し、直流電圧VDC=−1500Vで上記レジスト改質処理を行ってから上記条件でトリミング処理を行った場合は、図11の(D)に示すように、レジストパターンの形状変化が少ないうえ目的の寸法に近いトリミング成形がなされていることがわかる。すなわち、トリミング成形のためのプラズマエッチングにおいてレジストパターンが肩崩れを起こさないほどそのエッチング耐性またはプラズマ耐性が十分にあったことがわかる。
もっとも、直流電圧VDC=−0Vで上記レジスト改質処理を行ってから上記条件でトリミング処理を行った場合(参考例)は、図11の(C)に示すように、上記レジスト改質処理を行わなかった場合よりも良くない結果が出ている。つまり、直流電圧VDC=−0Vとした場合の上記レジスト改質処理においては、半導体ウエハW上のレジストパターンに電子を打ち込むことは殆どできないため改質層が形成されなかったばかりか、処理ガスにフロロカーボンガス(CF4)が使用されたため、フッ素のラジカルでレジストパターンが等方的に削られてパターンサイズが縮小したものと考えられる。
この実施形態では、図2の(C)におけるSiN膜104に対するエッチング加工の実験も行った。主なエッチング条件は下記のとおりである。
処理ガス: CF4/CHF3/Ar/O2/=225/125/600/60sccm
チャンバ内の圧力: 75mTorr
温度: 上部電極/チャンバ側壁/下部電極=60/60/30℃
高周波電力: 40MHz/13MHz=100/1000W
直流電圧VDC: −300V
処理時間: 30秒
実験結果として、上記SiNエッチングの終了後に半導体ウエハW上の残存レジストパターンをアッシングにより剥離(除去)したところ、図12Aに示すようなSiN膜パターン(SEM写真)が得られた。このSiN膜パターンのLWRは最大値が7.7で、平均値は5.9である。
図12Bに、比較例として、実施形態のレジスト改質処理を行わずに上記SiN膜のエッチング加工を行って得られたSiN膜パターン(平面写真)を示す。このSiN膜パターンのLWRは最大値が9.2で、平均値は6.9である。
このように、この実施形態のプラズマ処理方法によれば、多層レジスト法において最終マスクとなるSiNパターンのLWRを効果的に低減できることが確認できた。
上述した第1の実施形態は、上部電極60に印加する直流電圧VDCの最適値をレジスト改質処理用と本来のエッチング用とに分けて独立に選定できるという利点がある。
本発明のプラズマ処理方法で用いる容量結合型プラズマ処理装置は、図1に示すように上部電極60にプラズマ生成用の第1高周波HFを印加し、サセプタ(下部電極)12にイオン引き込み制御用の第2高周波RFを印加する上下部2周波印加方式に限定されるものではなく、たとえばサセプタ(下部電極)12に第1高周波HFと第2高周波RFとを重畳して印加する下部2周波重畳印加方式や、上部電極もしくは下部電極に第1高周波HFのみを印加する単一周波印加方式等も可能である。
図13に、下部2周波重畳印加方式を採る容量結合型プラズマ処理装置の構成例を示す。図中、図1のプラズマ処理装置と同様の構成または機能を有する部品または構成要素には同一の符号を附している。
[第2の実施形態]
以下に説明する本発明の第2の実施形態は、レジスト改質処理を主エッチング加工と同時に、つまり主エッチング加工の最中にレジスト改質処理も併せて行い、レジストパターンのエッチング耐性を強化してマスク選択比を向上させるものである。
この実施形態の一実験例として、上記のような多層レジスト法(図2)において、BARC102のエッチングと同時にレジストパターン12に対するレジスト改質処理を行い(第1工程)、次いでSiN膜104のエッチングを実施し(第2工程)、SiNエッチングにおけるマスク選択比を計測した。この実験には、下部2周波重畳印加方式のプラズマ処理装置(図13)を使用した。
第1工程(BARCエッチング/レジスト改質処理)における主な条件は下記のとおりである。
レジスト: アクリレートベース用のArFレジスト
BARC: 有機膜
処理ガス: CF4/O2=250/13sccm
チャンバ内の圧力: 30mTorr
温度: 上部電極/チャンバ側壁/下部電極=60/60/30℃
高周波電力: 40MHz/13MHz=400/0W
直流電圧VDC: 0V,−500V,−1000V,−1500V,−1800V(5通り)
処理時間: 20秒
第2工程(SiNエッチング)における主な条件は下記のとおりである。
処理ガス: CF4/CHF3/Ar/O2=225/125/600/60sccm
チャンバ内の圧力: 75mTorr
温度: 上部電極/チャンバ側壁/下部電極=60/60/30℃
高周波電力: 40MHz/13MHz=100/1000W
直流電圧VDC: −300V
処理時間: 30秒
図14に、上記の実験で得られたパターン断面形状をSEM写真で示す。上記実験では、第1工程(BARCエッチング/レジスト改質処理)において上部電極60に印加される直流電圧VDCをパラメータとし、VDC=0Vの場合(A)を比較基準(スタンダード:STD)としている。図中、点線のラインLa,Lcは、比較基準(STD)における第1工程終了後のレジストパターン100の頂部のレベルおよび下地膜(SiN膜)104の上面のレベルをそれぞれ示す。点線のラインLbは、第1工程前のBARC102の上面のレベルを示す。また、点線のラインLd,Leは、比較基準(STD)における第2工程終了後のレジストパターン100の頂部のレベルおよびBARC102とSiN膜104との界面のレベルをそれぞれ示す。
第2工程(SiNエッチング)におけるマスク選択比は、VDC=0Vのときは2.11、VDC=−500Vのときは1.95、VDC=−1000Vのときは1.89、VDC=−1500Vのときは2.51、VDC=−1800Vのときは3.01であった。すなわち、VDCの絶対値が1500V以上(電子エネルギーが1500eV以上)でマスク選択比が顕著に向上し、VDCの絶対値が大きいほどマスク選択比が高くなることが確認された。
また、図14に示すように、VDC=−500V〜−1800Vでは、レジストパターン100の表層から内奥にかけてレジスト改質層107が形成されており、改質層107と非改質層108との界面109がパターン断面形状(SEM写真)の中で視認できることと、VDCの絶対値が大きいほど改質層107の厚み(特に縦方向の厚み)が増すことがわかる。
図15は、レジストパターン12における改質層107と非改質層108とを画像処理(2値化処理)により明確に表したものである。
図16に、実験結果として、上記第1工程終了後のレジストパターン[ARC]、上記第2工程終了後のレジストパターン[SiN]、アッシング終了後のSiNパターン[Ash]をSEM写真で示す。図示のように、いずれの段階でも、VDCの絶対値を1500以上にすると、パターン側壁の凹凸変形が顕著に少なくなることが視認できる。
因みに、最終マスクとなるSiNパターン[Ash]のLWRは、3σの平均値で、VDC=0Vのときは9.1、VDC=−500Vのときは12.1、VDC=−1000Vのときは13.1、VDC=−1500Vのときは9.4、VDC=−1800Vのときは8.3であった。
[第3の実施形態]
次に、本発明の第3の実施形態は、レジスト改質処理およびトリミング処理を主エッチング加工と同時に、つまり主エッチング加工の最中にレジスト改質処理だけでなくトリミング処理も併せて行い、工程数の削減つまり処理効率の向上を図るものである。
この実施形態では、一実験例として、上記のような多層レジスト法(図2)において、BARC102のエッチングと同時にレジストパターン100に対するレジスト改質処理とトリミング処理を行い(第1工程)、次いでSiN膜104のエッチングを実施し(第2工程)、トリミング後にレジストパターン100のライン幅サイズを計測し、SiNエッチングにおけるマスク選択比を計測した。この実験には、下部2周波重畳印加方式のプラズマエッチング装置(図13)を使用した。
第1工程(BARCエッチング/レジスト改質処理/トリミング処理)における主な条件は下記のとおりである。
レジスト: アクリレートベース用のArFレジスト
BARC: 有機膜
処理ガス: CF4/O2=250/13sccm
チャンバ内の圧力: 30mTorr,100mTorr(2通り)
温度: 上部電極/チャンバ側壁/下部電極=60/60/30℃
高周波電力: 40MHz/13MHz=400/0W
直流電圧VDC: 0V,−1800V(2通り)
処理時間: 20秒,47秒(2通り)
第2工程(SiNエッチング)における主な条件は下記のとおりである。
処理ガス: CF4/CHF3/Ar/O2=225/125/600/60sccm
チャンバ内の圧力: 75mTorr
温度: 上部電極/チャンバ側壁/下部電極=60/60/30℃
高周波電力: 60MHz/13MHz=100/1000W
直流電圧VDC: −300V
処理時間: 30秒
図17に、上記の実験で得られたパターン断面形状をSEM写真で示す。上記実験では、第1工程(BARCエッチング/レジスト改質処理/トリミング処理)において上部電極60に印加される直流電圧VDC、ガス圧力、処理時間をパラメータとし、VDC=0V、ガス圧力=30mTorr、処理時間=20秒の場合(a)を主比較基準(STD)、VDC=−1800V、ガス圧力=30mTorr、処理時間=20秒の場合(b)を準比較基準(STD’)としている。
図中、点線のラインLa,Lcは、主比較基準(STD)における第1工程終了後のレジストパターン12の頂部のレベルおよび下地膜(SiN層)104の上面のレベルをそれぞれ示す。点線のラインLbは、第1工程前のBARC102の上面のレベルを示す。また、点線のラインLd,Leは、主比較基準(STD)における第2工程終了後のレジストパターン100の頂部のレベルおよびBARC102とSiN膜104との界面のレベルをそれぞれ示す。
図17の上段に示すように、レジストパターン100の幅寸法は、初期状態で131nmのところ、第1工程終了後に、条件(a)の場合は123nmに、条件(b)の場合は118nmに、条件(c)つまりVDC=−1800V、ガス圧力=100mTorr、処理時間=20秒の場合は99nmに、条件(d)つまりVDC=−1800V、ガス圧力=100mTorr、処理時間=47秒の場合は83nmにそれぞれ縮小した。
このように、第1工程においては、ガス圧力を高くし、処理時間を長くすることによって、トリミング量が顕著に増大することと、それによって縦方向の損失が特に増すわけでもなく、しかも肩落ちの少ない良好なパターン断面形状が得られることがわかる。
ここで、ガス圧力を高くすることによって、レジストパターン100のトリミング量が増大するのは、フッ素ラジカルが増えて横方向のラジカルエッチングが増速されるためであり、処理時間が長いと横方向のエッチング量が時間に比例して増すものと考えられる。
また、レジストパターン100において横方向の削り量が増えても縦方向の削り量が増えないのは、縦方向と横方向とでは改質度合いが異なるためである。すなわち、本発明のレジスト改質処理によって高エネルギーの電子が半導体ウエハW表面のレジストパターン100に略垂直に打ち込まれるとともに、イオンも略垂直に打ち込まれる効果も相乗して、レジストパターン100が横方向よりも縦方向でより強固に改質するためであり、しかも時間の経過と共に改質度合いが一層強まるためである。もっとも、レジストパターン100の周縁部(エッジ)はイオンが集中するので削れやすく、結果的には縦方向で側壁と略面一になる。
なお、第1工程では、サセプタ(下部電極)12にプラズマ生成用の第1高周波HFだけを印加し、イオン引き込み制御用の第2高周波LFを印加してはいないが、第1高周波HFの印加に基づく自己バイアスが発生し、プラズマ中の正イオンがイオンシースの電界によって半導体ウエハWに引き込まれて、レジストパターン100に入射する。
第2工程におけるマスク選択比は、図17の下段に示すように、条件(a)のときは2.11、条件(b)のときは3.01、条件(c)のときは3.09、条件(d)のときは3.45であった。この結果から、VDC条件(絶対値で1500V以上)がマスク選択比を向上させるための主たる要件であること、つまりレジストパターン100のエッチング耐性を高めるための支配的な要件であることがわかる。また、第1工程の処理時間が長いほど、マスク選択比が向上すること、つまりレジストパターン100のエッチング耐性がより強固になっていることがわかる。
図18に、この実施形態における実験結果として、上記第1工程終了後のレジストパターン[ARC]、上記第2工程終了後のレジストパターン[SiN]、アッシング終了後のSiNパターン[Ash]をSEM写真で示す。図示のように、条件(b)(c)(d)の間では、いずれの段階でも、第1工程における圧力が高くて処理時間が長いほど、パターン側壁の平坦性が向上することが視認できる。
因みに、最終マスクとなるSiNパターン[Ash]のLWRは、3σの平均値で、条件(a)のときは9.1、条件(b)のときは8.3、条件(c)のときは8.1、条件(d)のときは7.1であった。
図19に、上記実施形態におけるプラズマ処理方法を行うために上記プラズマ処理装置(図1、図13)の各部の制御および全体のシーケンスを制御する制御部110の構成例を示す。
この構成例の制御部110は、バス150を介して接続されたプロセッサ(CPU)152、メモリ(RAM)154、プログラム格納装置(HDD)156、フロッピドライブあるいは光ディスクなどのディスクドライブ(DRV)158、キーボードやマウスなどの入力デバイス(KEY)160、表示装置(DIS)162、ネットワーク・インタフェース(COM)164、および周辺インタフェース(I/F)166を有する。
プロセッサ(CPU)152は、ディスクドライブ(DRV)158に装填されたFDあるいは光ディスクなどの記憶媒体168から所要のプログラムのコードを読み取って、HDD156に格納する。あるいは、所要のプログラムをネットワークからネットワーク・インタフェース164を介してダウンロードすることも可能である。そして、プロセッサ(CPU)152は、各段階または各場面で必要なプログラムのコードをHDD156からワーキングメモリ(RAM)154上に展開して各ステップを実行し、所要の演算処理を行って周辺インタフェース166を介して装置内の各部(特に、排気装置26、高周波電源30,74、処理ガス供給部72、可変直流電源80、スイッチ82等)を制御する。上記実施形態で説明したプラズマ処理方法を実施するためのプログラムは全てこのコンピュータシステムで実行される。
上記した実施形態では上部電極60をDC印加部材に利用したが、本発明においてはチャンバ内でサセプタと鉛直方向または斜め方向で対向してプラズマに曝される任意の導電部材をDC印加部材に使用または兼用することが可能であり、上部電極60以外にもたとえばチャンバ側壁等をDC印加部材に利用することも可能である。DC印加部材に印加する直流電圧は必ずしも始終一定電圧レベルに保たれなくてもよく、たとえば低周波の交流電圧を重畳することも可能である。
本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。また、本発明は特にArFレジストを用いるプラズマエッチング加工に好適に適用可能であるが、他のレジストを用いるプラズマエッチング加工その他のプラズマ処理または微細加工にも適用可能である。
本発明のプラズマ処理方法で用いるプラズマ処理装置の構成を示す縦断面図である。 トリミング処理を行う場合の加工手順を模式的に示す断面図である。 半導体ウエハ上のレジストパターンに電子を打ち込むレジスト改質処理の作用を模式的に説明するための断面図である。 半導体ウエハ上のレジストパターンに電子を打ち込むレジスト改質処理の原理を模式的に説明するための側面図である。 第1の実施形態におけるレジスト改質処理の実験で得られた改質効果をSEM写真で示す図である。 第1の実施形態におけるレジスト改質処理の実験で得られた改質効果を斜め切削の段差測定で確認した図である。 第1の実施形態におけるレジスト改質処理の実験で得られた改質効果をフーリエ変換赤外分光法(FTIR)で確認した図である。 第1の実施形態におけるレジスト改質処理の実験で得られた改質効果をフーリエ変換赤外分光法(FTIR)で確認した図である。 電子がレジストに打ち込まれたときの電子エネルギーと電子浸入深さとの理論的な関係をグラフで示す図である。 レジストパターンへの電子の打ち込みにおいて電子が停止した深さと停止した電子の割合との関係についてシミュレーションで求めた結果をグラフで示す図である。 上記シミュレーションと上記実験結果との符合関係を示す図である。 第1の実施形態においてレジスト改質処理後にトリミング処理を行った場合のパターン断面形状を比較例と対比してSEM写真で示す図である。 第1の実施形態においてレジスト改質処理後にSiN膜のエッチングを行った場合のパターン平面形状をSEM写真で示す図である。 第1の実施形態においてレジスト改質処理を行わずにSiN膜のエッチングを行った場合(比較例)のパターン平面形状をSEM写真で示す図である。 本発明のプラズマ処理方法で用いるプラズマ処理装置の別の構成を示す縦断面図である。 第2の実施形態における実験で得られた各工程終了後のパターン断面形状をSEM写真で示す図である。 図14のパターン断面形状(SEM写真)における改質層と非改質層とを画像処理により2値化して明瞭に表した図である。 第2の実施形態において各段階のパターンの平面形状をSEM写真で示す図である。 第3の実施形態における実験で得られた各工程終了後のパターン断面形状をSEM写真で示す図である。 第3の実施形態において各段階のパターンの平面形状をSEM写真で示す図である。 実施形態における制御部の構成例を示すブロック図である。
符号の説明
10 チャンバ(処理容器)
12 サセプタ(下部電極)
26 排気装置
30 イオン引き込み用の高周波電源
60 上部電極
72 処理ガス供給部
74 プラズマ生成用の高周波電源
80 可変直流電源
110 制御部

Claims (19)

  1. 真空可能な処理容器内でプラズマに曝される電極表面がSiを含有する第1の電極と第2の電極とを所定の間隔を空けて平行に配置し、前記第1の電極に対向させて被処理基板を第2の電極で支持し、前記処理容器内を所定の圧力に真空排気し、前記第1の電極と前記第2の電極との間の処理空間にエッチャントガスを含む第1の処理ガスを供給し、前記第1の電極または第2の電極に第1の高周波を印加して前記処理空間で前記第1の処理ガスのプラズマを生成し、前記プラズマの下で前記基板上の被加工膜をその被加工膜の上に形成されたレジストパターンをマスクとしてエッチングするプラズマ処理方法であって、
    前記処理容器内で前記基板に対して前記被加工膜のエッチング処理よりも前に行われるレジスト改質処理として、
    前記処理容器内を所定の圧力に真空排気する工程と、
    前記レジストパターンのエッチング耐性を向上させるために、前記第1の電極と前記第2の電極との間の処理空間にCF 4 ガスを含む第2の処理ガスを供給するとともに前記第1の電極または前記第2の電極に前記第1の高周波を印加して、前記処理空間で前記第2の処理ガスのプラズマを生成し、前記処理容器内で前記基板から離れた場所でプラズマに曝される所定のDC印加部材に負極性の直流電圧を印加し、前記DC印加部材より放出された電子を前記基板上のレジストパターンに打ち込む工程と
    を有するプラズマ処理方法。
  2. 前記レジスト改質処理において、前記DC印加部材より放出された電子が1000eV以上のエネルギーで前記レジストパターンに打ち込まれるように、前記負極性直流電圧の絶対値を選定する、請求項1に記載のプラズマ処理方法。
  3. 前記負極性直流電圧の絶対値を1000V以上に選定する、請求項1に記載のプラズマ処理方法。
  4. 前記レジスト改質処理において、前記DC印加部材より放出された電子が1500eV以上のエネルギーで前記レジストパターンに打ち込まれるように、前記負極性直流電圧の絶対値を選定する、請求項1に記載のプラズマ処理方法。
  5. 前記負極性直流電圧の絶対値を1500V以上に選定する、請求項1に記載のプラズマ処理方法。
  6. 前記レジスト改質処理において、前記第1の電極にプラズマ生成用の前記第1の高周波を印加し、前記第2の電極上に形成される自己バイアスが100V以下になるように前記第2の電極にイオン引き込み制御用の第2の高周波を印加する、請求項1〜5のいずれか一項に記載のプラズマ処理方法。
  7. 前記レジスト改質処理において、前記第1の電極にプラズマ生成用の前記第1の高周波を所望のパワーで印加し、前記第2の電極にイオン引き込み制御用の第2の高周波を50W以下のパワーで印加する、請求項1〜5のいずれか一項に記載のプラズマ処理方法。
  8. 前記レジスト改質処理において、前記第1の電極にプラズマ生成用の前記第1の高周波を印加し、前記第2の電極には高周波を印加しない、請求項1〜5のいずれか一項に記載のプラズマ処理方法。
  9. 前記レジスト改質処理の後で前記被加工膜のエッチング処理の前に、前記処理容器内で前記レジストパターンをパターン面と平行な横方向で所望のサイズに削るトリミング処理を行う、請求項1〜8のいずれか一項に記載のプラズマ処理方法。
  10. 前記トリミング処理は、
    前記処理容器内を所定の圧力に真空排気する工程と、
    前記第1の電極と前記第2の電極との間の処理空間にエッチャントガスを含む第3の処理ガスを供給する工程と、
    前記第1の電極または前記第2の電極に前記第1の高周波を印加して前記処理空間で前記第3の処理ガスのプラズマを生成する工程と、
    前記プラズマの下で前記レジストパターンを前記所望のパターンまでエッチングする工程と
    を含む、請求項9に記載のプラズマ処理方法。
  11. 前記DC印加部材が前記第1の電極である、請求項1〜10のいずれか一項に記載のプラズマ処理方法。
  12. 真空可能な処理容器内で第1の電極と第2の電極とを所定の間隔を空けて平行に配置し、前記第1の電極に対向させて被処理基板を第2の電極で支持し、前記処理容器内を所定の圧力に真空排気し、前記第1の電極と前記第2の電極との間の処理空間にエッチャントガスを含む処理ガスを供給し、前記第1の電極または第2の電極に第1の高周波を印加して前記処理空間で前記処理ガスのプラズマを生成し、前記プラズマの下で前記基板上の被加工膜をその被加工膜の上に形成されたレジストパターンをマスクとしてエッチングするプラズマ処理方法であって、
    (1)前記処理容器内で前記基板に対して前記被加工膜のエッチングが行われている最中に、前記レジストパターンのエッチング耐性を向上させるように、前記処理容器内前記基板から離れた場所でプラズマに曝される所定のDC印加部材に負極性の直流電圧を印加し、前記DC印加部材より放出された電子を前記基板上のレジストパターンに打ち込み、
    (2)前記被加工膜のエッチングと並行して前記レジストパターンがパターン面と平行な横方向で所望のサイズまで削られるように、前記処理容器内のガス圧力を100mTorr以上に選定し、エッチング時間を20秒以上に選定する、
    プラズマ処理方法。
  13. 前記エッチング時間を47秒以上に選定する、請求項12に記載のプラズマ処理方法。
  14. 前記DC印加部材より放出された電子が1500eV以上のエネルギーで前記レジストパターンに打ち込まれるように、前記負極性直流電圧の絶対値を選定する、請求項12または請求項13に記載のプラズマ処理方法。
  15. 前記第1の電極にプラズマ生成用の前記第1の高周波を印加し、前記第2の電極にイオン引き込み制御用の第2の高周波を印加する、請求項1214のいずれか一項に記載のプラズマ処理方法。
  16. 前記第2の電極にプラズマ生成用の前記第1の高周波とイオン引き込み制御用の第2の高周波とを重畳して印加する、請求項1214のいずれか一項に記載のプラズマ処理方法。
  17. 前記DC印加部材が前記第1の電極である、請求項1216のいずれか一項に記載のプラズマ処理方法。
  18. 前記レジストパターンが、露光ビームにArFエキシマレーザ光を用いるレジストからなる、請求項1〜17のいずれか一項に記載のプラズマ処理方法。
  19. コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、前記制御プログラムは、実行時に、請求項1〜18のいずれか一項に記載のプラズマ処理方法が行われるようにプラズマ処理装置を制御することを特徴とするコンピュータ読み取り可能な記憶媒体。
JP2008318663A 2008-03-31 2008-12-15 プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体 Active JP5578782B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008318663A JP5578782B2 (ja) 2008-03-31 2008-12-15 プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体
TW098110460A TWI508162B (zh) 2008-03-31 2009-03-30 Plasma processing methods and computer readable memory media
CN 200910129594 CN101552189B (zh) 2008-03-31 2009-03-31 等离子体处理方法
US12/414,920 US8263499B2 (en) 2008-03-31 2009-03-31 Plasma processing method and computer readable storage medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008091490 2008-03-31
JP2008091490 2008-03-31
JP2008318663A JP5578782B2 (ja) 2008-03-31 2008-12-15 プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体

Publications (2)

Publication Number Publication Date
JP2009267352A JP2009267352A (ja) 2009-11-12
JP5578782B2 true JP5578782B2 (ja) 2014-08-27

Family

ID=41156342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318663A Active JP5578782B2 (ja) 2008-03-31 2008-12-15 プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体

Country Status (3)

Country Link
JP (1) JP5578782B2 (ja)
CN (1) CN101552189B (ja)
TW (1) TWI508162B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171683B2 (ja) * 2009-02-18 2013-03-27 東京エレクトロン株式会社 プラズマ処理方法
TWI423736B (zh) * 2010-02-12 2014-01-11 Advanced Micro Fab Equip Inc A plasma processing apparatus and a processing method thereof
JP5662079B2 (ja) * 2010-02-24 2015-01-28 東京エレクトロン株式会社 エッチング処理方法
US8778603B2 (en) * 2010-03-15 2014-07-15 Varian Semiconductor Equipment Associates, Inc. Method and system for modifying substrate relief features using ion implantation
JP5674375B2 (ja) * 2010-08-03 2015-02-25 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP5702968B2 (ja) * 2010-08-11 2015-04-15 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ制御方法
JP5840973B2 (ja) * 2011-03-03 2016-01-06 東京エレクトロン株式会社 半導体装置の製造方法及びコンピュータ記録媒体
US20140256147A1 (en) 2011-09-26 2014-09-11 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5934523B2 (ja) 2012-03-02 2016-06-15 東京エレクトロン株式会社 半導体装置の製造方法及びコンピュータ記録媒体
JP6029522B2 (ja) * 2013-04-16 2016-11-24 東京エレクトロン株式会社 パターンを形成する方法
WO2015084523A1 (en) * 2013-12-05 2015-06-11 Tokyo Electron Limited Direct current superposition freeze
JP6243722B2 (ja) * 2013-12-10 2017-12-06 東京エレクトロン株式会社 エッチング処理方法
JP6230954B2 (ja) * 2014-05-09 2017-11-15 東京エレクトロン株式会社 エッチング方法
US20160013020A1 (en) * 2014-07-14 2016-01-14 Lam Research Corporation Systems and methods for producing energetic neutrals
JP6817692B2 (ja) 2015-08-27 2021-01-20 東京エレクトロン株式会社 プラズマ処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270353C (zh) * 2001-03-28 2006-08-16 先进微装置公司 使用电子束辐射形成增强晶体管栅极的方法及包括该晶体管栅极的集成电路
US7022611B1 (en) * 2003-04-28 2006-04-04 Lam Research Corporation Plasma in-situ treatment of chemically amplified resist
JP4672456B2 (ja) * 2004-06-21 2011-04-20 東京エレクトロン株式会社 プラズマ処理装置
JP4827081B2 (ja) * 2005-12-28 2011-11-30 東京エレクトロン株式会社 プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
JP2007234770A (ja) * 2006-02-28 2007-09-13 Tokyo Electron Ltd プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
JP4869811B2 (ja) * 2006-07-19 2012-02-08 東京応化工業株式会社 微細パターンの形成方法
JP5271267B2 (ja) * 2006-08-07 2013-08-21 東京エレクトロン株式会社 エッチング処理を実行する前のマスク層処理方法
JP4614995B2 (ja) * 2007-08-23 2011-01-19 富士通セミコンダクター株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
TWI508162B (zh) 2015-11-11
CN101552189A (zh) 2009-10-07
TW200952069A (en) 2009-12-16
CN101552189B (zh) 2013-03-06
JP2009267352A (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5578782B2 (ja) プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体
US8263499B2 (en) Plasma processing method and computer readable storage medium
JP5213496B2 (ja) プラズマエッチング方法及びコンピュータ読み取り可能な記憶媒体
JP4733214B1 (ja) マスクパターンの形成方法及び半導体装置の製造方法
TWI450328B (zh) Plasma etch methods and computer-readable memory media
JP4657473B2 (ja) プラズマ処理装置
US20210134604A1 (en) Etching method
JP5486883B2 (ja) 被処理体の処理方法
EP2942806A1 (en) Etching method
TW201631656A (zh) 蝕刻方法
US9330935B2 (en) Plasma etching method and plasma etching apparatus
TWI743123B (zh) 電漿處理方法
JP5064319B2 (ja) プラズマエッチング方法、制御プログラム及びコンピュータ記憶媒体
KR101097025B1 (ko) 플라즈마 처리 방법 및 컴퓨터 판독 가능한 기억 매체
TWI713486B (zh) 蝕刻方法(二)
US10991594B2 (en) Method for area-selective etching of silicon nitride layers for the manufacture of microelectronic workpieces
TWI682426B (zh) 電漿處理裝置及電漿處理方法
JP2006032908A (ja) 半導体装置の製造方法
JP2008172184A (ja) プラズマエッチング方法、プラズマエッチング装置、制御プログラム及びコンピュータ記憶媒体
JP2020088174A (ja) エッチング方法及び基板処理装置
JP2007116031A (ja) 半導体装置の製造方法、半導体装置の製造装置、制御プログラム及びコンピュータ記憶媒体
JP7203531B2 (ja) プラズマ処理方法及びプラズマ処理装置
US11328934B2 (en) Etching method and substrate processing apparatus
JP2003243361A (ja) プラズマエッチング方法
Choi et al. Patterning of Si3N4 Layer in Pulse-Biased Capacitively-Coupled Plasmas for Multi-Level Hard Mask Structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5578782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250