JP5501540B2 - 光学測定システム、光学測定方法、および光学測定システム用のミラー板 - Google Patents

光学測定システム、光学測定方法、および光学測定システム用のミラー板 Download PDF

Info

Publication number
JP5501540B2
JP5501540B2 JP2013556001A JP2013556001A JP5501540B2 JP 5501540 B2 JP5501540 B2 JP 5501540B2 JP 2013556001 A JP2013556001 A JP 2013556001A JP 2013556001 A JP2013556001 A JP 2013556001A JP 5501540 B2 JP5501540 B2 JP 5501540B2
Authority
JP
Japan
Prior art keywords
light source
integrating sphere
support member
window
optical measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013556001A
Other languages
English (en)
Other versions
JP2014507665A (ja
Inventor
和明 大久保
マッキー,グレッグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Labsphere Inc
Original Assignee
Labsphere Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Labsphere Inc filed Critical Labsphere Inc
Publication of JP2014507665A publication Critical patent/JP2014507665A/ja
Application granted granted Critical
Publication of JP5501540B2 publication Critical patent/JP5501540B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0295Constructional arrangements for removing other types of optical noise or for performing calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/045Optical design with spherical surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/10Construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J2001/0481Preset integrating sphere or cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、光源から発生する全光束などの測定に適した、光学測定システム、光学測定方法、および光学測定システム用のミラー板に関する。
光源から発生する全光束を測定するための代表的な装置として、積分球を含む光束計が知られている。積分球は、拡散反射材料(例えば、硫酸バリウムやPTFE(polytetrafluoroethylene)など)を塗布することで形成される反射面をその内壁に有する。測定対象の光源(以下「試料光源」とも称す。)は、この積分球内に配置された状態で点灯する。光源から発生する光束は、積分球内壁の反射面で繰り返し反射し、積分球内壁の照度を均一化する。均一化した照度が光源から発生する全光束に比例することを利用して、光源の全光束が測定される。一般的に、このような光束計によって測定される全光束は相対値となるので、既知の標準光源を用いた場合の検出値(標準値)との比較によって、試料光源から発生する全光束の校正値が測定される。
このような積分球を含む光束計では、積分球内に光源を配置するための支持部材や、光源からの光の光検出器への直接的な入射を抑制するための遮蔽板(バッフル:baffle)などによる光の吸収が避けられない。また、試料光源自体も光を吸収する。
このような光吸収に対して、日本工業規格JIS C 8152:2007,「照明用白色発光ダイオード(LED)の測光方法」,2007年7月20日(非特許文献1)には、試料光源の自己吸収を補正するための係数(自己吸収補正係数)を用いることが開示されている。この自己吸収補正係数は、積分球内に自己吸収測定用光源(典型的に、白熱電球またはタングステンハロゲン電球)を設け、試料光源を積分球内に配置した場合とそうでない場合との間で、自己吸収測定用光源が点灯することで生じるそれぞれの検出値を比較することで算出される。
さらに、支持部材などによる光吸収の影響を回避するために、特開平06−167388号公報(特許文献1)に開示されるような、半球型の積分器(以下「積分半球」とも称す。)を含む光束計(以下「半球光束計」とも称す。)が提案されている。この半球光束計は、積分球に代えて、内壁に反射面を形成した半球部と、反射面が半球部の開口を覆うように配置された円状のミラー板とからなる積分半球を有する。そして、光源は、その中心が半球部の曲率中心と一致するように、ミラー板の中心に設置される。
このような構成によれば、光源とミラー板によって生じる当該光源の虚像とが、仮想的な積分球の内部(半球部の実空間と半球部の虚像との合成空間)にそれぞれ存在することになる。すなわち、半球光束計によれば、それを支持するための支持部材を用いることなく、仮想的な積分球内に試料光源を配置することができる。そのため、支持部材などによる光吸収による誤差を低減できる。
特開平06−167388号公報
日本工業規格JIS C 8152:2007,「照明用白色発光ダイオード(LED)の測光方法」,2007年7月20日
近年、LED(Light Emitting Diode)光源の開発などに伴って、標準光源の配光とは異なる配光を有する光源を測定する必要が生じている。本発明者らは、このような光源を、従来の積分球を含む光学測定装置で測定しようとすると、配光の違いによって測定誤差が生じるという新規な技術的課題を新たに見出した。
一方、本発明者らが見出した新規な技術的課題を生じる要因についての知見によれば、上述したような半球光束計を用いる場合には、配光の違いによる測定誤差は生じにくい。しかしながら、さまざまな理由から、従来の積分球を含む光学測定装置を用いらざるをえない場合もあり、このような場合であっても、測定精度をより高めたいというニーズがある。
本発明は、このような課題を解決するためになされたものであって、その目的は、標準光源と試料光源との間の配光の違いによる測定誤差を低減するための光学測定システム、光学測定方法、および光学測定システム用のミラー板を提供することである。
本発明のある局面に従う光学測定システムは、内壁に反射面を有するとともに第1の窓を有する積分球と、前記積分球の実質的な中心位置に光源を支持するための支持部材と、前記第1の窓と前記支持部材により支持された前記光源とを結ぶ直線上に配置された第1のバッフルとを含む。前記支持部材は、前記光源に対して前記第1の窓と対向する領域において前記積分球の内壁と接続される。
好ましくは、光学測定システムは、第1の窓に接続される光検出器をさらに含む。
さらに好ましくは、第1のバッフルは、第1の窓を介した光検出器の視野範囲に支持部材が含まれないように構成される。
好ましくは、積分球には、第1の窓とは異なる位置に第2の窓が形成されており、補助光源からの光が第2の窓を介して積分球の内部へ導入され、光学測定システムは、第2の窓から積分球の内部へ導入される補助光源からの光に関連付けられた第2のバッフルをさらに含む。
好ましくは、積分球は、開閉可能に連結された第1の半球部と第2の半球部とを含む。
本発明の別の局面に従う光学測定方法は、内壁に反射面を有する積分球の実質的な中心位置に、支持部材に支持された光源を配置するステップと、積分球に形成された第1の窓を介して光源からの光を検出するステップとを含む。第1の窓と支持部材により支持された光源とを結ぶ直線上には第1のバッフルが配置され、支持部材は、光源に対して第1の窓と対向する領域において積分球の内壁と接続される。
本発明のさらに別の局面に従う光学測定システムは、各々の内壁に反射面を有し、開閉可能に連結された第1および第2の半球部と、第1および第2の半球部が閉じた状態で、第1および第2の半球部が構成する球内の実質的な中心位置で光源を点灯するための第1の支持部材と、第1および第2の半球部が開いた状態で、第1の半球部の開口を覆うように装着可能な円板状のミラー板とを含む。ミラー板は、第1の半球部の側に反射面を有する。光学測定システムは、さらに、ミラー板が第1の半球部に装着された状態で、第1の半球部とミラー板とが構成する半球内に光源を露出させて点灯するための第2の支持部材と、第1の半球部に形成された窓を介して光源からの光を検出する光検出器とを含む。
本発明のさらに別の局面に従えば、光学測定システムに向けられたミラー板が提供される。光学測定システムは、各々の内壁に反射面を有し、開閉可能に連結された第1および第2の半球部とを含む。ミラー板は、第1および第2の半球部が開いた状態で、第1の半球部の開口を覆うように装着可能になっている。ミラー板は、第1の半球部の側に反射面と、ミラー板が第1の半球部に装着された状態で、第1の半球部とミラー板とが構成する半球内に光源を露出させて点灯するための支持部材とを含む。
本発明によれば、標準光源と試料光源との間の配光の違いによる測定誤差を低減できる。
積分球を用いて光源から発生する全光束を測定するための原理を説明するための図である。 校正時に積分球内で標準光源を点灯した状態を説明するための図である。 測定時に積分球内で試料光源を点灯した状態を説明するための図である。 半球光束計の概要を示す模式図である。 実験に用いた標準光源と電球型蛍光灯との配光の違いを示す図である。 実験例1の内容を示す図である。 実験例1の内容を示す図である。 実験例2の内容を示す図である。 実験例2の内容を示す図である。 実施の形態1に従う光学測定システムの構成を示す模式図である。 実施の形態1に従う光学測定システムの構成を示す模式図である。 実施の形態1に従う光学測定システムの構成を示す模式図である。 実施の形態1の変形例1に従う光学測定システムの構成を示す模式図である。 実施の形態1の変形例2に従う光学測定システムの構成を示す模式図である。 実施の形態1の変形例3に従う光学測定システムの構成を示す模式図である。 実施の形態1の変形例4に従う光学測定システムの構成を示す模式図である。 実施の形態1の変形例5に従う光学測定システムの構成を示す模式図である。 実施の形態2に従う光学測定システムの構成を示す模式図である。 実施の形態2に従う光学測定システムの構成を示す模式図である。 実施の形態2に従う光学測定システムの構成を示す模式図である。 実施の形態2に従う光学測定システムにおいて用いられるミラー板の平面図である。 実施の形態2の変形例1に従う光学測定システムの構成を示す模式図である。 実施の形態2の変形例1に従う光学測定システムの構成を示す模式図である。 実施の形態に従う光学測定システムを用いて試料光源の全光束を測定する処理手順を示すフローチャートである。
本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
<A.発明者らが見出した新規な技術的課題>
本発明者らは、積分球を含む光束計を用いて光源を測定した場合に、当該光源が校正に用いた標準光源の配光とは異なる配光を有している場合には、測定誤差を生じるという新規な技術的課題を見出した。以下、まず、このような新規な技術的課題について説明する。
図1Aは、積分球を用いて光源から発生する全光束を測定するための原理を説明するための図である。図1Bは、校正時に積分球内で標準光源を点灯した状態を説明するための図である。図1Cは、測定時に積分球内で測定対象の光源(試料光源)を点灯した状態を説明するための図である。
図1Aを参照して、積分球10を用いて試料光源OBJから発生する全光束を測定する原理について説明する。図1Aに示すように、内壁に反射面10aを有する積分球10の中心位置に試料光源OBJを配置するとともに、試料光源OBJを点灯する。反射面10aは、典型的には、拡散反射材料(例えば、硫酸バリウムやPTFE(polytetrafluoroethylene)など)を塗布することで形成される。試料光源OBJは、一例として、符号42に示すような配光を有する。
試料光源OBJから発生した光(光束)は、積分球10の内壁で繰り返し反射する。これによって、積分球10の内壁の照度は、試料光源OBJから発生した光束に応じた値に均一化する。積分球10には、任意の位置に形成された窓を介して光検出器12が光学的に接続されている。光検出器12は、積分球10の内壁の均一化した照度を測定する。この光検出器12によって検出される照度が試料光源OBJから発生する全光束の大きさを示すことになる。
なお、積分球10の内部には、試料光源OBJから発生した光の光検出器12への直接的な入射を抑制するためのバッフル14が設けられる。このバッフル14の表面は、積分球10の内壁と同様に反射面になっており、試料光源OBJから発生した光は、バッフル14の表面でも反射することになる。
現実の光束計では、積分球10の中心位置に試料光源OBJを点灯状態で保持するための支持部材が設けられる。より具体的には、図1Bに示すように、積分球10の内部には、鉛直上側頂点から下方向に延びる支持部材(点灯台)20が配置され、この先端に光源が配置される。また、バッフル14についても、何らかの方法で所定位置に位置決めされる。図1Bに示す例では、支持部材20と同様に、鉛直上方から下方向に延びる支持部材16によってバッフル14が固定される。
図1Bには、光束計を校正している状態を示し、支持部材20の先端には、標準光源STDが装着されている。この標準光源STDは、符号44で示すような4π配光を有するとする。すなわち、標準光源STDにおいては、標準光源STDの主たる投影方向(前方)に加えて、当該投影方向とは逆方向(後方)にも光が照射される。
一方、図1Cには、全光束を測定している状態を示し、支持部材20の先端には、試料光源OBJが装着されている。この試料光源OBJは、符号46で示すような2π配光を有するとする。すなわち、試料光源OBJにおいては、試料光源OBJの主たる投影方向(前方)に光が照射されるのみであり、当該投影方向とは逆方向(後方)には光が照射されない。このような2π配光を有する試料光源OBJは、典型的には、LEDを用いた光源などである。
図1Bに示すように、標準光源STDは、4π配光を有するので、標準光源STDの前方へ照射される光は、例えば経路34に沿って、積分球10の内部を伝搬する。また、標準光源STDの後方へ照射される光は、例えば経路32に沿って、積分球10の内部を伝搬する。すなわち、標準光源STDの後方へ照射される光の一部は、積分球10の反射面10aで1次反射し、支持部材20を照明する。この支持部材20を照明する光の一部は、バッフル14で遮蔽されることなく、光検出器12へ直接的に入射される。
これに対して、図1Cに示すように、試料光源OBJは、2π配光を有するので、試料光源OBJから発生する光は、例えば経路36に沿って、積分球10の内部を伝搬する。試料光源OBJの後方へ照射される光は存在しない。そのため、標準光源STDとは異なり、積分球10の反射面10aで1次反射した後、光検出器12へ直接的に入射する光は存在しない。すなわち、支持部材20で反射する成分、および、支持部材20で反射して光検出器12へ直接的に入射する成分は無い。
光源から発生する光のうち、支持部材20で反射して光検出器12へ直接的に入射する成分に依存して、全光束の測定値も影響を受けることになる。すなわち、4π配光を有する標準光源STDから発生する一部の成分は、光検出器12を直接的に照明し、一方で、2π配光を有する試料光源OBJから発生する成分は、光検出器12を直接的には照明しない。
このように、本発明者らは、標準光源STDと試料光源OBJとの間の配光の違いが全光束の測定結果に影響するという事実および上述したようなそれを生じるメカニズムを見出した。
<B.半球光束計>
本発明者らは、上述したような新たな技術的課題について、後述するような実験を行なった。この実験には、半球光束計を用いた場合の測定結果を比較例として用いた。そこで、先に、半球光束計についてその概略を説明する。
図2は、半球光束計2の概要を示す模式図である。図2を参照して、半球光束計2は、図1A〜1Cに示すような積分球10に代えて、半球型の積分器(積分半球)を採用したものである。より具体的には、半球光束計2は、内壁に反射面50aを形成した半球部50と、反射面60aが半球部50の開口を覆うように配置された円状のミラー板60とを含む。光源(標準光源STDまたは試料光源OBJ)は、その中心が半球部の曲率中心Oと一致するように、ミラー板60の中心に設置される。
反射面50aについては、典型的には、拡散反射材料(例えば、硫酸バリウムやPTFEなど)を塗布することで形成される。反射面60aは、鏡面反射を生じる必要があるので、金属蒸着ミラー(典型的には、アルミニウム蒸着ミラー)を用いて構成される。半球光束計では、ミラー板60の反射面60aにおける反射率が十分に高いことが好ましい。反射率を高めるために、増反射率処理を行なった反射面60aを有するミラー板60を採用してもよい。
半球部50のミラー板60に近接した任意の位置に形成された窓を介して光検出器12が光学的に接続されている。
図2に示すような半球光束計2によれば、光源の実像(配光48)とミラー板60(反射面60a)によって生じる当該光源の虚像(配光49)とが、仮想的な積分球の内部(半球部50の実空間と半球部の虚像70との合成空間)にそれぞれ存在することになる。いわば、測定しようとする光源(標準光源STDまたは試料光源OBJ)は、光束を発生する部分(発光部)のみが、その虚像とともに、仮想的な積分球の内部に浮かんでいるような状態となっている。
このように、半球光束計2によれば、光源を支持するための支持部材を用いることなく、仮想的な積分球内に光源を配置することができる。すなわち、積分球内に光源を配置するための支持部材は、仮想的な積分球の外側の空間に存在することになる。そのため、支持部材による光吸収や陰の発生を抑制でき、それによって誤差を低減できる。
また、半球光束計では、上述したような標準光源STDと試料光源OBJとの間の配光の違いによる影響は生じない。
<C.実験例>
本発明者らは、上述したような新規な技術的課題を解明するために、積分球内に配置する支持部材の径を異ならせて、試料光源OBJについての全光束を測定した。また、支持部材による光吸収や陰の発生を抑制できる半球光束計による測定結果を比較例としつつ、測定された結果について評価した。
(c1:実験例1)
以下の3種類の光束計を用意し、それぞれについて全光束を測定した。なお、試料光源OBJは、13Wの電球型蛍光灯(米国SYLVANIA社:型番CF13EL)とした。
[測定条件1]積分球(内壁側の直径:40インチ(約1m))/支持部材の直径:40mm
[測定条件2]積分球(内壁側の直径:40インチ(約1m))/支持部材の直径:5mm
[測定条件3]積分半球(半球部の内壁側の直径:40インチ(約1m))
なお、積分球としては、米国Labsphere社:型番LMS−400を用い、積分半球としては、米国Labsphere社:型番HM−400を用いた。
測定方法としては、先に標準光源を用いてそれぞれの光束計を校正した後、試料光源OBJの全光束を測定した。
図3は、実験に用いた標準光源と電球型蛍光灯との配光の違いを示す図である。図4Aおよび4Bは、実験例1の内容を示す図である。図4Bには、測定条件1〜3においてそれぞれ測定された結果(全光束の大きさ)を、測定条件3において測定された結果で規格化したものを示す。
図3に示すように、試料光源OBJである電球型蛍光灯の配光は、標準光源STDの配光に比較して、左右方向への広がりがより多く、かつ、後方への放射が少ない。そのため、電球型蛍光灯と標準光源との配光は大きく異なっている。
図4Bに示すように、同一の試料光源OBJを測定したにもかかわらず、積分半球を用いて測定した結果(測定条件3)に比較して、同一直径かつ同一反射コーティングの積分球を用いて測定した結果(測定条件1および2)は、より低い全光束を示していることがわかる。さらに、支持部材の太さが太いほど、かつ、表面反射率が高いほど、測定された全光束の値はより低い値となっている。すなわち、測定条件1では、測定条件3(特定方位)で測定された結果に比較して−6.5%になっており、測定条件2(全方位)では、測定条件3で測定された結果に比較して−2%になっている。
積分半球では、原理的に、積分球内に支持部材が存在しないので、図4Bに示す結果によれば、積分球内に配置される支持部材の大きさによって、測定値が影響を受けていることがわかる。このように、積分球内に支持部材が存在しない積分半球を用いて測定した値を基準とすれば、同一の内径を有する積分球を用いた場合、その測定結果は、5%以上低くなる場合がある。
(c2:実験例2)
さらに、本発明者らは、標準光源に比較して、その配光がより大きく異なっているLED電球についても、上述の測定条件1〜3の下で、同様の実験を行なった。実験例2においては、試料光源としてLED電球(米国General Electric社:型番Par20/照射角20°)を用いた。
図5Aおよび5Bは、実験例2の内容を示す図である。図5Bには、測定条件1〜3においてそれぞれ測定された結果(全光束の大きさ)を、測定条件3において測定された結果で規格化したものを示す。
図5Aに示すように、LED電球は、前方の狭い範囲に光束を照射するように構成されており、その配光は、標準光源STDとは大きく異なっている。すなわち、LED電球の配光は、前方側に±10°程度しか存在しておらず、発生する光束の多くが狭い範囲にスポット的に照射されることがわかる。
図5Bを参照して、標準光源STDに対して大きく異なった配光を有する試料光源を用いた場合には、積分半球で測定した測定結果に対する誤差がより大きくなっていることがわかる。すなわち、標準光源STDと試料光源OBJとの間の配光の違いが大きくなるほど、積分球を用いて測定される全光束の測定結果がより大きく低下していることがわかる。
より具体的には、測定条件2では、測定条件3で測定された結果に比較して−5%になっており、測定条件1では、測定条件3で測定された結果に比較して−17%にもなっている。このように、積分球内に支持部材が存在しない積分半球を用いて測定した値を基準とすれば、同一の内径を有する積分球を用いた場合、その測定結果は、15%以上低くなる場合がある。
以下、標準光源STDとは異なる配光を有した試料光源OBJであっても、より正確に測定することができる構成例について説明する。
<D.実施の形態1>
上述したように、標準光源STDと試料光源OBJとの間の配光の違いによる誤差は、支持部材の表面での反射に起因するものであると考えられる。そのため、実施の形態1においては、積分球を用いた光学測定装置において、光検出器の視野範囲に入らないように、支持部材の形状および配置位置を決定すると解決手段を採用する。
(d1:基本的構成)
図6A〜6Cは、実施の形態1に従う光学測定システム100の構成を示す模式図である。図6Aを参照して、光学測定システム100は、積分球110と、支持部材120と、バッフル136と、光検出器180とを含む。
積分球110は、内壁に反射面110aを有する。この反射面110aは、硫酸バリウムやPTFEなどを塗布することで形成される拡散反射面である。測定時には、光源(標準光源STDまたは試料光源OBJ)が積分球110の実質的な中心位置に配置される。すなわち、支持部材120が積分球110の実質的な中心位置に光源を支持する。ここで、「実質的な中心位置」とは、積分球110の物理的な中心位置およびその周辺を含む概念であり、周辺とは光源の測定精度に影響を与えない限度で中心位置から離れた範囲を含む。
支持部材120は、第1部材122と、第1部材122と連結される第2部材124と、第1部材122を積分球110に固定するための固定部材126とを含む。これらの形状および配置位置については後に詳述する。
積分球110には、積分球110の内面と外面とを貫通する観測窓132が形成されている。光検出器180は、アタッチメント加工された光ファイバ134を通じて観測窓132に接続される。これにより、光検出器180は、積分球110の内壁の平均照度を検出できる。
光検出器180は、観測窓132における照度を検出し、試料光源OBJの全光束を算出することができる。光検出器180は、少なくとも特定の波長にわたる照度を検出するものであってもよいし、相対照度スペクトルを検出するものであってもよい。光検出器180は、回折格子および回折格子と光学的に関連付けられたラインセンサ等を含む、波長において校正されたフォトダイオードまたは分光器であってもよい。光検出器180は、斜入射光に対する応答が略コサインとなっており、積分球110の内面の全視野から平均輝度を測定する。このような分光測定可能な光検出器180を採用することで、全光束に加えて、色度・相関色温度・演色性といった光源としての性能評価などを行なうこともできる。
観測窓132の前面には、光検出器180への光の直接的な入射を抑制するためのバッフル136が配置される。バッフル136は、固定部材138によって積分球110に固定される。より具体的には、バッフル136は、支持部材120により支持された光源(標準光源STDまたは試料光源OBJ)と観測窓132とを結ぶ直線上に配置される。これにより、光源から発生した光(光束)の一部が直接的(積分球110の内壁で繰り返し反射される前)に観測窓132へ入射することを抑制し、測定誤差を低減する。
本実施の形態に従う光学測定システム100においては、バッフル136は、観測窓132を介した光検出器180の視野範囲に支持部材120が含まれないようにするという機能も果たす。すなわち、バッフル136の大きさは、光検出器180が観測窓132を介して積分球110の内壁の平均輝度を測定するときに、支持部材120がバッフル136の陰になるように設定される。
観測窓132から観た場合に、支持部材120がバッフル136の陰となるためには、支持部材120の形状および配置位置、ならびに、バッフル136の大きさなどを適切に設定する必要がある。一方で、バッフル136の自己吸収による測定精度の低下を考慮すると、支持部材120およびバッフル136はなるべく小さい方がよい。
そこで、本実施の形態に従う光学測定システム100では、観測窓132を介して光検出器180から積分球110の内部を観たときに、光源が配置される位置に近接した位置(方向)に支持部材120が配置されるようにする。より具体的には、光源に対して観測窓132と対向する領域において積分球110の内壁と接続されるような支持部材120を採用する。言い換えれば、光源から光検出器180への直接的な光の入射を抑制するためのバッフル136によって遮られる視野範囲内に支持部材120を配置する。このような思想に基づけば、支持部材120は、任意の形状を採用し得る。典型例として、図6Aには、支持部材120の大部分が光源を通る直線(光軸)の近傍に存在する形状が示されている。
より具体的には、支持部材120は、光源に対して観測窓132と対向する領域において積分球110の内壁と接続される第1部材122を含む。試料光源OBJとしては、天井の取り付けられるタイプの光源が多く、この場合には、試料光源OBJを鉛直上方側に固定するとともに、鉛直下側に向けて点灯する状態で測定される。そのため、図6Aに示す支持部材120では、試料光源OBJを鉛直上方側に固定するためのL字状またはC字状の第2部材124が第1部材122の先端に接続される。
第1部材122および第2部材124の内部には、光源を点灯するための電源線などが収納されている。また、第1部材122および第2部材124の表面には、光吸収を最小化するための反射面が選択されている。この反射面については、原理的には、拡散反射面であってもよいし、鏡面反射面であってもよいが、加工の容易性から、硫酸バリウムまたはPTFEの塗布によって形成される拡散反射面が採用されるのが一般的である。
図6Bには、図6Aに示すB−B断面図を模式的に示す。図6Bに示すように、積分球110の中心位置を含む断面において、観測窓132、バッフル136、光源、支持部材120は、ほぼ一直線上に配置される。これにより、バッフル136を大きくすることなく、光検出器180の視野範囲から支持部材120を除外することができる。
また、試料光源の自己吸収を補正するために、補助光源を設けてもよい。より具体的には、図6Aに示すように、積分球110には、観測窓132とは異なる位置に補助光源窓142が形成されている。補助光源窓142には、補助光源144が関連付けて配置されている。補助光源144からの光は、補助光源窓142を介して、積分球110の内部へ導入される。
この補助光源144から発生する光についても、光検出器180へ直接的に入射することを抑制する必要がある。そのため、補助光源窓142から積分球110の内部へ導入される補助光源144からの光に関連付けられたバッフル146が配置される。このバッフル146についても、バッフル136と同様に、その表面には反射面が形成されている。バッフル146は、補助光源窓142からの光が光検出器180へ直接的に入射することを防止する観点から、任意の形状および位置に設ければよい。
なお、補助光源144を用いて標準光源STDおよび試料光源OBJの自己吸収を補正する方法については、後述する。
上述のような支持部材120および関連する構成を採用することで、標準光源STDと試料光源OBJとの間で配光が大きく異なっている場合であっても、測定誤差を低減できる。上述したように、光源からの光が支持部材120で反射して光検出器180へ直接的に入射することを回避できれば、配光による測定精度への影響を低減できる。そのため、このような技術的思想に沿うものであれば、図6Aに示す形状以外の任意の形状を採用することができる。別の形状の例については、後述する。
上述したように、光学測定システム100においては、校正時に、標準光源STDを支持部材120に装着し、測定時に、試料光源OBJを支持部材120に装着することになる。そのため、ユーザが光源を容易に交換できるような構成が好ましい。実施の形態1においては、積分球110を一対の半球部で構成し、これらの半球部は互いに開閉可能に連結される。このような構成を採用することで、積分球110の内径が大きくなった場合であっても、ユーザは、支持部材120へ容易にアクセスできる。
図6Cに示すように、一例として積分球110は、鉛直上方に配置された上側半球部と、鉛直下方に配置された下側半球部とで構成される。上側半球部と下側半球部とはヒンジ機構118によって開閉可能に連結される。上側半球部を鉛直上方に移動させることで、積分球110が開放状態になる。
(d2:変形例1)
上述したように、補助光源窓142から積分球110の内部へ導入される補助光源144からの光に関連付けられたバッフルについては、任意の形状および配置位置を採用することができる。
図7は、実施の形態1の変形例1に従う光学測定システム100Aの構成を示す模式図である。図7に示す光学測定システム100Aにおいては、補助光源144からの光に関連付けられたバッフル148は、支持部材120ではなく、積分球110の内壁に固定されている。
図7に示すような構成を採用した場合には、補助光源144とは独立して、支持部材120を積分球110から取り外すこともできる。そのため、同一の積分球110を用いて、本実施の形態に従う方法(図6A〜6Cに示すような支持部材120を用いた方法)で試料光源OBJの全光束を測定することもでき、かつ、従来の方法で試料光源OBJの全光束を測定することもできる。
(d3:変形例2)
上述したように、開閉可能に連結された一対の半球部で積分球110を構成する場合には、支持部材120とヒンジ機構118との位置関係を独立に決定することができる。そのため、ユーザが光源をより容易に交換できるような構成を採用してもよい。
図8は、実施の形態1の変形例2に従う光学測定システム100Bの構成を示す模式図である。図8に示す光学測定システム100Bにおいては、支持部材120が積分球110と接続される位置より上方にヒンジ機構118が設けられている。このような構成を採用することで、積分球110が開放状態になったときの最上部の位置はより高くなるが、ユーザは、支持部材120に対してより接近することができる。
そのため、校正時および測定時の光源の交換作業をより短時間で行なうことができる。
(d4:変形例3)
上述したような同一形状の半球部を2つ組み合わせるのではなく、積分球110を部分的に開放可能にしてもよい。
図9は、実施の形態1の変形例3に従う光学測定システム100Cの構成を示す模式図である。図9に示す光学測定システム100Cにおいては、積分球110の一部(例えば、全体の1/4程度)がヒンジ機構118によって開閉可能になっている。
このような構成を採用することで、積分球110が開放状態になったときの最上部の位置が抑えられる。そのため、積分球110を設置する場所における上方向のクリアランスが限られている場合であっても、内径が比較的大きな積分球110を含む光学測定システムを利用することができる。
(d5:変形例4)
上述したように、支持部材としては、光検出器180の視野範囲に含まれない限り、任意の形状を採用することができる。
図10は、実施の形態1の変形例4に従う光学測定システム100Dの構成を示す模式図である。図10に示す光学測定システム100Dにおいては、L字状の支持部材120Aが用いられている。この支持部材120Aは、光源に対して観測窓132と対向する領域において積分球110の内壁と接続されており、かつ、その全体が光検出器180の視野範囲外に位置する。
このような支持部材120Aを採用することで、その構造をより簡素化できる。
(d6:変形例5)
さらに、水平方向に光を照射する試料光源OBJを測定する場合には、次のような構成を採用してもよい。
図11は、実施の形態1の変形例5に従う光学測定システム100Eの構成を示す模式図である。図11に示す光学測定システム100Eにおいては、略直線状の支持部材120Bが用いられている。この支持部材120Bは、観測窓132と対向する領域で、光源を通過する直線に沿って延びる。すなわち、支持部材120Bは、光源に対して観測窓132と対向する領域において積分球110の内壁と接続されており、かつ、その全体が光検出器180の視野範囲外に位置する。
このような支持部材120Bは、水平方向に光を照射する試料光源OBJについての測定に好適である。
(d7:その他の変形例)
図6Cに示すように、積分球110を水平面で2分割する構成に代えて、積分球110を垂直面で2分割する構成を採用してもよい。但し、試料光源OBJの配光によっては、2つの半球部の接続面に照射される光が集中する場合もあり、このような場合には、試料光源OBJを配置する向きなどをより適切な向きに変更することが好ましい。
また、積分球110を3つ以上のパーツから構成してもよい。
さらに、積分球110を複数のパーツから構成する場合には、パーツ間の接続位置は、用途や設置場所などに応じて適宜設計される。そのため、例えばヒンジ機構118は、上述した図6Cや図8に示す位置に限られず、任意の位置に設けることができる。
(d8:利点)
上述した実施の形態1によれば、光源に対して観測窓132と対向する領域において積分球110の内壁と接続されるような支持部材を採用することで、標準光源STDと試料光源OBJとの間で配光が大きく異なっていた場合であっても、より高い精度で全光束などの光学特性を測定することができる。
また、実施の形態1によれば、積分球110を任意の複数のパーツで構成できるので、用途や設置場所などに応じた適切な光学測定システムを実現できる。
<E.実施の形態2>
上述したように、半球光束計を採用した場合には、標準光源STDと試料光源OBJとの間で配光が異なることに起因する測定誤差は発生しない。一方で、現実的には、経済的な理由などによって、半球光束計を新たに導入することができない場合も多い。そのため、実施の形態2においては、既存の積分球を含む光学測定装置を用いて、半球光束計を実現するための構成を採用する。
(e1:基本的構成)
図12A〜12Cは、実施の形態2に従う光学測定システム200の構成を示す模式図である。図12Aを参照して、光学測定システム200は、積分球210と、積分球210内に配置された支持部材220、バッフル236および246と、光検出器280と、補助光源244とを含む。
図12Bに示すように、積分球210は、開閉可能に連結された一対の半球部から構成される。すなわち、上側半球部と下側半球部とはヒンジ機構218によって開閉可能に連結される。上側半球部を鉛直上方に移動させることで、積分球210が開放状態になる。そして、積分球210の開放状態においては、ミラー板250が一方の半球部に装着可能になっている。図12Cは、ミラー板250が装着された状態の光学測定システム200を示す。
すなわち、本実施の形態に従う光学測定システム200では、閉塞状態(一対の半球部が閉じた状態)において、積分球210の内部に支持部材220を用いて光源を配置した状態で測定が可能であり、開放状態(一対の半球部が開いた状態)において、ミラー板250と一方の半球部とにより形成される仮想的な積分球の内部に支持部材を用いずに光源を配置した状態で測定が可能である。このように、ミラー板250を用いることで、共通の光学測定システム200において、従来と同様の積分球を用いた全光束の測定方法、および、半球光束計を用いた全光束の測定方法の両方を選択的に実現できる。以下、本実施の形態に従う光学測定システム200の詳細について説明する。
図12Aを参照して、積分球210は、内壁に反射面210aを有する。この反射面210aは、硫酸バリウムやPTFEなどを塗布することで形成される拡散反射面である。積分球210は、開閉可能に連結された一対の半球部からなり、半球部の各々は、内壁に反射面を有することになる。
支持部材220は、積分球210の閉塞状態(一対の半球部が閉じた状態)において、一対の半球部が構成する積分球210内の実質的な中心位置で光源を点灯するための部材である。支持部材220は、固定部材226によって積分球210に固定される。
バッフル236および固定部材238については、図6Aに示すバッフル136および固定部材138と同様であるので、詳細な説明は繰り返さない。補助光源244についても、図6Aに示す補助光源144と同様であり、補助光源244からの光は、補助光源窓242を介して積分球210の内部へ導入される。
光検出器280は、図6Aに示す光検出器180と同様であり、アタッチメント加工された光ファイバ234を通じて観測窓232に接続される。これにより、光検出器280は、積分球210の内壁の照度を検出できる。
一方、図12Bに示す状態(開放状態)での測定においては、一方の半球部の開口を塞ぐように、ミラー板250が装着される。ミラー板250は、光ファイバ234を通じて光検出器280が接続された観測窓232が形成されている半球部(図12Bにおいては下側半球部)に装着される。
ミラー板250は、装着される半球部(図12Bにおいては下側半球部)の側に反射面250aを有する。この反射面250aは、金属蒸着ミラー(典型的には、アルミニウム蒸着ミラー)などから形成される鏡面反射面である。この反射面250aの反射率は十分に高いことが好ましい。反射面250aに増反射率処理を行なうことで、反射率を高めてもよい。
図12Cに示すように、ミラー板250を用いることで、半球部の内側に存在する実空間と、反射面250aによって生じる当該実空間に対応する虚像空間との合成空間を得られる。この合成空間は、仮想的な積分球に相当する。この仮想的な積分球の内部には、ミラー板250の反射面250aの側に存在する物体のみが含まれることになる。
ミラー板250は、さらに、光源(標準光源STDまたは試料光源OBJ)をミラー板250に装着するための支持部材260を含む。支持部材260は、ミラー板250の反射面250aとは反対側から光源を支持するように構成される。そのため、上述の仮想的な積分球の内部には、支持部材260は存在しない。また、支持部材260は、ミラー板250に装着される光源を点灯するための電力も供給する。
なお、図12Aおよび12Bにおいては、仮想的な積分球の内部側へ飛び出した光源の例を示すが、面光源を測定することもできる。この場合、ミラー板250の中心部に試料光源OBJの断面とほぼ同じ大きさの開口を設けて、試料光源OBJがこの開口に装着されるようにしてもよい。
このように、支持部材260は、ミラー板250が半球部に装着された状態で、当該半球部とミラー板250とが構成する半球内に光源を露出させて点灯する。この光源の点灯によって生じる積分半球の内壁の照度は、観測窓232を介して光検出器280によって検出される。すなわち、光検出器280は、ミラー板250が装着された半球部に形成された観測窓232を介して光源からの光を検出する。光検出器280によって検出された照度によって、試料光源OBJから発生する全光束が測定される。
ミラー板250の反射面250a側には、光検出器280への光源(標準光源STDまたは試料光源OBJ)からの光の直接的な入射を抑制するためのバッフル272が設けられる。
また、ミラー板250と装着される半球部に、補助光源窓242を通じて自己吸収補正係数の算出に必要な光を導入する補助光源244が存在しない場合には、ミラー板250に補助光源274が設けられる。この補助光源274は、仮想的な積分球の内部には含まれないように、ミラー板250の反射面250aとは反対側に配置される。補助光源274からの光は、反射面250aの一部に設けられた補助光源窓278を介して、仮想的な積分球の内部へ導入される。また、光検出器280への補助光源274からの光の直接的な入射を抑制するためのバッフル276が設けられる。
ミラー板250の反射面250aに設けられるバッフル272および276については、光検出器280との位置関係が重要である。一方で、ミラー板250は、円板形状を有するので、半球部に対して任意の位置関係(角度)で装着することが可能である。そこで、ミラー板250に半球部に対する相対関係を位置決めする機構を設けておくことが好ましい。このような位置決め機構は、任意のものを採用することができるが、一例として、図13に示すような構成を採用してもよい。
図13は、実施の形態2に従う光学測定システム200において用いられるミラー板250の平面図である。図13を参照して、ミラー板250は、装着される半球部の断面よりやや大きい径を有する円板状になっている。ミラー板250は、半球部に対する相対的な位置を決定するため、その外周の一部に切り欠き部254および256が形成されている。この切り欠き部254および256は、半球部に装着されたときに、当該半球部に設けられた凸部(図示しない)と係合する。これによって、本実施の形態に従う光学測定システム200について深い知識を有さないユーザであっても、図12Cに示す使用形態を利用できる。
(e2:変形例)
本実施の形態に従うミラー板250は、任意の積分球に適合させることができる。例えば、大型の積分球は、垂直面で2分割できるように構成されるものがある。このような場合であっても、ミラー板250を一方の半球部に装着することで、半球光束計と同様の測定を行なうことができる。
図14Aおよび14Bは、実施の形態2の変形例1に従う光学測定システム200Aの構成を示す模式図である。図14Aに示す光学測定システム200Aにおいては、一対の半球部が水平方向にスライド可能に構成されているものとする。このような光学測定システム200Aであっても、ミラー板250を一方の半球部に装着することで、図14Bに示すような半球光束計として機能させることができる。
図14Bに示すような使用形態においては、水平方向に光を照射するように使用される光源、例えば、車両用のヘッドライトなどの全光束測定に好適である。
(e3:利点)
上述した実施の形態2によれば、既存の積分球を含む光学測定システム200であっても、ミラー板250を装着することで、支持部材による光吸収による測定誤差、および、標準光源との間の配光の違いに起因する測定誤差を除いた状態で、試料光源OBJの全光束を測定することができる。そのため、経済的な理由などによって、半球光束計を新たに用意することができない場合であっても、半球光束計を利用したのと同様の精度で全光束を測定することできる。
<F.処理手順>
次に、上述の実施の形態1および2に従う光学測定システムを用いて、試料光源OBJの全光束を測定する場合の処理手順について説明する。図15は、実施の形態に従う光学測定システムを用いて試料光源OBJの全光束を測定する処理手順を示すフローチャートである。
図15を参照して、まず、ユーザは、標準光源STDを支持部材に装着する(ステップS100)。標準光源STDの発生する全光束は、標準光束φstであるとする。実施の形態1に従う光学測定システム100を用いる場合には、図6Aに示す状態で標準光源STDが支持部材120に装着され、実施の形態2に従う光学測定システム200を用いる場合には、図12Cに示す状態で標準光源STDが支持部材260に装着される。続いて、標準光源STDを点灯させ(ステップS102)、積分球の観測窓132における照度を光検出器で検出する(ステップS104)。光検出器で検出された照度(出力値ist)を標準光束φstと関連付けて格納する(ステップS106)。このステップS102〜S106の処理により、標準光源STDによる校正処理が完了する。なお、この校正処理についても、後述する自己吸収補正の処理を行なってもよい。
続いて、試料光源OBJについての自己吸収補正係数の算出処理が実行される。
すなわち、ユーザは、標準光源STDを消灯する(ステップS108)。すなわち、標準光源STDを非発光状態とする。
続いて、補正光源を点灯させ(ステップS110)、積分球の観測窓132における照度を光検出器で検出する(ステップS112)。光検出器で検出された照度(出力値i0)を格納する(ステップS114)。この出力値i0は、標準光源STDの自己吸収が存在する状態の測定値に相当する。
次に、ユーザは、標準光源STDを支持部材から取り外し、試料光源OBJを支持部材に装着する(ステップS116)。実施の形態1に従う光学測定システム100を用いる場合には、図6Aに示す状態で試料光源OBJが支持部材120に装着され、実施の形態2に従う光学測定システム200を用いる場合には、図12Cに示す状態で試料光源OBJが支持部材260に装着される。続いて、補正光源を点灯させ(ステップS118)、積分球の観測窓132における照度を光検出器で検出する(ステップS120)。光検出器で検出された照度(出力値i1)を格納する(ステップS122)。この出力値i1は、試料光源OBJの自己吸収が存在する状態の測定値に相当する。
さらに、出力値i1を出力値i0で割り算することで、試料光源OBJの自己吸収補正係数αが算出される(ステップS124)。
以上により、試料光源OBJについての自己吸収補正係数の算出処理が完了する。この自己吸収補正係数αは、標準光源STDを非発光状態としつつ、補助光源274を点灯した場合に検出される照度と、試料光源OBJを非発光状態としつつ、補助光源274を点灯した場合に検出される照度との比を意味する。
続いて、補正光源を消灯し(非発光状態)、試料光源OBJを点灯させ(ステップS126)、積分球の観測窓132における照度を光検出器で検出する(ステップS128)。光検出器で検出された照度(出力値id)を格納する(ステップS130)。
最終的に、標準光源STDの標準光束φstおよび対応する出力値ist、自己吸収補正係数α、ならびに出力値idに基づいて、試料光源OBJの全光束が算出される(ステップS132)。
なお、標準光源STDに対応する出力値istおよび自己吸収補正係数αの算出タイミングおよび算出順序については、必要に応じて任意に設定できる。例えば、同一種類の試料光源OBJを複数計測する必要がある場合には、最初に、標準光源STDに対応する出力値istおよび自己吸収補正係数αを算出しておき、これを繰り返し利用すればよい。
<G.その他の形態>
上述した実施の形態1および2に従う光学測定システムのいずれについても、既存の光学測定システムを改良することで実現することができる。そのため、本発明の範囲が、このような改良された光学測定システムについても含むことは明らかである。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2 半球光束計、10,110,210 積分球、10a,50a,60a,110a,210a,250a 反射面、12,180,280 光検出器、14,136,146,148,236,272,276 バッフル、16,20,120,120A,120B,220,260 支持部材、50 半球部、60,250 ミラー板、100,100A,100B,100C,100D,100E,200,200A 光学測定システム、118,218 ヒンジ機構、122 第1部材、124 第2部材、126,138,226,238 固定部材、132,232 観測窓、134,234 光ファイバ、142,242,278 補助光源窓、144,244,274 補助光源、254,256 切り欠き部、OBJ 試料光源、STD 標準光源。

Claims (7)

  1. 内壁に反射面を有するとともに第1の窓を有する積分球と、
    前記積分球の実質的な中心位置に光源を支持するための支持部材と、
    前記第1の窓と前記支持部材により支持された前記光源とを結ぶ直線上に配置された第1のバッフルとを備え、
    前記支持部材は、前記光源に対して前記第1の窓と対向する領域において前記積分球の内壁と接続され、
    前記第1のバッフルは、前記第1の窓に光検出器が装着された場合に、前記第1の窓を介した当該光検出器の視野範囲に前記支持部材が含まれないように構成される、光学測定システム。
  2. 前記第1の窓に接続される前記光検出器をさらに備える、請求項1に記載の光学測定システム。
  3. 前記積分球には、前記第1の窓とは異なる位置に第2の窓が形成されており、補助光源からの光が前記第2の窓を介して前記積分球の内部へ導入され、
    前記光学測定システムは、前記第2の窓から前記積分球の内部へ導入される前記補助光源からの光に関連付けられた第2のバッフルをさらに備える、請求項1または2に記載の光学測定システム。
  4. 前記積分球は、開閉可能に連結された第1の半球部と第2の半球部とを含む、請求項1または2に記載の光学測定システム。
  5. 内壁に反射面を有する積分球の実質的な中心位置に、支持部材に支持された光源を配置するステップと、
    前記積分球に形成された第1の窓を介して前記光源からの光を検出するステップとを備え、
    前記第1の窓と前記支持部材により支持された前記光源とを結ぶ直線上には第1のバッフルが配置され、
    前記支持部材は、前記光源に対して前記第1の窓と対向する領域において前記積分球の内壁と接続され、
    前記第1のバッフルは、前記第1の窓に光検出器が装着された場合に、前記第1の窓を介した当該光検出器の視野範囲に前記支持部材が含まれないように構成される、光学測定方法。
  6. 各々の内壁に反射面を有し、開閉可能に連結された第1および第2の半球部と、
    前記第1および第2の半球部が閉じた状態で、前記第1および第2の半球部が構成する球内の実質的な中心位置で光源を点灯するための第1の支持部材と、
    前記第1および第2の半球部が開いた状態で、前記第1の半球部の開口を覆うように装着可能な円板状のミラー板とを備え、前記ミラー板は、前記第1の半球部の側に反射面を有し、さらに
    前記ミラー板が前記第1の半球部に装着された状態で、前記第1の半球部と前記ミラー板とが構成する半球内に光源を露出させて点灯するための第2の支持部材と、
    前記第1の半球部に形成された窓を介して前記光源からの光を検出する光検出器とを備える、光学測定システム。
  7. 光学測定システムに向けられたミラー板であって、前記光学測定システムは、各々の内壁に反射面を有し、開閉可能に連結された第1および第2の半球部とを含み、前記ミラー板は、前記第1および第2の半球部が開いた状態で、前記第1の半球部の開口を覆うように装着可能になっており、
    前記第1の半球部の側に反射面と、
    前記ミラー板が前記第1の半球部に装着された状態で、前記第1の半球部と前記ミラー板とが構成する半球内に光源を露出させて点灯するための支持部材とを備える、ミラー板。
JP2013556001A 2011-10-13 2011-10-13 光学測定システム、光学測定方法、および光学測定システム用のミラー板 Expired - Fee Related JP5501540B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005731 WO2013054379A1 (en) 2011-10-13 2011-10-13 Optical measurement system, optical measurement method, and mirror plate for optical measurement system

