JP5518317B2 - Carbon black composite and its use - Google Patents

Carbon black composite and its use Download PDF

Info

Publication number
JP5518317B2
JP5518317B2 JP2008250857A JP2008250857A JP5518317B2 JP 5518317 B2 JP5518317 B2 JP 5518317B2 JP 2008250857 A JP2008250857 A JP 2008250857A JP 2008250857 A JP2008250857 A JP 2008250857A JP 5518317 B2 JP5518317 B2 JP 5518317B2
Authority
JP
Japan
Prior art keywords
carbon black
carbon
black composite
fibrous
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008250857A
Other languages
Japanese (ja)
Other versions
JP2010031214A (en
Inventor
拓志 坂下
宏樹 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008250857A priority Critical patent/JP5518317B2/en
Publication of JP2010031214A publication Critical patent/JP2010031214A/en
Application granted granted Critical
Publication of JP5518317B2 publication Critical patent/JP5518317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、カーボンブラック複合体及びその用途に関する。 The present invention relates to a carbon black composite and use thereof.

カーボンブラックの導電性付与能力を活かした用途に非水系二次電池電極の導電剤がある。非水系二次電池電極の正極は、コバルト酸リチウム、マンガン酸リチウム等の複合酸化物からなる正極活物質と導電剤、結着剤とを含有してなる組成物をアルミニウム箔等の金属箔からなる集電体に被着させてなる構造を有しており、また負極は、黒鉛等の炭素質材料からなる負極活物質と導電剤、結着剤とを銅箔等の金属箔からなる集電体に被着させてなる構造を有している。これらの電極は、導電剤と、正極活物質又は負極活物質と、結着剤とを含むスラリーを調製し、それを金属箔からなる集電体に塗布・乾燥して被着させることで製造される。   There is a conductive agent for a non-aqueous secondary battery electrode as an application utilizing the conductivity imparting ability of carbon black. The positive electrode of the non-aqueous secondary battery electrode is composed of a positive electrode active material composed of a composite oxide such as lithium cobaltate and lithium manganate, a conductive agent, and a composition comprising a binder and a metal foil such as an aluminum foil. The negative electrode has a structure in which a negative electrode active material made of a carbonaceous material such as graphite, a conductive agent, and a binder are collected from a metal foil such as a copper foil. It has a structure that is attached to an electric body. These electrodes are manufactured by preparing a slurry containing a conductive agent, a positive electrode active material or a negative electrode active material, and a binder, and applying and drying the slurry on a current collector made of metal foil. Is done.

正極又は負極の導電剤としては、ケッチェンブラック(たとえば、ケッチェンブラック・インターナショナル社製商品名「ケッチェンEC300J」)、アセチレンブラック(たとえば、電気化学工業社製商品名「デンカブラック粉状品」)などが用いられている。   As the conductive agent for the positive electrode or the negative electrode, ketjen black (for example, trade name “Ketjen EC300J” manufactured by Ketjenblack International Co., Ltd.), acetylene black (for example, trade name “Denka Black powdered product” manufactured by Denki Kagaku Kogyo Co., Ltd.) Etc. are used.

しかしながら、近年、リチウムイオン二次電池の安全性能要求の高まりや環境資源の見知を背景として、従来のコバルト酸リチウムなどの活物質から、マンガン酸リチウム、ニッケル酸リチウムへの代替検討やマンガン、ニッケル、コバルトの成分比率調整検討、またリン酸鉄リチウムなどへの転換が検討されている。しかしながら、これらは従来のコバルト酸リチウムに比べて高抵抗であり、導電剤としてカーボンブラックを多量に添加しなければならず、活物質の量を必然的に減らす必要があり容量が低下してしまう問題があった。   However, in recent years, against the background of increasing safety performance requirements of lithium-ion secondary batteries and the knowledge of environmental resources, the conventional active materials such as lithium cobaltate have been studied as alternatives to lithium manganate and lithium nickelate, manganese, Studies are being made on adjusting the component ratio of nickel and cobalt, and conversion to lithium iron phosphate and the like. However, these have higher resistance than conventional lithium cobaltate, and a large amount of carbon black has to be added as a conductive agent, which necessitates a reduction in the amount of active material, resulting in reduced capacity. There was a problem.

この様な問題に対して、導電剤にカーボンナノチューブを用いることが提案されている(特許文献1)。ここではカーボンナノチューブの導電性を活かして、抵抗値を低減しレート特性を改善しようとするものである。しかしながら、カーボンナノチューブは分散性が悪いため、電極全体の導電性にバラツキを生じ、安定した充放電特性を得にくいという問題があった。また、カーボンブラックのようなストラクチャー構造を有していないため、充放電時の活物質の膨張・収縮の緩衝材としての役割を担えず、サイクル特性が悪化する問題があった。
特開2003−77476号公報 WO/2007/013678
For such problems, it has been proposed to use carbon nanotubes as a conductive agent (Patent Document 1). Here, the electrical conductivity of the carbon nanotube is utilized to reduce the resistance value and improve the rate characteristics. However, since carbon nanotubes have poor dispersibility, there is a problem in that the conductivity of the entire electrode varies and it is difficult to obtain stable charge / discharge characteristics. Moreover, since it does not have a structure structure like carbon black, it cannot play a role as a buffer material for expansion / contraction of the active material during charge / discharge, resulting in a problem that cycle characteristics deteriorate.
JP 2003-77476 A WO / 2007/013678

本発明の目的は、導電性付与能力に優れたカーボンブラック複合体を提供することである。本発明のカーボンブラック複合体は、電池用の電極及び電池用の活物質に好適に用いることができる。   An object of the present invention is to provide a carbon black composite having excellent conductivity imparting ability. The carbon black composite of the present invention can be suitably used for battery electrodes and battery active materials.

本発明のカーボンブラック複合体は、繊維状炭素とカーボンブラックが連結されてなり、繊維状炭素の平均直径が100nm以下であり、繊維状炭素の含有量が1〜50質量%であり、且つ、JIS K 1469で規定される灰分が1.0質量%以下で、JIS K 6217−2で規定される比表面積が85〜1152/g以上である。繊維状炭素の含有量が1〜50質量%であることが好ましい。さらに、カーボンブラックがアセチレンブラックであることが好ましい。繊維状炭素は、600〜1200℃で生成させた後、更に、生成温度より高温で焼成し触媒除去、結晶化させたものであり、反応炉内にて繊維状炭素の存在下、カーボンブラックを生成させることにより複合化させたものである。
In the carbon black composite of the present invention, fibrous carbon and carbon black are connected, the average diameter of fibrous carbon is 100 nm or less, the content of fibrous carbon is 1 to 50 % by mass, and The ash content defined by JIS K 1469 is 1.0% by mass or less, and the specific surface area defined by JIS K 6217-2 is 85 to 115 m 2 / g or more. The content of fibrous carbon is preferably 1 to 50% by mass. Further, the carbon black is preferably acetylene black. Fibrous carbon is produced at 600 to 1200 ° C. and then calcined at a temperature higher than the production temperature to remove the catalyst and crystallize. In the presence of fibrous carbon in the reaction furnace, carbon black is produced. It is made complex by generating.

また、カーボンブラック複合体を含有してなる、非水系二次電池用の電極であり、カーボンブラック複合体に、Li x MO 2 (ただし、式中Mは、1種以上の遷移金属であり、0.05≦x≦1.0である)を主体とするリチウム複合酸化物、またはLiMPO 4 (M=V、Fe、Ni、Mn)で表されるオリビン型リン酸リチウムを含有してなる、非水二次電池用の電極であり、カーボンブラック複合体を含有してなる、非水系二次電池用の活物質である。 Further, an electrode for a non-aqueous secondary battery comprising a carbon black composite , wherein the carbon black composite includes Li x MO 2 (wherein M is one or more transition metals, A lithium composite oxide mainly composed of 0.05 ≦ x ≦ 1.0) or an olivine type lithium phosphate represented by LiMPO 4 (M = V, Fe, Ni, Mn), It is an electrode for a non-aqueous secondary battery, and is an active material for a non-aqueous secondary battery comprising a carbon black composite.

本発明によれば、導電性付与能力に一段と優れたカーボンブラック複合体を得ることができる。   According to the present invention, it is possible to obtain a carbon black composite that is further excellent in conductivity imparting ability.

本発明のカーボンブラック複合体は、繊維状炭素とカーボンブラックが連結しているものである。その製造方法は、特に限定されないが、例えば、炭化水素熱分解中に繊維状炭素を導入し複合化する方法、WO/2007/013678号公報に記載されているように、アセチレンガスの熱分解中、及び/又はアセチレンガスを熱分解させた状態で、繊維状炭素化触媒を含む炭化水素を供給し、複合化する方法などが挙げられる。また、繊維状炭素とカーボンブラックを炭化水素やアルコールなどの炭素化原料液中に分散させ、炭素化原料液を液状またはガス化した状態で加熱等の操作により炭素化し、繊維状炭素とカーボンブラックを連結させても良い。このカーボンブラック複合体はJIS K 1469で規定される灰分が1.0質量%以下である。灰分は主に繊維状炭素製造時の触媒や不純物の金属(例えばFe、Ni等)やその酸化物からなり、灰分が1.0質量%を超えると、例えばLiイオン二次電池とした場合、充電時に負極上への金属の析出が起こり、充放電容量が低下するばかりか、セパレータを突き破り短絡して発火する危険性がある。   The carbon black composite of the present invention is one in which fibrous carbon and carbon black are linked. Although the production method is not particularly limited, for example, a method of introducing and combining fibrous carbon during hydrocarbon pyrolysis, as described in WO / 2007/013678, during pyrolysis of acetylene gas And / or a method in which a hydrocarbon containing a fibrous carbonization catalyst is supplied and combined in a state where the acetylene gas is thermally decomposed. In addition, fibrous carbon and carbon black are dispersed in a carbonization raw material liquid such as hydrocarbon or alcohol, and carbonized by an operation such as heating in a liquid or gasified state of the carbonized raw material liquid. May be connected. This carbon black composite has an ash content defined by JIS K 1469 of 1.0% by mass or less. The ash is mainly composed of a catalyst at the time of fibrous carbon production, impurities metals (for example, Fe, Ni, etc.) and oxides thereof, and when the ash content exceeds 1.0% by mass, for example, a Li ion secondary battery, There is a risk that metal deposits on the negative electrode during charging and the charge / discharge capacity decreases, and there is a risk of ignition by breaking through the separator and short-circuiting.

連結とは単なる接触ではなく、炭素質で物理的に融着していることを意味し、通常の機械的操作では容易に分離されることなく、連結された繊維状炭素とカーボンブラック間で接触抵抗なしで電子が自由に移動できるものである。そのため、活物質と混合した際もカーボンブラック複合体のまま存在し、良好な分散性が得られると同時に高導電性が保たれる。繊維状炭素単独では、活物質等やその他の材料と混合する場合、配向や繊維同士の絡み合いのため、良好な分散性を得ることが困難であり、導電性にバラツキが生じる。カーボンブラックと繊維状炭素を単純に混合した場合は形状が異なるため更にバラツキが大きくなるが、本発明のカーボンブラック複合体は導電性の安定性に優れていることが特長の一つである。ここで繊維状炭素の含有量は1〜50質量%であることが好ましい。繊維状炭素の含有量が1質量%未満であると、十分な導電性が得られず、50質量%を超えるとカーボンブラックとの連結が十分でなくなると同時に、繊維状炭素の凝集などのため分散性が著しく低下する。   Coupling is not just contact, it means that it is physically fused with carbonaceous matter, and it is not easily separated by normal mechanical operations, but between the connected fibrous carbon and carbon black. Electrons can move freely without resistance. Therefore, even when mixed with an active material, the carbon black composite remains as it is, and good dispersibility can be obtained and at the same time high conductivity can be maintained. When fibrous carbon alone is mixed with an active material or other materials, it is difficult to obtain good dispersibility due to orientation and entanglement between fibers, resulting in variations in conductivity. When carbon black and fibrous carbon are simply mixed, the shape is different and the variation further increases. However, one feature of the carbon black composite of the present invention is that it has excellent conductivity stability. Here, the content of fibrous carbon is preferably 1 to 50% by mass. When the content of fibrous carbon is less than 1% by mass, sufficient conductivity cannot be obtained, and when it exceeds 50% by mass, the connection with carbon black is not sufficient, and at the same time, aggregation of fibrous carbon, etc. Dispersibility is significantly reduced.

本発明のカーボンブラック複合体で使用される繊維状炭素とは、炭素繊維(カーボンファイバー)、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノファイバー等である。本発明においては繊維状炭素を適宜選択可能であるが、繊維状炭素は活物質との電子のやり取りを効果的に行うため、活物質の粒径に対して繊維状炭素は小さい方が好ましい。例えば、活物質の平均粒径が20μm未満であれば、平均直径が100nm以下のものが好ましい。また、繊維状炭素の平均直径はある程度の強度を持たせるため5nm以上が好適である。   The fibrous carbon used in the carbon black composite of the present invention is carbon fiber (carbon fiber), vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanofiber, or the like. In the present invention, fibrous carbon can be selected as appropriate. However, since fibrous carbon effectively exchanges electrons with the active material, it is preferable that the fibrous carbon is smaller than the particle size of the active material. For example, when the average particle diameter of the active material is less than 20 μm, the average diameter is preferably 100 nm or less. The average diameter of the fibrous carbon is preferably 5 nm or more in order to give a certain level of strength.

本発明のカーボンブラック複合体で使用されるカーボンブラックは、電極全体の導電性を保つとともに、活物質の膨張・収縮の緩衝材としての役割を担い、例えば、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、アセチレンブラック等が挙げられる。中でもアセチレンブラックは、アセチレンガスの熱分解という還元雰囲気での反応あることから繊維状炭素を導入して複合化する場合は、燃焼ロスが少なく、好適である。   The carbon black used in the carbon black composite of the present invention maintains the conductivity of the entire electrode and plays a role as a buffer for expansion / contraction of the active material. For example, thermal black, furnace black, lamp black, Examples thereof include channel black and acetylene black. Among these, acetylene black is preferable because it has a reaction in a reducing atmosphere called thermal decomposition of acetylene gas, and therefore, when fibrous carbon is introduced and combined, there is little combustion loss.

本発明のカーボンブラック複合体は、電池用の活物質として用いることができる。手法としては、特に限定されるものではなく、活物質製造中に本発明のカーボンブラック複合体を混合する方法や、カーボサーマル処理、泳動電着処理等の公知の方法が適用できる。例えば、カーボサーマル処理では、後述する公知の活物質に本発明のカーボンブラック複合体を遊星ボールミル等で機械的に合着処理し、さらに不活性雰囲気中で300〜600℃で熱処理することで製造できる。   The carbon black composite of the present invention can be used as an active material for a battery. The technique is not particularly limited, and known methods such as a method of mixing the carbon black composite of the present invention during the production of the active material, a carbothermal treatment, an electrophoretic electrodeposition treatment, and the like can be applied. For example, in the carbothermal treatment, the carbon black composite of the present invention is mechanically bonded to a known active material, which will be described later, using a planetary ball mill or the like, and further heat-treated at 300 to 600 ° C. in an inert atmosphere. it can.

本発明のカーボンブラック複合体は、電池用の電極として用いることができる。例えば非水系二次電池電極において、電極は正極活物質又は負極活物質と前述のカーボンブラック複合体(導電剤)を結着剤を含む液体に分散してスラリーを調製し、それを金属箔からなる集電体に塗布・乾燥によって被着させることによって製造することが出来る。導電剤の配合量は、集電体に被着した固形分中の割合として0.5〜20質量%が好ましい。なお、水系二次電池電極としても同様に、用いることができる。   The carbon black composite of the present invention can be used as an electrode for a battery. For example, in a non-aqueous secondary battery electrode, the electrode is prepared by dispersing a positive electrode active material or a negative electrode active material and the above-described carbon black composite (conductive agent) in a liquid containing a binder to prepare a slurry, which is made from a metal foil. The current collector can be applied by coating and drying. As for the compounding quantity of a electrically conductive agent, 0.5-20 mass% is preferable as a ratio in solid content adhering to the electrical power collector. In addition, it can use similarly as a water-system secondary battery electrode.

非水系二次電池電極が正極の場合は、活物質として、例えばLiCoO、LiNiO、LiMnO、LiFeOやこの種のLiMO(ただし、式中Mは、一種以上の遷移金属であり、通常0.05≦x≦1.0である)を主体とするリチウム複合酸化物、LiMPO(M=V、Fe、Ni、Mn)で表されるオリビン型リン酸リチウム、TiS、MoS、NbSe、V等のリチウムを含有しない金属硫化物、金属酸化物など、公知の活物質を使用することが出来る。 When the non-aqueous secondary battery electrode is a positive electrode, the active material is, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFeO 2 or this type of Li x MO 2 (where M is one or more transition metals) A lithium composite oxide mainly composed of 0.05 ≦ x ≦ 1.0), an olivine-type lithium phosphate represented by LiMPO 4 (M = V, Fe, Ni, Mn), TiS 2 , Known active materials such as metal sulfides and metal oxides that do not contain lithium, such as MoS 2 , NbSe 2 , and V 2 O 5, can be used.

非水系二次電池電極が負極の場合は、活物質として、各種の炭素質材料が使用できる。例えば、天然黒鉛、人造黒鉛、グラファイト、活性炭、コークス、ニードルコークス、メソカーボンマイクロビーズなど、公知の活物質が挙げられる。   When the nonaqueous secondary battery electrode is a negative electrode, various carbonaceous materials can be used as the active material. Examples thereof include known active materials such as natural graphite, artificial graphite, graphite, activated carbon, coke, needle coke, and mesocarbon microbeads.

結着剤としては、ポリエチレン、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、四フッ化エチレン樹脂、ポリフッ化ビニリデン、ポリフッ化クロロプレンなど、公知の結着剤が用いられる。   As the binder, known binders such as polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene butadiene rubber, polysulfide rubber, nitrocellulose, tetrafluoroethylene resin, polyvinylidene fluoride, and polychlorochloroprene are used. It is done.

集電体としては、特に限定されるものではないが、金、銀、銅、白金、アルミニウム、鉄、ニッケル、クロム、マンガン、鉛、タングステン、チタン等、ないしこれらを成分とする合金の金属箔が使用される。金属箔の厚みは薄い方が好ましい。取り扱いの容易さから、正極にはアルミニウムが、負極には銅が好適に使用される。   The current collector is not particularly limited, but is a metal foil of gold, silver, copper, platinum, aluminum, iron, nickel, chromium, manganese, lead, tungsten, titanium, or an alloy containing these as components. Is used. The thickness of the metal foil is preferably thinner. In view of ease of handling, aluminum is suitably used for the positive electrode and copper is suitably used for the negative electrode.

電解液としては、プロピレンカーボネート、エチレンカーボネート、γ−ブチルラクトン、N−メチルピロリドン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、1,3−ジオキソラン、ギ酸メチル、スルホラン、オキソゾリドン、塩化チオニル、1,2−ジメトキシエタン、ジエチレンカーボネートやこれらの誘導体等が用いられる。また、電解質としてはリチウムのハロゲン化物、リチウムの過塩素酸塩、リチウムのチオシアン塩、リチウムのホウフッ化塩、リチウムのリンフッ化塩、リチウムのヒ素フッ化塩、リチウムのアルミニウムフッ化塩、リチウムのトリフルオロメチル硫酸塩等が使用される。必要に応じて、セパレーター、端子、絶縁板等の部品が取り付けられる。   Examples of the electrolyte include propylene carbonate, ethylene carbonate, γ-butyllactone, N-methylpyrrolidone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, 1,3-dioxolane, methyl formate, sulfolane, oxozolidone, and thionyl chloride. 1,2-dimethoxyethane, diethylene carbonate and derivatives thereof are used. As electrolytes, lithium halide, lithium perchlorate, lithium thiocyanate, lithium borofluoride, lithium phosphorous fluoride, lithium arsenic fluoride, lithium aluminum fluoride, lithium Trifluoromethyl sulfate and the like are used. Components such as a separator, a terminal, and an insulating plate are attached as necessary.

非水系二次電池電極は、正極及び負極の少なくとも一方であり、非水系二次電池を作製するには、従来の正極、負極の代わりに、本発明の電極を用いれば良く、特別な配慮は必要としない。   The non-aqueous secondary battery electrode is at least one of a positive electrode and a negative electrode. In order to produce a non-aqueous secondary battery, the electrode of the present invention may be used instead of the conventional positive electrode and negative electrode. do not need.

本発明のカーボンブラック複合体を用いた二次電池の用途としては、ビデオカメラ、パソコン、ワープロ、携帯電話、ラジコン、その他の小型電子機器、自動車、蓄電システム等などである。   Applications of the secondary battery using the carbon black composite of the present invention include a video camera, a personal computer, a word processor, a mobile phone, a radio control, other small electronic devices, an automobile, a power storage system, and the like.

繊維状炭素粉末は以下の方法で作製した。炭素源ガスとしてベンゼン(関東化学社製試薬、99%以上)、触媒としてフェロセン(関東化学社製試薬、98%以上)、助触媒としてチオフェン(関東化学社製試薬、98%以上)を質量比で90:8:2として300℃でガス化したものを、竪型管状炉の上方に設置されたノズルから窒素ガスと共に噴霧し、流速0.5〜100m/s、温度600〜1200℃で、各種の直径を有する繊維状炭素を生成し、下方に設置したバッグフィルターにて回収した。更に、2000℃で焼成し触媒除去、結晶化を行ったものを繊維状炭素として使用した。   The fibrous carbon powder was produced by the following method. Mass ratio of benzene (reagent manufactured by Kanto Chemical Co., 99% or more) as a carbon source gas, ferrocene (reagent manufactured by Kanto Chemical Co., 98% or more) as a catalyst, and thiophene (reagent manufactured by Kanto Chemical Co., 98% or more) as a co-catalyst 90: 8: 2 gasified at 300 ° C., and sprayed with nitrogen gas from a nozzle installed above the vertical tube furnace, with a flow rate of 0.5 to 100 m / s and a temperature of 600 to 1200 ° C. Fibrous carbon having various diameters was produced and collected with a bag filter installed below. Furthermore, what was baked at 2000 ° C., removed the catalyst, and crystallized was used as fibrous carbon.

正極活物質は以下の方法で作製した。LiCO(関東化学社製試薬、99%以上)、Co(関東化学社製試薬、99.95%以上)をモル比で1:1として混合し、電気炉にて大気中、850℃で20時間焼成し、得られたLiCoOを平均粒径10μmになるまで振動ミルで粉砕して、10μmのLiCoOを得た。また、LiCHCOO・2HO(関東化学社製試薬、99%以上)と(NHHPO(関東化学社製試薬、99%以上)とFeC(関東化学社製試薬、98.5%)をモル比で1:1:1として混合し、電気炉にてアルゴン流通下(100ml/min)で350℃、3時間で焼成し、更に、570℃、5時間焼成した後、平均粒径が200nmとなるまで粉砕し、200nmのLiFePOを得た。 The positive electrode active material was produced by the following method. Li 2 CO 3 (reagent manufactured by Kanto Chemical Co., Ltd., 99% or more) and Co 3 O 4 (reagent manufactured by Kanto Chemical Co., Ltd., 99.95% or more) were mixed at a molar ratio of 1: 1 and mixed in the atmosphere in an electric furnace. And baked at 850 ° C. for 20 hours, and the obtained LiCoO 2 was pulverized with a vibration mill until the average particle size became 10 μm, to obtain 10 μm LiCoO 2 . In addition, LiCH 3 COO · 2H 2 O (reagent manufactured by Kanto Chemical Co., 99% or more), (NH 4 ) 2 HPO 4 (reagent manufactured by Kanto Chemical Co., 99% or more) and FeC 2 O 4 (reagent manufactured by Kanto Chemical Co., Ltd.) , 98.5%) was mixed at a molar ratio of 1: 1: 1, and baked in an electric furnace under argon flow (100 ml / min) at 350 ° C. for 3 hours, and further baked at 570 ° C. for 5 hours. after an average particle size of pulverized until 200 nm, to obtain a 200 nm LiFePO 4 of.

実施例1〜3 比較例1
反応炉(炉全長6m、炉直径1m)の炉頂に設置された2本のノズルの一方から、アセチレンガス(純度99%以上)を供給し、他方のノズルから繊維状炭素粉末(平均直径20nm、長さ400nm)を導入することで、アセチレンガスを2000℃で熱分解してカーボンブラックを生成しつつ繊維状炭素との複合化を行った。そのカーボンブラック複合体は炉下部に直結されたバグフィルターから捕集した。それらについて以下の評価を行い、結果を表1に示す。
(1)繊維状炭素の平均直径については、透過型電子顕微鏡(TEM)により、倍率3万倍で繊維状炭素100本の直径を測定し、その平均値を平均直径とした。
(1)BET比表面積:JIS K 6217−2に従い測定した。
(2)粉体抵抗:JIS K 1469に従い測定した。
Examples 1-3 Comparative Example 1
Acetylene gas (purity 99% or more) is supplied from one of the two nozzles installed at the top of the reactor (total furnace length 6 m, furnace diameter 1 m), and fibrous carbon powder (average diameter 20 nm) from the other nozzle. And 400 nm in length), the acetylene gas was thermally decomposed at 2000 ° C. to form carbon black, and was combined with fibrous carbon. The carbon black composite was collected from a bag filter directly connected to the lower part of the furnace. The following evaluation was performed about them, and a result is shown in Table 1.
(1) About the average diameter of fibrous carbon, the diameter of 100 fibrous carbon was measured with the transmission electron microscope (TEM) by the magnification of 30,000 times, and the average value was made into the average diameter.
(1) BET specific surface area: measured according to JIS K 6217-2.
(2) Powder resistance: measured in accordance with JIS K 1469.

(3)非水系二次電池の電極評価
正極活物質として粒径が10μmのLiCoOを90質量%と、実施例1で得られたカーボンブラック複合体(導電剤)10質量%とを混合した後、PVDF(ポリフッ化ビニリデン:結着剤)を含むN−メチルピロリドン溶液(クレハ社製「KFポリマーL#1120」)に分散させスラリーを固形濃度45%で調製し、それをアルミニウム箔(集電体)に塗布・乾燥して正極とした。
(3) Electrode evaluation of non-aqueous secondary battery 90% by mass of LiCoO 2 having a particle size of 10 μm as a positive electrode active material and 10% by mass of the carbon black composite (conductive agent) obtained in Example 1 were mixed. After that, the slurry was prepared by dispersing it in an N-methylpyrrolidone solution (“KF polymer L # 1120” manufactured by Kureha) containing PVDF (polyvinylidene fluoride: binder) at a solid concentration of 45%. The positive electrode was coated and dried on an electric body.

実施例4
アセチレンブラック(電気化学工業社製「デンカブラック粉状品」)と繊維状炭素(平均直径20nm、長さ400nm)を質量比1:1でエタノール(関東化学社製試薬:純度99.5%)に1質量%混合したスラリーを、電気炉内において窒素(10L/min)流通下、1500℃で焼成し、カーボンブラック複合体を得た以外は実施例1と同様の評価を行った。
Example 4
Acetylene black (“Denka black powder” manufactured by Denki Kagaku Kogyo Co., Ltd.) and fibrous carbon (average diameter 20 nm, length 400 nm) in a mass ratio of 1: 1 ethanol (Kanto Chemical Co., Ltd. reagent: purity 99.5%) The same evaluation as in Example 1 was performed except that a slurry mixed with 1% by mass was calcined at 1500 ° C. under a flow of nitrogen (10 L / min) in an electric furnace to obtain a carbon black composite.

実施例5は、正極活物質として粒径が10μmのLiCoOを90質量%と、実施例1で得られたカーボンブラック複合体(導電剤)10質量%とを混合し、その混合物をカーボサーマル処理を施した以外は実施例1と同様の電極評価を行った。このカーボサーマル処理条件は、3Lのアルミナポットにアルミナボール10mmを2kg充填し、混合物200gを1時間処理して合着させ、窒素雰囲気で500℃にて焼成した。 In Example 5, 90% by mass of LiCoO 2 having a particle size of 10 μm as a positive electrode active material and 10% by mass of the carbon black composite (conductive agent) obtained in Example 1 were mixed, and the mixture was carbothermal. The electrode evaluation similar to Example 1 was performed except having processed. The carbothermal treatment conditions were as follows: a 3 L alumina pot was filled with 2 kg of 10 mm alumina balls, 200 g of the mixture was treated and coalesced for 1 hour, and fired at 500 ° C. in a nitrogen atmosphere.

比較例2は、繊維状炭素粉末(平均直径20nm、長さ400nm)を10質量%と比較例1で生成したカーボンブラックを90質量%混合したものを導電剤として用いたこと以外は、実施例1と同様に正極を作製した。比較例3は繊維状炭素粉末(平均直径20nm、長さ400nm)を60質量%と比較例1で生成したカーボンブラックを40質量%混合したものを導電剤として用いたこと以外は、実施例1と同様に正極を作製した。   Comparative Example 2 is an example except that 10% by mass of fibrous carbon powder (average diameter 20 nm, length 400 nm) and 90% by mass of carbon black produced in Comparative Example 1 were used as the conductive agent. A positive electrode was produced in the same manner as in 1. Comparative Example 3 is the same as Example 1 except that 60% by mass of fibrous carbon powder (average diameter 20 nm, length 400 nm) and 40% by mass of the carbon black produced in Comparative Example 1 were used as the conductive agent. A positive electrode was produced in the same manner as described above.

正極の塗膜の状態を目視観察し、◎:平滑で良好、○:普通、△:剥離有り不良にて判断した。正極の表面抵抗はJIS K 7194に従い、ダイアインスツルメンツ社製「ロレスタGP」でTFPプローブを用いて測定した。表面抵抗は1サンプルについて9カ所測定し、その平均値を求めると同時に、最大値、最小値からバラツキの割合を算出した。   The state of the coating film on the positive electrode was visually observed, and judged as :: smooth and good, ○: normal, Δ: defective with peeling. The surface resistance of the positive electrode was measured according to JIS K 7194 using “Loresta GP” manufactured by Dia Instruments Co., Ltd. using a TFP probe. The surface resistance was measured at nine locations for one sample, and the average value was obtained, and at the same time, the variation ratio was calculated from the maximum value and the minimum value.

対極として金属リチウムを用い、エチレンカーボネート/ジメチルカーボネートを1/2の容量比で混合した溶液に、リンフッ化リチウム1モル濃度を溶解させたものを電解液として、コイン型電池を作製した。   Using lithium metal as a counter electrode, a coin-type battery was manufactured using a solution obtained by dissolving 1 molar concentration of lithium phosphofluoride in a solution in which ethylene carbonate / dimethyl carbonate was mixed at a volume ratio of 1/2.

以上のように作製したコイン型電池において、0.2Cの低電流モードで充電したあと、4.2Vの低電圧モードで充電を行った。次に0.2C、1Cの電流密度でそれぞれについて放電を行い、放電電圧2.1Vで容量確認を行い、0.2C放電量を100%として、1C放電量を算出しレート特性の指標とした。   The coin-type battery manufactured as described above was charged in a low current mode of 0.2 C and then charged in a low voltage mode of 4.2 V. Next, discharge was performed at a current density of 0.2 C and 1 C, capacity was confirmed at a discharge voltage of 2.1 V, and the amount of 1 C discharge was calculated using the 0.2 C discharge amount as 100% as an index of rate characteristics. .

サイクル数が100回の充放電試験を行い、100回後の放電容量を初回容量で除し容量維持率を求め、サイクル特性の指標とした。試験は、金属リチウムに対して4.7−3.0V、定電流0.8mAで行った。なお、放電容量は活物質の重量当たりの容量である。また、充放電試験後のコイン型電池を分解し、充放電試験前の正極の厚みに対する厚みの変化率を測定した。   A charge / discharge test with a cycle number of 100 was performed, and the discharge capacity after 100 times was divided by the initial capacity to obtain a capacity retention rate, which was used as an index of cycle characteristics. The test was performed with respect to metallic lithium at 4.7 to 3.0 V and a constant current of 0.8 mA. The discharge capacity is a capacity per weight of the active material. Moreover, the coin-type battery after the charge / discharge test was disassembled, and the rate of change in thickness with respect to the thickness of the positive electrode before the charge / discharge test was measured.

Figure 0005518317
Figure 0005518317

実施例6、7、比較例4
実施例6は、実施例1のカーボンブラック複合体を用い、正極活物質として粒径が200nmのLiFePOを用いた以外は、実施例1と同様にコイン型電池を作製した。実施例7は、実施例3のカーボンブラック複合体を用い、正極活物質として粒径が200nmのLiFePOを用いた以外は、実施例3と同様にコイン型電池を作製した。比較例4は、比較例3と同様に繊維状炭素粉末(平均直径20nm、長さ400nm)を60質量%と比較例1で生成したカーボンブラックを40質量%混合したものを導電剤として用い、正極活物質として粒径が100nmのLiFePOを用いた以外は、比較例3と同様にコイン型電池を作製した。
Examples 6 and 7 and Comparative Example 4
In Example 6, a coin-type battery was produced in the same manner as in Example 1 except that the carbon black composite of Example 1 was used and LiFePO 4 having a particle size of 200 nm was used as the positive electrode active material. In Example 7, a coin-type battery was produced in the same manner as in Example 3 except that the carbon black composite of Example 3 was used and LiFePO 4 having a particle size of 200 nm was used as the positive electrode active material. In Comparative Example 4, as in Comparative Example 3, a mixture of 60% by mass of fibrous carbon powder (average diameter 20 nm, length 400 nm) and 40% by mass of carbon black produced in Comparative Example 1 was used as a conductive agent. A coin-type battery was produced in the same manner as in Comparative Example 3 except that LiFePO 4 having a particle size of 100 nm was used as the positive electrode active material.

参考例8、参考例9
style='font-size:10.0pt;font-family:"MS 明朝"'> 参考例8は、平均直径90nm、長さ1500nmの繊維状炭素を用いた以外は実施例1と同様にカーボンブラック複合体を作製し、その後、実施例5と同様にカーボサーマル処理を行い、実施例5と同様にコイン型電池を作製した。参考例9は、平均直径150nm、長さ3000nmの繊維状炭素を用いた以外は実施例1と同様にカーボンブラック複合体を作製し、その後、実施例5と同様にカーボサーマル処理を行い、実施例5と同様にコイン型電池を作製した。前述と同様のレート特性、サイクル特性評価を行った。
Reference Example 8, Reference Example 9
style = 'font-size: 10.0pt; font-family: "MS Mincho"'> Reference Example 8 is a carbon black similar to Example 1 except that fibrous carbon having an average diameter of 90 nm and a length of 1500 nm is used. A composite was produced, and then a carbothermal treatment was performed in the same manner as in Example 5 to produce a coin-type battery as in Example 5. In Reference Example 9, a carbon black composite was prepared in the same manner as in Example 1 except that fibrous carbon having an average diameter of 150 nm and a length of 3000 nm was used, and then subjected to carbothermal treatment in the same manner as in Example 5. A coin-type battery was produced in the same manner as in Example 5. The rate characteristics and cycle characteristics were evaluated in the same manner as described above.

参考例10、比較例5

参考例10は、反応炉(炉全長6m、炉直径1m)の上方に設置されたノズルからアセチレンガスを15m/hで供給し、アセチレンガスを2000℃で熱分解してカーボンブラックを生成しつつ、更に上方の900℃の部分から、トルエン(関東化学社製試薬、2kg/h)、フェロセン(関東化学社製試薬、0.2kg/h)、チオフェン(関東化学社製試薬、0.025kg/h)の混合ガスを供給し繊維状炭素を生成した。そのカーボンブラック複合体は炉下部に直結されたバグフィルターから捕集した。比較例5は、トルエン(4kg/h)、フェロセン(0.35kg/h)、チオフェン(0.05kg/h)の混合ガスを供給した以外は、参考例10と同様にカーボンブラック複合体を作製した。実施例1、参考例10、比較例5のカーボンブラック複合体についてJISstyle='font-size:10.0pt;font-family:"MS UI Gothic"'> style='font-size:10.0pt;font-family:"MS 明朝"'>K10.0pt;font-family:"MS UI Gothic"'> font-family:"MS 明朝"'>1469に規定される灰分を測定したところ、それぞれ、0.01質量%未満、0.85質量%、1.22質量%であった。
Reference Example 10 and Comparative Example 5

In Reference Example 10, acetylene gas was supplied at a rate of 15 m 3 / h from a nozzle installed above a reactor (furnace length 6 m, furnace diameter 1 m), and acetylene gas was pyrolyzed at 2000 ° C. to produce carbon black. However, from the upper portion of 900 ° C., toluene (reagent manufactured by Kanto Chemical Co., 2 kg / h), ferrocene (reagent manufactured by Kanto Chemical Co., 0.2 kg / h), thiophene (reagent manufactured by Kanto Chemical Co., 0.025 kg) / H) was supplied to produce fibrous carbon. The carbon black composite was collected from a bag filter directly connected to the lower part of the furnace. In Comparative Example 5, a carbon black composite was prepared in the same manner as in Reference Example 10 except that a mixed gas of toluene (4 kg / h), ferrocene (0.35 kg / h), and thiophene (0.05 kg / h) was supplied. did. For the carbon black composites of Example 1, Reference Example 10 and Comparative Example 5, JIS style = 'font-size: 10.0pt; font-family: "MS UI Gothic"'> style = 'font-size: 10.0pt; font- family: "MS Mincho"'>K10.0pt; font-family: "MS UI Gothic"'> font-family: "MS Mincho"'> 1469 ash content was measured. They were less than 01 mass%, 0.85 mass%, and 1.22 mass%.

Figure 0005518317
Figure 0005518317


表1、2から、本発明の実施例によって得られたカーボンブラック複合体は、複合していないカーボンブラックやカーボンブラックと繊維状炭素に比べて粉体抵抗が低い。本発明のカーボンブラック複合体を用いて作製した電極は、塗膜状態が良好であり、表面抵抗が低く、表面抵抗のバラツキも低下している。また、レート特性、サイクル特性が良好で、充放電試験後の膨張率も抑えられている。   From Tables 1 and 2, the carbon black composites obtained by the examples of the present invention have lower powder resistance than uncomposited carbon black or carbon black and fibrous carbon. The electrode produced using the carbon black composite of the present invention has a good coating state, low surface resistance, and reduced variation in surface resistance. Moreover, rate characteristics and cycle characteristics are good, and the expansion coefficient after the charge / discharge test is also suppressed.

本発明のカーボンブラック複合体は、非水系二次電池電極の他に、一次電池、二次電池、燃料電池、キャパシタ等の電池用導電剤などとして利用することができる。   The carbon black composite of the present invention can be used as a conductive agent for batteries such as primary batteries, secondary batteries, fuel cells, capacitors, etc., in addition to non-aqueous secondary battery electrodes.

Claims (7)

繊維状炭素とカーボンブラックが連結されてなり、
前記繊維状炭素の平均直径が100nm以下であり、
前記繊維状炭素の含有量が1〜50質量%であり、
且つ、JIS K 1469で規定される灰分が1.0質量%以下で、JIS K 6217−2で規定される比表面積が85〜1152/g以上であることを特徴とするカーボンブラック複合体。
Fibrous carbon and carbon black are connected,
An average diameter of the fibrous carbon is 100 nm or less;
Content of the said fibrous carbon is 1-50 mass%,
And a carbon black composite having an ash content defined by JIS K 1469 of 1.0% by mass or less and a specific surface area defined by JIS K 6217-2 of 85-115 m 2 / g or more. .
カーボンブラックがアセチレンブラックである請求項に記載のカーボンブラック複合体。 The carbon black composite according to claim 1 , wherein the carbon black is acetylene black. 繊維状炭素が、600〜1200℃で生成させた後、更に、生成温度より高温で焼成し触媒除去、結晶化させたものである、請求項1または2に記載のカーボンブラック複合体。 3. The carbon black composite according to claim 1, wherein the fibrous carbon is produced at 600 to 1200 ° C. and then calcined at a temperature higher than the production temperature to remove the catalyst and crystallize. 反応炉内にて繊維状炭素の存在下、カーボンブラックを生成させることにより複合化させたものである、請求項1〜の何れか一項に記載のカーボンブラック複合体。 The carbon black composite according to any one of claims 1 to 3 , which is composited by generating carbon black in the presence of fibrous carbon in a reaction furnace. 請求項1〜の何れか一項に記載のカーボンブラック複合体を含有してなる、非水系二次電池用の電極。 An electrode for a non-aqueous secondary battery, comprising the carbon black composite according to any one of claims 1 to 4 . 請求項1〜の何れか一項に記載のカーボンブラック複合体に、LixMO2(ただし、式中Mは、1種以上の遷移金属であり、0.05≦x≦1.0である)を主体とするリチウム複合酸化物、またはLiMPO4(M=V、Fe、Ni、Mn)で表されるオリビン型リン酸リチウムを含有してなる、非水二次電池用の電極。 The carbon black composite according to any one of claims 1 to 4 , wherein Li x MO 2 (wherein M is one or more transition metals, and 0.05 ≦ x ≦ 1.0) An electrode for a non-aqueous secondary battery comprising a lithium composite oxide mainly composed of a certain) or an olivine type lithium phosphate represented by LiMPO 4 (M = V, Fe, Ni, Mn). 請求項1〜の何れか一項に記載のカーボンブラック複合体を含有してなる、非水系二次電池用の活物質。
An active material for a non-aqueous secondary battery, comprising the carbon black composite according to any one of claims 1 to 4 .
JP2008250857A 2008-07-02 2008-09-29 Carbon black composite and its use Active JP5518317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250857A JP5518317B2 (en) 2008-07-02 2008-09-29 Carbon black composite and its use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008173657 2008-07-02
JP2008173657 2008-07-02
JP2008250857A JP5518317B2 (en) 2008-07-02 2008-09-29 Carbon black composite and its use

Publications (2)

Publication Number Publication Date
JP2010031214A JP2010031214A (en) 2010-02-12
JP5518317B2 true JP5518317B2 (en) 2014-06-11

Family

ID=41736077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250857A Active JP5518317B2 (en) 2008-07-02 2008-09-29 Carbon black composite and its use

Country Status (1)

Country Link
JP (1) JP5518317B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003923B2 (en) 2008-03-06 2012-08-22 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber and method for producing them
JP5518316B2 (en) * 2008-09-26 2014-06-11 電気化学工業株式会社 Carbon black composite and method for producing the same
JP4835881B2 (en) * 2009-03-31 2011-12-14 宇部興産株式会社 Lithium ion battery electrode and method for producing the same
JP4936026B2 (en) 2009-04-02 2012-05-23 宇部興産株式会社 Method for producing conductive binder
JP2010248397A (en) * 2009-04-17 2010-11-04 Denki Kagaku Kogyo Kk Method for producing carbon black composite
CN102575101B (en) 2009-08-07 2013-10-09 宇部兴产株式会社 Conductive polyamide resin composition
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
WO2011027863A1 (en) 2009-09-07 2011-03-10 宇部興産株式会社 Multilayer tube for delivery
US10680215B2 (en) 2011-02-14 2020-06-09 Toyota Jidosha Kabushiki Kaisha Secondary battery and assembled battery
TWI565128B (en) * 2011-02-16 2017-01-01 Showa Denko Kk Lithium battery electrode and lithium battery
WO2012141308A1 (en) * 2011-04-15 2012-10-18 電気化学工業株式会社 Carbon black composite and lithium-ion secondary battery using same
JP6016597B2 (en) * 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 Method for producing positive electrode for lithium ion secondary battery
JP6278679B2 (en) * 2013-12-09 2018-02-14 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. A conductive composition, a positive electrode, and a lithium ion secondary battery.
HUE040644T2 (en) 2014-02-28 2019-03-28 Orion Eng Carbons Gmbh Pelleted acetylene black
US11897172B2 (en) * 2021-09-02 2024-02-13 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Method for fabricating polar plate of flexible plastic graphite composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038472A (en) * 1983-08-12 1985-02-28 Denki Kagaku Kogyo Kk Composite-structure carbon black and production thereof
JPS6295351A (en) * 1985-10-22 1987-05-01 Denki Kagaku Kogyo Kk Production of carbon black of composite structure
DE69611984T2 (en) * 1996-01-19 2001-06-13 Denki Kagaku Kogyo Kk Acetylene black, its production and its use
KR100350535B1 (en) * 1999-12-10 2002-08-28 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
SG129313A1 (en) * 2005-07-27 2007-02-26 Denka Singapore Private Ltd Carbon black, method for producing the same, and its use
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2008235156A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Electrode catalyst layer for fuel cell, and fuel cell using it

Also Published As

Publication number Publication date
JP2010031214A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5518317B2 (en) Carbon black composite and its use
US8748036B2 (en) Non-aqueous secondary battery
EP3451425A2 (en) Sulfur-carbon composite and lithium-sulfur battery comprising same
JP5462445B2 (en) Lithium ion secondary battery
JP6183361B2 (en) Negative electrode active material, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP5464653B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP5885984B2 (en) Electrode forming material and electrode manufacturing method using the electrode forming material
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5658821B2 (en) Non-aqueous secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20120093874A (en) Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
JP6494598B2 (en) High capacity electrode active material for lithium secondary battery and lithium secondary battery using the same
JPWO2018110263A1 (en) Composite graphite particles, production method thereof and use thereof
KR20130129819A (en) Lithium ion secondary battery
JPH0927314A (en) Nonaqueous electrolyte secondary battery
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JPH06302315A (en) Electrode for nonaqueous electrolytic secondary battery and its manufacture
KR20100118809A (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
KR102244226B1 (en) Silicon Composite Anode Active Material including Network of Conductive Fibers, Manufacturing method thereof and Lithium Secondary Battery Comprising the Same
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof
KR102025150B1 (en) Anode active material for lithium secondary battery and methods of fabricating the same
CN115136349A (en) Positive electrode material and battery
JP2010257982A (en) Anode active material for lithium secondary battery, and lithium secondary battery including the same
KR102450634B1 (en) A new composite anode active material, lithium battery including the same, and method for preparing the material
KR101994878B1 (en) Positive electrode for solid lithium ion secondary battery, and solid lithium ion secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R151 Written notification of patent or utility model registration

Ref document number: 5518317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250