JP5471985B2 - Pb-free solder alloy based on Zn - Google Patents

Pb-free solder alloy based on Zn Download PDF

Info

Publication number
JP5471985B2
JP5471985B2 JP2010199472A JP2010199472A JP5471985B2 JP 5471985 B2 JP5471985 B2 JP 5471985B2 JP 2010199472 A JP2010199472 A JP 2010199472A JP 2010199472 A JP2010199472 A JP 2010199472A JP 5471985 B2 JP5471985 B2 JP 5471985B2
Authority
JP
Japan
Prior art keywords
mass
alloy
solder alloy
solder
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010199472A
Other languages
Japanese (ja)
Other versions
JP2012055905A (en
Inventor
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010199472A priority Critical patent/JP5471985B2/en
Publication of JP2012055905A publication Critical patent/JP2012055905A/en
Application granted granted Critical
Publication of JP5471985B2 publication Critical patent/JP5471985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Znを主成分とし、且つPbを含まない、いわゆるPbフリーのはんだ合金に関するものであり、特に高温用として好適なZnを主成分とするPbフリーはんだ合金に関する。   The present invention relates to a so-called Pb-free solder alloy containing Zn as a main component and not containing Pb, and particularly to a Pb-free solder alloy containing Zn as a main component, which is suitable for high temperatures.

パワートランジスタ用素子のダイボンディングを始めとして、各種電子部品の組立工程におけるはんだ付では高温はんだ付が行われ、300℃程度の比較的高温の融点を有するはんだ合金(以下、「高温用はんだ合金」とも称する)が使用されている。このような高温用はんだ合金としては、Pb−5質量%Sn合金に代表されるPb系はんだ合金が従来から主に用いられている。   Starting with die bonding of power transistor elements, soldering in the assembly process of various electronic components is performed at high temperature, and a solder alloy having a relatively high melting point of about 300 ° C. (hereinafter referred to as “high temperature solder alloy”) Also called). As such a high-temperature solder alloy, a Pb-based solder alloy represented by a Pb-5 mass% Sn alloy has been mainly used conventionally.

しかし、近年では環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えばRohs指令などで規制対象物質になっている。こうした動きに対応して、電子部品などの組立の分野においても、Pbを含まない(無鉛)はんだ合金、即ちPbフリーはんだ合金の提供が求められている。   However, in recent years, there has been a strong movement to restrict the use of Pb due to consideration for environmental pollution, and it has become a regulated substance in the RoHS directive, for example. Corresponding to such a movement, in the field of assembling electronic components and the like, it is required to provide a Pb-free (lead-free) solder alloy, that is, a Pb-free solder alloy.

中低温用(約140℃〜230℃)のはんだ合金に関しては、Snを主成分とするPbフリーのはんだ合金が既に実用化されている。例えば特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有するPbフリーのはんだ合金が記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーのはんだ合金が記載されている。   As for a solder alloy for medium and low temperatures (about 140 ° C. to 230 ° C.), a Pb-free solder alloy containing Sn as a main component has already been put into practical use. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0% by mass, Cu is 2.0% by mass or less, Ni is 0.5% by mass or less, and P is 0.2% by mass. The following Pb-free solder alloys are described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.

一方、高温用のはんだ合金に関しても、Pbフリーを実現するため、さまざまな機関で開発が行われている。しかしながら、従来のPb−5質量%Sn合金に代表されるPb系はんだ合金を代替できる高温用はんだ合金はまだ提案されていない現状である。   On the other hand, development of various high-temperature solder alloys is also being conducted in order to realize Pb-free. However, a high temperature solder alloy that can replace a Pb solder alloy represented by a conventional Pb-5 mass% Sn alloy has not yet been proposed.

例えば、Bi系はんだ合金では、特許文献3に、Biを30〜80質量%含み、溶融温度が350〜500℃であるBi/Ag系のろう材が開示されている。しかし、このBi/Ag系ろう材の液相線温度は400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測される。一般的な電子部品や基板の材料として多用されている熱可塑性樹脂や熱硬化性樹脂などの作業温度は400℃未満、望ましくは370℃以下であることから、上記の作業温度は接合される電子部品や基板が耐えうる温度を超えている。   For example, for a Bi-based solder alloy, Patent Document 3 discloses a Bi / Ag-based brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. However, since the liquidus temperature of this Bi / Ag brazing material is as high as 400 to 700 ° C., it is presumed that the working temperature at the time of joining is also 400 to 700 ° C. or higher. The working temperature of thermoplastic resins and thermosetting resins that are widely used as materials for general electronic components and substrates is less than 400 ° C., preferably 370 ° C. or less. The temperature exceeds that the component or board can withstand.

また、特許文献4には、Biを含む共昌合金に2元共昌合金を加え、更に添加元素を加えることによって、液相線温度の調整とばらつきの減少が可能な生産方法が開示されている。しかしながら、この方法では液相線の温度調整のみで4元系以上の多元系はんだになるうえ、Biの脆弱な機械的特性については有効な改善がされていない。   Patent Document 4 discloses a production method that can adjust the liquidus temperature and reduce variations by adding a binary Kyochang alloy to a Bi-containing Kyochang alloy and further adding additional elements. Yes. However, in this method, a quaternary or higher multi-component solder is obtained only by adjusting the temperature of the liquidus, and Bi's brittle mechanical properties are not effectively improved.

Zn系はんだ合金についても、同様に実用的な高温用のPbフリーはんだ合金は提供されていない。例えば、特許文献5には、ZnにAlを添加することにより融点を下げたZn−Al合金を基本とし、これにGe又はMgを添加した高温用Zn系はんだ合金が記載され、更にSn又はInの添加により融点を一層下げる効果があることが記載されている。しかし、Zn系はんだ合金は、Zn自身の還元性が強く自ら酸化してしまうため、濡れ性が非常に悪いことなどが大きな問題となっている。   Similarly, no practical high-temperature Pb-free solder alloy is provided for Zn-based solder alloys. For example, Patent Document 5 describes a high-temperature Zn-based solder alloy based on a Zn—Al alloy whose melting point has been lowered by adding Al to Zn, to which Ge or Mg is added, and Sn or In. It is described that there is an effect of further lowering the melting point by the addition of. However, since Zn solder alloys are highly reducible by themselves and oxidize themselves, a major problem is that the wettability is very poor.

具体的には、上記特許文献5には、Alを1〜9質量%、Geを0.05〜1質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを5〜9質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Mgを0.01〜0.5質量%、In及び/又はnを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金が記載されている。   Specifically, in Patent Document 5, a Zn alloy containing 1 to 9% by mass of Al and 0.05 to 1% by mass of Ge, with the balance being Zn and inevitable impurities; 5 to 9% by mass of Al, Zn alloy containing 0.01 to 0.5% by mass of Mg, the balance being Zn and inevitable impurities; 1 to 9% by mass of Al, 0.05 to 1% by mass of Ge, and 0.01 to 0.5% of Mg. Zn alloy containing 5% by mass, the balance being Zn and inevitable impurities; 1-9% by mass of Al, 0.05-1% by mass of Ge, 0.1-25% by mass of Sn and / or In, and the balance Zn alloy consisting of Zn and inevitable impurities; Al 1-9 mass%, Mg 0.01-0.5 mass%, In and / or n 0.1-25 mass%, the balance Zn and inevitable Zn alloy composed of impurities; Al 1-9 mass%, Ge 0.05-1 mass%, Mg 0.01-0. Mass%, the Sn and / or In includes 0.1 to 25 wt%, and the balance are described Zn alloy consisting of Zn and unavoidable impurities.

しかし、上記特許文献5に記載されたZn系はんだ合金は、その組成の範囲内では合金の加工性が十分とは言えず、最も加工性が要求されるワイヤへの加工は困難な場合が多い。しかも、上記のごとくZnは酸化し易く濡れ性が悪いため、CuやNiなどに容易に接合できない。例えば、Cu基板やNiを最上層に有するCu基板などに接合した場合、接合ができても車載用などのように厳しい環境下で使用し続けることは困難である。GeやSnが添加されても酸化したZnは還元できず、濡れ性を向上させることはできない。   However, the Zn-based solder alloy described in Patent Document 5 cannot be said to have sufficient workability of the alloy within the range of the composition, and it is often difficult to process the wire that requires the highest workability. . Moreover, as described above, Zn is easily oxidized and has poor wettability, so that it cannot be easily joined to Cu, Ni, or the like. For example, when bonded to a Cu substrate or a Cu substrate having Ni as the uppermost layer, it is difficult to continue using the device in a severe environment such as in-vehicle use even if the bonding is possible. Even if Ge or Sn is added, oxidized Zn cannot be reduced and wettability cannot be improved.

以上に述べたように、高温用のPbフリーはんだ合金、特にZnを主成分とするPbフリーはんだ合金については、濡れ性をはじめとして改善すべき課題が多いため、未だ実用化されていないのが実情である。   As described above, high-temperature Pb-free solder alloys, particularly Pb-free solder alloys mainly composed of Zn, have many problems to be improved including wettability, and have not yet been put into practical use. It is a fact.

特開1999−077366号公報Japanese Patent Laid-Open No. 1999-077366 特開平08−215880号公報Japanese Patent Laid-Open No. 08-215880 特開2002−160089号公報JP 2002-160089 A 特開2006−167790号公報JP 2006-167790 A 特許第3850135号公報Japanese Patent No. 3850135

本発明は、上記した従来の事情に鑑み、電子部品の組立などで用いるのに好適な300℃〜400℃程度の融点を有し、濡れ性、接合性、加工性、信頼性に優れ、Pbを含まず且つZnを主成分とする高温用のPbフリーZn系はんだ合金を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention has a melting point of about 300 ° C. to 400 ° C. suitable for use in assembling electronic components, and is excellent in wettability, bondability, workability, and reliability. An object of the present invention is to provide a high-temperature Pb-free Zn-based solder alloy containing no Zn and containing Zn as a main component.

本発明が提供する第1のPbフリーZn系はんだ合金は、Al又はSnのいずれか1種と、Agとを含有するPbフリーのZn系はんだ合金であって、Alを含有する場合その含有量が1.0〜9.0質量%であり、Snを含有する場合その含有量が0.3〜10.0質量%であり、Agの含有量が0.1〜4.0質量%であって、残部がZn及び不可避不純物からなることを特徴とする。   The first Pb-free Zn-based solder alloy provided by the present invention is a Pb-free Zn-based solder alloy containing either one of Al or Sn and Ag. Is 1.0 to 9.0% by mass, and when Sn is contained, the content is 0.3 to 10.0% by mass, and the Ag content is 0.1 to 4.0% by mass. The remainder is made of Zn and inevitable impurities.

また、本発明が提供する第2のPbフリーZn系はんだ合金は、Al又はSnのいずれか1種と、Agを含有すると共に、Bi及びPの少なくとも1種を含有するPbフリーのZn系はんだ合金であって、Alを含有する場合その含有量が1.0〜9.0質量%であり、Snを含有する場合その含有量が0.3〜10.0質量%であり、Agの含有量が0.1〜4.0質量%であり、Biを含有する場合その含有量が0.1〜6.0質量%、及びPを含有する場合その含有量が0.001〜0.5質量%であって、残部がZn及び不可避不純物からなることを特徴とする。   Further, the second Pb-free Zn-based solder alloy provided by the present invention contains either one of Al or Sn and Ag, and a Pb-free Zn-based solder containing at least one of Bi and P. When the alloy contains Al, its content is 1.0 to 9.0% by mass, and when it contains Sn, its content is 0.3 to 10.0% by mass and contains Ag. When the amount is 0.1 to 4.0% by mass and Bi is contained, the content is 0.1 to 6.0% by mass, and when P is contained, the content is 0.001 to 0.5%. It is mass%, and the balance consists of Zn and inevitable impurities.

本発明によれば、濡れ性、接合性、加工性、信頼性等に優れると同時に、300℃〜400℃程度の融点を有していて、300℃程度のリフロー温度に十分耐えることができ、パワートランジスタ用素子のダイボンディングなど各種電子部品の組立工程でのはんだ付に好適な高温用のPbフリーはんだ合金を提供することができる。   According to the present invention, it has excellent wettability, bondability, workability, reliability, etc., and at the same time has a melting point of about 300 ° C. to 400 ° C. and can sufficiently withstand a reflow temperature of about 300 ° C. A high-temperature Pb-free solder alloy suitable for soldering in the assembly process of various electronic components such as die bonding of power transistor elements can be provided.

本発明による第1のPbフリーZn系はんだ合金は、Pbを含まず、Al又はSnのいずれかを含むと共に、Agを含有し、残部がZn及び不可避不純物からなる。Znは硬くて脆いため加工性に劣り、融点が419℃と電子部品等の接合温度である300〜400℃に対し高すぎるという欠点がある。このようなZnの欠点に対して、本発明においては、Al又はSnのいずれか1種を添加することによって、Znと共晶合金を形成させて融点を約400℃以下に下げると同時に、結晶を微細化させて加工性を向上させる効果を得ることができる。   The first Pb-free Zn-based solder alloy according to the present invention does not contain Pb, contains either Al or Sn, contains Ag, and the balance is made of Zn and inevitable impurities. Since Zn is hard and brittle, it is inferior in workability, and has a disadvantage that its melting point is 419 ° C., which is too high for 300 to 400 ° C., which is the bonding temperature of electronic parts and the like. In response to such a defect of Zn, in the present invention, by adding any one of Al and Sn, a eutectic alloy is formed with Zn, and the melting point is lowered to about 400 ° C. or less, and at the same time, It is possible to obtain the effect of improving the workability by miniaturizing.

加えて、上述したようにZnには濡れ性や接合性の問題があるが、これを解決するために本発明のPbフリーZn系はんだ合金にはAgを添加している。電子部品や基板にはAgの最上層が形成されることが多いことから分るように、Agは酸化され難く、濡れ性向上に大きな効果を発揮する。即ち、Agを必須のはんだ成分とすることによって、酸化され易く、濡れ性に課題を有するZn系はんだの欠点を改善し、濡れ性及び接合性を向上させることができる。   In addition, as described above, Zn has problems of wettability and bondability. In order to solve this problem, Ag is added to the Pb-free Zn-based solder alloy of the present invention. As can be seen from the fact that the uppermost layer of Ag is often formed on electronic components and substrates, Ag is difficult to oxidize and exhibits a great effect on improving wettability. That is, by using Ag as an essential solder component, it is possible to improve the wettability and bondability by improving the defects of Zn-based solder that is easily oxidized and has a problem in wettability.

本発明の第1のPbフリーZn系はんだ合金におけるAl又はSnの含有量は、Alを含有する場合、Alの含有量を1.0質量%以上9.0質量%以下とする。Alの含有量が1.0質量%未満では、他の元素を添加したとしても融点の低下が不十分となるため、接合性が低下してしまう。また、Alの含有量が9.0質量%を超えると、Zn−Al合金の液相温度が高くなりすぎ、電子部品等の実際の接合温度では十分に溶融せず、ボイド率が高くなりすぎたり接合部の合金化が不十分となったりするため、実用に耐えうる接合ができなくなる。   When the Al or Sn content in the first Pb-free Zn-based solder alloy of the present invention contains Al, the Al content is set to 1.0 mass% or more and 9.0 mass% or less. When the Al content is less than 1.0% by mass, even if other elements are added, the melting point is not sufficiently lowered, so that the bondability is lowered. In addition, if the Al content exceeds 9.0% by mass, the liquid phase temperature of the Zn-Al alloy becomes too high, and it does not melt sufficiently at the actual bonding temperature of electronic parts, and the void ratio becomes too high. In other words, the alloying of the joint portion becomes insufficient, so that the joint that can withstand practical use cannot be performed.

一方、Snを含有する場合には、Snの含有量を0.3質量%以上10.0質量%以下とする。Snの含有量が0.3質量%未満では、融点を下げる効果や加工性向上効果が不十分となる。逆にSnの含有量が10.0質量%を超えると、液相分が多くなり、リフロー時に電子部品を固定しきれず、位置ずれを起こしてしまうなどの問題が発生する。   On the other hand, when it contains Sn, content of Sn shall be 0.3 mass% or more and 10.0 mass% or less. When the Sn content is less than 0.3% by mass, the effect of lowering the melting point and the effect of improving workability are insufficient. On the other hand, if the Sn content exceeds 10.0 mass%, the liquid phase content increases, and problems such as the occurrence of misalignment occur because the electronic component cannot be fixed during reflow.

尚、AlとSnを同時に含有することは好ましくない。その理由は、ZnにAlとSnが同時に添加された3元系合金では、Snが部分的(ミクロ的)な電池作用を助長し、合金が脆くなってしまうからである。もちろん、このような現象もSnの含有量あるいはAlの含有量が少なければ実質的に問題にならないが、本発明のPbフリーZn系はんだ合金の用途は信頼性が重要視される分野が多いことから、Al若しくはSnのいずれか1元素のみを含むという制約を課したものである。   In addition, it is not preferable to contain Al and Sn simultaneously. The reason is that in a ternary alloy in which Al and Sn are simultaneously added to Zn, Sn promotes a partial (micro) battery action and the alloy becomes brittle. Of course, such a phenomenon is not substantially a problem if the content of Sn or Al is small, but the application of the Pb-free Zn-based solder alloy of the present invention has many fields in which reliability is regarded as important. Therefore, the restriction that only one element of Al or Sn is included is imposed.

また、Agの含有量は0.1質量%以上4.0質量%以下とする。Agの含有量が0.1質量%未満では、濡れ性や接合性の向上効果が得られない。逆に4.0質量%を超えると、融点が高くなりすぎるため好ましくない。つまり、Zn−Ag合金において、Znリッチ側でAg含有量を増やしていくと液相温度は単調に増加していく。従って、Agは融点から考えれば少ない方がよい。一方、濡れ性向上の面からすればAgは多い方がよい。しかし、融点を下げる効果は上記のごとくAl又はSnにより実現されるが、Agが4.0質量%を超えて多くなるとAl又はSnを添加しても融点が高くなりすぎ、良好な接合を得ることが困難となる。従ってAg含有量の上限は4.0質量%とする。   Further, the Ag content is set to 0.1% by mass or more and 4.0% by mass or less. If the Ag content is less than 0.1% by mass, the effect of improving wettability and bondability cannot be obtained. Conversely, if it exceeds 4.0 mass%, the melting point becomes too high, which is not preferable. That is, in the Zn-Ag alloy, the liquid phase temperature increases monotonically as the Ag content is increased on the Zn-rich side. Therefore, it is better that Ag is less in view of the melting point. On the other hand, from the standpoint of improving wettability, it is better that there is more Ag. However, the effect of lowering the melting point is realized by Al or Sn as described above. However, when Ag exceeds 4.0% by mass, the melting point becomes too high even if Al or Sn is added, and a good bonding is obtained. It becomes difficult. Therefore, the upper limit of the Ag content is 4.0% by mass.

本発明による第2のPbフリーZn系はんだ合金は、Pbを含まず、Al又はSnのいずれか1種と、Agとを含有すると共に、Bi及びPの少なくとも1種を含有し、残部がZn及び不可避不純物からなる。この第2のPbフリーZn系はんだ合金は、上記第1のPbフリーZn系はんだ合金の濡れ性及び接合性をより一層向上させるために、更にBi及びPのいずれか片方若しくは両方を添加して構成したものである。   The second Pb-free Zn-based solder alloy according to the present invention does not contain Pb, contains any one of Al or Sn, and Ag, and contains at least one of Bi and P, with the balance being Zn. And inevitable impurities. This second Pb-free Zn-based solder alloy is obtained by adding either one or both of Bi and P in order to further improve the wettability and bondability of the first Pb-free Zn-based solder alloy. It is composed.

Bi及びPの添加による効果は似ているものの、そのメカニズムはBiとPとでは全く異なっている。まず、Biに関して説明する。Zn、Al又はSnは凝固時に収縮し、その凝固時収縮率はZn=+4.9〜+6.9%、Al=+6.4〜+6.8%、Sn=+2.6〜3.0%である(ただし、+は収縮及び−は膨張を表す)。一方、Biは凝固時に膨張する珍しい金属であり、その凝固時収縮率は−3.2〜−3.4%である。このため、Zn系はんだ合金の凝固収縮時に発生する応力をBiの膨張により吸収し、残留応力を大幅に軽減することができる。これによって、電子部品の割れや剥がれなどの問題を解決でき、接合性の向上を図ることができる。   Although the effects of addition of Bi and P are similar, the mechanism is completely different between Bi and P. First, Bi will be described. Zn, Al or Sn shrinks during solidification, and the shrinkage during solidification is Zn = + 4.9 to + 6.9%, Al = + 6.4 to + 6.8%, Sn = + 2.6 to 3.0%. Yes (where + indicates contraction and-indicates expansion). On the other hand, Bi is a rare metal that expands during solidification, and its shrinkage during solidification is -3.2 to -3.4%. For this reason, the stress generated at the time of solidification shrinkage of the Zn-based solder alloy can be absorbed by the expansion of Bi, and the residual stress can be greatly reduced. As a result, problems such as cracking and peeling of the electronic component can be solved, and the bondability can be improved.

更に、Bi−Zn系状態図から分るようにBiはZnの融点を下げるため、Biを添加したZn合金は一層使い易いはんだ合金となる。加えて、BiはZnよりも酸化し難いため、濡れ性の向上にも寄与し、これによって接合性を大きく向上させることができる。   Furthermore, as can be seen from the Bi-Zn phase diagram, Bi lowers the melting point of Zn, so that a Zn alloy to which Bi is added becomes a solder alloy that is easier to use. In addition, Bi is more difficult to oxidize than Zn, and thus contributes to the improvement of wettability, thereby greatly improving the bondability.

一方、Pが濡れ性を向上させるメカニズムは以下のとおりである。Pは還元性が強く、自ら酸化することによりはんだ合金表面の酸化を抑制する。特に本発明では酸化しやすいZnが主成分であるため、Pの添加による濡れ性向上の効果は大きい。更にPの添加には、接合時にボイドの発生を低減させる効果がある。即ち、Pは自らが酸化しやすいため、接合時にはんだ合金の主成分であるZnやAl又はSnよりも優先的に酸化が進む。その結果、はんだ母相の酸化を防ぎ、濡れ性を確保することができる。これにより良好な接合が可能となり、ボイドの生成も起こり難くなる。   On the other hand, the mechanism by which P improves wettability is as follows. P is highly reducible and suppresses oxidation of the solder alloy surface by oxidizing itself. In particular, in the present invention, Zn which is easily oxidized is a main component, and therefore the effect of improving wettability by adding P is great. Furthermore, the addition of P has the effect of reducing the generation of voids during bonding. That is, since P easily oxidizes itself, oxidation proceeds preferentially over Zn, Al, or Sn, which are the main components of the solder alloy, at the time of bonding. As a result, it is possible to prevent the solder mother phase from being oxidized and to ensure wettability. As a result, good bonding is possible, and void formation is less likely to occur.

第2のPbフリーZn系はんだ合金において、Al又はSnの含有量とAgの含有量は上記第1のPbフリーZn系はんだ合金の場合と同じである。また、Biを含有する場合、Biの含有量は0.1質量%以上6.0質量%以下が好ましい。Biの含有量が0.1質量%未満では、添加による効果が得られない。凝固膨張の効果をより大きくするためには含有量を多くすればよいが、Biの偏析を避けるため6.0質量%以下とする。即ち、Zn及びAgとAl又はSnの合金では、Biを6.0質量%より多く添加すると、はんだ接合後にBiの偏析が生じ、この偏析が長期信頼性に悪影響を及ぼす可能性があるからである。   In the second Pb-free Zn-based solder alloy, the content of Al or Sn and the content of Ag are the same as in the case of the first Pb-free Zn-based solder alloy. Moreover, when Bi is contained, the content of Bi is preferably 0.1% by mass or more and 6.0% by mass or less. When the Bi content is less than 0.1% by mass, the effect of addition cannot be obtained. In order to increase the effect of solidification expansion, the content may be increased, but in order to avoid segregation of Bi, the content is set to 6.0% by mass or less. That is, in an alloy of Zn and Ag and Al or Sn, if Bi is added in an amount of more than 6.0% by mass, Se segregation of Bi occurs after soldering, and this segregation may adversely affect long-term reliability. is there.

また、Pを含有する場合、Pの含有量は0.001質量%以上0.5質量%以下が好ましい。Pは非常に還元性が強いため、少なくとも0.001質量%添加すれば濡れ性向上の効果を発揮する。0.5質量%を超えて添加しても、濡れ性向上の効果は変わらず、過剰な添加によってPの酸化物がはんだ表面に生成されて逆に濡れ性を低下させたり、Pが脆弱な相を形成して偏析し、はんだ接合部を脆化して信頼性を低下させたりする恐れがある。特にワイヤなどを加工する場合に、断線の原因になりやすいことが確認されている。   When P is contained, the content of P is preferably 0.001% by mass or more and 0.5% by mass or less. Since P is very reducible, if it is added at least 0.001% by mass, the effect of improving wettability is exhibited. Even if added over 0.5% by mass, the effect of improving the wettability is not changed, and an excessive addition generates P oxide on the solder surface, conversely reducing the wettability, or P is brittle. There is a risk of segregating by forming phases and embrittlement of the solder joints to reduce reliability. In particular, it has been confirmed that wire breakage is likely to cause disconnection.

原料として、それぞれ純度99.9重量%以上のZn、Al、Sn、Ag、Bi及びPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく、均一になるように留意しながら、切断及び粉砕などにより3mm以下の大きさに細かくした。次に、これら原料から所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   Zn, Al, Sn, Ag, Bi, and P, each having a purity of 99.9% by weight or more, were prepared as raw materials. Large flakes and bulk-shaped raw materials were reduced to a size of 3 mm or less by cutting and crushing while paying attention to ensure that the alloy after melting did not vary in composition depending on the sampling location. Next, a predetermined amount of these raw materials was weighed and put into a graphite crucible for a high-frequency melting furnace.

上記各原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型は、はんだ母合金の製造の際に一般的に使用している形状と同様のものを使用した。   The crucible containing the raw materials was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 liter / min or more per kg of the raw materials in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy. A mold having the same shape as that generally used in the production of a solder mother alloy was used.

このようにして、上記各原料の混合比率を変えることにより、試料1〜22のZn系はんだ母合金を作製した。得られた試料1〜22の各はんだ母合金について、その組成をICP発光分光分析器(SHIMAZU S−8100)を用いて分析し、得られた分析結果をはんだ組成として下記表1に示した。   In this manner, the Zn-based solder mother alloys of Samples 1 to 22 were produced by changing the mixing ratio of the respective raw materials. About each obtained solder mother alloy of the samples 1-22, the composition was analyzed using the ICP emission-spectral-analyzer (SHIMAZU S-8100), and the obtained analysis result was shown in following Table 1 as a solder composition.

Figure 0005471985
Figure 0005471985

次に、上記試料1〜22の各はんだ母合金について、下記のごとく圧延機でシート状に加工し、Zn系はんだ合金の加工性を評価した。また、シート状に加工した各Zn系はんだ合金について、下記の方法により濡れ性(接合性)の評価及びヒートサイクル試験による信頼性の評価を行った。尚、はんだの濡れ性ないし接合性等の評価は、はんだ形状に依存しないためワイヤー、ボール、ペーストなどの形状で評価してもよいが、本実施例においてはシートの形状で評価した。得られた結果を下記表2に示した。   Next, each solder mother alloy of Samples 1 to 22 was processed into a sheet shape with a rolling mill as described below, and the workability of the Zn-based solder alloy was evaluated. Moreover, about each Zn type solder alloy processed into the sheet form, the following method evaluated the wettability (joinability) and the reliability evaluation by the heat cycle test. The evaluation of solder wettability or bondability does not depend on the shape of the solder, so it may be evaluated by the shape of a wire, ball, paste, or the like, but in this example, it was evaluated by the shape of a sheet. The obtained results are shown in Table 2 below.

<加工性の評価>
表1に示す試料1〜22の各はんだ母合金(厚さ5mmの板状インゴット)を、圧延機を用いて厚さ0.10mmまで圧延した。その際、インゴットの送り速度を調整しながら圧延していき、その後スリッター加工により25mmの幅に裁断した。このようにしてシート状に加工した後、得られたシート状のZn系はんだ合金を観察し、傷やクラックが全くなかった場合を「○」、シート長さ10m当たり割れやクラックが1〜3箇所ある場合を「△」、4箇所以上ある場合を「×」とした。
<Evaluation of workability>
Each solder mother alloy (plate-like ingot having a thickness of 5 mm) of Samples 1 to 22 shown in Table 1 was rolled to a thickness of 0.10 mm using a rolling mill. At that time, rolling was performed while adjusting the feed speed of the ingot, and then it was cut into a width of 25 mm by slitting. After processing into a sheet shape in this way, the obtained sheet-like Zn-based solder alloy was observed, and when there were no scratches or cracks, “◯”, cracks and cracks per 10 m of sheet length were 1 to 3 The case where there are places is “Δ” and the case where there are four places is “x”.

<濡れ性(接合性)の評価>
上記のごとくシート状に加工した各Zn系はんだ合金を、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を用いて評価した。即ち、濡れ性試験機のヒーター部に2重のカバーをして、ヒーター部の周囲4箇所から窒素を12リットル/分の流量で流しながら、ヒーター設定温度を各試料の融点より約10℃高い温度に加熱した。設定したヒーター温度が安定した後、Cu基板(板厚:約0.70mm)をヒーター部にセッティングして25秒間加熱した。
<Evaluation of wettability (bondability)>
Each Zn-based solder alloy processed into a sheet as described above was evaluated using a wettability tester (device name: atmosphere control type wettability tester). In other words, a double cover is applied to the heater section of the wettability tester, and the heater set temperature is about 10 ° C. higher than the melting point of each sample while flowing nitrogen from four locations around the heater section at a flow rate of 12 liters / minute. Heated to temperature. After the set heater temperature was stabilized, a Cu substrate (plate thickness: about 0.70 mm) was set in the heater section and heated for 25 seconds.

次に、各試料のはんだ合金をCu基板の上に載せ、25秒加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却した。十分に冷却した後、大気中に取り出して接合部分を確認した。各試料のはんだ合金とCu基板の接合部分を目視で確認し、接合できなかった場合を「×」、接合できたが濡れ広がりが悪い場合(はんだが盛り上がった状態)を「△」、接合でき且つ濡れ広がりが良い場合(はんだが薄く濡れ広がった状態)を「○」と評価した。   Next, the solder alloy of each sample was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was taken up from the heater part, and once installed in a place where the nitrogen atmosphere next to it was kept, it was cooled. After sufficiently cooling, it was taken out into the atmosphere and a joint portion was confirmed. The joint between the solder alloy of each sample and the Cu substrate can be visually checked. If it cannot be joined, “X” indicates that it has been joined, but if wetting is poor but the solder spreads poorly (“solder is raised”), it can be joined. In addition, the case where the spread of wetness was good (the state where the solder was thinly spread) was evaluated as “◯”.

<ヒートサイクル試験>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。尚、この試験は、上記した濡れ性の評価においてZn系はんだ合金がCu基板に接合できた試料(濡れ性の評価が○及び△の試料)を各2個づつ用いて行った。即ち、各試料のZn系はんだ合金が接合されたCu基板2個に対して、−40℃の冷却と+150℃の加熱を1サイクルとするヒートサイクル試験を実施し、各試料のうち1個は途中確認のため300サイクルまで、他の1個は500サイクルまでヒートサイクル試験を繰り返した。
<Heat cycle test>
A heat cycle test was conducted to evaluate the reliability of solder joints. This test was performed using two samples each of which the Zn-based solder alloy was bonded to the Cu substrate in the above-described evaluation of wettability (samples having a wettability evaluation of ◯ and Δ). That is, a heat cycle test was performed on two Cu substrates to which Zn-based solder alloys of each sample were bonded, with a cycle of -40 ° C. cooling and + 150 ° C. heating, one of each sample being The heat cycle test was repeated up to 300 cycles for confirmation in the middle and the other one up to 500 cycles.

その後、300サイクル及び500サイクルのヒートサイクル試験を実施した各試料について、はんだ合金が接合されたCu基板を樹脂に埋め込み、断面研磨を行い、SEM(装置名:HITACHI S−4800)により接合面の観察を行った。接合面に剥がれが生じするか又ははんだにクラックが入った場合を×、そのような不良がなく、初期状態と同様の接合面を保っていた場合を○とした。   Then, about each sample which performed the heat cycle test of 300 cycles and 500 cycles, Cu board | substrate with which the solder alloy was joined was embedded in resin, cross-sectional grinding | polishing was performed, and SEM (device name: HITACHI S-4800) performed the joining surface. Observations were made. The case where peeling occurred on the joint surface or the solder cracked was evaluated as x, and the case where there was no such defect and the same joint surface as in the initial state was maintained was evaluated as ◯.

Figure 0005471985
Figure 0005471985

上記の表1〜2から分るように、試料1〜14の各はんだ合金は、全ての評価項目において良好な特性を示している。即ち、シートに加工しても傷やクラックの発生が無く、濡れ性及び信頼性も良好であった。特に濡れ性における良好な結果は、Zn−Al又はZn−SnにAgが添加されたことにより、濡れ性を阻害する酸化膜の形成が抑制され、はんだ合金がCu基板に接触した瞬間に基板上に濡れ広がるためと考えられる。更に、ヒートサイクル試験においても500回まで割れなどが発生せず、良好な接合性と信頼性を示した。   As can be seen from Tables 1 and 2 above, the solder alloys of Samples 1 to 14 show good characteristics in all evaluation items. That is, even when processed into a sheet, there was no generation of scratches or cracks, and wettability and reliability were good. Particularly good results in wettability are that the addition of Ag to Zn—Al or Zn—Sn suppresses the formation of an oxide film that impedes wettability, and the moment the solder alloy comes into contact with the Cu substrate, It is thought that it spreads wet. Furthermore, in the heat cycle test, no cracks or the like occurred up to 500 times, and good bondability and reliability were shown.

一方、試料15〜18の各はんだ合金は、Al又はSnの含有量が適切でなかったため、加工性の評価において全ての試料で傷やクラックが発生し、濡れ性についても好ましい結果は得られず、特にヒートサイクル試験では300回までに全ての試料(接合できなかった試料16を除く)で不良が発生した。   On the other hand, each of the solder alloys of Samples 15 to 18 was not suitable for the content of Al or Sn, so that scratches and cracks occurred in all the samples in the evaluation of workability, and favorable results were not obtained for wettability. In particular, in the heat cycle test, defects occurred in all samples (excluding sample 16 that could not be joined) up to 300 times.

また、試料19〜22の各はんだ合金は、いずれも加工性が悪く、試料20で△の評価でさる以外は全て×の評価であった。更に、接合の信頼性にも劣っていた。即ち、試料19はAlとSnを同時に含有し、試料20はAgの含有量、試料21はBiの含有量、及び試料22はPの含有量がそれぞれ多すぎるため、いずれも300回のヒートサイクル試験で不良が発生した。   In addition, each of the solder alloys of Samples 19 to 22 was poor in workability, and was evaluated as “x” except that Sample 20 was evaluated by Δ. Furthermore, the reliability of joining was also inferior. That is, sample 19 contains Al and Sn at the same time, sample 20 contains Ag, sample 21 contains Bi, and sample 22 contains too much P, so each has 300 heat cycles. A defect occurred in the test.

Claims (2)

Al又はSnのいずれか1種と、Agとを含有するPbフリーのZn系はんだ合金であって、Alを含有する場合その含有量が1.0〜9.0質量%であり、Snを含有する場合その含有量が0.3〜10.0質量%であり、Agの含有量が0.1〜4.0質量%(ただし、1.0〜4.0質量%を除く)であって、残部がZn及び不可避不純物からなることを特徴とするPbフリーZn系はんだ合金。 It is a Pb-free Zn-based solder alloy containing either one of Al or Sn and Ag, and when it contains Al, its content is 1.0 to 9.0% by mass and contains Sn When the content is 0.3 to 10.0% by mass, the Ag content is 0.1 to 4.0% by mass (excluding 1.0 to 4.0% by mass). A Pb-free Zn-based solder alloy characterized in that the balance consists of Zn and inevitable impurities. Al又はSnのいずれか1種と、Agを含有すると共に、Bi及びPの少なくとも1種を含有するPbフリーのZn系はんだ合金であって、Alを含有する場合その含有量が1.0〜9.0質量%であり、Snを含有する場合その含有量が0.3〜10.0質量%であり、Agの含有量が0.1〜4.0質量%(ただし、1.0〜4.0質量%を除く)であり、Biを含有する場合その含有量が0.1〜6.0質量%、及びPを含有する場合その含有量が0.001〜0.5質量%であって、残部がZn及び不可避不純物からなることを特徴とするPbフリーZn系はんだ合金。 It is a Pb-free Zn-based solder alloy containing either one of Al or Sn and Ag and at least one of Bi and P, and when containing Al, its content is 1.0 to 1.0. 9.0% by mass, and when Sn is contained, the content is 0.3 to 10.0% by mass, and the Ag content is 0.1 to 4.0% by mass (provided that 1.0 to 1.0). 4.0% by mass) , when Bi is contained, the content is 0.1 to 6.0% by mass, and when P is contained, the content is 0.001 to 0.5% by mass. A Pb-free Zn-based solder alloy characterized in that the balance consists of Zn and inevitable impurities.
JP2010199472A 2010-09-07 2010-09-07 Pb-free solder alloy based on Zn Expired - Fee Related JP5471985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199472A JP5471985B2 (en) 2010-09-07 2010-09-07 Pb-free solder alloy based on Zn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199472A JP5471985B2 (en) 2010-09-07 2010-09-07 Pb-free solder alloy based on Zn

Publications (2)

Publication Number Publication Date
JP2012055905A JP2012055905A (en) 2012-03-22
JP5471985B2 true JP5471985B2 (en) 2014-04-16

Family

ID=46053646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199472A Expired - Fee Related JP5471985B2 (en) 2010-09-07 2010-09-07 Pb-free solder alloy based on Zn

Country Status (1)

Country Link
JP (1) JP5471985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106808116A (en) * 2017-03-24 2017-06-09 南昌专腾科技有限公司 The preparation system and method for a kind of zinc-base solder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432063A (en) * 1977-08-16 1979-03-09 Asahi Glass Co Ltd Si semiconductor solder
JP2004358539A (en) * 2003-06-06 2004-12-24 Sumitomo Metal Mining Co Ltd High-temperature brazing filler metal
JP2004358540A (en) * 2003-06-06 2004-12-24 Sumitomo Metal Mining Co Ltd High-temperature brazing filler metal
JP2006255762A (en) * 2005-03-18 2006-09-28 Uchihashi Estec Co Ltd Wire-shaped solder for electronic component
JP2011235314A (en) * 2010-05-11 2011-11-24 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT

Also Published As

Publication number Publication date
JP2012055905A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5585746B2 (en) High temperature lead-free solder alloy
JP5206779B2 (en) Pb-free solder alloy based on Zn
TW201418477A (en) Solder alloy
JP5861559B2 (en) Pb-free In solder alloy
JP5633816B2 (en) Au-Sn alloy solder
JP6036202B2 (en) Au-Ag-Ge solder alloy
JP5212573B2 (en) Bi-Al-Zn Pb-free solder alloy
JP5716332B2 (en) Pb-free solder alloy
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP5699897B2 (en) Pb-free solder alloy based on Zn
JP5640915B2 (en) Lead-free solder alloy
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP2013052433A (en) SOLDER ALLOY OF Pb-FREE Zn SYSTEM
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP5699898B2 (en) Pb-free solder alloy based on Zn
JP2011161495A (en) Pb-FREE SOLDER ALLOY
JP5861526B2 (en) Ge-Al solder alloy not containing Pb
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2011235314A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP5464113B2 (en) Pb-free solder alloy containing Ge
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2011240372A (en) Pb-FREE SOLDER ALLOY COMPOSED PRINCIPALLY OF Zn
JP2011235315A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees