JP5467380B2 - Self-bonding insulated wire and compressor drive motor - Google Patents

Self-bonding insulated wire and compressor drive motor Download PDF

Info

Publication number
JP5467380B2
JP5467380B2 JP2008245793A JP2008245793A JP5467380B2 JP 5467380 B2 JP5467380 B2 JP 5467380B2 JP 2008245793 A JP2008245793 A JP 2008245793A JP 2008245793 A JP2008245793 A JP 2008245793A JP 5467380 B2 JP5467380 B2 JP 5467380B2
Authority
JP
Japan
Prior art keywords
bisphenol
self
resin
insulated wire
bonding insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008245793A
Other languages
Japanese (ja)
Other versions
JP2009099557A (en
Inventor
健吾 吉田
剛 三木
裕紀 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Wintec Inc
Priority to JP2008245793A priority Critical patent/JP5467380B2/en
Publication of JP2009099557A publication Critical patent/JP2009099557A/en
Application granted granted Critical
Publication of JP5467380B2 publication Critical patent/JP5467380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Conductors (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、圧縮機駆動用モータの巻線として使用される絶縁電線であって、巻線性に優れ、望ましくはさらに耐冷媒性及び耐冷凍機油性に優れた自己融着性絶縁電線に関する。本発明は又、前記自己融着性絶縁電線を用いた圧縮機駆動用モータに関するものである。   The present invention relates to an insulated wire used as a winding for a compressor driving motor, and more particularly to a self-bonding insulated wire excellent in winding properties and desirably excellent in refrigerant resistance and refrigeration oil resistance. The present invention also relates to a compressor driving motor using the self-bonding insulated wire.

空調機器や冷蔵庫等の冷凍機器に使用される圧縮機の駆動モータ(以下、単に「モータ」とも言う)では、モータ出力が大きい場合、コイル振動を抑制するために、絶縁皮膜の最外層に、融着性を有した樹脂を塗布してなる融着皮膜を設けた自己融着性絶縁電線が用いられている。又、このモータは、冷媒及び冷凍機油環境下で運転されるので、使用される絶縁電線には耐冷媒性及び耐冷凍機油性が望まれる。   In a compressor drive motor (hereinafter also simply referred to as “motor”) used in refrigeration equipment such as air conditioners and refrigerators, when the motor output is large, in order to suppress coil vibration, A self-fusing insulated wire provided with a fusing film formed by applying a resin having a fusing property is used. In addition, since this motor is operated in a refrigerant and refrigeration oil environment, it is desired that the insulated wires used have refrigerant resistance and refrigeration oil resistance.

自己融着性絶縁電線は、融着皮膜間の融着により電線相互を固着できる絶縁電線であり、固着によりコイル振動が抑制される。従って、融着皮膜には、良好な融着性が求められ、又、巻線時のクラック等の発生を抑制するため良好な可とう性も求められる。   The self-bonding insulated wire is an insulated wire that can fix the wires to each other by fusion between the fusion films, and the coil vibration is suppressed by the fixation. Accordingly, the fusion coating is required to have good fusion properties, and also to have good flexibility in order to suppress the occurrence of cracks during winding.

さらに、モータの効率を向上するために、融着皮膜には、優れた機械的強度、特に耐摩耗性が求められ、又表面の良好な滑り性も望まれている。即ち、モータの効率を向上するために、モータ鉄心のスロット内により多くの絶縁電線を巻線し高占積率化することが望まれるが、融着皮膜の耐摩耗性が低く又表面の滑り性が悪い場合は、高占積率仕様のモータでは巻線時に融着皮膜が削れやすいとの問題が生じるので、これらの向上が望まれるのである。   Furthermore, in order to improve the efficiency of the motor, the fusion coating is required to have excellent mechanical strength, particularly wear resistance, and also to have good surface slipperiness. That is, in order to improve the efficiency of the motor, it is desirable to increase the space factor by winding more insulated wires in the slot of the motor core. In the case of poor performance, a motor with a high space factor specification has a problem that the fusion coating is likely to be scraped off during winding, and these improvements are desired.

融着皮膜が熱可塑性樹脂からなる場合、高温雰囲気下で使用されるモータでは、モータ運転中の融着皮膜の融解を防ぐため高融点の樹脂が必要となる。すると、融着の工程も高温で実施する必要があり、モータの鉄心の絶縁樹脂やリード線被覆樹脂等を劣化又は融解させ、モータの絶縁性能を低下させる問題がある。   When the fusion coating is made of a thermoplastic resin, a motor used in a high temperature atmosphere requires a high melting point resin to prevent melting of the fusion coating during motor operation. Then, it is necessary to carry out the fusion process at a high temperature, which causes a problem of deteriorating or melting the insulating resin of the iron core of the motor, the lead wire covering resin, and the like, thereby reducing the insulating performance of the motor.

そこで、高温雰囲気下で使用されるモータの絶縁電線の融着皮膜には、熱硬化型樹脂が一般的に用いられ、半硬化又は未硬化の状態で熱硬化型融着皮膜を形成し、巻線後に融着皮膜を硬化させることにより、電線相互を固着する方法が採用されている。   Therefore, a thermosetting resin is generally used for a fusion coating of an insulated wire of a motor used in a high temperature atmosphere, and a thermosetting fusion coating is formed in a semi-cured or uncured state. A method of fixing the wires to each other by curing the fusion coating after the wire is adopted.

この熱硬化型樹脂としては、例えば、特許文献1に、分子量20000以上のポリヒドロキシエーテル樹脂、ポリサルホン系樹脂、及び1分子中に2個の官能基を有する架橋剤を混合して得られる熱硬化型樹脂(熱硬化型自己融着絶縁材)が開示されている。特許文献1では、この熱硬化型樹脂により形成される融着皮膜は、冷媒及び冷凍機油環境下でも信頼性が高く、高占積率仕様のモータでも優れた巻線性を有すると述べられている。
特開2006−352962号公報
As this thermosetting resin, for example, Patent Document 1 discloses a thermosetting obtained by mixing a polyhydroxy ether resin having a molecular weight of 20000 or more, a polysulfone resin, and a crosslinking agent having two functional groups in one molecule. Type resin (thermosetting self-fusing insulating material) is disclosed. In Patent Document 1, it is stated that the fusion coating formed by this thermosetting resin has high reliability even in a refrigerant and refrigerating machine oil environment and has excellent winding properties even in a motor with a high space factor specification. .
JP 2006-352962 A

しかし、特許文献1に記載の熱硬化型樹脂により得られた融着皮膜の機械的強度は、未だ充分とは言えず、特に耐摩耗性が不充分であり、その向上が望まれる。又、耐冷媒性や耐冷凍機油性についても充分とは言えず、この点でもその向上が望まれる。   However, the mechanical strength of the fusion-bonded film obtained from the thermosetting resin described in Patent Document 1 is still not sufficient, and in particular, the abrasion resistance is insufficient, and improvement thereof is desired. Moreover, it cannot be said that the refrigerant resistance and the refrigeration oil resistance are sufficient, and this point is also desired to be improved.

本発明は、上記の問題点を解決して、耐摩耗性等の機械的強度により優れ、高占積率仕様のモータの製造に使用する場合でも優れた巻線性を示す自己融着性絶縁電線を提供することを課題とする。本発明は、又、さらに耐冷媒性、耐冷凍機油性にもより優れた自己融着性絶縁電線を提供することを課題とする。   The present invention solves the above-described problems, is superior in mechanical strength such as wear resistance, and has excellent winding properties even when used in the manufacture of motors with high space factor specifications. It is an issue to provide. Another object of the present invention is to provide a self-bonding insulated wire that is further excellent in refrigerant resistance and refrigeration oil resistance.

本発明者は、鋭意検討の結果、ビスフェノールA、ビスフェノールS、及びエポキシ樹脂又はエピハロヒドリンを共重合させてなる重量平均分子量15000以上のフェノキシ樹脂と、架橋剤とを含有する熱硬化型樹脂(熱硬化型融着樹脂組成物)を用いて融着皮膜を形成することにより、機械的強度に優れた融着皮膜が得られることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor has obtained a thermosetting resin (thermosetting) containing a phenoxy resin having a weight average molecular weight of 15000 or more obtained by copolymerizing bisphenol A, bisphenol S, and an epoxy resin or epihalohydrin, and a crosslinking agent. The present inventors have found that a fusion coating excellent in mechanical strength can be obtained by forming a fusion coating using a mold fusion resin composition).

すなわち、機械的強度や巻線性に優れた自己融着性絶縁電線を提供するとの課題は、ビスフェノールA、ビスフェノールS、及びエポキシ樹脂又はエピハロヒドリンを共重合させてなる重量平均分子量15000以上のフェノキシ樹脂、並びに架橋剤からなる樹脂組成物より形成される融着皮膜を有し、
前記フェノキシ樹脂中にビスフェノールSが、ビスフェノールS/ビスフェノールAのモル比が0.2〜0.5となる範囲で含まれており、
前記フェノキシ樹脂の共重合が、アミン触媒を使用して行われ、かつ
前記架橋剤の含有量が、前記フェノキシ樹脂に対して10〜20質量%であることを特徴とする自己融着性絶縁電線(請求項1)により達成される。
That is, the problem of providing a self-bonding insulated wire excellent in mechanical strength and winding property is a phenoxy resin having a weight average molecular weight of 15000 or more obtained by copolymerizing bisphenol A, bisphenol S, and an epoxy resin or epihalohydrin, And having a fusion film formed from a resin composition comprising a crosslinking agent,
Bisphenol S is contained in the phenoxy resin in a range where the molar ratio of bisphenol S / bisphenol A is 0.2 to 0.5,
Copolymerization of the phenoxy resin is performed using an amine catalyst, and
The content of the cross-linking agent is 10 to 20 % by mass with respect to the phenoxy resin, and is achieved by a self-bonding insulated wire ( Claim 1 ).

フェノキシ樹脂を構成するビスフェノールAとは、2,2−ビス(p−ヒドロキシフェニル)プロパンであり、ビスフェノールSとは、2,2−ビス(p−ヒドロキシフェニル)スルホンである。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が挙げられる。エピハロヒドリンとしては、エピクロロヒドリン等が挙げられる。エポキシ樹脂又はエピハロヒドリンとしては、上記の例示の中でも、ビスフェノールAのグリシドールエーテルであるビスフェノールA型エポキシ樹脂が機械強度の理由により好ましく用いられる(請求項2)。このビスフェノールA型エポキシ樹脂は、ビスフェノールAとエピハロヒドリンの縮合により得ることができる。   Bisphenol A constituting the phenoxy resin is 2,2-bis (p-hydroxyphenyl) propane, and bisphenol S is 2,2-bis (p-hydroxyphenyl) sulfone. Examples of the epoxy resin include bisphenol A type epoxy resin and bisphenol F type epoxy resin. Epihalohydrin includes epichlorohydrin and the like. As the epoxy resin or epihalohydrin, among the above examples, a bisphenol A type epoxy resin which is a glycidol ether of bisphenol A is preferably used for reasons of mechanical strength (Claim 2). This bisphenol A type epoxy resin can be obtained by condensation of bisphenol A and epihalohydrin.

又、ビスフェノールSの含有量としては、樹脂組成物中に含まれるビスフェノールSとビスフェノールAの比(ビスフェノールS/ビスフェノールAのモル比)が、0.2〜0.5となる範囲が好ましい。このモル比が0.2未満であると、冷媒や冷凍機油中に融着層の成分が抽出され濁りが生じやすくなる。逆に0.5を超えると、冷媒処理後に皮膜が白くなる白化が生じやすくなり、又融着開始温度が高くなるとの問題がある。   Further, the content of bisphenol S is preferably in a range where the ratio of bisphenol S and bisphenol A (molar ratio of bisphenol S / bisphenol A) contained in the resin composition is 0.2 to 0.5. When this molar ratio is less than 0.2, components of the fused layer are extracted in the refrigerant or refrigerating machine oil, and turbidity is likely to occur. Conversely, if it exceeds 0.5, there is a problem that whitening of the film tends to occur after the refrigerant treatment, and the fusion start temperature is increased.

エポキシ樹脂又はエピハロヒドリンとして、エポキシ樹脂を用いる場合は、このエポキシ樹脂のエポキシ基と、ビスフェノールA及びビスフェノールSの水酸基を反応させることにより、これらの共重合体である前記のフェノキシ樹脂が得られる。エピハロヒドリンを用いる場合は、主に、先ずエピハロヒドリンとビスフェノールA又はビスフェノールSが縮合してエポキシ樹脂を生じ、このエポキシ樹脂のエポキシ基と、ビスフェノールA及びビスフェノールSの水酸基が反応してフェノキシ樹脂が得られると考えられる。ビスフェノールA及びビスフェノールSと、エポキシ樹脂(エピハロヒドリンを用いる場合は、エピハロヒドリンが反応した後の、ビスフェノールA及びビスフェノールSと、エポキシ樹脂)が等モルに近い程、高分子量の共重合体が得られる。後述するように、このフェノキシ樹脂の重量平均分子量は、15000以上であるので、この分子量が得られるように、両者の比率が選定される。   When an epoxy resin is used as the epoxy resin or epihalohydrin, the epoxy group of this epoxy resin is reacted with the hydroxyl groups of bisphenol A and bisphenol S to obtain the phenoxy resin as a copolymer thereof. When epihalohydrin is used, first, epihalohydrin and bisphenol A or bisphenol S are condensed to form an epoxy resin, and the epoxy group of this epoxy resin reacts with the hydroxyl groups of bisphenol A and bisphenol S to obtain a phenoxy resin. it is conceivable that. As the bisphenol A and bisphenol S and the epoxy resin (in the case of using epihalohydrin, the bisphenol A and bisphenol S and the epoxy resin after the reaction of the epihalohydrin) are close to equimolar, a higher molecular weight copolymer is obtained. As will be described later, since the weight average molecular weight of this phenoxy resin is 15000 or more, the ratio between the two is selected so that this molecular weight can be obtained.

エポキシ樹脂又はエピハロヒドリンと、ビスフェノールA及びビスフェノールSの共重合反応は、例えば、シクロヘキサノン等の溶媒中でこれらの原料と触媒を混合し、反応温度120〜160℃程度で加熱することにより行うことができる。通常反応終点までの時間は5〜10時間程度であるが、反応の終点は、粘度変化のモニター等により確認することができる。   The copolymerization reaction of epoxy resin or epihalohydrin with bisphenol A and bisphenol S can be performed, for example, by mixing these raw materials and catalyst in a solvent such as cyclohexanone and heating at a reaction temperature of about 120 to 160 ° C. . Usually, the time to the reaction end point is about 5 to 10 hours, but the end point of the reaction can be confirmed by monitoring a change in viscosity or the like.

この共重合反応に使用される触媒としては、アルカリが用いられるが、中でもアミン触媒が好ましい。アミン触媒を使用することにより、さらに耐冷媒性、耐冷凍機油性にもより優れた自己融着性絶縁電線が得られる。イミダゾール系等、アミン以外の触媒を使用して得たフェノキシ樹脂を使用した場合には、モータの運転中に、融着皮膜のガラス転移温度Tgの低下を招き、冷凍機油へ融着材料の抽出量が大きくなる等の問題が発生しやすくなる。 As the catalyst used for the copolymerization reaction, alkali is used, and among them, an amine catalyst is preferable. By using an amine catalyst , it is possible to obtain a self-bonding insulated electric wire further excellent in refrigerant resistance and refrigeration oil resistance. When a phenoxy resin obtained by using a catalyst other than an amine such as imidazole is used, the glass transition temperature Tg of the fusion coating is lowered during the operation of the motor, and the fusion material is extracted into the refrigeration oil. Problems such as an increase in the amount are likely to occur.

即ち、架橋剤が安定化イソシアネートの場合は、融着処理後、モータの運転により冷凍機油が高温になると、フェノキシ樹脂と架橋剤との間のウレタン結合が残存触媒により乖離され、ガラス転移温度Tgが低下するとともに、抽出物が多くなり冷凍機油を白濁させる問題が発生しやすい。一方、アミン触媒は沸点が比較的低く、電線作製の際に行われる半硬化状態にするための焼付け時に、揮発しやすいため、皮膜中に残存する触媒量が比較的少ない。又、残存した場合でも、触媒としての活性が低いため、ウレタン結合を乖離させガラス転移温度Tgを低下させる問題も小さく、冷凍機油の白濁の問題も発生しにくい。アミン触媒としては沸点が250℃以下のものが好ましい。 That is, when the crosslinking agent is a stabilized isocyanate, when the refrigeration oil becomes hot due to the operation of the motor after the fusion treatment, the urethane bond between the phenoxy resin and the crosslinking agent is dissociated by the residual catalyst, and the glass transition temperature Tg In addition, the extract tends to increase and the problem of whitening the refrigerating machine oil tends to occur. On the other hand, the amine catalyst has a relatively low boiling point, and is easily volatilized during baking for producing a semi-cured state at the time of producing an electric wire. Further, even if it remains, since its activity as a catalyst is low, the problem of dissociating urethane bonds and lowering the glass transition temperature Tg is small, and the problem of cloudiness of refrigerating machine oil hardly occurs. The amine catalyst preferably has a boiling point of 250 ° C. or lower.

請求項3は、前記樹脂組成物中のフェノキシ樹脂に対する前記アミン触媒の残存量が500ppm以下(質量比)であることを特徴とする請求項1又は請求項2に記載の自己融着性絶縁電線である。フェノキシ樹脂の合成にアミン触媒を使用すると、前記の優れた効果が得られるが、この場合でも、電線作製の際の半硬化状態にするため程度の焼付けではその際にアミン触媒を全て揮発させることは困難である。そこで、共重合後に触媒残存量を、反応系の加熱等の方法により、減少させると、冷凍機油の白濁をより効果的に抑制できる。中でも、アミン触媒の残存量を、フェノキシ樹脂と架橋剤からなる樹脂組成物中のフェノキシ樹脂に対して500ppm以下とすると、冷凍機油の白濁を特に効果的に抑制できるので好ましい。 3. The self-bonding insulated wire according to claim 1 or 2 , wherein the residual amount of the amine catalyst with respect to the phenoxy resin in the resin composition is 500 ppm or less (mass ratio). It is. If an amine catalyst is used for the synthesis of the phenoxy resin, the above-mentioned excellent effect can be obtained, but even in this case, in order to make a semi-cured state at the time of wire production, the amine catalyst should be volatilized at that time. It is difficult. Therefore, if the residual catalyst amount after copolymerization is reduced by a method such as heating of the reaction system, the cloudiness of the refrigerating machine oil can be more effectively suppressed. Among them, it is preferable that the residual amount of the amine catalyst is 500 ppm or less with respect to the phenoxy resin in the resin composition composed of the phenoxy resin and the crosslinking agent, since the cloudiness of the refrigerating machine oil can be particularly effectively suppressed.

さらに、融着皮膜中にアミン触媒が残存していると、融着皮膜の融着力が経時的に低下する問題があるが、樹脂組成物中のフェノキシ樹脂に対するアミン触媒を500ppm以下とすると、この問題も防ぐことができ好ましい。 Further, if the amine catalyst remains in the fusion film, there is a problem that the fusion force of the fusion film decreases with time. If the amine catalyst for the phenoxy resin in the resin composition is 500 ppm or less, Problems can also be prevented, which is preferable.

共重合後に触媒残存量を減少させる方法としては、反応後の反応系を加熱してアミン触媒を揮発させて除去する方法が挙げられる。加熱温度としては、アミン触媒の沸点以上が好ましい。アミン触媒の揮発を容易にするため溶媒により希釈した後、加熱してもよい。加熱は、フェノキシ樹脂に対するアミン触媒の量が500ppm以下となるまで行われるが、この管理のためにアミン触媒の量をガスクロマトグラフィー等によりモニターしながら加熱する方法を挙げることができる。 As a method for reducing the residual amount of the catalyst after the copolymerization, there is a method in which the reaction system after the reaction is heated to volatilize and remove the amine catalyst . The heating temperature is preferably not less than the boiling point of the amine catalyst . In order to facilitate volatilization of the amine catalyst , it may be heated after being diluted with a solvent. The heating is performed until the amount of the amine catalyst relative to the phenoxy resin is 500 ppm or less. For this control, a method of heating while monitoring the amount of the amine catalyst by gas chromatography or the like can be mentioned.

共重合により得られるフェノキシ樹脂の重量平均分子量は、機械的強度、可とう性の観点より、15000以上である。ここで、重量平均分子量は、GPCにより測定したポリスチレン換算の値である。   The weight average molecular weight of the phenoxy resin obtained by copolymerization is 15000 or more from the viewpoint of mechanical strength and flexibility. Here, the weight average molecular weight is a value in terms of polystyrene measured by GPC.

上記フェノキシ樹脂は、市販品を使用してもよい。具体的には、ジャパンエポキシレジン社製の商品名:JER1256、4250、4275、1255HX30や、UCC社製の商品名:PKHC、PKHH、PKHJや、東都化成社製の商品名:YP−50,YP−40ASM40、YP−50EK35、YP−50CS25等を挙げることができる。   A commercial product may be used as the phenoxy resin. Specifically, product names manufactured by Japan Epoxy Resins: JER1256, 4250, 4275, 1255HX30, product names manufactured by UCC: PKHC, PKHH, PKHJ, and product names manufactured by Tohto Kasei: YP-50, YP -40 ASM40, YP-50EK35, YP-50CS25 and the like.

架橋剤とは、1分子中に2個以上の官能基を有し、フェノキシ樹脂間を架橋する化合物であり、例えば、2価の安定化イソシアネート、尿素樹脂、ベンゾグアナミン樹脂、2価の有機酸、2価の有機酸の誘導体が挙げられる。   A crosslinking agent is a compound having two or more functional groups in one molecule and crosslinking between phenoxy resins. For example, divalent stabilized isocyanate, urea resin, benzoguanamine resin, divalent organic acid, Examples include divalent organic acid derivatives.

2価の安定化イソシアネートとしては、具体的には、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、パラフェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、ジフェニルエーテル−4,4’−ジイソシアネート等のイソシアネート化合物を、フェノール性水酸基、アルコール性水酸基等を有する化合物でマスクしたもの等が挙げられる。   Specific examples of the divalent stabilized isocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, paraphenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, diphenylmethane-4, What masked isocyanate compounds, such as 4'-diisocyanate and diphenyl ether-4,4'-diisocyanate, with a compound which has phenolic hydroxyl group, alcoholic hydroxyl group, etc. are mentioned.

具体的には、日本ポリウレタン工業社製の商品名:ミリオネートMS−50、コロネート2501、2507、2513、2515や、旭化成社製の商品名:デュラネート17B60−PX、TPA−B80X、MF−B60X、MF−K60X、E402−B−80T等の市販品を用いることができる。   Specifically, trade names: Millionate MS-50, Coronate 2501, 2507, 2513, 2515 manufactured by Nippon Polyurethane Industry Co., Ltd., and trade names: Duranate 17B60-PX, TPA-B80X, MF-B60X, MF manufactured by Asahi Kasei. Commercial products such as -K60X and E402-B-80T can be used.

また、尿素樹脂としては、日本サイテック社製の商品名:UFR65、UFR300、ベンゾグアナミン樹脂としては、日本サイテック社製の商品名:サイメル1123、マイコート102、105、106、1128等の市販品を例示することができる。   Examples of urea resins include commercial names such as product names manufactured by Nippon Cytec Co., Ltd .: UFR65 and UFR300, and examples of benzoguanamine resins include commercial names such as product names manufactured by Nippon Cytec Co., Ltd .: Cymel 1123, My Coat 102, 105, 106, 1128, etc. can do.

また、2価の有機酸としては、例えばフタル酸、イソフタル酸、テレフタル酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸等が挙げられる。2価の有機酸の誘導体としては、例えばこれらの酸塩化物が挙げられる。   Examples of the divalent organic acid include phthalic acid, isophthalic acid, terephthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, and fumaric acid. Examples of the divalent organic acid derivative include these acid chlorides.

架橋剤の使用量は、前記フェノキシ樹脂、即ち、ビスフェノールA、ビスフェノールS及びエポキシ樹脂の合計質量に対して、10〜20質量%の範囲が好ましい。架橋剤量が10質量%未満であると、高温雰囲気下および冷媒・冷凍機油中における融着力が低下しやすく、冷媒抽出率が増大する問題もあり、逆に20質量%を超えると、融着が困難になるとの問題がある。   The amount of the crosslinking agent used is preferably in the range of 10 to 20% by mass with respect to the total mass of the phenoxy resin, that is, bisphenol A, bisphenol S and epoxy resin. If the amount of the cross-linking agent is less than 10% by mass, there is a problem that the fusing force in a high-temperature atmosphere and in refrigerant / refrigerant oil tends to decrease, and there is a problem that the refrigerant extraction rate increases. There is a problem that will be difficult.

前記のフェノキシ樹脂及び架橋剤の所要量を、有機溶媒に溶解することにより、フェノキシ樹脂及び架橋剤を含有する樹脂組成物の溶液(ワニス)が得られる。有機溶媒としては、シクロヘキサノン等が挙げられる。このワニスを、絶縁電線の絶縁皮膜上に塗布し、常法により半硬化状態にエナメル焼付けすることにより、融着皮膜が形成され、本発明の自己融着性絶縁電線が得られる。   A solution (varnish) of the resin composition containing the phenoxy resin and the crosslinking agent is obtained by dissolving the required amount of the phenoxy resin and the crosslinking agent in an organic solvent. Examples of the organic solvent include cyclohexanone. The varnish is applied onto the insulating film of the insulated wire and enamel-baked in a semi-cured state by a conventional method, whereby a fused film is formed and the self-bonding insulated wire of the present invention is obtained.

本発明の自己融着性絶縁電線を、巻線してコイルを作製後、加熱処理を施すことにより、電線相互が固着され、コイル振動が抑制されたモータが得られる。   The self-fusible insulated wire of the present invention is wound to produce a coil, and then subjected to heat treatment to obtain a motor in which the wires are fixed to each other and coil vibration is suppressed.

融着皮膜に、滑剤が含有されていると、巻線の滑り性が向上するため、巻線性が向上し高占積率化を図ることが容易になるので好ましい(請求項4)。 It is preferable that a lubricant is contained in the fusion-bonding film, because the slipping property of the winding is improved, so that the winding property is improved and it is easy to achieve a high space factor ( claim 4 ).

滑剤としては、ポリエチレン系ワックス、マイクロクリスタリンワックス、ポリテトラフルオロエチレン等のフッ素系ワックス、ステアリン酸アミド等のアミド系ワックス、ミツロウ、カルナバワックス、モンタンワックス等及びこれらワックスの分子末端を変性させたものを単独もしくは複数選択して配合することができる。   Lubricants include polyethylene waxes, microcrystalline waxes, fluorine waxes such as polytetrafluoroethylene, amide waxes such as stearamide, beeswax, carnauba wax, montan wax, etc., and modified molecular ends of these waxes. Can be blended alone or in combination.

滑剤を、前記フェノキシ樹脂及び架橋剤を含有する樹脂組成物(ワニス)に直接添加して、融着皮膜を形成させてもよいが、滑剤を含有しない融着皮膜を形成させた後、最外層に滑剤を含有する融着皮膜を形成させて、多層構造としてもよい。   A lubricant may be directly added to the resin composition (varnish) containing the phenoxy resin and the crosslinking agent to form a fusion coating, but after forming a fusion coating containing no lubricant, the outermost layer is formed. Alternatively, a multi-layer structure may be formed by forming a fusion coating containing a lubricant.

融着皮膜中(融着皮膜が多層構造の場合は最外層の融着皮膜中)の滑剤の添加量としては、前記フェノキシ樹脂及び前記架橋剤の合計樹脂分に対して、1〜10質量%の範囲であることが好ましい。1質量%未満であると、高占積率仕様のモータの巻線を容易にするすべり性が得られず、一方、10質量%を超えると、融着処理における融着力が低下する問題がある。   The addition amount of the lubricant in the fusion film (in the outermost fusion film when the fusion film has a multilayer structure) is 1 to 10% by mass with respect to the total resin content of the phenoxy resin and the crosslinking agent. It is preferable that it is the range of these. If it is less than 1% by mass, the slipping property that facilitates the winding of a motor with a high space factor cannot be obtained. On the other hand, if it exceeds 10% by mass, there is a problem that the fusing force in the fusing process decreases. .

本発明に係る自己融着性絶縁電線は、優れた巻線性を有するため、この絶縁電線を使用することにより、高占積率仕様の圧縮機駆動用モータが得られる。さらに、耐冷媒性及び耐冷凍機油性に優れた圧縮機駆動用モータが得られる。本発明は、この圧縮機駆動用モータも提供するものである(請求項5)。 Since the self-bonding insulated wire according to the present invention has excellent winding properties, a compressor driving motor with a high space factor can be obtained by using this insulated wire. Furthermore, a compressor driving motor excellent in refrigerant resistance and refrigeration oil resistance can be obtained. The present invention also provides a motor for driving the compressor ( claim 5 ).

本発明の自己融着性絶縁電線は、優れた耐冷媒性、耐冷凍機油性を有すると共に、耐摩耗性等の機械的特性に優れた融着皮膜を有し、高占積率仕様のモータでも優れた巻線性を示す。又、前記自己融着性絶縁電線を用いて得られるモータは、コイル振動が抑制されたものであり、高占積率仕様とすることができるものである。さらに、本発明の自己融着性絶縁電線は、耐冷媒性及び耐冷凍機油性に優れており、この自己融着性絶縁電線を用いて得られるモータは、耐冷媒性及び耐冷凍機油性に優れたものである。 The self-bonding insulated electric wire of the present invention has excellent refrigerant resistance and refrigeration oil resistance, and has a fusion coating excellent in mechanical properties such as wear resistance, and has a high space factor specification motor. But it shows excellent winding performance. In addition, the motor obtained using the self-bonding insulated electric wire is one in which coil vibration is suppressed and can have a high space factor specification. Furthermore, the self-bonding insulated wire of the present invention is excellent in refrigerant resistance and refrigeration oil resistance, and a motor obtained using this self-bonding insulated wire has refrigerant resistance and refrigeration oil resistance. It is excellent.

次に、本発明を実施するための最良の形態につき、実施例により説明するが、本発明の範囲はこの実施例のみに限定されるものではなく、本発明の趣旨を損ねない範囲内において、種々の変更を加えることが可能である。   Next, the best mode for carrying out the present invention will be described by way of examples. However, the scope of the present invention is not limited only to these examples, and the scope of the present invention is not impaired. Various changes can be made.

[樹脂組成物の作製1]
実施例1〜2、比較例3
表1に示す処方に基づき、以下の手順により、樹脂組成物溶液(ワニス)を作製した。具体的には、先ず、温度計、冷却管、塩化カルシウム充填管、攪拌器を取り付けたフラスコ中に、シクロヘキサノンを投入し、さらに、ビスフェノールA、ビスフェノールS、ビスフェノールA型エポキシ(商品名:YD−128、東都化成社製)、及び以下に示すいずれかの触媒を投入する。その後、室温から80℃まで、撹拌しながら昇温し、各材料をシクロヘキサノンに溶解させる。
[Preparation of resin composition 1]
Examples 1-2 and Comparative Example 3
Based on the formulation shown in Table 1, a resin composition solution (varnish) was prepared by the following procedure. Specifically, first, cyclohexanone is put into a flask equipped with a thermometer, a cooling tube, a calcium chloride-filled tube, and a stirrer, and further bisphenol A, bisphenol S, bisphenol A type epoxy (trade name: YD- 128, manufactured by Toto Kasei Co., Ltd.) and any of the following catalysts are charged. Then, it heats up from room temperature to 80 degreeC, stirring, and dissolves each material in cyclohexanone.

使用した触媒
TBA(トリブチルアミン):アミン触媒、和光純薬社製
TEA(トリエチルアミン):アミン触媒、和光純薬社製
2E4MZ(2エチル4メチルイミダゾール):イミダゾール系触媒、四国化成社製
Catalyst used TBA (tributylamine): amine catalyst , manufactured by Wako Pure Chemical Industries, Ltd. TEA (triethylamine): amine catalyst , manufactured by Wako Pure Chemical Industries, Ltd. 2E4MZ (2 ethyl 4-methylimidazole): imidazole catalyst, manufactured by Shikoku Chemicals Co., Ltd.

溶解を確認した後、80℃から135℃へ2時間かけて昇温し、135℃に保ちながら反応を進行させる。粘度をモニターすることで反応の状態を観察し、反応終点に達したことを確認した後、RC−140(精製クレゾール、河野薬品社製)(1)を添加し、室温まで冷却する。   After confirming dissolution, the temperature is raised from 80 ° C. to 135 ° C. over 2 hours, and the reaction is allowed to proceed while maintaining the temperature at 135 ° C. The state of the reaction is observed by monitoring the viscosity, and after confirming that the reaction end point has been reached, RC-140 (purified cresol, manufactured by Kono Pharmaceutical Co., Ltd.) (1) is added and cooled to room temperature.

次に、架橋剤としてミリオネートMS−50(安定化イソシアネート、日本ポリウレタン社製)の35質量%溶液(溶媒RC−140)、滑剤としてT−15P−2(ポリエチレンワックス、岐阜セラック社製)、及びRC−140(2)を投入、混合して、実施例1〜2、比較例3のそれぞれの熱硬化型融着樹脂組成物ワニスを得た。 Next, a 35 mass% solution (solvent RC-140) of Millionate MS-50 (stabilized isocyanate, manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent, T-15P-2 (polyethylene wax, manufactured by Gifu Shellac Co., Ltd.) as a lubricant, and RC-140 (2) was added and mixed to obtain each thermosetting fusion resin composition varnish of Examples 1-2 and Comparative Example 3 .

比較例1
表1に示す処方に基づき、以下の手順により、樹脂組成物の溶液(ワニス)を作製した。具体的には、先ず、YPS−007A30(ビスフェノールS型フェノキシ樹脂:東都化成社製)及びYP−40ASM40(ビスフェノールA型フェノキシ樹脂:東都化成社製)を、両者の混合比が樹脂分で50:50になるように、シクロヘキサノンとRC−140(1)との混合溶剤中に投入して溶解させる(80℃)。次いで、架橋剤(MS−50の35質量%RC−140溶液)、滑剤(T−15P−2)、RC−140(2)を投入、混合して、熱硬化型融着樹脂組成物ワニスを得た。
Comparative Example 1
Based on the formulation shown in Table 1, a resin composition solution (varnish) was prepared by the following procedure. Specifically, first, YPS-007A30 (bisphenol S type phenoxy resin: manufactured by Toto Kasei Co., Ltd.) and YP-40ASM40 (bisphenol A type phenoxy resin: manufactured by Toto Kasei Co., Ltd.) were mixed at a resin ratio of 50: The solution is poured into a mixed solvent of cyclohexanone and RC-140 (1) so as to be 50 (80 ° C.). Next, a cross-linking agent (35 mass% RC-140 solution of MS-50), lubricant (T-15P-2), and RC-140 (2) were added and mixed to obtain a thermosetting fused resin composition varnish. Obtained.

Figure 0005467380
Figure 0005467380

[自己融着性絶縁電線の作製1]
直径約0.75mmの銅線(導体)表面に、絶縁性樹脂ワニスIsomid 40SM−45(ポリエステルイミドワニス、日立化成社製)を常法によって塗布し、450℃で焼付けして厚み約18μmの第1層を形成した。次に第1層の表面に、絶縁性樹脂ワニスHI406E−34(ポリアミドイミドワニス、日立化成社製)を常法によって塗布し、450℃で焼付けして厚み約6μmの第2層を形成し、2層からなる絶縁皮膜を形成した。その後、絶縁皮膜上に、前記[樹脂組成物の作製1]で得た熱硬化型融着樹脂組成物ワニスのそれぞれを常法によって塗布し300℃で焼付けして、表2に示す厚みの融着皮膜を形成し、自己融着性絶縁電線を得た。
[Fabrication of self-bonding insulated wires 1]
An insulating resin varnish Isomid 40SM-45 (polyesterimide varnish, manufactured by Hitachi Chemical Co., Ltd.) is applied to the surface of a copper wire (conductor) having a diameter of about 0.75 mm by a conventional method, and baked at 450 ° C. to a thickness of about 18 μm. One layer was formed. Next, an insulating resin varnish HI406E-34 (polyamideimide varnish, manufactured by Hitachi Chemical Co., Ltd.) is applied to the surface of the first layer by a conventional method, and baked at 450 ° C. to form a second layer having a thickness of about 6 μm. An insulating film consisting of two layers was formed. Thereafter, each of the thermosetting fused resin composition varnishes obtained in [Preparation of Resin Composition 1] is applied on an insulating film by a conventional method and baked at 300 ° C., and the thicknesses shown in Table 2 are melted. An adhesion film was formed to obtain a self-bonding insulated wire.

Figure 0005467380
Figure 0005467380

[機械強度試験1]
得られた各自己融着性絶縁電線を用いて、機械強度を以下の項目について、以下に示す方法で測定した。
(耐摩耗性)JIS C3003 9の「一方向摩耗」により測定した。
(絶縁破壊電圧) JIS C3003 2)の「2個より法」により測定した。
(耐軟化) JIS C3003 11の「A法」により測定した。
[Mechanical strength test 1]
Using each of the obtained self-bonding insulated wires, the mechanical strength was measured by the following method for the following items.
(Abrasion resistance) Measured according to “unidirectional wear” of JIS C30039.
(Dielectric breakdown voltage) The dielectric breakdown voltage was measured in accordance with JIS C3003 2) “Method from 2”.
(Softening resistance) Measured according to “Method A” of JIS C3003 11.

(静摩擦係数)
金属製ブロックに、約1%伸長した2本の電線を取り付ける。又、水平に保った台座に、約1%伸長した2本の電線を取り付ける。この台座に取り付けた2本の電線と、金属製ブロックに取り付けた2本の電線が互いに直角に接触するように、金属製ブロックを台座に乗せる。台座を徐々に傾斜させて行き、金属製ブロックが滑り出す時の台座の角度より、静摩擦係数を求める。
(Static friction coefficient)
Attach two wires extending about 1% to the metal block. In addition, two electric wires extended by about 1% are attached to a pedestal kept horizontal. The metal block is placed on the pedestal so that the two electric wires attached to the pedestal and the two electric wires attached to the metal block come into contact with each other at a right angle. The static friction coefficient is obtained from the angle of the pedestal when the pedestal is gradually inclined and the metal block starts to slide.

[耐冷凍機油性の測定1]
得られた各自己融着性絶縁電線約200gを束にした試料を、冷凍機油(エステル油)約150g、冷媒(R410A)約38gと共に封入し、160℃で加熱した。168時間経過後、冷凍機油の変色や白濁の状況を、目視で観察し、以下の基準で濁りのレベルを判断した。
[Measurement of refrigeration machine oil resistance 1]
A sample in which about 200 g of each obtained self-bonding insulated wire was bundled was sealed together with about 150 g of refrigerating machine oil (ester oil) and about 38 g of refrigerant (R410A), and heated at 160 ° C. After 168 hours had passed, the discoloration and cloudiness of the refrigeration oil were visually observed, and the level of turbidity was judged according to the following criteria.

1:濁りは全く見られず透明である。
2:白濁しているが、透明である。
3:白濁しており、不透明である。
1: Turbidity is not seen at all and it is transparent.
2: Although cloudy, it is transparent.
3: It is cloudy and opaque.

又、試験の前後における、融着皮膜のガラス転移温度を、TMA法により測定し、その低下率を求めた。
全ての測定結果を、表3に示す。
Further, the glass transition temperature of the fused film before and after the test was measured by the TMA method, and the reduction rate was obtained.
All the measurement results are shown in Table 3.

Figure 0005467380
Figure 0005467380

表3の耐摩耗のデータに示されるように、本発明の自己融着性絶縁電線は、比較例の自己融着性絶縁電線と比べて、耐摩耗性に優れている。静摩擦係数も小さい。   As shown in the wear resistance data in Table 3, the self-bonding insulated wire of the present invention is superior in wear resistance compared to the self-bonding insulated wire of the comparative example. The coefficient of static friction is also small.

又、アミン触媒を用いて得られたフェノキシ樹脂を含有する樹脂組成物(実施例1、2)による自己融着性絶縁電線は、イミダゾール系触媒を用いて得られたフェノキシ樹脂を含有する樹脂組成物(比較例3)に比べて、濁りのレベルが低く、ガラス転移温度の低下も小さく、耐冷凍機油性に優れている。 Moreover, the self-bonding insulated electric wire by the resin composition (Examples 1 and 2) containing the phenoxy resin obtained using the amine catalyst is a resin composition containing the phenoxy resin obtained using the imidazole catalyst. Compared to the product ( Comparative Example 3 ), the level of turbidity is low, the decrease in glass transition temperature is small, and the oil resistance of the refrigerator is excellent.

実施例4〜6、比較例4
[樹脂組成物の作製2]
表4に示す処方に基づき、樹脂組成物の作製1(実施例1〜2)と同じ手順により、それぞれの熱硬化型融着樹脂組成物ワニスを作製した。ただし、実施例4では、共重合反応の終点に達したことを確認しRC−140(精製クレゾール、河野薬品社製)(1)を添加した後に、反応系を190℃まで加熱して系内を環流状態とし、TEA(アミン触媒)を揮発させて除去した。系内の触媒残存量をガスクロマトグラフィー(Shimadzu GC−14A、島津製作所社製)により確認しながら、環流状態を継続し、適時、1/10量(反応開始時の反応系量の1/10に相当する質量)づつ、サンプリングを行い、そのそれぞれについて、架橋剤としてミリオネートMS−50の35質量%溶液(溶媒RC−140)79.3g、滑剤としてT−15P−2(岐阜セラック社製)55.4g、及びRC−140(2)256.5gを投入、混合して、実施例4A、B、C、D、E、Fの熱硬化型融着樹脂組成物ワニスを得た。(それぞれの、触媒残存量は表7に記載している。)
Examples 4 to 6, Comparative Example 4
[Production of resin composition 2]
Based on the formulation shown in Table 4, each thermosetting fused resin composition varnish was prepared by the same procedure as in Preparation 1 of Resin Composition ( Examples 1-2 ). However, in Example 4, after confirming that the end point of the copolymerization reaction was reached and RC-140 (purified cresol, manufactured by Kono Pharmaceutical Co., Ltd.) (1) was added, the reaction system was heated to 190 ° C. Was refluxed and TEA ( amine catalyst ) was volatilized and removed. While confirming the amount of catalyst remaining in the system by gas chromatography (Shimadzu GC-14A, manufactured by Shimadzu Corporation), the reflux state was continued and, in a timely manner, 1/10 amount (1/10 of the reaction system amount at the start of the reaction). For each of them, 79.3 g of a 35 mass% solution of Millionate MS-50 (solvent RC-140) as a cross-linking agent, and T-15P-2 (manufactured by Gifu Shellac Co., Ltd.) as a lubricant. 55.4 g and RC-140 (2) 256.5 g were added and mixed to obtain a thermosetting fused resin composition varnish of Examples 4A, B, C, D, E, and F. (Each catalyst residual amount is described in Table 7.)

比較例2
表4に示す処方に基づき、比較例1と同じ手順により、熱硬化型融着樹脂組成物ワニスを作製した。
Comparative Example 2
Based on the formulation shown in Table 4, a thermosetting fused resin composition varnish was prepared by the same procedure as in Comparative Example 1.

Figure 0005467380
Figure 0005467380

[自己融着性絶縁電線の作製2]
樹脂組成物の作製2で得られたワニス(実施例4については、実施例4A)を使用して、実施例1〜2と同様にして、表5に示す仕様の自己融着性絶縁電線を得た。
[Production of self-bonding insulated wires 2]
Using the varnish obtained in Production 2 of the resin composition (Example 4A for Example 4), in the same manner as in Examples 1 and 2 , self-bonding insulated wires having the specifications shown in Table 5 were prepared. Obtained.

Figure 0005467380
Figure 0005467380

[機械強度試験2]
得られた各自己融着性絶縁電線を用いて、耐摩耗性(一方向摩耗)、絶縁破壊電圧、耐軟化及び静摩擦係数を、機械強度試験1(実施例1〜2)とおなじ方法で測定した。
[Mechanical strength test 2]
Using each of the obtained self-bonding insulated wires, the wear resistance (unidirectional wear), breakdown voltage, softening resistance, and static friction coefficient were measured in the same manner as the mechanical strength test 1 ( Examples 1-2 ). did.

[耐冷凍機油性の測定2]
得られた各自己融着性絶縁電線約200gを束にした試料を、下記の冷凍機油約150g及び冷媒約38gと共に封入し、160℃で500時間加熱した。500時間経過後、冷凍機油の変色や白濁の状況を、目視で観察し、耐冷凍機油性の測定1(実施例1〜2)と同じ基準で濁りのレベルを判断した。
[Measurement of refrigeration machine oil resistance 2]
A sample in which about 200 g of each obtained self-bonding insulated wire was bundled was sealed together with about 150 g of the following refrigerating machine oil and about 38 g of refrigerant, and heated at 160 ° C. for 500 hours. After the lapse of 500 hours, the discoloration and white turbidity of the refrigerating machine oil were visually observed, and the level of turbidity was judged based on the same standard as the measurement 1 of the refrigerating machine oil resistance ( Examples 1 and 2 ).

(使用した冷凍機油)
エステル油150gと冷媒(R410A)38gの混合油(表6中ではESと示す。)
エ−テル油150gと冷媒(R410A)38gの混合油(表6中ではETと示す。)
鉱油1の150gと冷媒(R22)38gの混合油(表6中では鉱1と示す。)
鉱油2の150gと冷媒(R22)38gの混合油(表6中では鉱2と示す。)
(Refrigerating machine oil used)
A mixed oil of 150 g of ester oil and 38 g of refrigerant (R410A) (shown as ES in Table 6)
A mixed oil of 150 g of ether oil and 38 g of refrigerant (R410A) (shown as ET in Table 6)
150 g of mineral oil 1 and 38 g of refrigerant (R22) (shown as ore 1 in Table 6)
150 g of mineral oil 2 and 38 g of refrigerant (R22) (shown as ore 2 in Table 6)

[融着力の測定]
得られた各自己融着性絶縁電線について、電線作製直後(表6中では初期と表示する。)及び80℃で7日〜60日間保管した後の融着力を測定した。融着力の測定は、JIS C 3003の試験片作製方法に基づいてヘリカルコイルを作製し、NEMA MW1000−2003 3.57 BONDにより、融着処理条件160℃×2時間で行った。測定結果を、表6に示す。
[Measurement of fusion power]
For each of the obtained self-bonding insulated wires, the fusing force was measured immediately after the wire production (indicated as initial in Table 6) and after storage at 80 ° C. for 7 to 60 days. The measurement of the fusing force was carried out by producing a helical coil based on the test piece preparation method of JIS C 3003 and using NEMA MW1000-2003 3.57 BOND under fusing treatment conditions of 160 ° C. × 2 hours. The measurement results are shown in Table 6.

Figure 0005467380
Figure 0005467380

表6の結果からも、本発明(実施例4〜6)及び比較例4の自己融着性絶縁電線は、比較例2の自己融着性絶縁電線と比べて耐摩耗性に優れ、静摩擦係数が低いことが示されている。又、本発明(実施例4〜6)及び比較例4の自己融着性絶縁電線の中でも、アミン触媒を用いて得られたフェノキシ樹脂を含有する樹脂組成物(実施例4A、5、6)による自己融着性絶縁電線は、イミダゾール系触媒を用いて得られたフェノキシ樹脂を含有する樹脂組成物(比較例4)に比べて耐冷凍機油性(特に、エーテル油、エステル油の場合)に優れている。さらに、アミン触媒を用いて得られた樹脂組成物による自己融着性絶縁電線であっても、フェノキシ樹脂の合成後アミン触媒が除去された樹脂組成物による場合(実施例4)は、アミン触媒が除去されていない樹脂組成物による場合(実施例5)に比べて、耐冷凍機油性(エーテル油の場合)に優れ、かつ、融着力の経時による低下も小さいことが、表6の結果により示されている。 Also from the results of Table 6, the self-bonding insulated wires of the present invention (Examples 4 to 6) and Comparative Example 4 are superior in wear resistance to the self-bonding insulated wire of Comparative Example 2, and have a static friction coefficient. Is shown to be low. Also, among the self-bonding insulated wires of the present invention (Examples 4 to 6) and Comparative Example 4 , resin compositions containing phenoxy resins obtained using an amine catalyst (Examples 4A, 5 and 6) The self-bonding insulated wire according to the present invention is more resistant to refrigerating machine oil (especially in the case of ether oil and ester oil) than the resin composition containing phenoxy resin obtained by using an imidazole catalyst ( Comparative Example 4 ). Are better. Furthermore, even in the case of a self-fusible insulated wire using a resin composition obtained by using an amine catalyst , when the resin composition is obtained by removing the amine catalyst after the synthesis of the phenoxy resin (Example 4), the amine catalyst According to the results in Table 6, it is excellent in resistance to refrigerating machine oil (in the case of ether oil) compared to the case where the resin composition is not removed (Example 5), and the decrease in the fusion force with time is small. It is shown.

[触媒残存量と耐冷凍機油性の関係]
実施例4A、B、C、D、E、Fの熱硬化型融着樹脂組成物ワニスのそれぞれについて、触媒残存量をガスクロマトグラフィーにより測定した。その結果を、フェノキシ樹脂に対する触媒残存量として表7に示す。
[Relationship between remaining catalyst amount and resistance to refrigeration machine oil]
For each of the thermosetting fused resin composition varnishes of Examples 4A, B, C, D, E, and F, the residual catalyst amount was measured by gas chromatography. The results are shown in Table 7 as the residual catalyst amount with respect to the phenoxy resin.

又、それぞれのワニスを用いて、前記自己融着性絶縁電線の作製2と同様な方法により自己融着性絶縁電線を作製した。得られた自己融着性絶縁電線のそれぞれを約200gの束にし、エーテル油(冷凍機油)約150g及びR410A(冷媒)約38gと共に封入し、160℃で500時間加熱した。500時間経過後、冷凍機油の白濁の状況を、目視で観察した。その結果を、濁りは見られず透明であるものを「濁りなし」とし、白濁しているものを「濁りあり」として表7に示した。   In addition, using each varnish, a self-bonding insulated wire was prepared in the same manner as in the self-bonding insulated wire 2 described above. Each of the obtained self-bonding insulated wires was bundled with about 200 g, sealed with about 150 g of ether oil (refrigerating oil) and about 38 g of R410A (refrigerant), and heated at 160 ° C. for 500 hours. After 500 hours, the state of cloudiness of the refrigerating machine oil was visually observed. The results are shown in Table 7 as “no turbidity” when the turbidity was not observed and “transparent”.

Figure 0005467380
Figure 0005467380

フェノキシ樹脂の合成にアミン触媒を用いた場合(実施例4)でも、エーテル油系の冷凍機油を用い160℃で500時間加熱した場合、冷凍機油の白濁が生じるが、表7に示されるように、残存触媒を除去してフェノキシ樹脂に対する触媒残存量を、500ppm以下とすると、同じ条件でも冷凍機油の白濁を防ぐことができる。従って、この結果より、アミン触媒の残存量は、500ppm以下が好ましいことが示されている。 Even when an amine catalyst was used in the synthesis of the phenoxy resin (Example 4), when heating was performed at 160 ° C. for 500 hours using an ether oil-based refrigerating machine oil, the refrigerating machine oil became cloudy. If the residual catalyst is removed and the residual amount of the catalyst with respect to the phenoxy resin is 500 ppm or less, the cloudiness of the refrigerating machine oil can be prevented even under the same conditions. Therefore, this result shows that the residual amount of the amine catalyst is preferably 500 ppm or less.

Claims (4)

ビスフェノールA、ビスフェノールS、ビスフェノールA型エポキシ樹脂、及びアミン触媒を溶媒中で混合して反応させることで共重合させてなる重量平均分子量15000以上のフェノキシ樹脂、並びに架橋剤からなる樹脂組成物より形成される融着皮膜を有し、
前記フェノキシ樹脂中にビスフェノールSが、ビスフェノールS/ビスフェノールAのモル比が0.2〜0.5となる範囲で含まれており
前記架橋剤の含有量が、前記フェノキシ樹脂に対して10〜20質量%であることを特徴とする自己融着性絶縁電線。
Formed from a resin composition comprising bisphenol A, bisphenol S, a bisphenol A type epoxy resin, a phenoxy resin having a weight average molecular weight of 15000 or more obtained by copolymerization by mixing and reacting an amine catalyst in a solvent, and a crosslinking agent. Having a fused film,
Bisphenol S is contained in the phenoxy resin in a range where the molar ratio of bisphenol S / bisphenol A is 0.2 to 0.5 ,
The content of the crosslinking agent is 10 to 20% by mass with respect to the phenoxy resin.
前記融着皮膜中のフェノキシ樹脂に対する前記アミン触媒の残存量が、500ppm以下であることを特徴とする請求項1に記載の自己融着性絶縁電線。   2. The self-bonding insulated wire according to claim 1, wherein the remaining amount of the amine catalyst with respect to the phenoxy resin in the fusion coating is 500 ppm or less. 前記融着皮膜が、滑剤を含有することを特徴とする請求項1又は請求項2に記載の自己融着性絶縁電線。   The self-bonding insulated wire according to claim 1 or 2, wherein the fusion coating contains a lubricant. 請求項1ないし請求項3のいずれか1項に記載の自己融着性絶縁電線を用いることを特徴とする圧縮機駆動用モータ。   A motor for driving a compressor, wherein the self-bonding insulated electric wire according to any one of claims 1 to 3 is used.
JP2008245793A 2007-09-27 2008-09-25 Self-bonding insulated wire and compressor drive motor Active JP5467380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245793A JP5467380B2 (en) 2007-09-27 2008-09-25 Self-bonding insulated wire and compressor drive motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007252176 2007-09-27
JP2007252176 2007-09-27
JP2008245793A JP5467380B2 (en) 2007-09-27 2008-09-25 Self-bonding insulated wire and compressor drive motor

Publications (2)

Publication Number Publication Date
JP2009099557A JP2009099557A (en) 2009-05-07
JP5467380B2 true JP5467380B2 (en) 2014-04-09

Family

ID=40702343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245793A Active JP5467380B2 (en) 2007-09-27 2008-09-25 Self-bonding insulated wire and compressor drive motor

Country Status (1)

Country Link
JP (1) JP5467380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256390A1 (en) * 2020-06-16 2021-12-23 住友電気工業株式会社 Resin composition, self-fusing insulated electrical wire, and wire coil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604523B2 (en) * 1975-09-04 1985-02-05 住友電気工業株式会社 Self-bonding insulated wire
JPS6489207A (en) * 1987-09-30 1989-04-03 Fujikura Ltd Insulated electric wire
JP2592050B2 (en) * 1987-11-24 1997-03-19 東芝ケミカル株式会社 Self-fusing paint
JP2663353B2 (en) * 1988-08-08 1997-10-15 東都化成株式会社 Self-fusing insulating paint
JPH03241608A (en) * 1990-02-17 1991-10-28 Furukawa Electric Co Ltd:The Self-fusing insulated wire
JPH10134643A (en) * 1996-10-25 1998-05-22 Fujikura Ltd Insulated electric wire for electrification bonding
JP2002138270A (en) * 2000-10-31 2002-05-14 Hitachi Chem Co Ltd Adhesive film, adhesive film with base material and manufacturing method of them, adhesive film for semiconductor, semiconductor element, supporting member, method for adhering semiconductor to supporting member, and semiconductor device
JP2006278530A (en) * 2005-03-28 2006-10-12 Sumitomo Bakelite Co Ltd Solder resist and thermosetting resin composition therefor
JP3980605B2 (en) * 2005-06-14 2007-09-26 株式会社フジクラ Compressor drive motor

Also Published As

Publication number Publication date
JP2009099557A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP3980605B2 (en) Compressor drive motor
JPH09316167A (en) Thermosetting resin composition, electrical insulating coil, and rotating electric machine and production thereof
JP2011009015A (en) Insulated cable and motor using the same
WO2017094789A1 (en) Self-fusible insulated wire, coil and electrical/electronic device
JP5326157B2 (en) Self-bonding insulated wire and compressor drive motor
HU180960B (en) Heat resistant curable adhezive lacquer for bobbins
JP5467380B2 (en) Self-bonding insulated wire and compressor drive motor
JP2001155551A (en) Insulated wire
JP5832735B2 (en) Heat-resistant self-bonding paint and heat-resistant self-bonding enameled wire
JP4423661B2 (en) Methoxysilyl group-containing silane-modified polyamideimide resin, resin composition, and cured film
JP2010031101A (en) Polyamideimide resin coating and insulated electric wire using it
JP4140055B2 (en) Silane-modified polyamideimide resin composition and cured film thereof
JP2010013546A (en) Insulating coating material and insulated electric cable
WO2006008827A1 (en) Self-adhesive insulated wire
JP2014167122A (en) Heat-resistant self-fusing coating and heat-resistant self-fusing enamel wire
JP2002371182A (en) Polyimide resin composition and film-forming material comprising the same
JPH055085A (en) Adhesive composition for flame-retardant flexible copper-clad laminate
JPS5999617A (en) Soldable self-fusible polyesterimide insulated wire
US20130330552A1 (en) Insulated wire and coil using same
JPS648404B2 (en)
JP4794719B2 (en) Self-bonding insulated wire
JP5578439B2 (en) Insulated wire
JP2010157433A (en) Insulated wire
JPH0992040A (en) Self-adhesive insulated wire
JPH03246816A (en) Self-fusing insulation cable

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100610

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5467380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250