JP5418222B2 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
JP5418222B2
JP5418222B2 JP2009506162A JP2009506162A JP5418222B2 JP 5418222 B2 JP5418222 B2 JP 5418222B2 JP 2009506162 A JP2009506162 A JP 2009506162A JP 2009506162 A JP2009506162 A JP 2009506162A JP 5418222 B2 JP5418222 B2 JP 5418222B2
Authority
JP
Japan
Prior art keywords
substrate
waveguides
waveguide
branch
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009506162A
Other languages
English (en)
Other versions
JPWO2008117449A1 (ja
Inventor
崇 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2008117449A1 publication Critical patent/JPWO2008117449A1/ja
Application granted granted Critical
Publication of JP5418222B2 publication Critical patent/JP5418222B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/14Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 asymmetric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/07Materials and properties poled
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、光通信システムにおいて用いて好適の光デバイスに関するものである。
ニオブ酸リチウム(LiNbO3:リチウムナイオベート)やLiTaO3からなる基板などの電気光学結晶を用いた光導波路デバイスは、結晶基板上の一部に金属膜を形成し熱拡散させる、あるいはパターニング後に安息香酸中でプロトン交換するなどして光導波路を形成した後、光導波路近傍に電極を設けることで形成される。
そして、このような光導波路を形成した電気光学結晶に、光導波路中を伝搬する光に屈折率変化を与えるための電極を形成することで、光変調を行なう光デバイスとして構成することができる。尚、このように電極が形成される光デバイスにおいては、一般的には、電極による光の吸収を防止するために、バッファ層としてのSiO2などの絶縁膜を電極と基板との間に形成する。
このようなニオブ酸リチウム(LiNbO3)などの強誘電体材料を用いた電気光学変調器は、光通信システムをはじめとして既に実用化されており、光波を例えば40GHz程度の高周波電気信号で変調できる高速光変調器も市販化が進められている。
図23は、上述の光変調器として用いられる一般的な光デバイスを示す模式的上視図であり、図24は、図23に示す光デバイス100のAA′断面図である。この図23,図24に示す光デバイス100においては、例えばリチウムナイオベートからなるZカットの基板(以下、単にLN基板と記載する)101にマッハツェンダ干渉計(MZI)をなすマッハツェンダ型光導波路102が形成され、バッファ層103を介して信号電極104および接地電極105が形成されている。マッハツェンダ型光導波路102は、2本の枝導波路102b−1,102b−2をそなえるとともに、これら2本の枝導波路102b−1,102b−2の端部に接続されて伝搬光を分岐/合流させるY字導波路102a,102cをそれぞれそなえている。
また、信号電極104はマッハツェンダ型光導波路102をなす2本の枝導波路102b−1,102b−2のうちの一方の上部を辿る箇所を含んで形成され、接地電極105は、基板101面上において信号電極104を所定間隔を置いて包囲するように形成される。そして、例えば信号電極104から電圧を印加することで、枝導波路102b−1,102b−2を伝搬する光の間で位相差をシフトさせて、合流導波路をなすY字導波路102cからオンオフの強度変調がなされた光信号を出力することができる。
図27は信号電極104に印加する電圧に対する光出力レベルの変化(光変調強度曲線)を示す図である。この図27に示すように、印加する電圧に対して正弦波状に光出力レベルが変動するようになっている。そして、例えば、予め所定の動作点電圧をV0に設定しておき、この動作点を基準として図中Rの範囲で印加電圧を変化させることにより光変調を行なうことができるようになる。
このような光変調器をなす光デバイス100においては、上述の動作点電圧が温度変化により変動する、いわゆる温度ドリフトと呼ばれる現象が、変調特性に影響を及ぼすことが知られている。ここで、温度ドリフトについて説明する。図23に示すような光デバイス100においてY字導波路102a,102cが、3dBの分岐カプラとして構成され、マッハツェンダ型光導波路102を伝搬する過程で光損失が生じないと仮定すると、出力光強度Sは式(1)のように表すことができる。
Figure 0005418222
ここで、φ2、φ1はそれぞれ枝導波路102b−1,102b−2での光の位相変化であり、それぞれ式(2)のように表すことができる。
Figure 0005418222
ここで、n0は基板の屈折率、rは電気光学係数、Eは導波路に加わる電界強度であり電極への印加電圧に比例する、Lは電極と導波路との作用長である。つまり、この図23に示すMZI型光変調器としての光デバイス100では、光強度は2本の導波路102b−1,102b−2間の屈折率差に応じて変化するといえる。前述したように、光変調器はある光強度曲線の所定の動作点を設定しておき、それを基準にして光変調を行なう。ここで、2本の導波路102b−1,102b−2間に温度により屈折率差が発生したとする。この場合には、所定の動作点に動かすための電圧をVb、変調電圧をVsとすると、式(1)に示す光強度Sを表す式は、式(3)のように表すことができる。
Figure 0005418222
ここで、A,Bは比例定数、Δn(T)は温度により2本の導波路102b−1,102b−2間に発生する屈折率差である。一般的にVbはDC電圧であり、Vsは変調器を駆動するための高速のRF信号である。温度によりΔn(T)が発生すると、Vbにより設定していた動作点の位置がずれることを意味する。このように、温度ドリフトは、温度変動に依存して動作点位置がずれることをいうものであり、その原因の一つは、マッハツェンダ型光導波路2をなす枝導波路102b−1,102b−2間で温度による屈折率差が生じることにある。
上述の温度ドリフトが発生する要因としては、例えばLiNbO3の様な焦電効果を持つ材料を基板として用いた場合において温度により発生する電荷により2本の導波路に作用する非対称な電圧による第1要因と、電極と基板との熱膨張係数差による応力に起因する第2要因と、が知られている。
下記の特許文献1および2においては、上述の第1要因による温度ドリフトを解消させるための技術について記載されている。即ち、電極間に接触するように導電膜等を形成することで電荷を対称化させて、温度変化に対して基板材料に発生する電荷により光導波路を貫く電界を2本の導波路で均等化しようとするものである。
また、下記の特許文献3〜5においては、上述の第2要因による温度ドリフトを解消させるための技術について記載されている。光変調器の電極は高速動作させるために、数10μmの高さまで高くする必要がある。そのため電極と基板の熱膨張差により大きな応力が発生して、温度ドリフトの原因となるが、これらの特許文献3〜5に記載された技術においては、電極構造に関してMZIを構成する2本の光導波路に対して、なるべく対称に近い形に形成することで電極の応力起因による温度ドリフトを低減しようとしている。
特公平5―78016号公報 特許第2873203号公報 特開2001−255501号公報 特開2002−122834号公報 特開2006−84537号公報
しかしながら、例えば図25に示すMZIを構成する光導波路102′のように、基板101の端側に偏在して形成する必要がある等の事情が存在する場合には、温度に対するチップ歪(基板101反りによる歪み)またはバッファ層103と基板101の熱膨張係数差による応力Sにより、MZIを構成する2本の光導波路102b−1,102b−2に異なる応力が働き温度ドリフトが発生する。
たとえば、文献「土居正治他, 通信学会2004春, C-4-43」等に記載されているように、単一基板上に(1チップに)2つの光変調器を混在させる場合には、各光変調器構成は、基板の両端に偏在することになる。このような温度ドリフトに対しては、上述の特許文献1〜5に記載された技術を適用して補償することが困難である。
図26は図25のAA′断面図である。図25に示す基板101の温度変動によって発生する応力は、概略として例えば図26のSに示す方向で発生する。チップ端(基板101の幅方向端部側)の導波路ほど強い応力を受けるため、枝導波路102b−2よりもチップ端側の枝導波路102b−1が比較的強い応力を受けることになる。このように受ける応力の大きさの相違により、発生する屈折率変化は非対称になるため、温度ドリフトが発生することになる。
そこで、本発明の目的の一つは、光導波路を形成すべき基板上での配置位置によらず、応力発生に起因した屈折率偏差を補償し、温度ドリフトを補償することにある。
なお、上記目的に限らず、後述する発明を実施するための最良の形態に示す各構成により導かれる効果であって、従来の技術によっては得られない効果を奏することも本発明の他の目的の1つとして位置づけることができる。
(1)このため、本発明の光デバイスは、電気光学効果を有する基板と、該基板に並列配置して形成された複数の光導波路と、該基板の一部に形成され該基板における分極特性が反転された分極反転領域と、をそなえ、該分極反転領域と、該基板のうちの該分極反転領域以外の領域と、の境界は、該境界で生じる格子歪みに起因して温度変動により生じる応力と、該格子歪み以外の要因に起因して温度変動により生じる応力と、の和を、該複数の光導波路間で実質的に等しくするように配置されたことを特徴としている。
(2)また、好ましくは、該格子歪み以外の要因に起因して温度変動により生じる応力は、該基板の上部に形成された部材と該基板との間の熱膨張係数の差に起因して温度変動により生じる応力、及び、該基板の反りに起因して温度変動により生じる応力の少なくとも1つを含むこととしてもよい。
(3)さらに、上記(2)において、該複数の光導波路それぞれが受ける前記応力が、光伝搬方向座標に亘って実質的に一様となるように、前記境界が配置されていることとすることもできる。
(4)また、上記(2)において、該複数の光導波路それぞれが受ける前記応力が、光伝搬方向座標に亘って互いに異なるパターンで変動分布するように、前記境界が配置されていることとすることもできる。
(5)さらに、上記(1)において、該複数の光導波路は、温度変動に応じて該基板自身に生じる応力を互いに不均等に受けるように形成されたこととしてもよい。
(6)また、上記(1)において、該基板に、入力光を複数に分岐しうる分岐導波路と該分岐導波路で分岐された光をそれぞれ伝搬しうる複数の枝導波路と該複数の枝導波路からの光を合流させる合流導波路とをそなえてなるマッハツェンダ型光導波路が形成される一方、該複数の導波路は、該マッハツェンダ型光導波路をなす複数の枝導波路であることとすることもできる。
(7)さらに、上記(1)において、該基板をリチウムナイオベートとすることができる。
(8)また、上記(1)において、該複数の光導波路を結晶のX軸方向、またはY軸方向に沿って形成することができる。
)また、上記(2)において、前記基板の上部に形成された部材は、前記複数の光導波路を伝搬する光に屈折率差を与えるための電極と、該電極と該基板との間に介在するバッファ層と、を含み、前記境界は、前記電極又は前記バッファ層と前記基板との間の熱膨張係数の差に起因して温度変動により生じる応力と、前記境界で生じる格子歪みに起因して温度変動により生じる応力と、の和を、該複数の光導波路間で実質的に等しくするように配置されたこととすることもできる
このように、本発明によれば、分極反転領域における分極特性が反転されていない他の領域に対する境界の輪郭が、複数の導波路が受ける歪み値の光伝搬方向座標に亘った累積値が複数の導波路間で実質的に等しくなるように構成されているので、光導波路を形成すべき基板上での配置位置によらず、温度変動による各導波路の屈折率偏差を補償し、温度ドリフトを補償することができる利点がある。
本発明の第1実施形態にかかる光デバイスを示す模式的上視図である。 (a)は図1に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 本発明の第1実施形態の作用効果について説明するための図である。 光導波路の形成方向および分極反転の方向についての態様を説明するための図である。 (a)は図4(c),図4(d)の構成における動作点変動特性を示す図であり、(b)は図4(a),図4(b)の構成における動作点変動特性を示す図である。 本発明の第1実施形態の第1変形例にかかる光デバイスを示す図である。 (a)は図6に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 本発明の第1実施形態の第2変形例にかかる光デバイスを示す図である。 (a)は図8に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 (a)は枝導波路が受けるチップ歪みによる成分を示す図であり、(b)は枝導波路が受ける界面格子歪みによる成分を示す図である。 (a)は枝導波路が受けるチップ歪みによる成分を示す図であり、(b)は枝導波路が受ける界面格子歪みによる成分を示す図である。 本発明の第1実施形態の第3変形例にかかる光デバイスを示す図である。 (a)は図12に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 (a),(b)はともに第1実施形態の第3変形例にかかる光デバイスとして試作されたものによる温度ドリフトの低減効果を確認するための実験結果を示す図である。 本発明の第1実施形態の第4変形例にかかる光デバイスを示す図である。 (a)は図15に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 本発明の第1実施形態の第5変形例にかかる光デバイスを示す図である。 (a)は図17に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 本発明の第2実施形態にかかる光デバイスを示す図である。 (a)は図19に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 本発明の第3実施形態にかかる光デバイスを示す図である。 (a)は図21に示す光デバイスの断面図であり、(b)はある低温値の時における基板における(a)の断面箇所に発生する歪の一例を模式的に示す図である。 一般的な光デバイスを示す模式的上視図である。 図23に示す光デバイスの断面図である。 従来技術を説明するための図である。 従来技術を説明するための図である。 従来技術を説明するための図である。
符号の説明
1,1A〜1E,11,21 光デバイス
2 基板
3,231,232 マッハツェンダ型光導波路
3a,231a,232a 分岐導波路
3b−1,3b−2,231b−1,231b−2,232b−1,232b−2 枝導波路
3c 合流導波路
4 バッファ層
5 電極
5a,251a,252a 信号電極
5b,25b 接地電極
6,6A〜6C,6E,16,26 分極反転領域
7,17,27 他の領域
8a〜8c 溝
233 湾曲導波路
以下、図面を参照することにより、本発明の実施の形態について説明する。
なお、本発明は、以下の実施の形態に限定されるものではない。又、上述の本願発明の目的のほか、他の技術的課題,その技術的課題を解決する手段及び作用効果についても、以下の実施の形態による開示によって明らかとなる。
〔A〕第1実施形態の説明
図1は本発明の第1実施形態にかかる光デバイス1を示す模式的上視図であり、図2(a)は図1に示す光デバイス1のAA′断面図である。この図1,図2(a)に示す光デバイス1は、電気光学効果を有する基板としての例えばZカットのLN基板2と、LN基板2に形成されたマッハツェンダ型光導波路3と、LN基板2の上部にバッファ層4(図2(a)参照)を介して形成された電極5と、をそなえている。
マッハツェンダ型光導波路3は、LN基板2における幅方向について一方側(図中上部領域側)に偏在して形成されて、入力光を複数に分岐しうる分岐導波路3aと分岐導波路3aで分岐された光をそれぞれ伝搬しうる複数の枝導波路(第1枝導波路3b−1および第2枝導波路3b−2)と複数の枝導波路3b−1,3b−2からの光を合流させる合流導波路3cとをそなえてなるものである。
なお、枝導波路3b−1,3b−2としては、光伝搬方向がともにLN基板2におけるX軸又はY軸(本実施形態においてはX軸)に実質的に平行する方向となるように形成される。又、本実施形態においては、一例として分岐導波路3aでの分岐数、および枝導波路3b−1,3b−2の本数を2としている。換言すれば、2本の枝導波路3b−1,3b−2は、LN基板2に並列配置して形成された2本の光導波路である。
さらに、電極5は、2つの枝導波路3b−1,3b−2を伝搬する光に屈折率差を与えるためのものであり、2つのうちの一方の枝導波路3b−1の形成位置の上部を辿る部分を含む信号電極5aと、信号電極5aを所定の間隔を置いて挟むように形成された接地電極5bと、をそなえている。
また、光デバイス1は、LN基板2の一部に形成されてLN基板2における分極特性が反転された分極反転領域6をそなえている。尚、この分極反転領域6については、図1中においては点線で囲んだ領域として図示し、図2(a)においては網掛け領域として図示している。第1実施形態にかかる光デバイス1における分極反転領域6は、この図1又は図2(a)に示すように、マッハツェンダ型光導波路3の形成領域を収容している。換言すれば、マッハツェンダ型光導波路3がLN基板2における分極反転領域6内に形成されるようになっている。
そして、図1,図2(a)に示すように、分極反転領域6における分極特性が反転されていない(LN基板2における)他の領域7に対する境界の輪郭としては、並列配置における両外側の枝導波路3b−1,3b−2にそれぞれ一定の間隔L1,L2をあけた境界面R(図1における境界線範囲R1−R2参照)を含んでいる。換言すれば、境界面Rは、互いに平行する枝導波路3b−1,3b−2に一定の間隔をあけて平行しているといえる。ここで、枝導波路3b−1と境界線範囲R1−R2との間の間隔はL1であり、枝導波路3b−2と境界線範囲R1−R2との間の間隔は、L1よりも小さいL2である。
ここで、本願発明者は、この図1に示すように、枝導波路3b−1,3b−2に沿って基板2の分極特性が反転された分極反転領域6を形成すると、この分極反転界面(境界面R)より発生する格子歪が、マッハツェンダ型光導波路3を構成する2つの枝導波路3b−1,3b−2に対して温度に依存して異なる屈折率変化を与え、温度ドリフト成分を発生させうることを見出した。これは、境界面Rにおける格子の不整合を起因とする歪みが、温度変化により増大、緩和することにより発生すると考えられる。
すなわち、ZカットのLN基板2においては、枝導波路3b−1,3b−2を結晶のX軸方向に平行するように形成された場合には、分極反転領域6と境界面Rを挟んだ他の領域7とでは、基板2面に平行で枝導波路3b−1,3b−2の形成方向には垂直なY軸方向での結晶方位(+Y)が互いに反転した向きとなるが、このY軸方向での結晶方位の反転によって、温度に依存した界面歪みが生じるようになっている。そして、この界面歪みに起因する応力が枝導波路3b−1,3b−2に及ぶと、枝導波路3b−1,3b−2の屈折率は変化するようになっているのである。
そして、境界面Rにおける格子歪みによって生じる基板2内での歪み分布は、境界面Rからの距離に応じて変化するようになっている。そこで、境界面Rの2本の枝導波路3b−1,3b−2に対する距離が調整された分極反転領域6を形成することで、境界面Rにおける格子歪みによって生じる枝導波路3b−1,3b−2に及ぶ歪み成分と、他の要因によって基板2に生じる歪み要素とあわせた屈折率変化が、枝導波路3b−1,3b−2間で均等化させることができるようになっている。
図2(b)は、一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示している。この図2(b)に示すように、低温時においては上述の他の要因による歪み要素として基板2を縮めるチップ歪B1が発生することを想定できる。このチップ歪みB1は、例えば光デバイス1が図示しない筐体に収納される場合において、その筐体自身が基板2よりも熱膨張係数の大きいときや、筐体に光デバイス1を固定する接着剤のほか、バッファ層4(図2(a)参照)が、基板2よりも熱膨張係数が大きい場合などに生じうるものである。
特に図1に示すようにマッハツェンダ型光導波路3が基板2の幅方向端部側に偏在する場合には、このチップ歪みB1は、2本の枝導波路3b−1,3b−2に対して不均等に及ぶようになっている。このため、枝導波路3b−1,3b−2には、上述のごとき不均等に及ぶチップ歪みの影響を受けて屈折率に差異が生じることになるため、前述した動作点電圧の温度ドリフトの発生につながる。
これに対し、第1実施形態にかかる光デバイス1においては、上述のごとき分極反転境界面Rが形成されているので、図2(b)に示すようなチップ歪みB1が生じる当該低温時においては、B2に示すような界面歪みを生じさせることができる。この図2(b)に示すように、格子歪みの大きさ(または格子歪みを招く応力分布)が、境界面Rからの距離に応じて変化する。
換言すれば、界面格子歪みB2は、境界面Rと枝導波路3b−1,3b−2との距離L1,L2(界面距離)を調整することで、その大きさを自由に設計することが可能である。そこで、各枝導波路3b−1,3b−2に及ぶ歪み成分B1,B2を加算した値が、互いに等しくなるように境界面Rを設定することで、枝導波路3b−1,3b−2で与える屈折率差を実質的になくすことができるようになる。
第1実施形態においては、境界面Rを枝導波路3b−2近傍にのみ形成して、格子歪みによる屈折率変動が実質的に及ぶ枝導波路を枝導波路3b−2のみとする一方、枝導波路3b−1には格子歪みが及ばないようにL1が設定されている(又は枝導波路3b−1,3b−2の間隔が設定されている)。そして、枝導波路3b−2に対する格子歪みの成分B2による屈折率変動により、歪み成分B1と合わせた屈折率変動を、温度によらず枝導波路3b−1,3b−2間で均等に受けられるようにしている。
なお、図2(b)においては、AA′断面箇所について着目して歪み分布を示しているが、枝導波路3b−1,3b−2と境界面Rとの距離はそれぞれ実質的には一定の距離L1,L2が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路3b−1,3b−2全体としての温度に応じた歪み量、又は屈折率偏差についても実質的に解消することができる。
図3は、図2(b)のB1に示すようなチップ歪みによる屈折率変化に対応する、温度変動に応じた動作点ドリフトの特性C1とともに、上述のL1,L2が調整された境界面Rを有する分極反転領域6を形成した場合の、図2(b)のB2に示すような格子歪みによる屈折率変化に対応する、温度変動に応じた動作点ドリフト(動作点シフト量)の特性C2を示し、更にC3は上述のC1およびC2双方を加味した温度変動に応じた動作点ドリフトの特性を示すものである。
この図3のC3に示すように、枝導波路3b−1,3b−2に対する距離が設定された境界面Rを有する分極反転領域6を構成することにより、この図3に示すように、分極格子歪みによる動作点シフト量とチップ歪みによる動作点シフト量の和を、温度によらず一定とすることができる。
そして、境界面Rを有する分極反転領域6により、前述の図2(b)に例示するように、各枝導波路3b−1,3b−2が受ける動作点シフトの量の和についても、温度によらず一様とすることができるので、各枝導波路3b−1,3b−2間での温度に依存した屈折率差Δn(T)の発生を抑制させることができるので、動作点ドリフトを補償することができるようになる。
換言すれば、チップ歪みによって枝導波路3b−1,3b−2に不均等に及ぶ応力を、界面格子歪みB2により枝導波路3b−1,3b−2に及ぼす応力で均等化させることができるので、MZIを構成する2本の枝導波路3b−1,3b−2に働く歪み(屈折率変化に比例する)を対称に近づけることができるのである。
すなわち、分極反転領域6における分極特性が反転されていない他の領域7に対する境界の輪郭(境界面R:R1−R2)は、枝導波路3b−1,3b−2が受ける歪み値の光伝搬方向座標に亘った累積値が、枝導波路3b−1,3b−2間で実質的に等しくなるように構成されている。
言い換えれば、温度変動に応じて境界Rで生じる格子歪みに起因して枝導波路3b−1,3b−2のそれぞれが受ける歪み成分と、上述の格子歪み以外の要因に起因した歪み成分と、による歪み値についての光伝搬方向座標に亘った累積値が、枝導波路3b−1,3b−2間で実質的に等しくなるように、境界Rを有する分極反転領域6が構成されている。第1実施形態においては、Δn(T)が発生する要因として、格子歪み以外に生じる歪みに起因した歪みとして、温度変動に応じて基板2自身の反りによって枝導波路3b−1,3b−2のそれぞれが受ける歪み成分を想定している。
そして、第1実施形態においては、分極反転領域6の輪郭(境界面R:R1−R2)、および枝導波路3b−1,3b−2の相対距離の設定により、境界Rで生じる格子歪みに起因した温度変動に応じた歪み成分と、基板2自身の反りで生じた歪み成分についての、光伝搬方向座標に亘った累積値が、枝導波路3b−1,3b−2間で実質的に等しくなるようにすることができる。
なお、枝導波路3b−1,3b−2と境界面Rとの距離はそれぞれ実質的には一定の距離L1,L2が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路3b−1,3b−2全体としての屈折率差についても累積を抑制できる。換言すれば、枝導波路3b−1,3b−2それぞれが受ける合計の歪み値が、光伝搬方向座標に亘って実質的に一様となるように、分極反転領域6の輪郭(境界面R:R1−R2)、および枝導波路3b−1,3b−2を構成することができる。
なお、上述の図1の構成の場合においては、上述の格子歪みが発生する場合として、分極反転領域6と境界面Rを挟んだ他の領域7とで基板2面に平行で枝導波路3b−1,3b−2の形成方向には垂直な方向での結晶方位(+Y)が互いに反転した向きとなる場合について詳述したが、このような格子歪みが発生する場面としては、他に図4(a)、図4(b)、図4(d)に示すような態様が考えられる。
図4(a)に示す態様においては、枝導波路3b−1,3b−2が結晶軸のY軸に沿って形成されるとともに(Y伝搬)、枝導波路3b−2近傍に形成された境界面Ra(界面YA)がY軸またはZ軸について反転する場合である。又、図4(b)に示す態様においては、枝導波路3b−1,3b−2が結晶軸のY軸に沿って形成されるとともに(Y伝搬)、枝導波路3b−1近傍に形成された境界面Rb(界面YB)がZ軸について反転する場合である。これらの場合においては、基板2表面上における光伝搬方向に直交する軸方向はX軸であり、結晶の形成方向については同方向となる。更に、図4(d)に示す態様においては、枝導波路3b−1,3b−2が結晶軸のX軸に沿って形成されるとともに(X伝搬)、枝導波路3b−2近傍に形成された境界面Rc(界面XB)が結晶方位(+Y)について向きあう場合である。
なお、図4(c)に示す態様は、上述の図1の構成と同様の場合であり、枝導波路3b−1,3b−2が結晶軸のX軸に沿って形成されるとともに(X伝搬)、枝導波路3b−1近傍に形成された境界面Rd(界面XA)がY軸またはZ軸について反転するものである。これらの図4(c),図4(d)の場合においては、基板2表面上における光伝搬方向に直交する軸方向はY軸であり、結晶の形成方向については互いに反対方向となる。
上述の図4(a)〜図4(d)のいずれの場合においても、枝導波路3b−1,3b−2のいずれか一方の近傍に境界面Ra〜Rdを形成して、枝導波路3b−1へ及ぼす境界面Ra〜Rdからの格子歪みによって、2本の枝導波路3b−1,3b−2間の屈折率変動が実質的に同等となるようにするものである。これらの図4(a)〜図4(d)のいずれの場合においても、境界面Ra〜Rdと、境界面Ra〜Rdに近接した枝導波路3b−1,3b−2との距離が近づくほど、当該枝導波路3b−1,3b−2が受ける格子歪みの影響が大きくなる。
すなわち、これら図4(a)〜図4(d)に示す構造で、2本の枝導波路3b−1,3b−2の片側の導波路近傍のみに分極界面である境界面Ra〜Rdを形成し、界面距離(図1のL1又はL2参照)と温度変化における動作点変動量を測定することで、温度変化によりそれぞれの界面から発生する歪量を推定することができる。図5(a)は、図4(c),図4(d)の構成において、界面距離(L1,L2)に応じた、80℃〜-5℃の温度変化に対する動作点変動特性を示し、図5(b)は、図4(a),図4(b)の構成において、界面距離(L1,L2)に応じた、80℃〜-5℃の温度変化に対する動作点変動特性を示す。
ここで、図5(a)中、黒塗り菱形は、図4(c)の構成(界面XAの場合)における界面距離L2に応じた動作点変動特性を示し、黒塗り四角は、図4(d)の構成(界面XBの場合)における界面距離L1に応じた動作点変動特性を示す。又、図5(c)中、黒塗り菱形は、図4(a)の構成(界面YAの場合)における界面距離L2に応じた動作点変動特性を示し、黒塗り四角は、図4(d)の構成(界面YBの場合)における界面距離L1に応じた動作点変動特性を示す。
動作点変動量は、2本の枝導波路3b−1,3b−2間での歪の差に比例するので、この場合は界面から作用する歪に比例する量とみなしてよい。この図5(a),図5(b)に示すように、界面から格子歪が作用することで、界面距離に反比例して歪量、即ち動作点変動量が小さくなっていることを確認できる。これらの図5(a),図5(b)に示すように、いずれの界面設定においても、枝導波路3b−1,3b−2に及ぼす歪の方向、動作点変動特性の界面距離に対する傾斜特性が同等であるため、いずれの界面設定においても、動作点変動が温度によらず一定となる光デバイスとして構成することができる。
このように、本発明の第1実施形態によれば、分極反転領域6における分極特性が反転されていない他の領域7に対する境界の輪郭(境界面R:R1−R2)が、枝導波路3b−1,3b−2が受ける歪み値の光伝搬方向座標に亘った累積値が枝導波路3b−1,3b−2間で実質的に等しくなるように構成されているので、光導波路を形成すべき基板上での配置位置によらず、温度ドリフト、特に基板2と基板2に接触する他の部材との間の熱膨張係数差等による応力発生に起因した温度ドリフトを補償することができる利点がある。
〔A1〕第1実施形態の第1変形例
図6は本発明の第1実施形態の第1変形例にかかる光デバイス1Aを示す図であり、図7(a)は図6に示す光デバイス1AのAA′断面図である。この図6,図7(a)に示す光デバイス1Aは、前述の図1に示すものに比して、分極反転領域6Aの形成領域が異なっており、その他の構成については基本的に同様である。尚、図6,図7(a)中、図1と同一の符号はほぼ同様の部分を示している。即ち、この図6に示す光デバイス1Aにそなえられる分極反転領域6Aは、マッハツェンダ型光導波路3の形成領域から外れて形成されるとともに、境界面RAとして、並列配置される枝導波路3b−1,3b−2における一方の枝導波路3b−2の外側に一定の間隔をあけた線範囲RA1−RA2を含んでいる。
この図6に示す光デバイス1Aのように、分極反転領域6Aがマッハツェンダ型光導波路3の外側の場合でも、界面格子歪みB2の大きさは、界面距離が大きくなるに従い小さくなる。図7(b)は一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B1は低温時のチップ歪み(基板2そのものの歪み)の分布を、B2は界面格子歪みの分布を示す。
この図7(b)に示すように、第1実施形態の場合と同様、基板2そのものの歪みB1とあわせて、各枝導波路3b−1,3b−2が受ける歪み量を均等化させることができるので、温度ドリフトを低減させることができる。そして、図7(b)においては、AA′断面箇所について着目して歪み分布を示しているが、枝導波路3b−1,3b−2と境界面RAとの距離はそれぞれ実質的には一定の距離L1,L2が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路3b−1,3b−2全体としての、温度に応じた歪み量、又は屈折率偏差についても実質的に解消することができ、第1実施形態の場合と同様の利点を得ることができる。
また、分極反転領域6Aがマッハツェンダ型光導波路3の外側にあるので、変調特性への影響を気にせずに界面距離、界面作用長(格子歪みが枝導波路3b−1,3b−2に対する屈折率変動として影響を与えうる導波路長さ)を自由に設計できる利点もある。
〔A2〕第1実施形態の第2変形例の説明
図8は本発明の第1実施形態の第2変形例にかかる光デバイス1Bを示す図であり、図9(a)は図8に示す光デバイス1BのAA′断面図である。この図8,図9(a)に示す光デバイス1Bは、前述の図1,図6に示すものに比して、分極反転領域6Bの形成領域が異なっており、その他の構成については基本的に同様である。尚、図8,図9(a)中、図1と同一の符号はほぼ同様の部分を示している。
すなわち、この図8,図9(a)に示す光デバイス1Bにそなえられる分極反転領域6Bは、2本の枝導波路3b−1,3b−2に挟まれた領域に形成されるとともに、分極反転されていない他の領域7との境界として、第1枝導波路としての枝導波路3b−1側に光伝搬方向に沿って近接した第1線範囲RB1とともに、第2枝導波路としての枝導波路3b−2側に光伝搬方向に沿って近接した第2線範囲RB2をそなえている。
さらに、第1線範囲RB1は、光伝搬方向の上流側から下流側にわたり枝導波路3b−1との距離が変動する形状を有する一方、第2線範囲RB2は前記光伝搬方向の上流側から下流側にわたり枝導波路3b−2との距離が一定する形状を有している。
この図8に示す光デバイス1Bのように、分極反転領域6Bがマッハツェンダ型光導波路3をなす枝導波路3b−1,3b−2に挟まれた箇所に形成される場合には、図9(b)に示すように、2つの界面をなす線範囲RB1,RB2による界面格子歪みB21,B22が、枝導波路3b−1,3b−2の双方に影響を与えるようになる。そして、この場合においても、各線範囲RB1,RB2が枝導波路3b−1,3b−2に与える歪み界面格子歪みB21,B22の大きさは、界面距離が大きくなるに従い小さくなる。尚、図9(b)は一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B1は低温時のチップ歪み(基板2そのものの歪み)の分布を、B21,B22は界面格子歪みの分布を示す。
図10(a),図10(b)は、ある温度変動幅により導波路位置に応じて枝導波路3b−1が受ける歪み量について、チップ歪み(B1)による成分と界面格子歪みによる成分とに分けて示すものであり、図10(a)はチップ歪み(B1)による歪み量を、図10(b)は界面格子歪みによる歪量を、それぞれ示している。同様に、図11(a),図11(b)は、ある温度変動幅により導波路位置に応じて枝導波路3b−2が受ける歪み量について、チップ歪み(B1)による成分と界面格子歪みによる成分とに分けて示すものであり、図11(a)はチップ歪み(B1)による歪み量を、図11(b)は界面格子歪みによる歪量を、それぞれ示している。
ここで、通常基板2の長手方向に沿って枝導波路3b−1,3b−2は形成されることから、基板2のチップ歪み(B1)による歪みは、枝導波路3b−1,3b−2による光伝搬方向の垂直方向(基板2の幅方向)に、枝導波路3b−1,3b−2での伝搬位置(流域)によらずに一様な歪みが生じることを想定できる。このとき、枝導波路3b−1は枝導波路3b−2よりも基板端部に近い位置に形成されるので、図10(a)に示す枝導波路3b−1が受けるチップ歪みの方が、図11(b)に示す枝導波路3b−2が受けるチップ歪みよりも大きくなる。
また、第1線範囲RB1は、光伝搬方向の上流側から下流側にわたり枝導波路3b−1との距離が変動する形状、即ち上流域では距離が比較的離れている、中流域では近接し、下流域では距離が離れるような輪郭を有している。これにより、枝導波路3b−1が受ける界面格子歪みの量についても、図10(b)に示すように、中流域で最も大きく、中流域から上流域および下流域に行くに従い減少するような分布を示す。
さらに、第2線範囲RB2は、光伝搬方向の上流側から下流側にわたり枝導波路3b−2との距離が一定する形状を有しているので、第2枝導波路3b−2が受ける界面格子歪みの量については、図11(b)に示すように各流域に亘り一定の歪み量となる。
なお、図10(b)および図11(b)においては、各枝導波路3b−1,3b−2には、それぞれ近接しない側の線範囲(枝導波路3b−1に対する第2線範囲RB2、枝導波路3b−2に対する第1線範囲RB1)からの界面格子歪みの成分については、近接する側の線範囲からの成分に比べて相対的に少ないものであるため、ここでは考慮から外している。
このとき、枝導波路3b−1,3b−2が受ける屈折率変化は、チップ歪み量と界面格子歪み量の累積的な和に比例することになる。従って、枝導波路3b−1が受ける屈折率変化は、図10(a)および図10(b)に示す歪み量の導波路進行方向に亘った範囲での面積の和に相当し、枝導波路3b−2が受ける屈折率変化は、図11(a)および図11(b)に示す歪み量の面積の和に相当する。
図8に示す光デバイス1Bにおいては、これらの面積の和が等しくなるように、分極反転領域6Bの各線範囲RB1,RB2(および各枝導波路3b−1,3b−2)が形成されているので、前述の第1実施形態の場合と同様に、温度ドリフト量を抑制させることができるようになる。
〔A3〕第1実施形態の第3変形例の説明
図12は本発明の第1実施形態の第3変形例にかかる光デバイス1Cを示す図であり、図13(a)は図12に示す光デバイス1CのAA′断面図である。この図12,図13(a)に示す光デバイス1Cは、前述の図1に示すものに比して、分極反転領域6Cの形成領域が異なっており、その他の構成については基本的に同様である。尚、図12,図13(a)中、図1と同一の符号はほぼ同様の部分を示している。
ここで、この図6に示す光デバイス1Cにそなえられる分極反転領域6Cは、2本の枝導波路3b−1,3b−2に挟まれた領域に形成されるとともに、分極反転されていない他の領域7との境界として、第1枝導波路としての枝導波路3b−1側に近接して光伝搬方向の上流側から下流側にわたり枝導波路3b−1との距離が第1距離LC1で一定する第1線範囲RC1と、第2枝導波路としての枝導波路3b−2側に近接して光伝搬方向の上流側から下流側にわたり枝導波路3b−2との距離が第2距離で一定する第2線範囲RC2と、をそなえている。
そして、上述の第1距離LC1および第2距離LC2を、枝導波路3b−1,3b−2が受ける歪み値の光伝搬方向座標に亘った累積値が枝導波路3b−1,3b−2間で実質的に等しくなるように構成されている。
図13(b)は、一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B1は低温時のチップ歪み(基板2そのものの歪み)の分布を、B21は第1線範囲RC1による界面格子歪みの分布を、B22は第2線範囲RC2による界面格子歪みの分布を、それぞれ示す。
このように構成された光デバイス1Cにおいても、図13(b)に例示するように、基板2そのものの歪みB1とあわせて、各枝導波路3b−1,3b−2が受ける歪み量を均等化させることができるので、温度ドリフトを低減させることができる。又、図13(b)においては、AA′断面箇所について着目して歪み分布を示しているが、枝導波路3b−1と第1線範囲RC1との距離、および枝導波路3b−2と第2線範囲RC2との距離は、それぞれ実質的には一定の距離LC1,LC2が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路3b−1,3b−2全体としての温度に応じた歪み量(又は屈折率変化量)の偏差についても実質的に解消することができ、第1実施形態の場合と同様、温度ドリフトの発生を抑制させることができる利点がある。
図14(a),図14(b)は上述の光デバイス1Cとして試作されたものによる温度ドリフトの低減効果を確認するための実験結果を示す図である。ここでは、分極反転領域6Cの界面である第1,第2線範囲RC1,RC2と枝導波路3b−1,3b−2に直交する方向をY方向とし、第1,第2距離LC1,LC2をともに40μm、界面作用長(格子歪みが枝導波路3b−1,3b−2に対する屈折率変動として影響を与えうる導波路長)を18mmとした。
但し、界面歪の影響のみを評価するため、電極5の構造、マッハツェンダ型光導波路3については、基板2の幅方向について偏在しない(中心軸について対称になる)ように作成した。これにより、同一構造で分極反転領域6Cのないデバイスでは温度ドリフトがほぼ0になることを確認している。
図14(b)は、横軸を温度、縦軸を動作点シフト量(電圧V)とした場合の動作点変動量特性を示す図である。界面歪により約4Vの温度ドリフトが発生することがわかる。一方で、分極反転領域6Cを形成しない通常のデバイスの温度ドリフトを図14(a)に示す。この場合も電極5の構造を対称としたものであるが、マッハツェンダ型光導波路3は基板2の幅方向に偏在する構成としている。具体的には、チップ幅は1.2mmであり、枝導波路3b−1からチップ端までの距離が〜200μm、枝導波路3b−2からチップ端までの距離が〜800μmと非対称な構造としている。この場合には、図14(a)に示すように、チップ歪により温度ドリフトが発生しているのがわかる。このとき、図14(a)および図14(b)を比較すると、マッハツェンダ型光導波路3がチップ中心からずれている場合に生じる温度ドリフト(図14(a)参照)を、界面格子歪みにより発生させる温度ドリフト成分(図14(b)参照)により、温度ドリフト、即ち温度に応じた動作点変動量の偏差を十分に低減できることが分かる。
〔A4〕第1実施形態の第4変形例の説明
図15は本発明の第1実施形態の第4変形例にかかる光デバイス1Dを示す図であり、図16(a)は図15に示す光デバイス1DのAA′断面図である。この図15,図16(a)に示す光デバイス1Dは、前述の図1に示すものに比して、枝導波路3b−1,3b−2の両側に溝8a〜8cを形成することにより、各枝導波路3b−1,3b−2をリッジ導波路として構成することで、広帯域化を図る構成としている点が異なり、その他の構成については基本的に同様である。
図16(b)は一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B1は低温時のチップ歪み(基板2そのものの歪み)の分布を、B2は界面格子歪みの分布を示す。この場合においても、図16(b)に示すように、基板2そのものの歪みB1とあわせて、各枝導波路3b−1,3b−2が受ける歪み量を均等化させることができるので、温度ドリフトを低減させることができる。そして、図16(b)においては、AA′断面箇所について着目して歪み分布を示しているが、枝導波路3b−1,3b−2と境界面RAとの距離はそれぞれ実質的には一定の距離L1,L2が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路3b−1,3b−2全体としての、温度に応じた歪み量、又は屈折率偏差についても実質的に解消することができ、第1実施形態の場合と同様の利点を得ることができる。
〔A5〕第1実施形態の第5変形例の説明
図17は本発明の第1実施形態の第5変形例にかかる光デバイス1Eを示す図であり、図18(a)は図17に示す光デバイス1EのAA′断面図である。この図17,図18(a)に示す光デバイス1Eは、前述の図1に示すものに比して、チップ歪みの発生方向が前述の図2(b)の場合と反対方向に発生した場合を想定するものである。尚、図17,図18(a)中、図1,図2(a)と同一の符号はほぼ同様の部分を示している。この図17に示す光デバイス1Eにおいては、枝導波路3b−1の近傍に境界面REを有する分極反転領域6Eが形成されている。即ち、境界面REと枝導波路3b−1との間隔(界面距離)はL11であり、枝導波路3b−2との距離L12はL11よりも大きく、枝導波路3b−1についてのみ境界面REからの界面格子歪みの影響を受けるようになっている。
図18(b)は一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B11は低温時のチップ歪み(基板2そのものの歪み)の分布を、B12は界面格子歪みの分布を示す。この図18(b)に示すように、低温状態で基板2に働く歪みとして前述の図2(b)とは反対の歪が作用する場合においても、例えば枝導波路3b−1の近傍に枝導波路3b−1と一定間隔L11を置いた境界面REを有する分極反転領域6Eそなえることにより、前述の第1実施形態の場合と同様に、各枝導波路3b−1,3b−2で発生する歪みを均等化させることができるようになる。
〔B〕第2実施形態の説明
図19は本発明の第2実施形態にかかる光デバイス11を示す図であり、この図19に示す光デバイス11は、基板2に第1実施形態の場合と同様のマッハツェンダ型光導波路3が形成されているが、電極15の構造および分極反転領域16の形状が、第1実施形態の場合と異なっている。
電極15は、信号電極15aと信号電極15aに所定の間隔を置いて囲うように形成された接地電極15bとをそなえている。ここで、信号電極15aは、基板2の片側端部から光伝搬方向の上流側および下流側を渡すように形成されているが、枝導波路3b−1,3b−2を光が伝搬する上流域および下流域では枝導波路3b−2上を、中流域では枝導波路3b−1上を、それぞれ辿るように形成されている。
そして、枝導波路3b−1の上部に信号電極15aが形成されている中流域箇所における、2本の枝導波路3b−1,3b−2が形成される領域に分極反転領域16が形成されている。尚、信号電極15aとしては、分極反転領域16が形成されていない領域においては第1枝導波路としての枝導波路3b−1の上部を辿るように形成される一方、分極反転領域16が形成された領域では第2枝導波路としての枝導波路3b−2の上部を辿るように形成することとしてもよい。
ここで、第2実施形態にかかる光デバイス11を光変調器として高速で駆動する場合は、信号電極15aと接地電極15bとの終端を抵抗で接続して進行波電極とし、入力側からマイクロ波信号を印加する。このとき、電界によって枝導波路3b−1,3b−2の屈折率がそれぞれ+Δna、−Δnbのように変化し、枝導波路3b−1,3b−2間の位相差が変化するため合流導波路3cから強度変調された信号光を出力することができる。
また、電極15の断面形状を変化させることでマイクロ波の実行屈折率を制御し、光とマイクロ波の速度を整合させることによって広帯域の光応答特性を得ることができる。ここで、分極反転領域16が形成されていない図23に示す構成の場合には、枝導波路3b−1,3b−2に印加される電界の絶対値が異なると、Δna<Δnbとなるため、オン状態からオフ状態への過渡期において出力光の波長が変化する現象(チャープ)が生じる。
これに対し、図19に示すように、一部の領域16が分極反転した基板2を用いるとともに、分極特性が反転していない領域では枝導波路3b−2上を、分極特性が反転している領域16では枝導波路3b−1上を通るように信号電極15を構成すると、枝導波路3b−1,3b−2に印加される電界の絶対値を均等化させることができるので、上述のごとき波長チャープを抑制させることができる。
図19において、信号電極15が上部に形成された枝導波路3b−1箇所の長さと、信号電極15が上部に形成された枝導波路3b−2箇所の長さ(上流箇所と下流箇所の合計)と、が等しい場合においては、枝導波路3b−2,3b−1を通る光は非反転領域でそれぞれ位相が+Δθs,−Δθgだけ変化し、反転領域ではそれぞれ+Δθg,−Δθsだけ変化する。ここでΔθg,Δθsはそれぞれ接地電極15b、信号電極15aによる光の位相変化量を示す。したがって、枝導波路3b−2,3b−1を通る光の位相は出力側の合流導波路3cにおいてそれぞれ+(Δθs+Δθg),−(Δθs+Δθg)だけ変化することになり、絶対値が等しく符号が反転した位相変調となる。そのため、波長チャープを0にすることができる。尚、上述の信号電極15が上部に形成された枝導波路3b−1箇所の長さと、信号電極15が上部に形成された枝導波路3b−2箇所の長さとの比を変えることで、チャープ量を調整することも可能でなる。
ところで、第2実施形態にかかる光デバイス11においては、分極反転領域16として、2本の枝導波路3b−1,3b−2の光伝搬方向の一部位の領域を含んで形成されるとともに、この分極反転領域16と分極反転されていない他の領域17との境界RFとして、2本の枝導波路3b−1,3b−2のいずれか一方である枝導波路3b−2に近接して一定の間隔をあけた線範囲RF1−RF2を含んでいる。
すなわち、このように枝導波路3b−1,3b−2の光伝搬方向の一部位(中流域の箇所)に形成された分極反転領域16の他の領域17との境界RFは、第2枝導波路としての枝導波路3b−2側に近接して光伝搬方向の上流側から下流側にわたり枝導波路3b−2との距離はLF2で一定となる一方、第1枝導波路としての枝導波路3b−1との距離はLF2よりも大きいLF1で一定となるように形成される。
図20(a)は図19に示す光デバイス11のAA′断面図であり、図20(b)は、一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B1は低温時のチップ歪み(基板2そのものの歪み)の分布を、B2は境界面RFによる界面格子歪みの分布を、それぞれ示す。
このように構成された光デバイス11においても、分極反転領域16が形成される一部位の箇所について、界面格子歪みの成分を各枝導波路3b−1,3b−2に対して不均等に与えられる。この場合においては、枝導波路3b−1よりも基板2の幅方向内側に配置される枝導波路3b−2に比較的大きな界面格子歪みの成分が与えられるようになっている。これにより、枝導波路3b−1にチップ歪みによる歪みが枝導波路3b−2よりも大きく与えられている場合においても、分極反転領域16により上述のごとき界面格子歪みを発生させているので、各枝導波路3b−1,3b−2に与えられている歪みの合計値としては均等化させることができるようになるため、前述の第1実施形態の場合と同様、動作点ドリフトを抑制させることができる利点がある。
〔C〕第3実施形態の説明
図21は本発明の第3実施形態にかかる光デバイス21を示す図であり、図22(a)は図21に示す光デバイス21のAA′断面図である。この図21,図22(a)に示す光デバイス21は、前述の各実施形態の場合とは異なり、基板2には湾曲導波路233を介してタンデム接続された2つのマッハツェンダ型光導波路231,232が形成されている。ここで、これらのマッハツェンダ型光導波路231,232は、それぞれ、前述の第1,第2実施形態におけるマッハツェンダ型光導波路3に対応して、分岐導波路231a,232a,枝導波路231b−1,231b−2,232b−1,232b−2および合流導波路231c,232cがそなえられている。更には、それぞれのマッハツェンダ型光導波路231,232をなす枝導波路231b−1,231b−2,232b−1,232b−2が並列するように配置されている。
また、25はバッファ層4を介して基板2の上部に形成された電極であり、信号電極251a,252aおよび接地電極25bをそなえている。信号電極251aは、マッハツェンダ型光導波路231をなす枝導波路231b−2の上部を辿るように形成されたものであり、信号電極252aは、マッハツェンダ型光導波路232をなす枝導波路232b−1の上部を辿るように形成されたものである。そして、接地電極25bは、上述の信号電極231a,232aに対して所定の間隔を置いて基板2面上を囲むように形成される。これにより、信号電極251aおよび接地電極25bを通じて、マッハツェンダ型光導波路231を伝搬する光について電界を印加することができ、信号電極252aおよび接地電極25bを通じて、マッハツェンダ型光導波路232を伝搬する光について電界を印加することができる。
さらに、26は基板2上において上述の2つのマッハツェンダ型光導波路231,232に挟まれた領域に形成された分極反転領域であり、それぞれマッハツェンダ型光導波路231,232に対して界面格子歪みが与えられる、分極特性が反転されていない他の領域27との境界RGa,RGbをそなえている。
ここで、この図21に示す光デバイス21においては、マッハツェンダ型光導波路231側に形成される境界RGaで発生する界面格子歪みにより、マッハツェンダ型光導波路231をなす枝導波路231b−1,231b−2で不均等なチップ歪みが生じていたとしても、これらの枝導波路231b−1,231b−2が受ける歪み成分については均等化させることができる。
同様に、マッハツェンダ型光導波路232側に形成される境界RGbで発生する界面格子歪みにより、マッハツェンダ型光導波路232をなす枝導波路232b−1,232b−2で不均等なチップ歪みが生じていたとしても、これらの枝導波路232b−1,232b−2が受ける歪み成分については均等化させることができる。
なお、本実施形態においては、境界RGbで発生する界面格子歪みについては、マッハツェンダ型光導波路231に対して実質的な歪みの影響を受けない程度の大きさとすることができ、同様に、境界RGaで発生する界面格子歪みについては、マッハツェンダ型光導波路232に対して実質的な歪みの影響を受けない程度の大きさとすることができる。
図22(b)は、一例としてある低温値の時における基板2におけるAA′断面箇所に発生する歪を模式的に示したものであり、図中B1は低温時のチップ歪み(基板2そのものの歪み)の分布を、B21は境界RGaによる界面格子歪みの分布を、B22は境界RGbによる界面格子歪みの分布を、それぞれ示す。
この図22(b)に示すように、基板2そのものの歪みB1とあわせて、各枝導波路231b−1,231b−2が受ける歪み量を均等化させることができるほか、各枝導波路232b−1,232b−2が受ける歪み量についても均等化させることができる。
そして、図22(b)においては、AA′断面箇所について着目して歪み分布を示しているが、枝導波路231b−1,231b−2と境界面RGaとの距離はそれぞれ実質的には一定の距離L11,L12が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路231b−1,231b−2全体としての、温度に応じた歪み量(又は屈折率偏差)、即ち温度ドリフトの発生についても抑制させることができる。
同様に、枝導波路232b−1,232b−2と境界面RGbとの距離はそれぞれ実質的には一定の距離L21,L22が保たれているので、光が伝搬する上流域から下流域に亘る枝導波路232b−1,232b−2全体としての、温度に応じた歪み量(又は屈折率偏差)、即ち温度ドリフトの発生についても抑制させることができる。
換言すれば、分極反転領域26は、2つのマッハツェンダ型光導波路231,232に挟まれた領域に、マッハツェンダ型光導波路231における各枝導波路231b−1,231b−2が受ける歪み値の光伝搬方向座標に亘った累積値が、およびマッハツェンダ型光導波路232における各枝導波路232b−1,232b−2が受ける歪み値の光伝搬方向座標に亘った累積値が、それぞれ実質的に等しくなる境界RGa,RGbをそなえている。
なお、マッハツェンダ型光導波路231,232が、基板2の幅方向中心について対称に配置形成されて、各枝導波路231b−1,231b−2,232b−1,232b−2が受けるチップ歪みによる歪み量が、基板2の幅方向中心について対称的分布となり、境界面RGaとRGbで発生する格子歪量が等しい場合には、境界面RGaと枝導波路231b−2との間の距離L12と、境界面RGbと枝導波路232b−1との間の距離L21とは実質的に等しくすることができ、又、境界面RGaと枝導波路231b−1との間の距離L11と、境界面RGbと枝導波路232b−2との間の距離L22とは実質的に等しくすることができる。
このように、本発明の第3実施形態によれば、単一の分極反転領域26により、タンデム接続された2つのマッハツェンダ型光導波路231,232についての温度ドリフトを抑制させることができる。
なお、上述の第3実施形態においては、2つのマッハツェンダ型光導波路231,232が1チップ中、即ち一つの基板2に形成された場合について説明したが、本発明によれば、マッハツェンダ型変調器を1チップにアレイ状に多数集積化した場合等、1チップの中に含まれるマッハツェンダ型光導波路が2つよりも多い場合でも、同様に各マッハツェンダ型光変調器の温度ドリフトを低減させることが可能である。
〔D〕その他
なお、上述の各実施形態においては、基板2としてLN基板を用いているが、本発明によればこれに限定されず、例えば、LiTaO3、SBN(Sr1-xBaxNb2O6)等を適用することができる。
また、上述の各実施形態においては、光デバイスとしてマッハツェンダ型光変調器を構成した場合について詳述しているが、本発明によれば、その他光スイッチなどのマッハツェンダ型光導波路を利用した光デバイスにも適用することが可能である。また、上述の各実施形態においては、チップ歪み起因の温度ドリフトを低減することについて示したが、本発明によれば、例えば電極応力起因の温度ドリフトについても同様に低減することも可能である。
また、上述の各実施形態においては、X軸伝搬の枝導波路3b−1,3b−2,231b−1,231b−2,232b−1,232b−2の伝搬方向に垂直な方向としてY軸方向の分極反転を形成する場合について例示したが(図4(c)、(d)参照)、図4(a)〜図4(b)に示す他の態様での光導波路の伝搬方向および分極反転方向の組み合わせとすることしてもよい。
さらに、上述の各実施形態の場合において、分極反転領域と、分極特性が反転されていない他の領域とが、互いに逆の構成としてもよく、このようにしても温度ドリフトを抑制させることができる。
なお、上述の実施形態に関し、更に下記の付記を開示する。
(付記1)
電気光学効果を有する基板と、
該基板に並列配置して形成された複数の光導波路と、
該基板の一部に形成され該基板における分極特性が反転された分極反転領域と、をそなえ、
該分極反転領域における前記分極特性が反転されていない他の領域に対する境界の輪郭は、該複数の導波路が受ける歪み値の光伝搬方向座標に亘った累積値が該複数の導波路間で実質的に等しくなるように構成されたことを特徴とする、光デバイス。
(付記2)
温度変動に応じて前記境界で生じる格子歪みに起因して該複数の導波路のそれぞれが受ける歪み成分と、前記格子歪み以外の要因に起因した歪み成分と、による歪み値についての光伝搬方向座標に亘った累積値が、該複数の導波路間で実質的に等しくなるように、前記輪郭が構成されていることを特徴とする、付記1記載の光デバイス。
(付記3)
該複数の導波路それぞれが受ける前記歪み値が、光伝搬方向座標に亘って実質的に一様となるように、前記輪郭が構成されていることを特徴とする、付記2記載の光デバイス。
(付記4)
該複数の導波路それぞれが受ける前記歪み値が、光伝搬方向座標に亘って互いに異なるパターンで変動分布するように、前記輪郭が構成されていることを特徴とする、付記2記載の光デバイス。
(付記5)
該複数の導波路は、温度変動に応じて該基板自身に生じる歪みを互いに不均等に受ける配置となるように形成され、
該分極反転領域の前記境界は、前記複数の導波路に互いに異なる屈折率変化を誘起させるように構成されたことを特徴とする、付記1記載の光デバイス。
(付記6)
該基板に、入力光を複数に分岐しうる分岐導波路と該分岐導波路で分岐された光をそれぞれ伝搬しうる複数の枝導波路と該複数の枝導波路からの光を合流させる合流導波路とをそなえてなるマッハツェンダ型光導波路が形成される一方、
該複数の導波路は、該マッハツェンダ型光導波路をなす複数の枝導波路であることを特徴とする、付記1記載の光デバイス。
(付記7)
該基板の上部に、該複数の枝導波路を伝搬する光に屈折率差を与えるための電極が形成されたことを特徴とする、付記6記載の光デバイス。
(付記8)
該分極反転領域は、該マッハツェンダ型光導波路の形成領域を収容するとともに、前記境界として、前記並列配置における両外側の枝導波路にそれぞれ一定の間隔をあけた線範囲を含んでいることを特徴とする、付記6記載の光デバイス。
(付記9)
前記分極反転領域は、該マッハツェンダ型光導波路の形成領域から外れて形成されるとともに、前記境界として、前記並列配置における一方の枝導波路の外側に一定の間隔をあけた線範囲を含んでいることを特徴とする、付記6記載の光デバイス。
(付記10)
該複数の枝導波路は第1枝導波路および第2枝導波路をそなえた、2本の枝導波路として構成され、
前記分極反転領域は、該2本の枝導波路に挟まれた領域に形成されるとともに、前記境界として、該第1および第2枝導波路の一方側および他方側にそれぞれ光伝搬方向に沿って近接した第1および第2線範囲をそなえ、かつ、該第1線範囲は前記光伝搬方向の上流
側から下流側にわたり該一方の枝導波路との距離が変動する形状を有する一方、該第2線範囲は前記光伝搬方向の上流側から下流側にわたり該他方の枝導波路との距離が一定する形状を有することを特徴とする、付記6記載の光デバイス。
(付記11)
該複数の枝導波路は第1枝導波路および第2枝導波路をそなえた2本の枝導波路として構成され、
前記分極反転領域は、該2本の枝導波路に挟まれた領域に形成されるとともに、前記境界として、該第1枝導波路側に近接して前記光伝搬方向の上流側から下流側にわたり該第1枝導波路との距離が第1距離で一定する第1線範囲と、該第2枝導波路側に近接して前記光伝搬方向の上流側から下流側にわたり該第2枝導波路との距離が第2距離で一定する第2線範囲と、をそなえ、
かつ、前記第1距離および前記第2距離を、該第1および第2枝導波路が受ける歪み値の光伝搬方向座標に亘った累積値が該複数の導波路間で実質的に等しくなるように構成されたことを特徴とする、付記6記載の光デバイス。
(付記12)
該複数の枝導波路をリッジ導波路として構成されたことを特徴とする、付記6記載の光デバイス。
(付記13)
該複数の枝導波路は第1枝導波路および第2枝導波路をそなえた、2本の枝導波路として構成され、
前記分極反転領域は、該2本の枝導波路の光伝搬方向の一部位の領域を含んで形成されるとともに、前記境界として、該第1および第2枝導波路のいずれか一方に近接して一定の間隔をあけた線範囲を含んでいることを特徴とする、付記6記載の光デバイス。
(付記14)
電界を与えることにより該2つの平行導波路を伝搬する光に屈折率差を与えるための1本の信号電極および接地電極をそなえ、
該信号電極は、前記分極反転領域が形成されていない領域においては該第1又は第2枝導波路の上部を辿るように形成される一方、前記分極反転領域が形成された領域では該第2又は第1枝導波路の上部を辿るように形成されたことを特徴とする、付記13記載の光デバイス。
(付記15)
該基板に、光伝搬方向が折り返される湾曲導波路を介して2つの該マッハツェンダ型光導波路がタンデム接続されるとともに、該2つのマッハツェンダ型光導波路それぞれの枝導波路が並列するように配置され、
かつ、該分極反転領域は、該2つのマッハツェンダ型光導波路に挟まれた領域に、各マッハツェンダ型光導波路における前記複数の枝導波路が受ける歪み値の光伝搬方向座標に亘った累積値が実質的に等しくなる境界をそなえたことを特徴とする、付記6記載の光デバイス。
(付記16)
該基板がリチウムナイオベートであることを特徴とする、付記1記載の光デバイス。
(付記17)
該複数の光導波路が結晶のX軸方向、またはY軸方向に沿って形成されたことを特徴とする、付記1記載の光デバイス。
(付記18)
前記格子歪み以外の要因に起因した歪み成分は温度変動による基板反りに起因する歪みであることを特徴とする、付記2記載の光デバイス。
(付記19)
該基板の上部に、該複数の枝導波路を伝搬する光に屈折率差を与えるための電極がバッファ層を介して形成されるとともに、前記格子歪み以外の要因に起因した歪み成分は、温度変動により前記バッファ層又は前記電極との熱膨張係数差により生じる応力に起因する
歪みであることを特徴とする、付記2記載の光デバイス。
(付記20)
電気光学効果を有する基板と、
該基板に並列配置して形成された複数の光導波路と、
該基板の一部に形成され該基板における分極特性が反転された分極反転領域と、をそなえ、
該分極反転領域は、該光導波路の存在しない領域に形成されたことを特徴とする光デバイス。

Claims (9)

  1. 電気光学効果を有する基板と、
    該基板に並列配置して形成された複数の光導波路と、
    該基板の一部に形成され該基板における分極特性が反転された分極反転領域と、をそなえ、
    該分極反転領域と、該基板のうちの該分極反転領域以外の領域と、の境界は、該境界で生じる格子歪みに起因して温度変動により生じる応力と、該格子歪み以外の要因に起因して温度変動により生じる応力と、の和を、該複数の光導波路間で実質的に等しくするように配置されたことを特徴とする、光デバイス。
  2. 格子歪み以外の要因に起因して温度変動により生じる応力は、該基板の上部に形成された部材と該基板との間の熱膨張係数の差に起因して温度変動により生じる応力、及び、該基板の反りに起因して温度変動により生じる応力の少なくとも1つを含むことを特徴とする、請求項1記載の光デバイス。
  3. 該複数の光導波路それぞれが受ける前記応力が、光伝搬方向座標に亘って実質的に一様となるように、前記境界が配置されていることを特徴とする、請求項2記載の光デバイス。
  4. 該複数の光導波路それぞれが受ける前記応力が、光伝搬方向座標に亘って互いに異なるパターンで変動分布するように、前記境界が配置されていることを特徴とする、請求項2記載の光デバイス。
  5. 該複数の光導波路は、温度変動に応じて該基板自身に生じる応力を互いに不均等に受けるように形成されたことを特徴とする、請求項1記載の光デバイス。
  6. 該基板に、入力光を複数に分岐しうる分岐導波路と該分岐導波路で分岐された光をそれぞれ伝搬しうる複数の枝導波路と該複数の枝導波路からの光を合流させる合流導波路とをそなえてなるマッハツェンダ型光導波路が形成される一方、
    該複数の光導波路は、該マッハツェンダ型光導波路をなす複数の枝導波路であることを特徴とする、請求項1記載の光デバイス。
  7. 該基板がリチウムナイオベートであることを特徴とする、請求項1記載の光デバイス。
  8. 該複数の光導波路が結晶のX軸方向、またはY軸方向に沿って形成されたことを特徴とする、請求項1記載の光デバイス。
  9. 前記基板の上部に形成された部材は、前記複数の光導波路を伝搬する光に屈折率差を与えるための電極と、該電極と該基板との間に介在するバッファ層と、を含み、
    前記境界は、前記電極又は前記バッファ層と前記基板との間の熱膨張係数の差に起因して温度変動により生じる応力と、前記境界で生じる格子歪みに起因して温度変動により生じる応力と、の和を、該複数の光導波路間で実質的に等しくするように配置されたことを特徴とする、請求項2記載の光デバイス。
JP2009506162A 2007-03-27 2007-03-27 光デバイス Expired - Fee Related JP5418222B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/056423 WO2008117449A1 (ja) 2007-03-27 2007-03-27 光デバイス

Publications (2)

Publication Number Publication Date
JPWO2008117449A1 JPWO2008117449A1 (ja) 2010-07-08
JP5418222B2 true JP5418222B2 (ja) 2014-02-19

Family

ID=39788192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009506162A Expired - Fee Related JP5418222B2 (ja) 2007-03-27 2007-03-27 光デバイス

Country Status (4)

Country Link
US (1) US8031986B2 (ja)
EP (1) EP2131230A4 (ja)
JP (1) JP5418222B2 (ja)
WO (1) WO2008117449A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157785B2 (ja) * 2008-09-26 2013-03-06 富士通株式会社 光機能デバイス
KR101153369B1 (ko) 2008-12-11 2012-06-08 한국전자통신연구원 광학장치
JP2012118272A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 光変調装置、光変調器の制御方法、及び光変調器の制御装置
JP2013061564A (ja) * 2011-09-14 2013-04-04 Ricoh Co Ltd 光偏向素子および光偏向装置
TWI557468B (zh) * 2012-11-28 2016-11-11 鴻海精密工業股份有限公司 電光調製器
TWI557467B (zh) * 2013-04-26 2016-11-11 鴻海精密工業股份有限公司 電光調製器及其製造方法
TWI564614B (zh) * 2013-04-26 2017-01-01 鴻海精密工業股份有限公司 電光調變器
JP6787397B2 (ja) * 2016-04-21 2020-11-18 Tdk株式会社 光変調器
US11294120B2 (en) * 2020-05-07 2022-04-05 Honeywell International Inc. Integrated environmentally insensitive modulator for interferometric gyroscopes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271221A1 (en) * 2001-06-28 2003-01-02 Corning O.T.I. S.p.A. Integrated optical waveguide device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273207A (ja) 1985-09-27 1987-04-03 Fujitsu Ltd 導波路光デイバイス
JPH0811664B2 (ja) 1991-09-18 1996-02-07 村田機械株式会社 解舒補助装置の制御方法
JPH0675196A (ja) * 1992-07-01 1994-03-18 Yokogawa Electric Corp 導波路型光変調器
US5638468A (en) * 1993-07-07 1997-06-10 Tokin Corporation Optical modulation system
JP2873203B2 (ja) 1996-06-14 1999-03-24 住友大阪セメント株式会社 導波路型光デバイス
JPH10206810A (ja) * 1997-01-22 1998-08-07 Tdk Corp リッジ型光導波路素子及びその製造方法
JP3362126B2 (ja) 2000-03-09 2003-01-07 住友大阪セメント株式会社 光導波路素子
JP2002122834A (ja) 2000-10-19 2002-04-26 Sumitomo Osaka Cement Co Ltd 光導波路素子
US20030031400A1 (en) * 2001-06-28 2003-02-13 Valerio Pruneri Integrated optical waveguide device
WO2004053574A1 (ja) * 2002-12-06 2004-06-24 Fujitsu Limited 光変調器
WO2004068221A1 (ja) * 2003-01-30 2004-08-12 Fujitsu Limited 光変調器
WO2005089332A2 (en) * 2004-03-12 2005-09-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Low loss electrodes for electro-optic modulators
JP4713866B2 (ja) 2004-09-14 2011-06-29 富士通オプティカルコンポーネンツ株式会社 光デバイス
KR20060075645A (ko) * 2004-12-28 2006-07-04 전자부품연구원 대칭 구조를 갖는 저전압형 광변조기
JP4667932B2 (ja) * 2005-03-31 2011-04-13 住友大阪セメント株式会社 光変調器
JP5051026B2 (ja) * 2008-06-27 2012-10-17 富士通株式会社 光導波路デバイスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271221A1 (en) * 2001-06-28 2003-01-02 Corning O.T.I. S.p.A. Integrated optical waveguide device
JP2003066393A (ja) * 2001-06-28 2003-03-05 Corning Oti Spa 集積化光導波路デバイス

Also Published As

Publication number Publication date
EP2131230A1 (en) 2009-12-09
EP2131230A4 (en) 2012-07-25
US8031986B2 (en) 2011-10-04
US20100027935A1 (en) 2010-02-04
WO2008117449A1 (ja) 2008-10-02
JPWO2008117449A1 (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5418222B2 (ja) 光デバイス
US7088875B2 (en) Optical modulator
US7447389B2 (en) Optical modulator
JP4899730B2 (ja) 光変調器
US7058241B2 (en) Optical modulator
JP5326860B2 (ja) 光導波路デバイス
US7916981B2 (en) Optical modulator
JP5157785B2 (ja) 光機能デバイス
US11474384B2 (en) Velocity matched electro-optic devices
JP2010134115A (ja) 光変調器
JP2011081195A (ja) 光変調器および光送信器
JP4926423B2 (ja) 光変調器
JP7480648B2 (ja) 光デバイスおよび光送受信機
US7289686B2 (en) Optical modulator
CN106796362B (zh) 光调制器
JP2008009314A (ja) 光導波路素子、光変調器および光通信装置
JP2007025369A (ja) 光変調器
JP5271294B2 (ja) リッジ光導波路とそれを用いた光変調器
JP2009301023A (ja) 光変調器
JPH06250131A (ja) 光制御素子
JPH05333296A (ja) 光制御素子
JP2011191346A (ja) 光変調器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees