WO2006008827A1 - Self-adhesive insulated wire - Google Patents

Self-adhesive insulated wire Download PDF

Info

Publication number
WO2006008827A1
WO2006008827A1 PCT/JP2004/010583 JP2004010583W WO2006008827A1 WO 2006008827 A1 WO2006008827 A1 WO 2006008827A1 JP 2004010583 W JP2004010583 W JP 2004010583W WO 2006008827 A1 WO2006008827 A1 WO 2006008827A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
self
insulated wire
mass
polysulfone
Prior art date
Application number
PCT/JP2004/010583
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Nakao
Keiji Nakano
Tatsumi Hirano
Yasutsugu Toyama
Masayoshi Hatanaka
Shigemi Takahashi
Original Assignee
Fujikura Ltd.
Unimac Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd., Unimac Ltd. filed Critical Fujikura Ltd.
Priority to PCT/JP2004/010583 priority Critical patent/WO2006008827A1/en
Priority to JP2006524534A priority patent/JP4021926B2/en
Priority to CNB2004800008563A priority patent/CN100350514C/en
Publication of WO2006008827A1 publication Critical patent/WO2006008827A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers

Definitions

  • the present invention relates to a self-bonding insulated wire applicable to all applications of enameled wires used mainly in electrical, electronic, communication equipment, coils for electrical components, motors, etc., and self-bonding insulation for such wires. Regarding materials. Background art
  • a self-bonding insulated wire is an insulated wire that can soften the self-bonding layer by heating or other means and fix the wires together, increasing the strength as a coil, or a coil with a complicated shape It is used for the purpose of manufacturing.
  • the winding of the self-bonding insulated wire is performed in the same way as a normal enameled wire, it is also required that the coating does not crack during winding.
  • the fusion layer of the self-bonding insulated wire needs to use a resin having good flexibility in addition to the fusion property, and actually has a molecular weight of 2 0 0 0 0 or A 300 or more thermoplastic polymer, for example, polybutyral resin, polyamide resin, polyformal resin, polyhydroxyether resin or the like is used.
  • thermosetting self-bonding wires Specifically, a paint obtained by adding a cross-linking agent such as phenol resin, amino resin, or isocyanate to a thermoplastic resin having excellent molecular flexibility of 20, 000, 30 or 30 000 or more. The material was used to form a thermosetting self-bonding layer by baking enamel in a semi-hardened state.
  • a cross-linking agent such as phenol resin, amino resin, or isocyanate
  • the active group of the thermoplastic resin does not exist so that the heat resistance is improved by cross-linking with the cross-linking agent, it is common to add extra cross-linking agent and improve the heat resistance by polymerization between the cross-linking agents. Is.
  • the semi-cured self-bonding film has a disadvantage that the stability of the semi-cured film is low and the range of manufacturing conditions during enamel baking is narrow.
  • An object of the present invention is to provide a self-bonding insulated wire having improved chemical stability without reducing heat resistance and flexibility, and to provide a self-bonding insulating material for the wire. That is. Disclosure of the invention
  • Polysulfone resin should be used to improve the strength and heat resistance of the fused film.
  • an epoxy resin with an epoxy equivalent of 1, 00 0 to 5, 0 0 0 as necessary.
  • a first invention of the present invention that solves the above-mentioned problems (hereinafter referred to as “first invention”) comprises at least a polyhydroxy ether resin and a polysulfone-based resin having a molecular weight of 200, 00 or more.
  • a self-bonding insulated wire is a self-bonding insulated wire that is applied and baked directly or through another insulating film on a conductor.
  • a second invention of the present invention that solves the above-mentioned problems (hereinafter referred to as “second invention”) comprises at least a polyhydroxy ether resin and a polysulfone-based resin having a molecular weight of 200, 00 or more.
  • a resin base material comprising an epoxy resin having an epoxy equivalent of 1, 00 to 5, 00 and a resin coating comprising a cross-linking agent having two functional groups in one molecule as an active ingredient Fusible insulating material Self-fusing insulated wire that is applied and baked directly on the conductor or through another insulating film.
  • the polysulfone resin is a polysulfone resin or a resin having a partial structure of a polysulfone resin; a cross-linking agent having two functional groups in one molecule is a divalent stabilized isocyanate A urea resin, a benzoguanamine resin, a divalent organic acid or a derivative of a divalent organic acid; the mass ratio of the polyhydroxy ether resin to the polysulfone resin is 20/80 to 80% in terms of nonvolatile content
  • the amount of cross-linking agent having two functional groups in one molecule is 10 against the total amount of 100 parts by mass (in terms of non-volatile content) of polyhydroxylite resin and polysulfone resin.
  • the mass ratio of the polyhydroxy ether resin to the polysulfone resin is 20/80 to 90 0 Z 10 in terms of nonvolatile content, Hydroxy ether resin
  • the total amount of polysulfone-based resin is 100 parts by mass (in terms of non-volatile content), and the amount of crosslinking agent having two functional groups in one molecule is 10 to 40 parts by mass (in terms of non-volatile content).
  • a desirable embodiment is that the amount of epoxy resin is 5 to 40 parts by mass with respect to 100 parts by mass (non-volatile equivalent) of the total amount of the hydroxy ether resin and the polysulfone resin.
  • a third invention of the present invention that solves the above problems (hereinafter referred to as “third invention”) is a self-bonding insulating material for such a self-bonding insulated wire.
  • BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in detail.
  • a polyhydroxylester resin having a molecular weight of 20 or more which is one of the resin base materials of the first invention, a phenoxy resin, a polyvinyl formal resin, or a polyvinyl petital resin should be used. Is possible.
  • epicortes 1 2 5 6, 4 2 5 0, 4 2 7 5, 1 2 5 5 HX 30 (all manufactured by Japan Epoxy Resin Co., Ltd.), P KHC, PKHH, P KH J ( All are made by UCC), YP—50, ⁇ ⁇ —40 A SM4 0, YP—5 0 EK 3 5, YP—5 0 CS 2 5 (both made by Toto Kasei), DENKA BUTILAR # 2 0 0 0— L, # 3 0 0 0— 1, # 3 0 0 0— 2, # 3 0 0 0— K, # 4 0 0 0— 1, # 4 0 0 0— 2, # 5 0 0 Examples include 0— ⁇ , # 6 0 0 0— C (all manufactured by Denki Kagaku Kogyo Co., Ltd.), Vinylex K, L, H, E (manufactured by Chisso Corp.), and the like.
  • the polysulfone-based resin which is another resin base material of the first invention is a resin having a partial structure of polysulfone resin or polysulfone rosin. More specifically, commercially available Udel P— 1 700, Redenore A _ 2 0 0 A, A— 3 0 0 A (both from American Solvaine), YPS— 0 0 7— A Examples include 30 and YPS-0 30-A 30 (all manufactured by Toto Kasei Co., Ltd.). It is also possible to use a resin produced by a polymerization reaction of bisphenol S, bisphenol A and epichlorohydrin.
  • the mass ratio of the polyhydroxy ether resin and the polysulfone resin is preferably 20/80 to 90/100 in terms of non-volatile content, and is 30/70 to 80/20. It is particularly preferred. If the mass ratio is more than 90 Z 10, the fusion property under an atmosphere of 100 ° C. tends to decrease, and if it is less than 20/80, sufficient fusion property cannot be obtained.
  • the cross-linking agent having two functional groups in one molecule which is the resin coating of the first invention, is composed of divalent stabilized isocyanate, urea resin, benzoguanamine resin, divalent organic acid, divalent organic acid.
  • divalent stabilized isocyanate urea resin
  • benzoguanamine resin divalent organic acid
  • divalent organic acid divalent organic acid.
  • divalent stabilized isocyanates Diisocyanate, 2, 6—Tolylene diisocyanate, Xylylene range isocyanate, Diphenyl methane 4-1 Masked with a compound having an alcoholic hydroxyl group or the like.
  • myonate MS 50, coronate 2 5 0 1, 2 5 0 7, 2 5 1 3, 2 5 1 5 (all manufactured by Nippon Polyurethane Industry), deuranate 1 7 B 6 0 — PX, TPA—B 80 X, MF—B 60 X, MF—K 60 X, E 40 2 -B 80 T (all manufactured by Asahi Kasei Co., Ltd.) and the like.
  • urea resin commercially available UFR 65, UF R 300 (all manufactured by Mitsui Cytec Co., Ltd.), and as benzoguanamine resin, commercially available Cymel 1 1 2 3 and MyCoat 10 0 2, 10 5, 1 0 6, 1 1 2 8 (all of which are manufactured by Mitsui Cytec Co., Ltd.) and the like.
  • divalent organic acid examples include phthalic acid, isophthalic acid, terephthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, and fumaric acid.
  • divalent organic acid derivative examples include these acid chlorides.
  • the total amount of polyhydroxy ether resin and polysulfone resin is 100 parts by weight (non-volatile content), and the amount of crosslinking agent having two functional groups in one molecule is 10-40 parts by weight (non-volatile content). (Converted) is preferable, and 15 to 30 parts by mass is particularly preferable. When the amount is less than 10 parts by mass, the fusion force at high temperature tends to decrease, and when the amount exceeds 40 parts by mass, fusion becomes difficult.
  • the above self-bonding insulating material is applied to a conductor directly or through another insulating film and baked by a conventional method to manufacture a self-bonding insulated wire.
  • the second invention is a self-fusing insulating material in which an epoxy resin having an epoxy equivalent of 1, 00 to 5, 0.00 is added to the resin paint in the first invention, directly or through another insulating film.
  • the other chemical substances are the same as in the first invention.
  • the amount of epoxy resin in terms of non-volatile content is 5 to 40 parts by mass with respect to 100 parts by mass (in terms of non-volatile content) of the total amount of poly (hydroxy ether) resin and polysulfone-based resin. It is particularly preferably 0 to 35 parts by mass. If the amount is less than 5 parts by mass, the fusion force at high temperatures tends to decrease, and if it exceeds 40 parts by mass, it becomes difficult to fuse.
  • the third invention is a self-bonding insulating material used for such a self-bonding insulated wire and has been described above.
  • PKHH 90 parts by weight as a polyhydroxy ether resin with a molecular weight of 20 or more than 0,000 and YPS— 0 0 7 10 parts by weight (in terms of non-volatile content) as a polysulfone resin are heated to 80 ° C. It was added to 300 parts by mass of rohexanone and dissolved. The resulting solution was cooled to room temperature, dissolved by adding 20 parts by mass of Millionate MS-50 as a isocyanate having two functional groups in one molecule, and further adding cyclohexanone to make it non-volatile. The content was adjusted to 30% (mass) to prepare a self-bonding insulating material.
  • Polyester imide paint (manufactured by Tohoku Paint Co., Ltd. Neoheat 8 6 0 0) is applied to a copper wire with a diameter of 1.0 mm and enamel baked to prepare an insulated wire with an insulation thickness of 30 m.
  • the self-bonding insulating material was applied to a thickness of 15 ⁇ and baked to produce a self-bonding insulated wire.
  • a self-bonding insulated wire was produced in the same manner as in Example 1 with the blending ratio shown in Table 1.
  • Example 2 In the same manner as in Example 1, the non-volatile content was adjusted to 30% (mass) at the blending ratio shown in Table 1, and then the resulting mixture was lubricated with 120 mass parts (non-volatile conversion). 2 parts by mass of polytetrafluoroethylene (manufactured by Daikin Kogyo Co., Ltd.) is added to improve the properties and dispersed uniformly. Thermosetting self-bonding insulation A material was prepared. Next, a self-bonding insulated wire was produced by the same method as in Example 1.
  • Example 1 the formulation shown in Table 1 was used except that Millionate MS-50 was substituted with urea resin UFR 300 (Example 6) and benzoguanamine resin My Coat 10 2 (Example 7). A self-bonding insulated wire was produced in the same manner as in 1.
  • a self-bonding insulated wire was manufactured in the same manner as in Example 11 at the blending ratio shown in Table 1.
  • a self-bonding-insulated wire was produced in the same manner as in Comparative Example 1 with the formulation shown in Table 2, except that Cymel 37O was replaced with Millionate MS-50 in Comparative Example 1. Comparative Example 4
  • a self-bonding insulated wire was produced in the same manner as in Comparative Example 3 except that P KHH was replaced with YPS-0107 in Comparative Example 3.
  • the test was performed by the same method as the above-mentioned fusion property. However, the measured temperature is 1 00 ° C i ⁇ and / this 0
  • Comparative Example 1 8 has a poor appearance of insulating oil (Comparative Example 1 2 6 8), and the flexibility deteriorates and the fusion property at room temperature decreases extremely. (Comparative Example 4), and those with extremely low fusibility and oil resistance at high temperatures (Comparative Example 3 5) were observed.
  • the self-bonding insulated electric wire of the present invention can be used for all applications of enameled wires mainly used in electric, electronic, communication equipment, coils for electrical components, motors and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulated Conductors (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

A self-adhesive insulated wire having an improved chemical stability without any decrease in heat-resistance or flexibility; and a self-adhesive insulating material for the wire. In an existing self-adhesive insulated wire, a thermoplastic resin has only a small amount of active groups and, therefore, a crosslinking should be added in excess. As a result, there arises a problem that the conditions for enamel baking are seriously restricted. In the case of using such a wire in a specific environment (for example, in an insulating oil), moreover, there arises another problem that a hardening agent contained in excess reacts with various chemicals. To overcome these problems, it is intended to provide a self-adhesive insulated wire wherein a thermosetting self-adhesive insulating material, which contains, as the active components, a resin coating comprising a resin base containing a polyhydroxy ether resin having a molecular weight of at least 20,000 and a polysulfone resin and a crosslinking agent having two functional groups per molecule, is applied to a conductor either directly or via another insulating film and then baked. The self-adhesive insulating material as described above is to be used in the self-adhesive insulated wire.

Description

明細書 自己融着性絶縁電線 技術分野  Specification Self-Fusing Insulated Wire Technical Field
本発明は、 主として電気、 電子、 通信機器、 電装部品用コイル、 モー ター等に使用されるエナメル線の用途全般に適用可能な自己融着性絶縁 電線およぴ該電線用自己融着性絶縁材に関する。 背景技術  The present invention relates to a self-bonding insulated wire applicable to all applications of enameled wires used mainly in electrical, electronic, communication equipment, coils for electrical components, motors, etc., and self-bonding insulation for such wires. Regarding materials. Background art
自己融着性絶縁電線は、 加熱等の方法により 自己融着層を軟化させ、 電線相互を固着させることが可能な絶縁電線であり、 コイルとしての強 度を高めることや、 複雑な形状のコイルを作製する等の目的に用いられ る。 また、 自己融着性絶縁電線の捲線は、 通常のエナメル線と同様に行 われるため、 捲線時に皮膜にクラック等が生じないことも要求される。 前 己のことから、 自己融着性絶縁電線の融着層は、 融着性に加え、 可 撓性の良好な樹脂を用いることが必要であり、 実際には、 分子量 2 0 0 0 0又は 3 0 0 0 0以上の熱可塑性高分子、 たとえばポリ ビュルブチラ ール樹脂、 ポリアミ ド榭脂、 ポリ ビュルホルマール樹脂、 ポリ ヒ ドロキ シエーテル樹脂等が用いられる。  A self-bonding insulated wire is an insulated wire that can soften the self-bonding layer by heating or other means and fix the wires together, increasing the strength as a coil, or a coil with a complicated shape It is used for the purpose of manufacturing. In addition, since the winding of the self-bonding insulated wire is performed in the same way as a normal enameled wire, it is also required that the coating does not crack during winding. From the self, the fusion layer of the self-bonding insulated wire needs to use a resin having good flexibility in addition to the fusion property, and actually has a molecular weight of 2 0 0 0 0 or A 300 or more thermoplastic polymer, for example, polybutyral resin, polyamide resin, polyformal resin, polyhydroxyether resin or the like is used.
しかしながら、 上記熱可塑性高分子を用いる場合、 耐熱用途の機器に 使用する時には高融点の樹脂を使用する必要があるため、 高温で処理す ることにより、 絶縁層や機器を劣化させる欠点が存在していた。 このた め、 自己融着性絶縁電線を耐熱用途の機器に使用する場合、 熱硬化型の 自己融着線にするのが一般的である。 具体的には、 皮膜の可撓性に優れ た分子量 2 0 , 0 0 0又は 3 0, 0 0 0以上の熱可塑性樹脂にフエノー ル樹脂、 アミノ榭脂、 イソシァネート等の架橋剤を添加した塗料を半硬 化状態でエナメル焼付けし、 熱硬化型自己融着層を形成させる材料が使 用されていた。 しかし、 熱可塑性樹脂の活性基は架橋剤との架橋により耐熱性が向上 する程存在していないため、 架橋剤を余分に添加し、 架橋剤間の重合に より耐熱性を向上させることが一般的である。 この場合の半硬化状態の 自己融着皮膜は、 安定性が低いため、 エナメル焼き付け時の製造条件の 幅が狭くなるという欠点があった。 However, when using the above-mentioned thermoplastic polymer, it is necessary to use a high melting point resin when used in heat-resistant equipment, so there is a drawback that the insulating layer and equipment are deteriorated by processing at high temperatures. It was. For this reason, when using self-bonding insulated wires in heat-resistant equipment, it is common to use thermosetting self-bonding wires. Specifically, a paint obtained by adding a cross-linking agent such as phenol resin, amino resin, or isocyanate to a thermoplastic resin having excellent molecular flexibility of 20, 000, 30 or 30 000 or more. The material was used to form a thermosetting self-bonding layer by baking enamel in a semi-hardened state. However, since the active group of the thermoplastic resin does not exist so that the heat resistance is improved by cross-linking with the cross-linking agent, it is common to add extra cross-linking agent and improve the heat resistance by polymerization between the cross-linking agents. Is. In this case, the semi-cured self-bonding film has a disadvantage that the stability of the semi-cured film is low and the range of manufacturing conditions during enamel baking is narrow.
更に絶縁油中、 冷媒中等の特殊な状況下での用途の場合、 余分に含有 されている硬化剤 ( 3官能基以上を有する場合には、 架橋反応時の未反 応残基も含む。) 力 絶縁油、 冷媒に含有されている種々の化学物質と反 応する欠点もあった。  In addition, in the case of use under special circumstances such as in insulating oil or refrigerant, an extra curing agent is included (if it has three or more functional groups, it also includes unreacted residues during the crosslinking reaction). There was also a drawback of reacting with various chemical substances contained in the insulating oil and refrigerant.
本発明の目的は、 耐熱性及ぴ可撓性を低下させることなく化学的安定 性が向上した自己融着性絶縁電線を提供することと、 当該電線用の自己 融着性絶縁材を提供することである。 発明の開示  An object of the present invention is to provide a self-bonding insulated wire having improved chemical stability without reducing heat resistance and flexibility, and to provide a self-bonding insulating material for the wire. That is. Disclosure of the invention
前記従来技術の欠点を解決するために、 本発明者らが鋭意研究を行つ た結果、 以下の自己融着性絶縁電線であれば、 これらの欠点を排除し得 ることを見出だし、 本発明を完成した。  In order to solve the drawbacks of the prior art, the present inventors have conducted extensive research and found that the following self-bonding insulated wires can eliminate these drawbacks. Completed the invention.
1 ) 融着時の流動性の向上及び融着の容易性を向上させるために、 分子 量 2 0, 0 0 0以上のポリ ヒ ドロキシエーテル榭脂を用いること。 1) To improve fluidity and ease of fusion during fusion, use a polyhydroxyether resin having a molecular weight of 20 or more.
2 ) 余分な残基の少ない 3次元構造を形成して、 耐熱性及び可撓性を低 下させることなく化学的安定性を向上させるために、 1分子中に 2個の 活性基を有する架橋剤を用いること。 2) Crosslinks with two active groups in one molecule to form a three-dimensional structure with few extra residues and improve chemical stability without reducing heat resistance and flexibility. Use an agent.
3 ) 融着皮膜の強度及び耐熱性を向上させるために、 ポリサルホン系樹 脂を用いること。 さらに、 必要に応じてエポキシ当量 1, 0 0 0〜5, 0 0 0のエポキシ樹脂を用いること。  3) Polysulfone resin should be used to improve the strength and heat resistance of the fused film. In addition, use an epoxy resin with an epoxy equivalent of 1, 00 0 to 5, 0 0 0 as necessary.
前記課題を解決する本発明の第 1の発明 (以下、 「第 1発明」 と記載す る。) は、 少なく とも分子量 2 0 , 0 0 0以上のポリ ヒ ドロキシエーテル 樹脂及びポリサルホン系樹脂からなる樹脂基材、 並びに 1分子中に 2個 の官能基を有する架橋剤からなる樹脂塗料を有効成分として含有する自 己融着性絶縁材が、 導体に直接又は他の絶縁皮膜を介して塗布焼付けら れた自己融着性絶縁電線である。 A first invention of the present invention that solves the above-mentioned problems (hereinafter referred to as “first invention”) comprises at least a polyhydroxy ether resin and a polysulfone-based resin having a molecular weight of 200, 00 or more. A resin base material and a resin coating comprising a cross-linking agent having two functional groups in one molecule as an active ingredient. A self-bonding insulated wire is a self-bonding insulated wire that is applied and baked directly or through another insulating film on a conductor.
前記課題を解決する本発明の第 2の発明 (以下、 「第 2発明」 と記載す る。) は、 少なく とも分子量 2 0, 0 0 0以上のポリ ヒ ドロキシエーテル 樹脂及びポリサルホン系樹脂からなる樹脂基材、並びにエポキシ当量 1 , 0 0 0〜 5, 0 0 0のエポキシ樹脂及ぴ 1分子中に 2個の官能基を有す る架橋剤からなる樹脂塗料を有効成分として含有する自己融着性絶縁材 力 導体に直接又は他の絶縁皮膜を介して塗布焼付けられた自己融着性 絶縁電線である。  A second invention of the present invention that solves the above-mentioned problems (hereinafter referred to as “second invention”) comprises at least a polyhydroxy ether resin and a polysulfone-based resin having a molecular weight of 200, 00 or more. A resin base material comprising an epoxy resin having an epoxy equivalent of 1, 00 to 5, 00 and a resin coating comprising a cross-linking agent having two functional groups in one molecule as an active ingredient Fusible insulating material Self-fusing insulated wire that is applied and baked directly on the conductor or through another insulating film.
また、 本発明は、 ポリサルホン系樹脂が、 ポリサルホン樹脂又はポリ サルホン樹脂の部分構造を有する樹脂であること ; 1分子中に 2個の官 能基を有する架橋剤が、 2価の安定化したイソシァネート、 尿素樹脂、 ベンゾグァナミン樹脂、 2価の有機酸又は 2価の有機酸の誘導体である こと;ポリ ヒ ドロキシエーテル樹脂とポリサルホン系樹脂との質量比が、 不揮発分換算で 2 0 / 8 0〜 9 0ノ 1 0であり、 ポリ ヒ ドロキシエーテ ル樹脂とポリサルホン系樹脂の合計量 1 0 0質量部 (不揮発分換算) に 対し、 1分子中に 2個の官能基を有する架橋剤量が 1 0〜4 0質量部(不 揮発分換算) であること ; ポリ ヒ ドロキシエーテル樹脂とポリサルホン 系樹脂との質量比が、 不揮発分換算で 2 0 / 8 0〜 9 0 Z 1 0であり、 ポリ ヒ ドロキシエーテル樹脂とポリサルホン系樹脂の合計量 1 0 0質量 部 (不揮発分換算) に対し、 1分子中に 2個の官能基を有する架橋剤量 が 1 0〜4 0質量部 (不揮発分換算) であり、 ポリ ヒ ドロキシエーテル 樹脂とポリサルホン系樹脂の合計量 1 0 0質量部 (不揮発分換算) に対 し、 エポキシ樹脂量が 5〜 4 0質量部であることを望ましい態様として いる。  In the present invention, the polysulfone resin is a polysulfone resin or a resin having a partial structure of a polysulfone resin; a cross-linking agent having two functional groups in one molecule is a divalent stabilized isocyanate A urea resin, a benzoguanamine resin, a divalent organic acid or a derivative of a divalent organic acid; the mass ratio of the polyhydroxy ether resin to the polysulfone resin is 20/80 to 80% in terms of nonvolatile content The amount of cross-linking agent having two functional groups in one molecule is 10 against the total amount of 100 parts by mass (in terms of non-volatile content) of polyhydroxylite resin and polysulfone resin. To 40 parts by mass (in terms of non-volatile content); the mass ratio of the polyhydroxy ether resin to the polysulfone resin is 20/80 to 90 0 Z 10 in terms of nonvolatile content, Hydroxy ether resin The total amount of polysulfone-based resin is 100 parts by mass (in terms of non-volatile content), and the amount of crosslinking agent having two functional groups in one molecule is 10 to 40 parts by mass (in terms of non-volatile content). A desirable embodiment is that the amount of epoxy resin is 5 to 40 parts by mass with respect to 100 parts by mass (non-volatile equivalent) of the total amount of the hydroxy ether resin and the polysulfone resin.
前記課題を解決する本発明の第 3の発明 (以下、 「第 3発明」 と記載す る。) は、 かかる自己融着性絶縁電線用である自己融着性絶縁材である。 発明を実施するための最良の形態 次に本発明について詳細に記載する。 第 1発明の樹脂基材の一つであ る分子量 2 0, 0 0 0以上のポリ ヒ ドロキシェ一テル榭脂としては、 フ エノキシ樹脂、 ポリ ビニルホルマール樹脂、 ポリ ビニルプチラール樹脂 を使用することが可能である。 より具体的には市販のェピコ一ト 1 2 5 6、 4 2 5 0、 4 2 7 5、 1 2 5 5 HX 3 0 (いずれもジャパンェポキ シレジン社製)、 P KHC、 PKHH、 P KH J (いずれも U C C社製)、 YP— 5 0、 Υ Ρ— 4 0 A SM4 0、 Y P— 5 0 EK 3 5、 YP— 5 0 C S 2 5 (いずれも東都化成社製)、 デンカブチラ一ル# 2 0 0 0— L、 # 3 0 0 0— 1、 # 3 0 0 0— 2、 # 3 0 0 0— K、 # 4 0 0 0— 1、 # 4 0 0 0— 2、 # 5 0 0 0— Α、 # 6 0 0 0— C (いずれも電気化学 工業社製)、 ビニレックス K、 L、 H、 E (チッソ社製) 等を例示するこ とができる。 A third invention of the present invention that solves the above problems (hereinafter referred to as “third invention”) is a self-bonding insulating material for such a self-bonding insulated wire. BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in detail. As a polyhydroxylester resin having a molecular weight of 20 or more, which is one of the resin base materials of the first invention, a phenoxy resin, a polyvinyl formal resin, or a polyvinyl petital resin should be used. Is possible. More specifically, commercially available epicortes 1 2 5 6, 4 2 5 0, 4 2 7 5, 1 2 5 5 HX 30 (all manufactured by Japan Epoxy Resin Co., Ltd.), P KHC, PKHH, P KH J ( All are made by UCC), YP—50, Υ Ρ—40 A SM4 0, YP—5 0 EK 3 5, YP—5 0 CS 2 5 (both made by Toto Kasei), DENKA BUTILAR # 2 0 0 0— L, # 3 0 0 0— 1, # 3 0 0 0— 2, # 3 0 0 0— K, # 4 0 0 0— 1, # 4 0 0 0— 2, # 5 0 0 Examples include 0—Α, # 6 0 0 0— C (all manufactured by Denki Kagaku Kogyo Co., Ltd.), Vinylex K, L, H, E (manufactured by Chisso Corp.), and the like.
第 1発明の他の樹脂基材であるポリサルホン系樹脂は、 ポリサルホン 樹脂又はポリサルホン榭脂の部分構造を有する樹脂である。 より具体的 には市販のユーデル P— 1 7 0 0、 レーデノレ A _ 2 0 0 A、 A— 3 0 0 A (いずれもァメ リ カのソルべイネ土製)、 Y P S— 0 0 7— A 3 0、 Y P S - 0 3 0 -A 3 0 (いずれも東都化成社製)等例示することができる。 また、 ビスフエノール S、 ビスフエノール Aとェピク ロルヒ ドリ ンとの 重合反応により生成された樹脂を使用することも可能である。  The polysulfone-based resin which is another resin base material of the first invention is a resin having a partial structure of polysulfone resin or polysulfone rosin. More specifically, commercially available Udel P— 1 700, Redenore A _ 2 0 0 A, A— 3 0 0 A (both from American Solvaine), YPS— 0 0 7— A Examples include 30 and YPS-0 30-A 30 (all manufactured by Toto Kasei Co., Ltd.). It is also possible to use a resin produced by a polymerization reaction of bisphenol S, bisphenol A and epichlorohydrin.
ポリ ヒ ドロキシエーテル樹脂とポリサルホン系樹脂との質量比は、 不 揮発分換算で 2 0/ 8 0〜 9 0/ 1 0であることが好ましく、 3 0/ 7 0〜8 0 / 2 0であることが特に好ましい。 該質量比が 9 0 Z 1 0超で あると 1 0 0°C雰囲気下での融着性が低下し易くなり、 2 0/8 0未満 では充分な融着性が得られない。  The mass ratio of the polyhydroxy ether resin and the polysulfone resin is preferably 20/80 to 90/100 in terms of non-volatile content, and is 30/70 to 80/20. It is particularly preferred. If the mass ratio is more than 90 Z 10, the fusion property under an atmosphere of 100 ° C. tends to decrease, and if it is less than 20/80, sufficient fusion property cannot be obtained.
第 1発明の榭脂塗料である 1分子中に 2個の官能基を有する架橋剤は、 2価の安定化イソシァネート、 尿素樹脂、 ベンゾグアナミ ン樹脂、 2価 の有機酸、 2価の有機酸の誘導体である。 具体的には 2価の安定化イソ シァネートとしてテトラメチレンジイソシァネート、 へキサメチレンジ イ ソシァネー ト、 パラフエ二レンジイ ソシァネー ト、 2 , 4— ト リ レン ジイ ソシァネー ト、 2, 6— ト リ レンジイ ソシァネー ト、 キシリ レンジ イ ソシァネー ト、 ジフエニルメ タン一 4一 4 "—ジイ ソシァネー ト、 ジ フエニルエーテル一 4, 4 '—ジィソシァネート等をフエノール性水酸 基、 アルコール性水酸基等を有する化合物でマスクしたものである。 The cross-linking agent having two functional groups in one molecule, which is the resin coating of the first invention, is composed of divalent stabilized isocyanate, urea resin, benzoguanamine resin, divalent organic acid, divalent organic acid. Is a derivative. Specifically, tetramethylene diisocyanate, hexamethylene diisocyanate, parafuji didiisocyanate, 2,4-triylene as divalent stabilized isocyanates Diisocyanate, 2, 6—Tolylene diisocyanate, Xylylene range isocyanate, Diphenyl methane 4-1 Masked with a compound having an alcoholic hydroxyl group or the like.
より具体的には市販のミリォネート MS— 5 0、コロネート 2 5 0 1、 2 5 0 7、 2 5 1 3、 2 5 1 5 (いずれも日本ポリ ウレタン工業社製)、 デユラネート 1 7 B 6 0— PX、 T PA— B 8 0 X、 MF— B 6 0 X、 MF— K 6 0 X、 E 4 0 2 -B 8 0 T (いずれも旭化成社製) 等を例示 することができる。  More specifically, commercially available myonate MS—50, coronate 2 5 0 1, 2 5 0 7, 2 5 1 3, 2 5 1 5 (all manufactured by Nippon Polyurethane Industry), deuranate 1 7 B 6 0 — PX, TPA—B 80 X, MF—B 60 X, MF—K 60 X, E 40 2 -B 80 T (all manufactured by Asahi Kasei Co., Ltd.) and the like.
また、 尿素樹脂としては、 市販の U F R 6 5、 UF R 3 0 0 (いずれ も三井サイテック社製)、ベンゾグァナミン樹脂としては、市販のサイメ ル 1 1 2 3、 マイ コー ト 1 0 2、 1 0 5、 1 0 6、 1 1 2 8 (いずれも 三井サイテック社製) 等を例示することができる。  As urea resin, commercially available UFR 65, UF R 300 (all manufactured by Mitsui Cytec Co., Ltd.), and as benzoguanamine resin, commercially available Cymel 1 1 2 3 and MyCoat 10 0 2, 10 5, 1 0 6, 1 1 2 8 (all of which are manufactured by Mitsui Cytec Co., Ltd.) and the like.
また、 2価の有機酸としては、 例えばフタル酸、 イソフタル酸、 テレ フタル酸、 シユウ酸、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 マレイン酸、フマル酸等が挙げられる。 2価の有機酸の誘導体としては、 例えばこれらの酸塩化物が挙げられる。  Examples of the divalent organic acid include phthalic acid, isophthalic acid, terephthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, and fumaric acid. Examples of the divalent organic acid derivative include these acid chlorides.
ポリ ヒ ドロキシエーテル樹脂とポリサルホン系樹脂の合計量 1 00質 量部 (不揮発分換算) に対する、 1分子中に 2個の官能基を有する架橋 剤量は、 1 0〜40質量部 (不揮発分換算) であることが好ましく、 1 5〜 3 0質量部であることが特に好ましい。 1 0質量部未満の場合、 高 温における融着力が低下し易くなり、 4 0質量部を超える場合、 融着が 困難になる。  The total amount of polyhydroxy ether resin and polysulfone resin is 100 parts by weight (non-volatile content), and the amount of crosslinking agent having two functional groups in one molecule is 10-40 parts by weight (non-volatile content). (Converted) is preferable, and 15 to 30 parts by mass is particularly preferable. When the amount is less than 10 parts by mass, the fusion force at high temperature tends to decrease, and when the amount exceeds 40 parts by mass, fusion becomes difficult.
以上記載したとおり、 例示した化学物質をそれぞれ任意に選択し、 所 要量を配合し、 シクロへキサノン等の有機溶媒に溶解することにより、 融着皮膜の強度及び耐熱性が向上し、 余分な残基の少ない 3次元構造が 形成され、 耐熱性及び可撓性を低下させることなく化学的安定性が向上 したき己融着性絶縁材が得られる。 尚、 自己融着性絶縁材にポリエチレ ン、 変性ポリエチレン、 ポリテトラフルォロエチレン等の潤滑剤等を配 合することも可能である。 As described above, by arbitrarily selecting each of the exemplified chemical substances, adding the required amount, and dissolving in an organic solvent such as cyclohexanone, the strength and heat resistance of the fused film are improved, and extra A three-dimensional structure with few residues is formed, and a self-fusing insulating material with improved chemical stability can be obtained without reducing heat resistance and flexibility. In addition, lubricants such as polyethylene, modified polyethylene, and polytetrafluoroethylene are disposed on the self-bonding insulating material. It is also possible to combine them.
次いで、 前記の自己融着性絶縁材を常法により導体に直接又は他の絶 縁皮膜を介して塗布して焼付け、 自己融着性絶縁電線を製造する。  Next, the above self-bonding insulating material is applied to a conductor directly or through another insulating film and baked by a conventional method to manufacture a self-bonding insulated wire.
第 2発明は、 第 1発明における樹脂塗料にエポキシ当量 1 , 0 00〜 5 , 0 0 0のエポキシ樹脂を配合した自己融着性絶縁材を、 導体に直接 又は他の絶縁皮膜を介して塗布して焼付けた自己融着性絶縁電線であり、 その他の化学物質は第 1発明と同一である。 このエポキシ樹脂を配合す ることにより、 さらに融着皮膜の強度と耐熱性を向上させることができ る。 この場合、 当該エポキシ樹脂のエポキシ当量が 1 0 0 0未満の場合 は可撓性が低下し、 5 00 0を超える場合は皮膜の強度、 耐熱性の向上 が認められない。  The second invention is a self-fusing insulating material in which an epoxy resin having an epoxy equivalent of 1, 00 to 5, 0.00 is added to the resin paint in the first invention, directly or through another insulating film. The other chemical substances are the same as in the first invention. By blending this epoxy resin, the strength and heat resistance of the fused film can be further improved. In this case, when the epoxy equivalent of the epoxy resin is less than 1000, flexibility is lowered, and when it exceeds 500, no improvement in the strength and heat resistance of the film is observed.
ポリ ヒ ドロキシエーテル榭脂とポリサルホン系樹脂の合計量 1 0 0質 量部 (不揮発分換算) に対する、 エポキシ樹脂量 (不揮発分換算) は、 5〜 4 0質量部であることが好ましく、 1 0〜 3 5質量部であることが 特に好ましい。 5質量部未満であると高温での融着力が低下しやすく、 40質量部を超えると融着しにく くなる。  It is preferable that the amount of epoxy resin (in terms of non-volatile content) is 5 to 40 parts by mass with respect to 100 parts by mass (in terms of non-volatile content) of the total amount of poly (hydroxy ether) resin and polysulfone-based resin. It is particularly preferably 0 to 35 parts by mass. If the amount is less than 5 parts by mass, the fusion force at high temperatures tends to decrease, and if it exceeds 40 parts by mass, it becomes difficult to fuse.
このエポキシ当量 1 , 0 00〜 5 , 0 0 0のエポキシ樹脂として、 具 体的には市販のェピコ ^"ト 1 00 7、 1 0 0 9、 1 0 1 0 (いずれもジ ャパンエポキシレジン社製)、 YD— 0 1 7、 0 1 9、 0 2 0、 9 0 7、 90 9、 9 2 7、 9 2 9 (いずれも東都化成社製) 等を例示することが できる。  As an epoxy resin having an epoxy equivalent of 1,00 to 5,00,00, specifically, commercially available Epico ^ "to 1 00 7, 1 0 0 9, 1 0 1 0 (all are epoxy epoxy resins) YD — 0 1 7, 0 1 9, 0 20, 90 7, 90 9, 9 2 7, 9 2 9 (all manufactured by Tohto Kasei Co., Ltd.) and the like.
第 3発明は、 かかる自己融着性絶縁電線に用いる自己融着性絶縁材で あり、 上記で説明したものである。 実施例  The third invention is a self-bonding insulating material used for such a self-bonding insulated wire and has been described above. Example
次に実施例を示して本発明を更に詳細に記載する。  The following examples further illustrate the present invention.
なお、 以下の表 1、 表 2の実施例、 比較例の配合表において、 * 1の ポリ ヒ ドロキシエーテル榭脂は P KHH (商品名 ; U C C社製)、 * 2の ポリサルホン系樹脂は Y P S— 0 0 7 (商品名 ;東都化成社製)、 * 3の エポキシ樹脂はェピコ一ト 1 0 0 9 (商品名 ; ジャパンエポキシレジン 社製)、 * 4の 2価のイソシァネートはミ リオネート M S— 5 0 (商品 名 ; 日本ポリ ゥレタン工業社製)、 * 5の尿素樹脂は U F R 3 0 0 (商品 名;三井サイテック社製)、 * 6のベンゾグァナミン樹脂はマイコート 1 0 2 (商品名 ;三井サイテック社製)、 * 7のアミノ樹脂はサイメル 3 7 0 (商品名 ;三井サイテック社製)、 * 8の多官能 ( 3官能以上) イソシ ァネートはコロネ一ト A Pステープル (商品名 ; 日本ポリウレタン工業 社製)、 * 9のフエノール樹脂はプライォーフェン 5 5 9 2 (商品名;大 日本インキ化学工業社製) である。 In the examples of Table 1 and Table 2 below, and in the formulation tables of Comparative Examples, * 1 Polyhydroxyether resin is P KHH (trade name; manufactured by UCC), * 2 Polysulfone resin is YPS — 0 0 7 (trade name; manufactured by Tohto Kasei Co., Ltd.), * 3 Epoxy resin is Epicote 100 9 (trade name; manufactured by Japan Epoxy Resin Co., Ltd.), * 4 divalent isocyanate is Millionate MS—50 (trade name; manufactured by Polyuretan Kogyo Co., Ltd.), * 5 Urea resin is UFR 300 (trade name; manufactured by Mitsui Cytec), * 6 benzoguanamine resin is My Coat 10 2 (product name; manufactured by Mitsui Cytec), * 7 amino resin is Cymel 3 700 (product) Name: Mitsui Cytec Co., Ltd.) * 8 multifunctional (3 functional or more) Isocyanate is Coronate AP staple (Product name: Nippon Polyurethane Industry Co., Ltd.) * 9 Phenolic resin is Plyofen 5 5 9 2 (Product) Name: Dai Nippon Ink Chemical Co., Ltd.).
実施例 1  Example 1
分子量 2 0, 0 0 0以上のポリ ヒ ドロキシエーテル樹脂として P K H H 9 0質量部、 ポリサルホン系樹脂として Y P S— 0 0 7 1 0質量 部 (不揮発分換算) を、 8 0 °Cに加熱したシク ロへキサノン 3 0 0質量 部に添加して溶解した。 得られた溶液を室温に冷却し、 1分子中に官能 基を 2個有するィソシァネートとしてミ リォネート M S— 5 0を 2 0質 量部添加して溶解し、 更にシク ロへキサノンを添加して不揮発分を 3 0 % (質量) に調整し、 自己融着性絶縁材を調製した。  PKHH 90 parts by weight as a polyhydroxy ether resin with a molecular weight of 20 or more than 0,000 and YPS— 0 0 7 10 parts by weight (in terms of non-volatile content) as a polysulfone resin are heated to 80 ° C. It was added to 300 parts by mass of rohexanone and dissolved. The resulting solution was cooled to room temperature, dissolved by adding 20 parts by mass of Millionate MS-50 as a isocyanate having two functional groups in one molecule, and further adding cyclohexanone to make it non-volatile. The content was adjusted to 30% (mass) to prepare a self-bonding insulating material.
径 1 . 0 m mの銅線にポリエステルイミ ド塗料 (東特塗料社製。 ネオ ヒー ト 8 6 0 0 ) を塗布し、 エナメル焼付けして、 絶縁厚 3 0 mの絶 縁電線を調製し、 前記自己融着性絶縁材を 1 5 μ ιηの厚さに塗布、 焼付 け、 自己融着性絶縁電線を製造した。  Polyester imide paint (manufactured by Tohoku Paint Co., Ltd. Neoheat 8 6 0 0) is applied to a copper wire with a diameter of 1.0 mm and enamel baked to prepare an insulated wire with an insulation thickness of 30 m. The self-bonding insulating material was applied to a thickness of 15 μιη and baked to produce a self-bonding insulated wire.
実施例 2〜 4及ぴ 8〜: I 0  Examples 2 to 4 and 8 to: I 0
表 1に示す配合割合で、 実施例 1の場合と同様にして、 自己融着性絶 縁電線を製造した。  A self-bonding insulated wire was produced in the same manner as in Example 1 with the blending ratio shown in Table 1.
実施例 5  Example 5
表 1に示す配合割合で、 実施例 1の場合と同様にして、 不揮発分を 3 0 % (質量) に調整した後、 得られた混合物 1 2 0質量部 (不揮発分換 算) に、 潤滑性を改善するためにポリテトラフルォロエチレン (ダイキ ン工業社製) 2質量部を添加し、 均一に分散し、 熱硬化型自己融着絶縁 材を調製した。 次いで、 実施例 1 と同様の方法により、 自己融着性絶縁 電線を製造した。 In the same manner as in Example 1, the non-volatile content was adjusted to 30% (mass) at the blending ratio shown in Table 1, and then the resulting mixture was lubricated with 120 mass parts (non-volatile conversion). 2 parts by mass of polytetrafluoroethylene (manufactured by Daikin Kogyo Co., Ltd.) is added to improve the properties and dispersed uniformly. Thermosetting self-bonding insulation A material was prepared. Next, a self-bonding insulated wire was produced by the same method as in Example 1.
実施例 6、 7  Examples 6, 7
実施例 1において、 ミリオネート M S— 5 0を、 尿素樹脂 U F R 3 0 0 (実施例 6 )、 ベンゾグァナミン樹脂マイコート 1 0 2 (実施例 7 ) に 置換した以外は、 表 1に示す配合で実施例 1 と同様にして自己融着性絶 縁電線を製造した。  In Example 1, the formulation shown in Table 1 was used except that Millionate MS-50 was substituted with urea resin UFR 300 (Example 6) and benzoguanamine resin My Coat 10 2 (Example 7). A self-bonding insulated wire was produced in the same manner as in 1.
実施例 1 1  Example 1 1
P K H H 5 0質量部、 Y P S— 0 0 7 5 0質量部 (不揮発分換算) 及ぴエポキシ当量 1, 0 0 0〜 5 , 0 0 0のエポキシ樹脂としてェピコ ート 1 0 0 9 5質量部を、 8 0 °Cに加熱したシクロへキサノン 2 0 0 質量部に添加して溶解した。 得られた溶液を室温に冷却し、 ミ リオネー ト M S— 5 0を 1 0質量部添加して溶解し、 更にシクロへキサノ ンを添 加して不揮発分を 3 0 % (質量) に調整し、 自己融着性絶縁材を調製し た。 次いで、 実施例 1 と同様にして自己融着性絶縁電線を製造した。 実施例 1 2〜: I 5  PKHH 50 parts by mass, YPS— 0 0 7 50 parts by mass (non-volatile equivalent) and epoxy equivalent 1, 0 0 0 to 5, 0 0 0 And dissolved in 20 parts by mass of cyclohexanone heated to 80 ° C. The obtained solution was cooled to room temperature, dissolved by adding 10 parts by mass of Millionate MS-50, and further added cyclohexanone to adjust the nonvolatile content to 30% (mass). A self-bonding insulating material was prepared. Next, a self-bonding insulated wire was produced in the same manner as in Example 1. Example 1 2 to: I 5
表 1に示す配合割合で、 実施例 1 1の場合と同様にして、 自己融着性 絶縁電線を製造した。  A self-bonding insulated wire was manufactured in the same manner as in Example 11 at the blending ratio shown in Table 1.
比較例 1  Comparative Example 1
P K H H 1 0 0質量部を、 8 0 °Cに加熱したシク口へキサノ ン 3 0 0 質量部に添加して溶解した。 得られた溶液を室温に冷却し、 ァミノ樹脂 としてサイメル 3 7 0を 4 0質量部 (不揮発分換算) 添加して溶解し、 更にシクロへキサノンを添加して不揮発分を 3 0 % (質量) に調整し、 自己融着性絶縁材を調製した。' 次いで、 実施例 1 と同様にして自己融着 性絶縁電線を製造した。  100 parts by mass of P K H H was added to 300 parts by mass of hexane at a mouth opening heated to 80 ° C. and dissolved. The obtained solution was cooled to room temperature, and 40 parts by mass of Cymel 37 0 as an amino resin was added and dissolved. Further, cyclohexanone was added to add 30% (mass) of the non-volatile content. A self-bonding insulating material was prepared. Next, a self-bonding insulated wire was manufactured in the same manner as in Example 1.
比較例 3 .  Comparative Example 3.
比較例 1において、 サイメル 3 7 0をミリォネート M S— 5 0に置換 した以外は、 表 2に示す配合で比較例 1 と同様にして自己融着性—絶縁電 線を製造した。 比較例 4 A self-bonding-insulated wire was produced in the same manner as in Comparative Example 1 with the formulation shown in Table 2, except that Cymel 37O was replaced with Millionate MS-50 in Comparative Example 1. Comparative Example 4
比較例 3において、 P KHHを Y P S— 0 0 7に置換した以外は、 比 較例 3と同様にして自己融着性絶縁電線を製造した。  A self-bonding insulated wire was produced in the same manner as in Comparative Example 3 except that P KHH was replaced with YPS-0107 in Comparative Example 3.
比較例 5  Comparative Example 5
比較例 3において、 PKHH 1 0 0質量部を、 PKHH 8 0質量部、 ェピコート 1 0 0 9 2 0質量部に置換した以外は、 比較例 3と同様に して自.己融着性絶縁電線を製造した。  Self-self-bonding insulated wire in the same manner as in Comparative Example 3, except that PKHH 100 parts by mass was replaced with PKHH 80 parts by mass and Epikote 100 0 9 20 parts by mass in Comparative Example 3. Manufactured.
比較例 2  Comparative Example 2
比較例 1において、 PKHH 1 0 0質量部を、 PKHH 5 0質量部、 YP S— 0 0 7 5 0質量部 (不揮発分換算) とした以外は、 比較例 1 と同様にして自己融着性絶縁電線を製造した。  Self-adhesiveness as in Comparative Example 1, except that PKHH 100 parts by weight in Comparative Example 1 were changed to PKHH 50 parts by weight and YP S—0 0 7 5 0 parts by weight (in terms of nonvolatile content). An insulated wire was manufactured.
比較例 6〜 8  Comparative Examples 6-8
比較例 2において、 サイメル 3 7 0 40質量部を、 サイメル 3 70 20質量部 (比較例 6)、多官能ィソシァネート樹脂コロネ一ト APステ 一プル 2 0質量部 (比較例 7 )、 フヱノ一ル榭脂プライォーフェン 5 5 9 2 2 0質量部 (比較例 8) に置換した以外は、 比較例 2と同様にして 自己融着性絶縁電線を製造した。 In Comparative Example 2, Cymel 3 70 40 parts by mass, Cymel 3 70 20 parts by mass (Comparative Example 6), Multifunctional isocyanate resin coronate AP staple 20 parts by mass (Comparative Example 7), phenol A self-bonding insulated wire was produced in the same manner as in Comparative Example 2 except that it was replaced with 5 5 9 2 20 parts by mass of cocoa priofen (Comparative Example 8).
表 1 table 1
卖施例  卖 Example
1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 ボリヒドロキシェ一亍ル樹脂 * 1 90 70 5ひ 50 50 50 50 50 35 20 50 50 50 50 50 ポリサルホン系樹脂 * 2 10 30 50 50 50 50 50 60 65 80 50 50 50 SO 50 エポキシ樹脂 *3 5 5 5 20 40 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 Polyhydroxyl resin * 1 90 70 5 50 50 50 50 50 50 35 20 50 50 50 50 50 Polysulfone resin * 2 10 30 50 50 50 50 50 60 65 80 50 50 50 SO 50 Epoxy resin * 3 5 5 5 20 40
2価イソシァネート * 4 20 35 10 20 20 40 20 20 10 20 40 20 20 尿素樹脂 *S 20 Divalent isocyanate * 4 20 35 10 20 20 40 20 20 10 20 40 20 20 Urea resin * S 20
ベンゾクアナミン樹脂 *6 20 Benzoquaamine resin * 6 20
ボリ亍トラフルォロエチレン 2 Polytetrafluoroethylene 2
可撓性 O 〇 O O O 0 0 o 0 O o O O O 厶 Flexible O ○ O O O 0 0 o 0 O o O O O 厶
o 0 O o O o o Δ 0 Δ o O Δ O 厶 o 0 O o O o o Δ 0 Δ o O Δ O 厶
( 1 00WG) A o Δ o O 0 o Δ 0 Δ 厶 O Δ O Δ(1 00 W G) A o Δ o O 0 o Δ 0 Δ 厶 O Δ O Δ
; S4、 ('删) o o 0 ; S4, ('删) o o 0
耐油性 ^AAt o o O o o o O o O o O O Oil resistance ^ AAt o o O o o o O o O o O O
i i ^v  i i ^ v
着性) Δ o 厶 o o 0 〇 厶 o 厶 厶 O 厶 O Δ Wearability) Δ o 厶 oo 0 〇 厶 o 厶 厶 O 厶 O Δ
Figure imgf000012_0001
Figure imgf000012_0001
(試験例) (Test example)
上記実施例、 比較例で得られた自己融着性絶縁電線の可撓性、 絶縁破 壊電圧、 融着性、 高温下の融着性及び耐油性を次の方法により測定し、 試験した。  The flexibility, insulation breakdown voltage, fusing property, fusing property at high temperature and oil resistance of the self-fusing insulated wires obtained in the above Examples and Comparative Examples were measured and tested by the following methods.
1 ) 可撓性  1) Flexibility
J I S C— 3 00 3により試験した。  Tested according to JISC—3003.
2) 絶縁破壊電圧  2) Dielectric breakdown voltage
前記 J I S C一 3 00 3により試験した。  Tested according to the above-mentioned JISC 1 300 3.
3) 融着性  3) Fusion property
NEMA MW 1 00 0 3. 5 7により試験した。 なお、 試料の融 着条件は、 1 6 0°C 2時間とした。 Tested according to NEMA MW 1 00 0 3.5 5 7. Note that sample melting The wearing conditions were 160 ° C for 2 hours.
4) 高温下の融着性  4) High temperature fusion
前記融着性と同一の方法により試験した。ただし、測定温度は 1 00°C i 疋し/こ 0 The test was performed by the same method as the above-mentioned fusion property. However, the measured temperature is 1 00 ° C i疋and / this 0
5) 耐油性  5) Oil resistance
ス-ソ 4 G S (商品名 ; 日本サン石油社製) に 2% (質量) の濃度で リン酸トリクレジル (和光純薬工業社製。 試薬特級) を添加した絶縁油 に、 各試料を浸漬し、 1 5 0°Cで 5 00時間加熱し、 各試料の絶縁破壌 電圧及ぴ融着性を前記の方法により測定し、各試料の耐油性を試験した。 また、 使用した絶縁油の外観を肉眼で観察し、 濁りの有無を確認した。 (評価基準)  Soak each sample in an insulating oil to which tricresyl phosphate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) is added at a concentration of 2% (mass) in Suso 4 GS (trade name; manufactured by Nippon Oil Corporation). The sample was heated at 150 ° C. for 500 hours, the insulation breakdown voltage and the fusing property of each sample were measured by the above-described methods, and the oil resistance of each sample was tested. In addition, the appearance of the insulating oil used was observed with the naked eye to check for turbidity. (Evaluation criteria)
•融着性 (室温)  • Fusibility (room temperature)
0 : 1 0 0 N以上、 △ : 8 0 N以上 1 0 0 N未満、 X : 8 0 N未満 •融着性 ( 1 0 0°C)  0: 1 0 0 N or more, △: 8 0 N or more, less than 1 0 0 N, X: less than 80 0 N • Fusability (1 0 0 ° C)
0 : 80 N以上、 △ : 6 0 N以上 8 0 N未満、 X : 6 0 N未満 •耐油性 (融着性)  0: 80 N or more, △: 60 N or more, less than 80 N, X: less than 60 N • Oil resistance (fusibility)
〇 : 8 0 N以上、 △ : 6 0 N以上 8 0 N未満、 X : 6 0 N未満、 ― : 測定不可能  ○: 80 N or more, △: 60 N or more, less than 80 N, X: less than 60 N, ―: Measurement not possible
(試験結果)  (Test results)
表 1に示す通り、本発明の自己融着性絶縁電線(実施例 1 1 5 )は、 いずれも可撓性は良好で、 絶縁油の外観も良好であり、 融着性も測定温 度及び絶縁油への浸漬の有無とは無関係に優れたものであった。  As shown in Table 1, all of the self-bonding insulated wires of the present invention (Example 1 1 5) have good flexibility, the appearance of the insulating oil is good, and the bonding property is also measured at the measurement temperature and It was excellent regardless of whether it was immersed in insulating oil.
一方、 比較例 1 8の自己融着性絶縁電線は、 絶縁油の外観が不良な もの (比較例 1 2 6 8)、 可撓性が劣化し、 室温における融着性が 極端に低下するもの (比較例 4)、 高温における融着性、 耐油性が極端に 低下するもの (比較例 3 5) が認められた。  On the other hand, the self-bonding insulated wire of Comparative Example 1 8 has a poor appearance of insulating oil (Comparative Example 1 2 6 8), and the flexibility deteriorates and the fusion property at room temperature decreases extremely. (Comparative Example 4), and those with extremely low fusibility and oil resistance at high temperatures (Comparative Example 3 5) were observed.
これらの試験結果から、 本発明の自己融着性絶縁電線は、 従来の自己 融着性絶縁電線には存在しない極めて優れた性能を有していることが明 らかになった。 産業上の利用可能性 From these test results, it has been clarified that the self-bonding insulated wire of the present invention has extremely excellent performance that does not exist in conventional self-bonding insulated wires. Industrial applicability
本発明の自己融着性絶縁電線は、 前記のとおり主として電気、 電子、 通信機器、 電装部品用コイル、 モーター等に使用されるエナメル線の用 途全般に利用可能である。  As described above, the self-bonding insulated electric wire of the present invention can be used for all applications of enameled wires mainly used in electric, electronic, communication equipment, coils for electrical components, motors and the like.

Claims

請求の範囲 The scope of the claims
1. 少なく とも分子量 2 0, 00 0以上のポリ ヒ ドロキシエーテル樹脂 及ぴポリサルホン系樹脂からなる樹脂基材、 並びに 1分子中に 2個の官 能基を有する架橋剤からなる樹脂塗料を有効成分として含有する熱硬化 型自己融着絶縁材が、 導体に直接又は他の絶縁皮膜を介して塗布焼付け られた自己融着性絶縁電線。 1. Effective resin base material made of polyhydroxy ether resin and polysulfone resin with molecular weight of at least 200,000 or more, and resin paint made of cross-linking agent with two functional groups in one molecule A self-bonding insulated electric wire in which a thermosetting self-bonding insulating material contained as a component is applied and baked directly on a conductor or through another insulating film.
2. 少なく とも分子量 2 0 , 00 0以上のポリ ヒ ドロキシエーテル樹脂 及びポリサルホン系樹脂からなる樹脂基材、 並びにエポキシ当量 1 , 02. A resin base material composed of a polyhydroxy ether resin and a polysulfone resin having a molecular weight of at least 200,000 or more, and an epoxy equivalent of 1, 0
00〜 5, 00 0のエポキシ樹脂及ぴ 1分子中に 2個の官能基を有する 架橋剤からなる樹脂塗料を有効成分として含有する熱硬化型自己融着絶 縁材が、 導体に直接又は他の絶縁皮膜を介して塗布焼付けられた自己融 着性絶縁電線。 A thermosetting self-fusing insulation material containing as an active ingredient an epoxy resin of 00 to 5,000,000 and a resin coating composed of a crosslinking agent having two functional groups in one molecule, either directly on the conductor or other Self-bonding insulated wire coated and baked through an insulating film.
3. ポリサルホン系樹脂が、 ポリサルホン樹脂又はポリサルホン樹脂の 部分構造を有する樹脂である請求項 1又は請求項 2に記載の自己融着性 絶縁亀 /1¾0 3. The polysulfone-based resin is a polysulfone resin or a resin having a partial structure of a polysulfone resin. The self-bonding insulating turtle / 1¾ 0 according to claim 1 or claim 2.
4. 1分子中に 2個の官能基を有する架橋剤が、 2価の安定化したイソ シァネート、 尿素樹脂、 ベンゾグアナミン樹脂、 2価の有機酸又は 2価 'の有機酸の誘導体である請求項 1又は請求項 2に記載の自己融着性絶縁 電線。 4. The cross-linking agent having two functional groups in one molecule is a divalent stabilized isocyanate, urea resin, benzoguanamine resin, divalent organic acid or derivative of a divalent organic acid. The self-bonding insulated wire according to claim 1 or claim 2.
5. ポリ ヒ ドロキシエーテル樹脂とポリサルホン系樹脂との質量比が、 不揮発分換算で 20/8 0〜 9 0/ 1 0であり、 ポリ ヒ ドロキシエーテ ル樹脂とポリサルホン系樹脂の合計量 1 00質量部 (不揮発分換算) に 対する、 1分子中に 2個の官能基を有する架橋剤量が 1 0〜40質量部 (不揮発分換算) である請求項 1又は 2記載の自己融着性絶縁電線。 5. The mass ratio of the polyhydroxy ether resin to the polysulfone resin is 20/8 0 to 90/100 in terms of nonvolatile content, and the total amount of the polyhydroxy ether resin and the polysulfone resin is 100 mass. The self-bonding insulated wire according to claim 1 or 2, wherein the amount of the crosslinking agent having two functional groups in one molecule is 10 to 40 parts by mass (in terms of non-volatile content) with respect to parts (in terms of non-volatile content). .
6. ポリ ヒ ドロキシエーテル樹脂とポリサルホ.ン系樹脂との質量比が、 不揮発分換算で 2 0/ 8 0〜 9 0/ 1 0であり、 ポリ ヒ ドロキシエーテ ル樹脂とポリサルホン系樹脂の合計量 1 0 0質量部 (不揮発分換算) に 対する、 1分子中に 2個の官能基を有する架橋剤量が 1 0 ~4 0質量部6. The mass ratio of the polyhydroxy ether resin to the polysulfone resin is 20/80 to 90/100 in terms of non-volatile content, and the total amount of the polyhydroxyether resin and the polysulfone resin The amount of cross-linking agent having two functional groups in one molecule is 10 to 40 parts by mass with respect to 100 parts by mass (in terms of nonvolatile content)
(不揮発分換算) であり、 ポリ ヒ ドロキシエーテル樹脂とポリサルホン 系樹脂の合計量 1 0 0質量部 (不揮発分換算) に対する、 エポキシ樹脂 量が 5〜 4 0質量部である請求項 2記載の自己融着性絶縁電線。 The amount of the epoxy resin is 5 to 40 parts by mass with respect to the total amount of 100 parts by mass (in terms of non-volatiles) of the polyhydroxy ether resin and the polysulfone-based resin. Self-bonding insulated wire.
7. 請求項 1〜 6のいずれか 1項記載の自己融着性絶縁電線用である自 己融着性絶縁材。 7. A self-bonding insulating material for a self-bonding insulated wire according to any one of claims 1 to 6.
PCT/JP2004/010583 2004-07-16 2004-07-16 Self-adhesive insulated wire WO2006008827A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/010583 WO2006008827A1 (en) 2004-07-16 2004-07-16 Self-adhesive insulated wire
JP2006524534A JP4021926B2 (en) 2004-07-16 2004-07-16 Self-bonding insulated wire
CNB2004800008563A CN100350514C (en) 2004-07-16 2004-07-16 Self-bonding coil line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/010583 WO2006008827A1 (en) 2004-07-16 2004-07-16 Self-adhesive insulated wire

Publications (1)

Publication Number Publication Date
WO2006008827A1 true WO2006008827A1 (en) 2006-01-26

Family

ID=35784963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010583 WO2006008827A1 (en) 2004-07-16 2004-07-16 Self-adhesive insulated wire

Country Status (3)

Country Link
JP (1) JP4021926B2 (en)
CN (1) CN100350514C (en)
WO (1) WO2006008827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067934A (en) * 2007-09-14 2009-04-02 Hitachi Magnet Wire Corp Heat-resistant self-fusing paint and heat-resistant self-fusing enamel wire
JP2010108758A (en) * 2008-10-30 2010-05-13 Sumitomo Electric Wintec Inc Phenoxy resin insulating varnish and insulation wire using it
CN115197634A (en) * 2022-08-05 2022-10-18 金杯电工电磁线有限公司 High-temperature self-adhesive paint and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512167A (en) * 1978-07-13 1980-01-28 Fujikura Ltd Self-bonding insulated wire
JPS5830003A (en) * 1981-07-24 1983-02-22 住友電気工業株式会社 Self-fusion-adhesive insulated wire
JPS60161466A (en) * 1984-01-30 1985-08-23 Sumitomo Electric Ind Ltd Self-fusible insulated wire and coil thereof
JPS60243172A (en) * 1984-05-17 1985-12-03 Sumitomo Electric Ind Ltd Self-fusible insulated wire and coil thereof
JPH01187708A (en) * 1988-01-20 1989-07-27 Hitachi Cable Ltd Twisting deformation resistant self-fusing enamel wire
JPH02220310A (en) * 1989-02-20 1990-09-03 Hitachi Cable Ltd Heat-proof self welding enameled wire
JPH0785728A (en) * 1993-09-13 1995-03-31 Showa Electric Wire & Cable Co Ltd Self-fusible insulated electric wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817060B2 (en) * 1989-08-18 1996-02-21 株式会社日立製作所 Electrically insulated coil, rotating electric machine, and manufacturing method thereof
US6066806A (en) * 1997-08-19 2000-05-23 The Furukawa Electric Co., Ltd. Insulated wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512167A (en) * 1978-07-13 1980-01-28 Fujikura Ltd Self-bonding insulated wire
JPS5830003A (en) * 1981-07-24 1983-02-22 住友電気工業株式会社 Self-fusion-adhesive insulated wire
JPS60161466A (en) * 1984-01-30 1985-08-23 Sumitomo Electric Ind Ltd Self-fusible insulated wire and coil thereof
JPS60243172A (en) * 1984-05-17 1985-12-03 Sumitomo Electric Ind Ltd Self-fusible insulated wire and coil thereof
JPH01187708A (en) * 1988-01-20 1989-07-27 Hitachi Cable Ltd Twisting deformation resistant self-fusing enamel wire
JPH02220310A (en) * 1989-02-20 1990-09-03 Hitachi Cable Ltd Heat-proof self welding enameled wire
JPH0785728A (en) * 1993-09-13 1995-03-31 Showa Electric Wire & Cable Co Ltd Self-fusible insulated electric wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067934A (en) * 2007-09-14 2009-04-02 Hitachi Magnet Wire Corp Heat-resistant self-fusing paint and heat-resistant self-fusing enamel wire
JP2010108758A (en) * 2008-10-30 2010-05-13 Sumitomo Electric Wintec Inc Phenoxy resin insulating varnish and insulation wire using it
CN115197634A (en) * 2022-08-05 2022-10-18 金杯电工电磁线有限公司 High-temperature self-adhesive paint and preparation method thereof

Also Published As

Publication number Publication date
JPWO2006008827A1 (en) 2008-05-01
JP4021926B2 (en) 2007-12-12
CN100350514C (en) 2007-11-21
CN1701394A (en) 2005-11-23

Similar Documents

Publication Publication Date Title
JP3980605B2 (en) Compressor drive motor
JP5476649B2 (en) Insulated wire
JPH05320610A (en) Adhesive composition, production of adhesive film therefrom, and connection of electrode and metal foil with adhesive prepared using the same
WO2017094789A1 (en) Self-fusible insulated wire, coil and electrical/electronic device
WO2006008827A1 (en) Self-adhesive insulated wire
JP5326157B2 (en) Self-bonding insulated wire and compressor drive motor
JPWO2009048102A1 (en) Insulated wire, electric coil using the insulated wire, and motor
JP2017101197A (en) Polyamide-imide resin composition and paint
JP2001155551A (en) Insulated wire
JP5832735B2 (en) Heat-resistant self-bonding paint and heat-resistant self-bonding enameled wire
JP4201925B2 (en) Resin-sealed electronic / electrical parts and method for manufacturing the same
JP5467380B2 (en) Self-bonding insulated wire and compressor drive motor
JP2014167122A (en) Heat-resistant self-fusing coating and heat-resistant self-fusing enamel wire
JP2002265916A (en) Adhesive composition
JP2890279B2 (en) Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JPH055085A (en) Adhesive composition for flame-retardant flexible copper-clad laminate
JP4794719B2 (en) Self-bonding insulated wire
JP2890280B2 (en) Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JPH08321219A (en) Insulated electric wire with self-fusion property
JPH08190810A (en) Self fusing insulated wire
JPH0773746A (en) Self-fusional insulated electric wire
JPH0693329B2 (en) Self-fusing magnet wire that can be soldered with F type and has an inner layer coating for preventing lowering of thermal softening temperature
JPS63226816A (en) Self-melting insulated wire
JPH11297124A (en) Heat resistant self melt-bonding enameled wire
JPH03241608A (en) Self-fusing insulated wire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006524534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048008563

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase