JP2010248397A - Method for producing carbon black composite - Google Patents

Method for producing carbon black composite Download PDF

Info

Publication number
JP2010248397A
JP2010248397A JP2009100447A JP2009100447A JP2010248397A JP 2010248397 A JP2010248397 A JP 2010248397A JP 2009100447 A JP2009100447 A JP 2009100447A JP 2009100447 A JP2009100447 A JP 2009100447A JP 2010248397 A JP2010248397 A JP 2010248397A
Authority
JP
Japan
Prior art keywords
carbon
carbon black
fibrous
producing
black composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100447A
Other languages
Japanese (ja)
Inventor
Hiroki Fujisawa
宏樹 藤澤
Takushi Sakashita
拓志 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009100447A priority Critical patent/JP2010248397A/en
Publication of JP2010248397A publication Critical patent/JP2010248397A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously producing a carbon black composite excellent in imparting conductivity. <P>SOLUTION: In the method for producing the carbon black composite, production of a fibrous carbon, production of a spherical carbon particles, and complexation of fibrous carbon and spherical carbon particles are continuously carried out. In the method for producing a carbon black composite, production of a fibrous carbon is carried out at the upper stage and production of spherical carbon particles and complexation of fibrous carbon and spherical carbon particles are carried out at the lower stage of the two-stage type reacting furnace. In the method for producing carbon black composite, spherical carbon particles are acetylene black. In the method for producing carbon black composite, the temperature for producing fibrous carbon is 600-1,000°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、カーボンブラック複合体の製造方法に関する。   The present invention relates to a method for producing a carbon black composite.

従来、ゴム、樹脂等にカーボンブラックを含有させ、導電性を付与させるということが行われている。特にアセチレンブラックは炭素粒子の連鎖構造を有するため、一般のカーボンブラックと比較して導電性の付与能力に優れている。しかしながら、樹脂等の本来の特性を低下させずに高い導電性を付与することが出来る導電剤が求められており、この要求を満たすためには、導電付与効果が一段と優れたカーボンブラックを開発する必要がある。この要求に対して、導電剤にカーボンナノチューブを用いることが提案されているが、分散性が悪く、触媒除去や結晶性向上のための後処理を必要とするものが多く、かつ非常に高価である。
これらの問題に対して、アセチレンブラックの反応場でカーボンナノチューブ生成するという提案がされているが(特許文献1)、カーボンナノチューブとアセチレンブラックの生成条件が異なり、一つの生成場での同時生成を行うことにより、品質が安定しないことがある。
Conventionally, carbon black is contained in rubber, resin or the like to impart conductivity. In particular, since acetylene black has a chain structure of carbon particles, it has superior conductivity imparting ability compared to general carbon black. However, there is a demand for a conductive agent capable of imparting high conductivity without degrading the original properties of a resin or the like, and in order to satisfy this requirement, a carbon black having a further excellent conductivity imparting effect is developed. There is a need. In response to this requirement, it has been proposed to use carbon nanotubes as the conductive agent, but the dispersibility is poor, many of which require post-treatment for catalyst removal and crystallinity improvement, and are very expensive. is there.
To solve these problems, it has been proposed to generate carbon nanotubes in the reaction field of acetylene black (Patent Document 1), but the production conditions of carbon nanotubes and acetylene black are different, and simultaneous production in one production field is possible. By doing so, the quality may not be stable.

WO/2007/013678WO / 2007/013678

本発明の目的は、導電性付与能力に優れたカーボンブラック複合体の連続的な製造方法を提供することである。   The objective of this invention is providing the continuous manufacturing method of the carbon black composite excellent in the electroconductivity provision ability.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)繊維状炭素の製造と、球状炭素粒子の製造及び繊維状炭素と球状炭素粒子の複合化を連続的に行うことを特徴とするカーボンブラック複合体の製造方法。
(2)繊維状炭素の製造を二段式反応炉の上段部分で行い、球状炭素粒子の製造と繊維状炭素と球状炭素粒子の複合化を二段式反応炉の下段部分で行うことを特徴とする前記(1)に記載のカーボンブラック複合体の製造方法。
(3)球状炭素粒子がアセチレンブラックであることを特徴とする前記(1)又は(2)に記載のカーボンブラック複合体の製造方法。
(4)繊維状炭素の製造温度が600〜1000℃であることを特徴とする前記(1)〜(3)のいずれか一項に記載のカーボンブラック複合体の製造方法。
(5)繊維状炭素の製造時の炭化水素の供給速度が5〜100m/分であることを特徴とする前記(1)〜(4)のいずれか一項に記載のカーボンブラック複合体の製造方法。
(6)繊維状炭素の直径が200nm以下であることを特徴とする前記(1)〜(5)のいずれか一項に記載のカーボンブラック複合体の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) A method for producing a carbon black composite comprising continuously producing fibrous carbon, producing spherical carbon particles, and combining fibrous carbon and spherical carbon particles.
(2) The production of fibrous carbon is performed in the upper part of the two-stage reactor, and the production of spherical carbon particles and the combination of fibrous carbon and spherical carbon particles are performed in the lower part of the two-stage reactor. The method for producing a carbon black composite according to (1) above.
(3) The method for producing a carbon black composite as described in (1) or (2) above, wherein the spherical carbon particles are acetylene black.
(4) The method for producing a carbon black composite according to any one of (1) to (3), wherein the production temperature of the fibrous carbon is 600 to 1000 ° C.
(5) The production of the carbon black composite according to any one of (1) to (4) above, wherein the hydrocarbon feed rate during the production of fibrous carbon is 5 to 100 m / min. Method.
(6) The method for producing a carbon black composite as described in any one of (1) to (5) above, wherein the fibrous carbon has a diameter of 200 nm or less.

本発明は、従来のカーボンブラックよりも導電性付与能力に優れているカーボンブラック複合体を連続して製造することができる。本発明のカーボンブラック複合体は、樹脂等に高い導電性を付与することが出来る。   The present invention can continuously produce a carbon black composite that is more excellent in conductivity imparting ability than conventional carbon black. The carbon black composite of the present invention can impart high conductivity to a resin or the like.

本発明のカーボンブラック複合体は、繊維状炭素とカーボンブラックが連結しているものである。本発明のカーボンブラック複合体は、JIS K 1469で規定される灰分が1.0質量%以下であることが好ましい。灰分は主に繊維状炭素製造時の触媒や金属不純物(Fe、Ni、Co等)やその酸化物からなり、灰分が1.0質量%を超えると、例えばLiイオン二次電池とした場合、充電時に負極上への金属の析出が起こり易くなり、充放電容量の低下やセパレータを突き破り短絡して発火する危険性を生ずる恐れがある。   The carbon black composite of the present invention is one in which fibrous carbon and carbon black are linked. The carbon black composite of the present invention preferably has an ash content defined by JIS K 1469 of 1.0% by mass or less. Ash is mainly composed of catalysts and metal impurities (Fe, Ni, Co, etc.) and their oxides during the production of fibrous carbon. When the ash exceeds 1.0% by mass, for example, when a Li ion secondary battery is used, Metal deposition on the negative electrode is likely to occur during charging, and there is a risk that the charge / discharge capacity may be reduced or the separator may break through and short-circuit to ignite.

連結とは単なる接触ではなく、炭素質で物理的に融着していることを意味し、通常の機械的操作では容易に分離されることなく、連結された繊維状炭素とカーボンブラック間で接触抵抗なしで電子が自由に移動できるものである。そのため、樹脂等と混合した際もカーボンブラック複合体のまま存在し、良好な分散性が得られると同時に高導電性が保たれる。繊維状炭素単独では、樹脂等の他の材料と混合する場合、配向や繊維同士の絡み合いのため、良好な分散性を得ることが困難であり、導電性にバラツキが生じる。カーボンブラックと繊維状炭素を単純に混合した場合は形状が異なるため更にバラツキが大きくなるが、本発明のカーボンブラック複合体は導電性の安定性に優れていることが特長の一つである。ここで繊維状炭素は1〜50質量%であることが好ましい。繊維状炭素が1質量%未満であると、十分な導電性が得られず、50質量%を超えるとカーボンブラックとの連結が十分でなくなると同時に、繊維状炭素の凝集などのため分散性が著しく低下し、コンパウンドを作製したとき、樹脂が固くなり加工しにくくなる。樹脂の加工性についてはMFI2.50g/10min以上であることが好ましい。   Coupling is not just contact, it means that it is physically fused with carbonaceous matter, and it is not easily separated by normal mechanical operations, but between the connected fibrous carbon and carbon black. Electrons can move freely without resistance. Therefore, even when mixed with a resin or the like, the carbon black composite remains as it is, and good dispersibility can be obtained and high conductivity can be maintained. When the fibrous carbon alone is mixed with other materials such as a resin, it is difficult to obtain good dispersibility due to orientation and entanglement between fibers, resulting in variations in conductivity. When carbon black and fibrous carbon are simply mixed, the shape is different and the variation further increases. However, one feature of the carbon black composite of the present invention is that it has excellent conductivity stability. Here, the fibrous carbon is preferably 1 to 50% by mass. When the fibrous carbon is less than 1% by mass, sufficient conductivity cannot be obtained, and when it exceeds 50% by mass, the connection with the carbon black is not sufficient, and at the same time, the dispersibility is due to aggregation of the fibrous carbon. When the compound is prepared, the resin becomes hard and difficult to process. The processability of the resin is preferably MFI 2.50 g / 10 min or more.

本発明のカーボンブラック複合体の繊維状炭素とは、炭素繊維(カーボンファイバー)、気相成長炭素繊維(VGCF)カーボンナノチューブ、カーボンナノファイバー等である。本発明の繊維状炭素は直径が200nm以下であることが好ましい。   The fibrous carbon of the carbon black composite of the present invention includes carbon fiber (carbon fiber), vapor grown carbon fiber (VGCF) carbon nanotube, carbon nanofiber, and the like. The fibrous carbon of the present invention preferably has a diameter of 200 nm or less.

本発明のカーボンブラック複合体の繊維状炭素は、炭化水素の熱分解中で製造した、ラマン強度比(D/G値)が0.30以下のものが好ましい。また、市販品の繊維状炭素をフィーダー又はスラリー化して、炭化水素の熱分解中に導入することも出来る。   The fibrous carbon of the carbon black composite of the present invention preferably has a Raman intensity ratio (D / G value) of 0.30 or less produced during the thermal decomposition of hydrocarbons. Commercially available fibrous carbon can also be fed or slurried and introduced during the thermal decomposition of hydrocarbons.

本発明のカーボンブラック複合体は、繊維状炭素を炭化水素の熱分解中に導入する方法で製造される。この製造方法を用いることでカーボンブラック複合体のJIS K 1469:2003に規定される灰分を1.0質量%未満にすることが出来る。   The carbon black composite of the present invention is produced by a method in which fibrous carbon is introduced during the thermal decomposition of hydrocarbons. By using this production method, the ash content of JIS K 1469: 2003 of the carbon black composite can be reduced to less than 1.0% by mass.

本発明のカーボンブラック複合体に用いる繊維状炭素は、炭化水素の熱分解温度以上の高温場に供給し、熱処理することにより生成することができる。炭化水素の熱分解温度は、特に600〜1000℃であることが好ましい。炭化水素として、例えばメタン、エタン、プロパン、ブタン等の飽和炭化水素、例えばエチレン、プロピレン、ブテン、ブタジエン等の2重結合を有する不飽和炭化水素、アセチレン、プロピン、ブチン等の3重結合を有する不飽和炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を用いることが出来る。中でも、芳香族炭化水素は常温で液体であり、繊維状炭素化触媒と事前に混合調整しやすいので特に好ましい。また、炭化水素の供給速度は5〜100m/分が好ましい。   Fibrous carbon used in the carbon black composite of the present invention can be produced by supplying heat to a high temperature field that is equal to or higher than the thermal decomposition temperature of hydrocarbon and heat treating it. The thermal decomposition temperature of the hydrocarbon is particularly preferably 600 to 1000 ° C. As hydrocarbons, for example, saturated hydrocarbons such as methane, ethane, propane, butane, etc., unsaturated hydrocarbons having double bonds such as ethylene, propylene, butene, butadiene, etc., and triple bonds such as acetylene, propyne, butyne, etc. Unsaturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene can be used. Among these, aromatic hydrocarbons are particularly preferable because they are liquid at room temperature and are easily mixed and adjusted in advance with the fibrous carbonization catalyst. The hydrocarbon feed rate is preferably 5 to 100 m / min.

繊維状炭素化触媒、助触媒としては、Co,Ni,Fe,Mo,S,V,Cr等の微粒子を用いることが出来る。中でも、フェロセンやチオフェン等の有機物質はベンゼン等の芳香族炭化水素に可溶のため、取り扱いが容易で、しかも化合物中に含まれる元素が原子サイズのため、反応場中では触媒として有効に作用するため特に好ましい。   As the fibrous carbonization catalyst and the cocatalyst, fine particles such as Co, Ni, Fe, Mo, S, V, and Cr can be used. Above all, organic substances such as ferrocene and thiophene are soluble in aromatic hydrocarbons such as benzene, so they are easy to handle, and the elements contained in the compounds are atomic in size, so they effectively act as catalysts in the reaction field. Therefore, it is particularly preferable.

本発明のカーボンブラック複合体における繊維状炭素を製造するときの炭化水素と触媒、助触媒の混合比は、質量比で80:20〜99:1が好ましく、特に90:10〜95:5が好ましい。   The mixing ratio of the hydrocarbon, the catalyst and the cocatalyst when producing fibrous carbon in the carbon black composite of the present invention is preferably 80:20 to 99: 1, and particularly 90:10 to 95: 5, in mass ratio. preferable.

本発明のカーボンブラック複合体におけるカーボンブラックは、炭化水素の熱分解温度以上の高温場で生成することが好ましく、特に1800〜2200℃で生成することが好ましい。炭化水素として、例えばメタン、エタン、プロパン、ブタン等の飽和炭化水素、例えばエチレン、プロピレン、ブテン、ブタジエン等の2重結合を有する不飽和炭化水素、アセチレン、プロピン、ブチン等の3重結合を有する不飽和炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を用いることが出来る。中でもエチレン、アセチレン、ブタジエンは、自己発熱分解反応であるため、反応炉の中心部分でも高温を維持できるため好ましく、特にアセチレンが好ましい。   The carbon black in the carbon black composite of the present invention is preferably generated in a high temperature field equal to or higher than the thermal decomposition temperature of the hydrocarbon, and particularly preferably generated at 1800 to 2200 ° C. As hydrocarbons, for example, saturated hydrocarbons such as methane, ethane, propane, butane, etc., unsaturated hydrocarbons having double bonds such as ethylene, propylene, butene, butadiene, etc., and triple bonds such as acetylene, propyne, butyne, etc. Unsaturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene can be used. Among these, ethylene, acetylene, and butadiene are preferable because they are self-exothermic decomposition reactions and can maintain high temperatures even in the central portion of the reaction furnace, and acetylene is particularly preferable.

本発明のカーボンブラック複合体における繊維状炭素は、カーボンブラックの生成場に導入、複合化されることにより焼成され、ラマン強度比(D/G値)が0.30以下になっていることが好ましい。   The fibrous carbon in the carbon black composite of the present invention is fired by being introduced into the carbon black production field and composited, and the Raman intensity ratio (D / G value) is 0.30 or less. preferable.

本発明におけるカーボンブラック複合体の製造方法は、二段式反応炉の上段部分で繊維状炭素を製造し、下段部分のカーボンブラック生成場に繊維状炭素を導入することにより、連続的にカーボンブラック複合体を製造することが出来る。
本発明の二段式反応炉は上段で繊維状炭素、下段でカーボンブラックを作製する形態となっているが、これは、繊維状炭素とカーボンブラックの生成条件が異なる為である。また、生成直後の繊維状炭素は結晶性が低く、高温で焼成を行う必要があるが、本発明による製造方法ならば、上段の反応炉で生成された繊維状炭素を下段のカーボンブラック生成炉に送り込むことにより、複合と焼成を同時に行うことが可能である。
The method for producing a carbon black composite according to the present invention is such that a fibrous carbon is produced in the upper stage portion of a two-stage reactor, and the carbon black is continuously introduced by introducing the fibrous carbon into the carbon black production field in the lower stage portion. A composite can be produced.
The two-stage reactor of the present invention has a form in which fibrous carbon is produced in the upper stage and carbon black is produced in the lower stage, because the production conditions of fibrous carbon and carbon black are different. Further, the fibrous carbon immediately after generation has low crystallinity and needs to be fired at a high temperature. However, in the production method according to the present invention, the fibrous carbon generated in the upper reaction furnace is converted into the lower carbon black generation furnace. It is possible to carry out compounding and firing at the same time.

二段式反応炉の上段部の反応炉は一例として、縦型管状炉が挙げられる。反応炉上部には、原料供給ノズルを設置し、繊維状炭素の原料(液体又はガス化したもの)とHガス、Nガスを混合しても、別々のラインから供給してもよい。ノズル径は、例えば6φ以上のものを使用することも出来る。また、繊維状炭素の原料が液体である場合は、スプレーノズルを使用することも出来る。
二段式反応炉の下段部の反応炉も上段部と同様のものが使用できるが、2000℃以上の高温に対応できる炉が好ましい。一例として、高周波炉が使用出来る。下段部の反応炉上部には、原料ノズルを設置し、上段部の反応炉で生成された繊維状炭素と、Hガスと、Nガスを混合しても、別々のラインから供給してもよい。
As an example of the upper-stage reactor of the two-stage reactor, a vertical tubular furnace can be cited. A raw material supply nozzle is installed at the upper part of the reaction furnace, and the fibrous carbon raw material (liquid or gasified) may be mixed with H 2 gas or N 2 gas or supplied from separate lines. For example, a nozzle diameter of 6φ or more can be used. Moreover, when the raw material of fibrous carbon is a liquid, a spray nozzle can also be used.
The reactor at the lower stage of the two-stage reactor can be the same as that at the upper stage, but a furnace capable of handling high temperatures of 2000 ° C. or higher is preferable. As an example, a high frequency furnace can be used. A raw material nozzle is installed at the upper part of the lower reactor, and even if fibrous carbon generated in the upper reactor, H 2 gas, and N 2 gas are mixed, they are supplied from separate lines. Also good.

次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。   Next, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1〜3)
カーボンブラック複合体は以下の方法で作製した。炭素源としてベンゼン(関東化学社製試薬、純度99%)、触媒としてフェロセン(関東化学社製試薬、純度98%)、助触媒としてチオフェン(関東化学社製試薬、純度98%)を質量比で90:8:2として300℃でガス化したものを、二段式反応炉の上段部の縦型管状炉(炉長2m、炉直径0.12m)上方に設置されたノズルから水素ガスと共に噴霧し、流速50m/分、温度600,800,1000℃で繊維状炭素を生成した。次に、二段式反応炉の下段に設置された反応炉(炉長6m、炉直径1m)の炉頂に設置された2本のノズルの一方からはアセチレンガス(純度99%)を供給し、2000℃で熱分解してカーボンブラックを生成し、もう一方からは600,800,1000℃で製造した繊維状炭素を導入し複合化を行った。そのカーボンブラック複合体は炉下部に直結されたバグフィルターから捕集した。
(Examples 1-3)
The carbon black composite was produced by the following method. Benzene (reagent manufactured by Kanto Chemical Co., Ltd., purity 99%) as a carbon source, ferrocene (reagent manufactured by Kanto Chemical Co., purity 98%) as a catalyst, and thiophene (reagent manufactured by Kanto Chemical Co., purity 98%) as a catalyst in mass ratio 90: 8: 2 gasified at 300 ° C. is sprayed with hydrogen gas from a nozzle installed above the vertical tubular furnace (furnace length 2 m, furnace diameter 0.12 m) in the upper part of the two-stage reactor. Then, fibrous carbon was produced at a flow rate of 50 m / min and temperatures of 600, 800, and 1000 ° C. Next, acetylene gas (99% purity) is supplied from one of the two nozzles installed at the top of the reactor (furnace length 6 m, furnace diameter 1 m) installed at the lower stage of the two-stage reactor. Carbon black was produced by thermal decomposition at 2000 ° C., and fibrous carbon produced at 600, 800, and 1000 ° C. was introduced from the other side to form a composite. The carbon black composite was collected from a bag filter directly connected to the lower part of the furnace.

(実施例4〜7)
実施例4,5として、実施例1に記載の製法で繊維状炭素の炭素源ガスを5,100m/分にして繊維状炭素を製造し、実施例1のアセチレンガス反応炉に導入しカーボンブラック複合体を製造した。また、実施例6,7は、実施例1に記載の繊維状炭素の炭素源ガスを3,120m/分にして繊維状炭素を製造し、実施例1のアセチレンガス反応炉に導入しカーボンブラック複合体を製造した。
(Examples 4 to 7)
As Examples 4 and 5, fibrous carbon was produced by the production method described in Example 1 at a carbon source gas of fibrous carbon of 5,100 m / min, introduced into the acetylene gas reactor of Example 1, and carbon black. A composite was produced. Further, in Examples 6 and 7, fibrous carbon was produced by setting the carbon source gas of the fibrous carbon described in Example 1 to 3,120 m / min, and introduced into the acetylene gas reactor of Example 1 to obtain carbon black. A composite was produced.

(実施例8〜10)
実施例8として、繊維状炭素の原料となるベンゼン:フェロセン,チオフェンの質量比を95:5で調整し、実施例1に記載の製法で複合化を行った。また、実施例9,10として、繊維状炭素の原料となるベンゼン:フェロセン,チオフェンの質量比を80:20,99:1で調整し、実施例1に記載の製法で複合化を行った。
(Examples 8 to 10)
As Example 8, the mass ratio of benzene: ferrocene and thiophene, which are the raw materials for fibrous carbon, was adjusted to 95: 5, and composite was performed by the production method described in Example 1. In Examples 9 and 10, the mass ratio of benzene: ferrocene and thiophene, which are the raw materials for the fibrous carbon, was adjusted to 80:20, 99: 1, and composites were performed by the production method described in Example 1.

(実施例11〜12)
実施例11,12として、カーボンブラックの生成温度を1800℃、2200℃にして実施例1と同様に複合化試験を行った。
(Examples 11 to 12)
As Examples 11 and 12, the compounding test was performed in the same manner as in Example 1 with the carbon black generation temperature set to 1800 ° C. and 2200 ° C.

(実施例13〜16)
実施例13〜16では、繊維状炭素の含有率が5、10、50、60%になるように、繊維状炭素の供給量を調整して、実施例1と同様に複合化試験を行った。
(Examples 13 to 16)
In Examples 13-16, the amount of fibrous carbon supplied was adjusted so that the fibrous carbon content was 5, 10, 50, 60%, and a composite test was performed in the same manner as in Example 1. .

(比較例1)
比較例1については、実施例1に記載された方法で繊維状炭素とカーボンブラックを別々に製造し、それぞれ質量比30:70でボールミルにて200rpm、60分で混合し、カーボンブラック複合体を製造した。
(Comparative Example 1)
For Comparative Example 1, fibrous carbon and carbon black were produced separately by the method described in Example 1, and mixed at a mass ratio of 30:70 in a ball mill at 200 rpm for 60 minutes to obtain a carbon black composite. Manufactured.

(比較例2)
比較例2については、WO/2007/013678に基づき、反応炉(炉長6m、炉直径1m)の上方に設置されたノズルからアセチレンガスを15m/hで供給し、アセチレンガスを2000℃で熱分解してカーボンブラックを生成し、更に上方の1000℃の部分からベンゼン(関東化学社製試薬、純度99%、3.7kg/h)、触媒としてフェロセン(関東化学社製試薬、純度98%、0.3kg/h)、助触媒としてチオフェン(関東化学社製試薬、純度98%、0.05kg/h)の混合ガスを供給し、繊維状炭素が30質量%になるようにカーボンブラック複合体を製造した。
実施例及び比較例のカーボンブラック複合体の繊維状炭素の収率およびラマン強度比(D/G値)を表1及び表2に示す。また、カーボンブラック複合体の各種評価結果を表1及び表2に示す。
(Comparative Example 2)
For Comparative Example 2, acetylene gas was supplied at 15 m 3 / h from a nozzle installed above a reaction furnace (furnace length 6 m, furnace diameter 1 m) based on WO / 2007/013678, and acetylene gas at 2000 ° C. Carbon black is produced by pyrolysis, and further from above 1000 ° C., benzene (Kanto Chemicals reagent, purity 99%, 3.7 kg / h), and ferrocene as a catalyst (Kanto Chemicals reagent, purity 98%) , 0.3 kg / h), and a mixed gas of thiophene (a reagent manufactured by Kanto Chemical Co., Inc., purity 98%, 0.05 kg / h) as a co-catalyst, and carbon black composite so that the fibrous carbon becomes 30% by mass The body was manufactured.
Tables 1 and 2 show the yield of carbon fiber and the Raman intensity ratio (D / G value) of the carbon black composites of Examples and Comparative Examples. Tables 1 and 2 show various evaluation results of the carbon black composite.

評価物性とその測定方法を下記に示す。
(1)繊維状炭素の直径については透過型電子顕微鏡(TEM)により、倍率3万倍で100本測定し、その平均径を求めた。
(2)ラマン強度比測定については励起レーザー波長532nm、露光時間1.0秒、露光回数30回でカーボンの固有ピークGバンド、Dバンドを測定した。
(3)灰分についてはJIS K 1469:2003に従い測定した。
(4)粉体抵抗についてはJIS K 146:2003に従い測定した。
(5)コンパウンド体積固有抵抗値測定による導電性評価
実施例1〜16と比較例1,2のカーボンブラック複合体10質量部をPS樹脂(東洋スチレン社製、商品名「H700」)90質量部に配合し、混練機(東洋精機製作所社製、商品名「ラボプラストミル」)を用いて、ブレード回転数30rpm、温度220℃で10分間混練した。この混練物を200℃に加熱し、9.8×10Paの圧力で加圧成形して2×2×70mmの試験片を作製し、デジタルマルチメーター(横河電機社、商品名「デジタルマルチメータ 7562」)を用い、SRI2301の試験方法に準じて体積固有抵抗を測定した。
(6)MFIによる流動性評価。
体積固有抵抗で使用した試験片を2×2×5mmの大きさに切断し、流動性測定器(東洋精機製作所社製、商品名)で200℃の加熱下、5kgの荷重下にて内径2mmのノズルから流れる10分間当たりのカーボン複合体とPS樹脂の組成物の質量を測定した。
The evaluation physical properties and the measurement method are shown below.
(1) About the diameter of fibrous carbon, 100 pieces were measured with the transmission electron microscope (TEM) by the magnification of 30,000 times, and the average diameter was calculated | required.
(2) For the Raman intensity ratio measurement, the intrinsic peak G band and D band of carbon were measured at an excitation laser wavelength of 532 nm, an exposure time of 1.0 second, and an exposure frequency of 30 times.
(3) Ashes were measured according to JIS K 1469: 2003.
(4) The powder resistance was measured according to JIS K 146: 2003.
(5) Conductivity Evaluation by Measuring Compound Volume Specific Resistance Value 10 parts by mass of the carbon black composites of Examples 1 to 16 and Comparative Examples 1 and 2 are 90 parts by mass of PS resin (trade name “H700” manufactured by Toyo Styrene Co., Ltd.). And kneaded for 10 minutes using a kneader (manufactured by Toyo Seiki Seisakusho Co., Ltd., trade name “Laboplast Mill”) at a blade rotation speed of 30 rpm and a temperature of 220 ° C. The kneaded product was heated to 200 ° C. and pressure-molded at a pressure of 9.8 × 10 6 Pa to prepare a 2 × 2 × 70 mm test piece. A digital multimeter (Yokogawa Electric Corporation, trade name “Digital” Using a multimeter 7562 "), volume resistivity was measured according to the test method of SRI2301.
(6) Fluidity evaluation by MFI.
A test piece used for volume resistivity is cut into a size of 2 × 2 × 5 mm, and the inner diameter is 2 mm under a load of 5 kg under heating at 200 ° C. with a fluidity measuring instrument (trade name, manufactured by Toyo Seiki Seisakusho Co., Ltd.). The mass of the carbon composite and PS resin composition per 10 minutes flowing from the nozzle was measured.

Figure 2010248397
Figure 2010248397

Figure 2010248397
Figure 2010248397

表1及び表2から、本発明の実施例によって得られたカーボンブラック複合体は、比較例1,2によって得られたカーボンブラック複合体と比べて粉体抵抗値、コンパウンド抵抗値が低く、従来のカーボンブラック複合体より優れた導電性付与効果を発揮した。   From Table 1 and Table 2, the carbon black composites obtained by the examples of the present invention have lower powder resistance values and compound resistance values than the carbon black composites obtained by Comparative Examples 1 and 2, and The conductivity imparting effect was superior to that of the carbon black composite.

本発明のカーボンブラック複合体は樹脂、ゴムへの導電性付与剤の他に、一次電池、二次電池、燃料電池、キャパシタ等の電池用導電剤等として利用することが出来る。
The carbon black composite of the present invention can be used as a conductive agent for batteries such as a primary battery, a secondary battery, a fuel cell, and a capacitor in addition to a conductivity imparting agent for resin and rubber.

Claims (6)

繊維状炭素の製造と、球状炭素粒子の製造及び繊維状炭素と球状炭素粒子の複合化を連続的に行うことを特徴とするカーボンブラック複合体の製造方法。 A method for producing a carbon black composite comprising continuously producing fibrous carbon, producing spherical carbon particles, and compositing fibrous carbon and spherical carbon particles. 繊維状炭素の製造を二段式反応炉の上段部分で行い、球状炭素粒子の製造と繊維状炭素と球状炭素粒子の複合化を二段式反応炉の下段部分で行うことを特徴とする請求項1に記載のカーボンブラック複合体の製造方法。 The production of fibrous carbon is performed in the upper part of the two-stage reactor, and the production of spherical carbon particles and the composite of the fibrous carbon and the spherical carbon particles are performed in the lower part of the two-stage reactor. Item 2. A method for producing a carbon black composite according to Item 1. 球状炭素粒子がアセチレンブラックであることを特徴とする請求項1又は2に記載のカーボンブラック複合体の製造方法。 The method for producing a carbon black composite according to claim 1 or 2, wherein the spherical carbon particles are acetylene black. 繊維状炭素の製造温度が600〜1000℃であることを特徴とする請求項1〜3のいずれか一項に記載のカーボンブラック複合体の製造方法。 The manufacturing temperature of fibrous carbon is 600-1000 degreeC, The manufacturing method of the carbon black complex as described in any one of Claims 1-3 characterized by the above-mentioned. 繊維状炭素の製造時の炭化水素の供給速度が5〜100m/分であることを特徴とする請求項1〜3のいずれか一項に記載のカーボンブラック複合体の製造方法。 The method for producing a carbon black composite according to any one of claims 1 to 3, wherein a hydrocarbon feed rate during the production of fibrous carbon is 5 to 100 m / min. 繊維状炭素の直径が200nm以下であることを特徴とする請求項1〜3のいずれか一項に記載のカーボンブラック複合体の製造方法。
The diameter of fibrous carbon is 200 nm or less, The manufacturing method of the carbon black complex as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2009100447A 2009-04-17 2009-04-17 Method for producing carbon black composite Pending JP2010248397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100447A JP2010248397A (en) 2009-04-17 2009-04-17 Method for producing carbon black composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100447A JP2010248397A (en) 2009-04-17 2009-04-17 Method for producing carbon black composite

Publications (1)

Publication Number Publication Date
JP2010248397A true JP2010248397A (en) 2010-11-04

Family

ID=43311093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100447A Pending JP2010248397A (en) 2009-04-17 2009-04-17 Method for producing carbon black composite

Country Status (1)

Country Link
JP (1) JP2010248397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141308A1 (en) * 2011-04-15 2012-10-18 電気化学工業株式会社 Carbon black composite and lithium-ion secondary battery using same
JP2016039146A (en) * 2014-08-07 2016-03-22 帝人株式会社 Complex suitable for nonaqueous electrolyte secondary battery
CN110256876A (en) * 2019-06-19 2019-09-20 焦作市和兴化学工业有限公司 A kind of pyrolysis furnace and cracking system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038472A (en) * 1983-08-12 1985-02-28 Denki Kagaku Kogyo Kk Composite-structure carbon black and production thereof
JPS6295351A (en) * 1985-10-22 1987-05-01 Denki Kagaku Kogyo Kk Production of carbon black of composite structure
JP2001196064A (en) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its preparation
JP2003268258A (en) * 1996-01-19 2003-09-25 Denki Kagaku Kogyo Kk Granulated acetylene black and its use
JP2004250275A (en) * 2003-02-19 2004-09-09 Mitsui Mining Co Ltd Graphite-carbon composite material
WO2007013678A2 (en) * 2005-07-27 2007-02-01 Denka Singapore Private Limited Carbon black, method for producing the same, and its use
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2008235156A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Electrode catalyst layer for fuel cell, and fuel cell using it
JP2010031214A (en) * 2008-07-02 2010-02-12 Denki Kagaku Kogyo Kk Carbon black composite and application thereof
JP2010077313A (en) * 2008-09-26 2010-04-08 Denki Kagaku Kogyo Kk Carbon black composite body and method for producing the same
WO2010095509A1 (en) * 2009-02-17 2010-08-26 学校法人 名城大学 Process and apparatus for producing composite material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038472A (en) * 1983-08-12 1985-02-28 Denki Kagaku Kogyo Kk Composite-structure carbon black and production thereof
JPS6295351A (en) * 1985-10-22 1987-05-01 Denki Kagaku Kogyo Kk Production of carbon black of composite structure
JP2003268258A (en) * 1996-01-19 2003-09-25 Denki Kagaku Kogyo Kk Granulated acetylene black and its use
JP2001196064A (en) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its preparation
JP2004250275A (en) * 2003-02-19 2004-09-09 Mitsui Mining Co Ltd Graphite-carbon composite material
WO2007013678A2 (en) * 2005-07-27 2007-02-01 Denka Singapore Private Limited Carbon black, method for producing the same, and its use
JP2009503182A (en) * 2005-07-27 2009-01-29 デンカ シンガポール プライベート リミテッド Carbon black, its production method and use
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2008235156A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Electrode catalyst layer for fuel cell, and fuel cell using it
JP2010031214A (en) * 2008-07-02 2010-02-12 Denki Kagaku Kogyo Kk Carbon black composite and application thereof
JP2010077313A (en) * 2008-09-26 2010-04-08 Denki Kagaku Kogyo Kk Carbon black composite body and method for producing the same
WO2010095509A1 (en) * 2009-02-17 2010-08-26 学校法人 名城大学 Process and apparatus for producing composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141308A1 (en) * 2011-04-15 2012-10-18 電気化学工業株式会社 Carbon black composite and lithium-ion secondary battery using same
JP2016039146A (en) * 2014-08-07 2016-03-22 帝人株式会社 Complex suitable for nonaqueous electrolyte secondary battery
CN110256876A (en) * 2019-06-19 2019-09-20 焦作市和兴化学工业有限公司 A kind of pyrolysis furnace and cracking system

Similar Documents

Publication Publication Date Title
JP5231224B2 (en) Carbon black, its production method and use
Bazargan et al. A review–synthesis of carbon nanotubes from plastic wastes
CN108352493B (en) Production of carbon black from natural gas
Gonzalez-Aguilar et al. Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure
Boncel et al. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays
US20210017031A1 (en) Particle systems and methods
CA3074220A1 (en) Systems and methods for particle generation
JP5960059B2 (en) Carbon nanofiber manufacturing method, carbon composite, and manufacturing method thereof
KR20190138862A (en) Particle Systems and Methods
JP2010538953A (en) Carbon nanotube powder, carbon nanotube and method for producing the same
CN101297378A (en) Electrically conductive sheet
CA3074223A1 (en) Conductive additives and uses thereof
JPWO2010002004A1 (en) Carbon fiber and composite materials
JP5983850B1 (en) Conductive resin composition, molded article and method for producing the same
JP5518316B2 (en) Carbon black composite and method for producing the same
JP2015048263A (en) Carbon nanotube assembly containing single walled carbon nanotube and double walled carbon nanotube, and synthesis method thereof
JP2015123410A (en) Catalyst for carbon nanotube synthesis
JP2010248397A (en) Method for producing carbon black composite
JP2014058439A (en) Carbon fiber, catalyst for manufacturing carbon finer and evaluation method of carbon fiber
JPS6295351A (en) Production of carbon black of composite structure
WO2007049591A1 (en) Molded fluororesin
KR20210018083A (en) Method and System for Manufacturing Carbon Nanotubes
CN113754927B (en) Method for producing carbon nanofiber composite and carbon nanofiber composite
TWI487819B (en) Vapor grown graphite fiber composition and mixture containing the same and applications thereof
JP6045860B2 (en) Carbon material and non-aqueous secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507