Publications (2)

Publication Number Publication Date
JP2014507665A JP2014507665A (ja) 2014-03-27
JP5501540B2 true JP5501540B2 (ja) 2014-05-21

Family

ID=48081461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013556001A Expired - Fee Related JP5501540B2 (ja) 2011-10-13 2011-10-13 光学測定システム、光学測定方法、および光学測定システム用のミラー板

Country Status (7)

Country Link
US (1) US9239259B2 (ja)
EP (1) EP2748569B1 (ja)
JP (1) JP5501540B2 (ja)
KR (1) KR101781249B1 (ja)
CN (1) CN103477196B (ja)
TW (1) TWI560430B (ja)
WO (1) WO2013054379A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411428B1 (ko) * 2012-07-12 2014-06-24 한국과학기술원 집광식 휴대용 형광 검출 시스템
ES2856573T3 (es) * 2015-10-20 2021-09-27 Spectrafy Inc Dispositivos y métodos de espectro solar global
CN117028910A (zh) 2016-06-10 2023-11-10 奇跃公司 纹理投射灯泡的积分点光源
CN107748006B (zh) * 2017-10-19 2023-04-25 陆耀东 一种无脉冲展宽积分球探测器
JP6492220B1 (ja) * 2018-09-26 2019-03-27 大塚電子株式会社 測定システムおよび測定方法
WO2020075169A1 (en) * 2018-10-10 2020-04-16 Ophir Optronics Ltd. Entrance port adapter for illumination measurement device
JPWO2021070428A1 (ja) * 2019-10-09 2021-04-15

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720806A (en) * 1971-06-18 1973-03-13 Horizons Research Inc Optical development apparatus
JP3117565B2 (ja) 1992-11-27 2000-12-18 松下電器産業株式会社 光束計
US5519534A (en) * 1994-05-25 1996-05-21 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Irradiance attachment for an optical fiber to provide a uniform level of illumination across a plane
JP3246320B2 (ja) 1996-03-27 2002-01-15 松下電器産業株式会社 配光特性測定装置と配光特性測定方法
JP4272629B2 (ja) 2005-02-16 2009-06-03 株式会社ユニテック 反射皮膜、積分球及び反射皮膜の形成方法
KR100651031B1 (ko) * 2005-07-08 2006-11-29 장민준 온도 조절 수단을 구비한 적분구
US20070057575A1 (en) 2005-09-15 2007-03-15 Brandt Everett G Vertical idler adjuster for track-type work machine
CN101287974B (zh) * 2006-04-12 2010-09-22 大塚电子株式会社 总光通量测量装置
JP2008076126A (ja) * 2006-09-20 2008-04-03 Oputo System:Kk 測光装置及び測光方法
KR101091791B1 (ko) 2009-12-01 2011-12-08 한국표준과학연구원 적분구 광도계 및 그 측정 방법
JP5608919B2 (ja) 2010-02-24 2014-10-22 大塚電子株式会社 光学測定装置
JP5640257B2 (ja) 2010-03-18 2014-12-17 大塚電子株式会社 量子効率測定方法および量子効率測定装置
CN101852648B (zh) * 2010-06-22 2014-07-09 海洋王照明科技股份有限公司 光源光通量测量仪器及测量方法
CN101915809B (zh) 2010-07-01 2012-10-17 王冬群 一种大米中拟除虫菊酯类农药残留的检测方法
CN101915609B (zh) * 2010-08-02 2012-04-11 中国科学院长春光学精密机械与物理研究所 一种用于光学测量的积分球装置
CN201955458U (zh) 2010-12-01 2011-08-31 西安大昱光电科技有限公司 Led日光灯光电参数测量***

Also Published As

Publication number Publication date
JP2014507665A (ja) 2014-03-27
US20130327929A1 (en) 2013-12-12
TW201337221A (zh) 2013-09-16
EP2748569A4 (en) 2015-08-19
EP2748569A1 (en) 2014-07-02
TWI560430B (en) 2016-12-01
KR101781249B1 (ko) 2017-09-22
US9239259B2 (en) 2016-01-19
KR20140128859A (ko) 2014-11-06
CN103477196B (zh) 2016-06-22
WO2013054379A1 (en) 2013-04-18
CN103477196A (zh) 2013-12-25
EP2748569B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5501540B2 (ja) 光学測定システム、光学測定方法、および光学測定システム用のミラー板
TWI443312B (zh) 用於測定由被測定光源產生之全光束的光束計、以及使用該光束計之全光束的測定方法
KR101091791B1 (ko) 적분구 광도계 및 그 측정 방법
TWI497039B (zh) 含有半球型積分球的光學測量裝置
US7283222B1 (en) Optical measuring device
JP6154153B2 (ja) 標準光源および測定方法
JP2008292497A (ja) 光学測定装置
TWI811442B (zh) 測量系統以及測量方法
KR102060893B1 (ko) 전광선속 측정 장치
Ohkubo Integrating sphere theory for measuring optical radiation

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees