JP5384372B2 - Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method - Google Patents

Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method Download PDF

Info

Publication number
JP5384372B2
JP5384372B2 JP2009554359A JP2009554359A JP5384372B2 JP 5384372 B2 JP5384372 B2 JP 5384372B2 JP 2009554359 A JP2009554359 A JP 2009554359A JP 2009554359 A JP2009554359 A JP 2009554359A JP 5384372 B2 JP5384372 B2 JP 5384372B2
Authority
JP
Japan
Prior art keywords
steel
metal
carbon
forging
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009554359A
Other languages
Japanese (ja)
Other versions
JPWO2009104665A1 (en
Inventor
賢政 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KABUSHIKIGAISHA TAISEIKAKEN
Original Assignee
KABUSHIKIGAISHA TAISEIKAKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KABUSHIKIGAISHA TAISEIKAKEN filed Critical KABUSHIKIGAISHA TAISEIKAKEN
Priority to JP2009554359A priority Critical patent/JP5384372B2/en
Publication of JPWO2009104665A1 publication Critical patent/JPWO2009104665A1/en
Application granted granted Critical
Publication of JP5384372B2 publication Critical patent/JP5384372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Description

本発明は、カーボンナノ構造材料、特にカーボンナノチューブ(CNT)が含有されてなる金属材料の製造方法およびカーボンナノチューブを含有するCNT鋼、特に刃物鋼、摺動鋼、工具鋼に関する。  The present invention relates to a method for producing a carbon nanostructure material, particularly a metal material containing carbon nanotubes (CNT), and CNT steel containing carbon nanotubes, in particular, knife steel, sliding steel, and tool steel.

現在、社会生活の中で種々の金属材料が製造され、二次加工により成形されて工業用、医療用などの物品として使用されているが、従来のものより高い、物理・化学特性を有し、長寿命な新素材の開発が望まれている。例えば、刀剣、たたら吹きという特殊な製造方法により得られる「玉鋼」を材料として、これを鍛錬し製造されるため、新たな特性の付与は簡単ではない。また、超電導性のような特殊な機能の付与も求められている。  Currently, various metal materials are manufactured in social life and are molded by secondary processing and used as articles for industrial and medical purposes. However, they have higher physical and chemical properties than conventional ones. Therefore, the development of new materials with long life is desired. For example, it is not easy to add new characteristics because it is manufactured by forging and manufacturing “dama steel” obtained by a special manufacturing method such as a sword or tatara blow. In addition, the provision of special functions such as superconductivity is also required.

他方、近年、C60フラーレン、カーボンナノファイバー、グラファイトファイバー等のナノオーダのナノ構造炭素材料が注目されている。前記ナノ構造炭素材料は、その特殊な構造のために、これまでの炭素材料にない特殊な機能的、構造的性質を備える。  On the other hand, nano-order nanostructured carbon materials such as C60 fullerene, carbon nanofiber, and graphite fiber have attracted attention in recent years. Due to its special structure, the nanostructured carbon material has special functional and structural properties not found in conventional carbon materials.

上記のようなナノ構造炭素材料を特性の向上のため用いたものとしては、アルミニウム合金中の金属成分とカ一ボンナノ繊維とを化合させてカーボンナノ繊維をアルミニウム母材中に含有させたアルミニウム合金(下記特許文献1参照)、流動性に優れる熱可塑性樹脂に金属化合物およびカーボンナノチューブを配合して成形性と導電性を両立させた樹脂成形体(下記特許文献2参照)、金属合金や金属の粉体等の導電性材料粉体とカーボンナノチューブをプレス成形し、切断・研磨後、表面に突き出してナノチューブを整列させたもの(下記特許文献3参照)等が挙げられる。これらはいずれも、材料の製造性や成形性の向上を目的としたものである。他方、カーボンナノチューブの機械的物性を利用して複合材料の提供が行われている(非特許文献1参照)が、金属との複合化により軽量性、強靭性、防錆性、また、滑り性や電気伝導性等の金属の特性改善を目的としても、本発明者の知見によれば、カーボンナノ材料は大気中では900℃以上となると大気中の酸素と反応して消失しやすく、金属に対する濡れ性(親和性)が小さく、特にCNTはきわめて超微細物質である上、球状でなくアスペクト比が大きいため凝集しているので、溶融している金属中に配合しても原形を留めない。このため、CNT含有金属粉末を予め製造し、焼結する粉末冶金法(下記特許文献4及び5参照)が提案されるものの、カーボンナノチューブを原形のまま金属の繋ぎ合わせや金属中に高い含有率で均一に分散配合させることは極めて困難であることにあった。基板上でCNTをアーク放電、化学蒸着によって形成し、これを金属メッキして複合材料を形成する方法も提案されるが、電気材料として用いるのに適するもので、金属材料そのものの物性改善には適しないものである(下記特許文献6参照)。  The nanostructured carbon material as described above is used to improve the properties, and the aluminum alloy is obtained by combining the metal component in the aluminum alloy and the carbon nanofiber so that the carbon nanofiber is contained in the aluminum base material. (See Patent Document 1 below), a resin molded body in which a metal compound and a carbon nanotube are blended into a thermoplastic resin excellent in fluidity (see Patent Document 2 below), a metal alloy or a metal Examples thereof include press-molding conductive material powder such as powder and carbon nanotubes, cutting and polishing, and projecting to the surface to align the nanotubes (see Patent Document 3 below). All of these are intended to improve the manufacturability and formability of the material. On the other hand, composite materials have been provided using the mechanical properties of carbon nanotubes (see Non-Patent Document 1), but they are lightweight, tough, rustproof, and slippery due to the composite with metal. According to the inventor's knowledge, carbon nanomaterials tend to disappear by reacting with oxygen in the atmosphere when the temperature becomes 900 ° C. or higher in the atmosphere. The wettability (affinity) is small, and in particular, CNT is an extremely fine substance and is agglomerated because it is not spherical but has a large aspect ratio. Therefore, even when blended in a molten metal, the original shape does not remain. For this reason, although a powder metallurgy method (see Patent Documents 4 and 5 below) in which a CNT-containing metal powder is manufactured and sintered in advance is proposed, the carbon nanotubes remain in their original form and the metal content is high in the metal. Therefore, it is extremely difficult to uniformly disperse and blend. A method is also proposed in which a CNT is formed on a substrate by arc discharge or chemical vapor deposition, and this is metal-plated to form a composite material, but it is suitable for use as an electrical material. It is not suitable (see Patent Document 6 below).

先行技術文献Prior art documents

特開2002−363716号公報JP 2002-363716 A 特開2003−34751号公報JP 2003-34751 A 特開2000−223004号公報Japanese Patent Laid-Open No. 2000-220304 特開2007−16262号公報JP 2007-16262 A 特開2007−224359号公報JP 2007-224359 A 特開2007−277096号公報JP 2007-277096 A ChemPhysChem2007,8,999−1004ChemPhysChem 2007, 8, 999-1004

本発明は、大気中900℃以上となると大気中の酸素と反応して消失し易いナノ構造炭素材料(カーボンナノ材料と同意義)、特にカーボンナノチューブCNTを金属内に均一分散させるべく、鋭意研究の結果、大気中であっても原料金属板を積層して各積層間にナノ構造炭素材料を介在させて積層体となし、そしてナノ構造炭素材料酸化分解温度以下の積層体鍛造可能温度域を選択し、上記積層体を非溶融状態で鍛造すると、ナノ構造炭素材料が金属層に分散することを見出し、完成したもので、優れた軽量性、強靭性、かつ防錆性を有し、また、滑り性や電気伝導性に優れるナノ構造炭素材料を含有する金属材料を提供することを目的とする。 The present invention has been intensively studied to uniformly disperse nanostructured carbon materials (same meaning as carbon nanomaterials), especially carbon nanotubes CNT, which easily react with oxygen in the atmosphere and disappear when the temperature exceeds 900 ° C. in the atmosphere. As a result, even in the atmosphere, the raw material metal plates are laminated, and the nanostructure carbon material is interposed between each laminate to form a laminate. When the selected laminate is forged in a non-molten state, the nanostructured carbon material is found to be dispersed in the metal layer, and has been completed, and has excellent lightness, toughness, and rust prevention. An object of the present invention is to provide a metal material containing a nanostructured carbon material that is excellent in slipperiness and electrical conductivity.

本発明は、カーボンナノチューブの特性を鋭意研究の結果、カーボンに対し相溶性のある金属に対してはその鍛造温度において金属層間に介在するカーボンナノチューブは鍛造作用により原形を残しながら金属表面から内部に打ち込まれ分散することを見出し、完成されたもので、
原料金属板を積層して各積層間にナノ構造炭素材料を介在させて積層体となし、
該積層体をナノ構造炭素材料酸化分解温度以下の積層体鍛造可能温度域に加熱し、
上記積層体を非溶融状態で鍛造してナノ構造炭素材料を金属層内に打ち込み、
ナノ構造炭素材料の結晶状態を維持しつつ金属層表面から内部に分散させる工程を含むことを特徴とする。
In the present invention, as a result of earnest research on the characteristics of carbon nanotubes, carbon nanotubes intervening between metal layers at the forging temperature for metals compatible with carbon remain from the metal surface to the inside while leaving the original shape by forging action. It was found and distributed, and it was completed.
Laminate raw metal plates and interpose nanostructured carbon materials between each laminate to form a laminate,
The laminate is heated to a temperature range where the laminate can be forged at or below the nanostructured carbon material oxidative decomposition temperature,
Forging the laminate in a non-molten state and driving the nanostructured carbon material into the metal layer,
The method includes a step of dispersing from the surface of the metal layer while maintaining the crystal state of the nanostructured carbon material.

前記原料金属としては、鉄、鋼、アルミニウムを主体とする金属、ステンレス綱、ジュラルミン鋼、真鍮から選ばれる合金、チタン、白金、金、銀、パラジウム、アンチモン、モリブデン、ビスマス、インジウム、希土類から選ばれる金属、あるいは該金属を含有する金属が挙げられ、鍛造作用により金属層に打ち込まれるカーボンナノチューブはその形態を変えることなく、金属層中に分散することになる。ナノ構造炭素材料であるカーボンナノチューブの金属層中での存在は、ラマン散乱法によるラマン分光スペクトルの高波数側に「G-band」および「D-band」の二種類のピークが観測されることにより確認される(図6)。   The raw metal is selected from iron, steel, metal mainly composed of aluminum, stainless steel, duralumin steel, alloy selected from brass, titanium, platinum, gold, silver, palladium, antimony, molybdenum, bismuth, indium, rare earth The carbon nanotubes to be injected into the metal layer by the forging action are dispersed in the metal layer without changing the form thereof. The presence of carbon nanotubes, which are nanostructured carbon materials, in the metal layer means that two types of peaks, “G-band” and “D-band”, are observed on the high wavenumber side of the Raman spectrum by the Raman scattering method. (FIG. 6).

本発明方法により刃物鋼を製造する場合、前記原料金属として、玉鋼を選択し、鍛造温度として400℃以上1000℃以下の温度を選択するのがよい。本発明方法によりカーボンナノチューブの均一分散により、ビッカース高度に優れた刃物鋼を提供することができる。   When manufacturing cutlery steel by the method of the present invention, it is preferable to select ball steel as the raw metal and select a temperature of 400 ° C. or higher and 1000 ° C. or lower as the forging temperature. By the method of the present invention, it is possible to provide cutlery steel having an excellent Vickers degree by uniformly dispersing carbon nanotubes.

金属中のカーボン分散率及びカーボン含有量は上記積層工程と鍛造工程を複数回繰り返すことにより調整することができる。   The carbon dispersion rate and the carbon content in the metal can be adjusted by repeating the laminating step and the forging step a plurality of times.

上記積層体は原料金属板を折り畳んで形成することができるが、単に金属シートを積層することによっても形成できる。   Although the said laminated body can be formed by folding a raw material metal plate, it can also be formed only by laminating | stacking a metal sheet.

複数の玉鋼層からなる積層体の、各玉鋼層間にカーボンナノチューブを介在させ、鍛造工程に付することによりカーボンナノチューブの打ち込みが行われ、そのカーボンはラマン分光スペクトルの高波数側に「G-band」および「D-band」の二種類のピークが観測されるため、カーボンナノチューブとして金属層内に存在し、積層数2の5乗以上でカーボンナノチューブ層なしの玉鋼に比して少なくとも5%以上、好ましくは15%以上向上したビッカース硬度を有する刃物鋼を提供することができる。しかも、刃先の欠け及び磨耗により鋼部分が消耗し、カーボンナノチューブが残留する傾向にあるので、刃先は鋸状となって切れ味が長期間鈍化することがない。   Carbon nanotubes are driven by interposing carbon nanotubes between each of the ball steel layers of the laminate consisting of a plurality of ball steel layers and subjecting it to a forging process. -band "and" D-band "peaks are observed, so that they are present in the metal layer as carbon nanotubes, and are at least as high as the 5th power of 2 or more compared to ball steel without carbon nanotube layers. A cutter steel having a Vickers hardness improved by 5% or more, preferably 15% or more can be provided. In addition, the steel portion tends to be consumed due to chipping and abrasion of the blade edge, and carbon nanotubes tend to remain, so that the blade edge does not have a saw shape and the sharpness does not slow down for a long time.

玉鋼に代え、各種炭素鋼を用い、複数の炭素鋼層間にカーボンナノ構造材料を介在させ、炭素鋼層に鍛造打ち込むことにより、積層数2の5乗及びそれ以上でカーボンナノチューブ層なしの炭素鋼に比し強靱性、腐食性等の向上したCNT鋼を提供することができる。ピストンに用いる摺動鋼ではカーボンナノチューブ層が形成されることにより長寿命化される。他方、工具鋼ではカーボンナノチューブの介在により明らかに捩れ耐性が向上する。   Instead of jade steel, various carbon steels are used, carbon nanostructured material is interposed between multiple carbon steel layers, and forged into the carbon steel layer, carbon with a carbon nanotube layer with a number of stacks of 2 to 5 and higher CNT steel with improved toughness and corrosivity compared to steel can be provided. The sliding steel used for the piston has a long life by forming a carbon nanotube layer. On the other hand, in the tool steel, the torsional resistance is obviously improved by the interposition of carbon nanotubes.

積層数は2の10乗以上であるのが好ましく、カーボンナノチューブの均一分散程度を高め、その分散濃度を高めることができる。刃物鋼としては2の15乗程度が好ましい。   The number of stacked layers is preferably 2 to the 10th power or more, and the degree of uniform dispersion of the carbon nanotubes can be increased and the dispersion concentration thereof can be increased. The blade steel is preferably about 2 to the 15th power.

したがって、本発明の特殊金属材料の製造方法によれば、ナノ構造炭素材料を含有する特殊金属材料を簡単な工程、あるいは必須の工程中で得ることができ、安価に優れた軽量性、強靭性、かつ防錆性を金属材料に付与でき、二次加工によって得られた製品の長寿命化を図れる。また、ナノ構造炭素材料の含有により、滑り性や電気伝導性が向上した金属材料、熱伝導性に優れたヒートシンク材料を得ることができる。さらに、本発明により得られる特殊金属材料は、軽量であるため、省エネルギー化にも寄与し、含有するのが炭素材料であるため、廃棄も容易になって、環境負荷低減にも有効である。特に、カーボンナノチューブの介在により摺動鋼、工具鋼、刃物鋼の長寿命化が達成できることは注目される。   Therefore, according to the method for producing a special metal material of the present invention, a special metal material containing a nanostructured carbon material can be obtained in a simple process or an essential process, and is excellent in light weight and toughness at low cost. In addition, rust resistance can be imparted to the metal material, and the product life obtained by the secondary processing can be extended. In addition, the inclusion of the nanostructured carbon material makes it possible to obtain a metal material with improved sliding properties and electrical conductivity, and a heat sink material with excellent thermal conductivity. Furthermore, since the special metal material obtained by the present invention is lightweight, it contributes to energy saving, and since it contains a carbon material, it is easy to dispose and effective in reducing the environmental burden. In particular, it is noticed that the long life of sliding steel, tool steel, and knife steel can be achieved by interposing carbon nanotubes.

ナノ構造炭素材料に散布された面が内側となるよう折り返した状態を示す図。The figure which shows the state turned up so that the surface spread | diffused to the nanostructure carbon material might become inside. 鍛錬による層状組織の形成の過程を示す図。The figure which shows the process of formation of the layered structure by training. 鍛錬による層状組織の形成の別の過程を示す図。The figure which shows another process of formation of the layered structure by training. 実施例1で製造されたCNT鋼とCNTなしの鋼のSEM写真である。It is a SEM photograph of CNT steel manufactured in Example 1, and steel without CNT. 実施例1で製造されたCNT鋼のXPSスペクトル図である。2 is an XPS spectrum diagram of CNT steel produced in Example 1. FIG. 実施例1で製造されたCNT鋼とCNTなしの鋼のラマンスペクトル図である。2 is a Raman spectrum diagram of the CNT steel produced in Example 1 and steel without CNT. FIG. 実施例1で製造されたCNT鋼とCNTなしの鋼の組織状態を示す顕微鏡写真である。It is a microscope picture which shows the structure | tissue state of CNT steel manufactured in Example 1, and steel without CNT. 実施例1で製造されたCNT鋼とCNTなしの鋼のビッカース試験結果図である。It is a Vickers test result figure of CNT steel manufactured in Example 1, and steel without CNT. 実施例1で製造されたCNT鋼とCNTなしの鋼の応力腐食割れを観測した顕微鏡写真である。It is the microscope picture which observed the stress corrosion cracking of the CNT steel manufactured in Example 1, and the steel without CNT.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明は、(a)原料金属板を積層して各積層間にナノ構造炭素材料を介在させて積層体となす積層工程と、(b)該積層体をナノ構造炭素材料酸化分解温度以下の積層体鍛造可能温度域に加熱する加熱工程と、(c)上記積層体を非溶融状態で鍛造する工程とからなる。   The present invention includes (a) a lamination step of laminating raw metal plates and interposing a nanostructured carbon material between each lamination to form a laminate, and (b) the laminate having a temperature equal to or lower than the nanostructured carbon material oxidative decomposition temperature. It consists of a heating step of heating to a temperature range in which the laminate can be forged, and (c) a step of forging the laminate in a non-molten state.

上記積層工程(a)は固体の原料金属を加熱し、溶融する直前の状態で、一方の表面にナノ構造炭素材料を散布し、ナノ構造炭素材料が散布された面が内側となるように折り返して積層する。複数の金属板を積み重ねて積層してもよい。図1は、ナノ構造炭素材料が散布された面が内側となるように折り返して積層した状態を示す図である。固体の原料金属1を加熱後、一方の表面にナノ構造炭素材料2を散布し、ナノ構造炭素材料が散布された面3が内側となるように折り返して矢印Aの方向に鍛錬する。   In the laminating step (a), in a state just before the solid raw metal is heated and melted, the nanostructured carbon material is dispersed on one surface, and the surface on which the nanostructured carbon material is dispersed is folded back. And stack. A plurality of metal plates may be stacked and stacked. FIG. 1 is a diagram showing a state in which the nanostructured carbon material is folded and laminated so that the surface on which the nanostructured carbon material is dispersed is inside. After heating the solid source metal 1, the nanostructured carbon material 2 is dispersed on one surface, and the surface 3 on which the nanostructured carbon material is dispersed is folded back and trained in the direction of arrow A.

上記加熱工程(b)はナノ構造炭素材料酸化分解温度を考慮してそれ以下の積層体鍛造可能温度域に加熱する必要があり、カーボンナノ構造材料の物性と積層金属の鍛造可能温度を考慮して決定される。   In the heating step (b), it is necessary to heat the laminated structure forging temperature below that in consideration of the oxidative decomposition temperature of the nanostructured carbon material, considering the physical properties of the carbon nanostructured material and the forging temperature of the laminated metal. Determined.

上記鍛造工程(c)は、繰り返して鍛錬する際に、(1)一方向に鍛錬し、層状組織の断面が「柾目」状になるように鍛錬する場合と、(II)距角に2方向に交互に鍛錬し、層状組織の断面が「格子」状になるように鍛錬する場合がある。上記(1)の場合は、図2に示すように固体の原料金属(a)を1回折り返して鍛錬するとナノ構造炭素材料含有層により分割された2層が形成され(b)、2回目で4層(c)、3回目で8層となり(d)、15回では32768層となる。また、上記(II)の場合は、図3に示すような層状組織となる。   In the forging step (c), when repetitively forging, (1) forging in one direction and forging so that the cross-section of the layered structure becomes a “grid” shape, and (II) two directions at a distance angle In some cases, training is performed so that the cross section of the layered structure becomes a “lattice” shape. In the case of the above (1), as shown in FIG. 2, when the solid source metal (a) is refracted once and forged, two layers divided by the nanostructured carbon material-containing layer are formed (b) at the second time 4 layers (c), 8 layers at the third time (d), and 32768 layers at the 15th time. In the case of (II), a layered structure as shown in FIG. 3 is obtained.

前記の方法により、ナノ構造炭素材料が原料金属に混入したナノ構造炭素材料含有層と原料金属層とが交互に複数積層され、層状組織からなる積層体となる。該層状組織を有することにより、ナノ構造炭素材料に由来する軽量性、強靭性、かつ防錆性を金属材料に付与できる。また、金属材料の二次加工時に該層状組織が裏面に現れるため、摩擦係数が低くなって滑り性が向上し、電気伝導性も向上する。   By the method described above, a plurality of nanostructured carbon material-containing layers in which the nanostructured carbon material is mixed into the raw material metal and the raw material metal layer are alternately laminated to form a laminated body having a layered structure. By having the layered structure, the lightness, toughness, and rust prevention derived from the nanostructured carbon material can be imparted to the metal material. Further, since the layered structure appears on the back surface during the secondary processing of the metal material, the friction coefficient is lowered, the slipping property is improved, and the electrical conductivity is also improved.

上記のように折り返して鍛錬する回数は特に限定されないが、原料金属炉玉鋼であって、日本刀を製造する場合・鍛練の回数は通常、「心金」で7回、「練金』で9回、「刀金」で15回程度である。なお、本発明において、鍛造工程の「鍛錬」は刀鍛冶が行うような「槌」で打つ方法、「プレス機」や「エアーハンマー」で打つ方法が挙げられる。   The number of times of wrapping and forging as described above is not particularly limited, but when making a Japanese metal sword with a raw metal hearth steel, the number of times of tempering is usually 7 for “heart metal” and “for gold” 9 times, “Sword” 15 times. In the present invention, “forging” in the forging process includes a method of hitting with a “sword” as performed by a swordsmith, and a method of hitting with a “press machine” or “air hammer”.

前記原料金属としては、ナノ構造炭素材料との相溶性に問題がない限り特に限定されないが、工業用、医療用などの分野で多く使用され、軽量性、強靭性、かつ防錆性などの特性の向上が望まれる鉄、銅、アルミニウムを主体とする金属や、ステンレス鋼、ジュラルミン鋼、真鍮から選ばれる合金である場合に有効であり、また、チタン、白金、金、銀、パラジウム、アンチモン、モリブデン、ビスマス、インジウム、希土類から選ばれる金属、あるいは該金属を含有する金属など特殊な機能を求められる金属が挙げられる。特に、前記原料金属が、鉄のうちでも、刀剣等の刃物類に使用される玉鋼である場合、本発明の特殊金属材料の製造方法は有効である。   The raw metal is not particularly limited as long as there is no problem with the compatibility with the nanostructured carbon material, but it is frequently used in fields such as industrial use and medical use, and has characteristics such as lightness, toughness, and rust prevention. It is effective when it is an alloy selected from metals such as iron, copper, and aluminum, and stainless steel, duralumin steel, and brass, and titanium, platinum, gold, silver, palladium, antimony, Examples thereof include metals that are required to have a special function, such as a metal selected from molybdenum, bismuth, indium, and rare earth, or a metal containing the metal. In particular, the method for producing a special metal material of the present invention is effective when the raw metal is ball steel used for blades such as swords among iron.

上述のように、玉鋼はたたら吹きという特殊な製造方法により得られ、刀剣はこれを鍛錬し製造されるため、新たな特性の付与は簡単ではない。本発明の製造方法によれば、木炭による加熱還元時にナノ構造炭素材料を添加し、鍛錬時に玉鋼中に混入させるため、ナノ構造炭素材料の配合を従来の必須である工程中に容易に行うことができ、コスト的にも有利である。なお、刀剣の製造の場合は、玉鋼を「下鍛え折り返し鍛練」として折り返して鍛錬することを5〜6回、「積沸かし鍛錬」「上鍛え」等の工程により更に鍛錬して仕上げるため、ナノ構造炭素材料が丹念に混入されることになり、特に、軽量性、強靭性、かつ防錆性が付与される、その鍛造温度は400℃以上、カーボンナノチューブは900℃を超え、1000℃でも残留することができる。また、上記のように「玉鋼」を用いる場合、ナノ構造炭素材料の散布量は、玉鋼1kgに対して0.1〜10gの範囲が特に好ましい。   As described above, the ball steel is obtained by a special manufacturing method called tatara blow, and the sword is forged and manufactured, so it is not easy to impart new characteristics. According to the production method of the present invention, the nanostructured carbon material is added at the time of heat reduction with charcoal and mixed into the ball steel at the time of forging. Therefore, the nanostructured carbon material is easily blended in the conventional essential process. This is advantageous in terms of cost. In the case of manufacturing a sword, it is 5-6 times that the ball steel is folded and trained as `` bottom forging and forging '', and further training and finishing by processes such as `` boiling forging '' and `` upper forging '', Nanostructured carbon material will be carefully mixed, especially light weight, toughness, and rust prevention will be imparted, its forging temperature is over 400 ° C, carbon nanotubes are over 900 ° C, even at 1000 ° C Can remain. In addition, when “ball steel” is used as described above, the amount of the nanostructured carbon material applied is particularly preferably in the range of 0.1 to 10 g with respect to 1 kg of ball steel.

また、本発明は、砂鉄から玉鋼を製造する工程において、砂鉄の加熱還元時の玉鋼形成時点からナノ構造炭素材料を少量ずつ添加することによって、ナノ構造炭素材料が分散されて含有される玉鋼と、砂鉄に含まれる鉄以外の金属を主体金属としナノ構造炭素材料が分散されて含有される金属材料とを同時に製造することができる。砂鉄の加熱還元時の玉鋼形成時点からナノ構造炭素材料を少量ずつ添加することによって、ナノ構造炭素材料が分散された玉鋼を得る一方、砂鉄に含まれる鉄以外の金属であるニッケル、ニオブ、酸化鉄、酸化銅、酸化鉛、酸化錫など炭素と化合しやすい金属も、ナノ構造炭素材料が分散された金属材料として同時に得ることができる。   Further, in the process of producing ball steel from sand iron, the present invention contains the nanostructure carbon material dispersed and added by adding the nanostructure carbon material little by little from the time of ball steel formation at the time of heat reduction of sand iron. A ball steel and a metal material containing a metal other than iron contained in sand iron as a main metal and dispersed with a nanostructured carbon material can be simultaneously produced. By adding a small amount of nanostructured carbon material from the time of formation of ball steel during the reduction of iron sand, a ball steel in which the nanostructured carbon material is dispersed is obtained, while nickel and niobium, which are metals other than iron contained in sand iron, are obtained. Metals that easily combine with carbon, such as iron oxide, copper oxide, lead oxide, and tin oxide, can be obtained simultaneously as a metal material in which the nanostructured carbon material is dispersed.

本発明において、ナノ構造炭素材料とは、具体的にはC60フラーレン、カ一ボンナノファイバー、グラファイトナノファイバー、カーボンナノチューブが挙げられ、強化させたい特性に応じてこれらのナノ構造炭素材料を選択する。例えば、カーボンナノファイバーには、数千GPaのヤング率を有すると予測され、刀剣など高強度化を目的とする場合に好適である。   In the present invention, specific examples of the nanostructured carbon material include C60 fullerene, carbon nanofiber, graphite nanofiber, and carbon nanotube, and these nanostructured carbon materials are selected according to the characteristics to be reinforced. . For example, carbon nanofibers are predicted to have a Young's modulus of several thousand GPa, and are suitable for the purpose of increasing strength such as a sword.

本発明によって得られる特殊金属材料は、二次加工により、刀剣、剃刀、カッター等の特に特殊鋼を原材料とする:刃物類や、電線、コイル材、センサー材等の電子部品材料、あるいは線材、棒材、板材などの更なる加工用の材料とされる。特に、本発明により製造された玉鋼は、上記のような刃物類や工具類を、軽量、強靭、かつ防錆性に優れるものとすることができ、好適である。   The special metal material obtained by the present invention is made from a special steel such as a sword, a razor, a cutter, etc., as a raw material, by secondary processing: blades, electronic parts materials such as electric wires, coil materials, sensor materials, or wire materials, It is considered as a material for further processing such as bar material and plate material. In particular, the ball steel manufactured according to the present invention is suitable because the above-mentioned blades and tools can be made light, tough, and excellent in rust prevention.

実施例1
CNTを鉄マトリックス中に分散混合させ、鍛造法を用いてCNT鋼を製造する。
板状の玉鋼を木炭により加熱還元する工程で加熱後、溶融直前の状態(およそ900℃)で、一方の表面に、1kgの玉鋼あたり、ナノ構造炭素材料としてカーボンナノチューブ(粒径5〜300nm)10gを、5回に分け、均一に散布してナノ構造炭素材料が散布された面が内側となるように折り返して鍛錬することを5回繰り返して、図3に示すような格子状のナノ構造炭素材料含有層が層状組織として形成された玉鋼を特殊金属材料として製造した。
得られた玉鋼の断面をピューラーを掛けて観察した結果、格子状のナノ構造炭素材料含有層を確認する。
実験方法
1) 試料の加工、準備
検査目的の部位から試料を切り取った。切削熱による変質を避けるため、糸のこでゆっくり切断した。切断面は積層に対し垂直方向である。切断面にはそのままの状態では多数の凹凸があり、顕微鏡観察には適さないため、研削研磨を行う。本実験では400、800、1500のエメリーペーパーを使用している。最後に研磨機の円盤上にアルミナ研磨剤を滴下し、鏡面に仕上げた。
2) 組織の観察
Olynpus製BX51を用いて金属組織を観察した。試料は鏡面になっているが、そのままでは観察できないので、表面をアルコールで拭き、水気を飛ばした後、5%硝酸アルコールを用いて腐食させた。
3) 硬度の測定
ビッカース硬度HVを測定した。頂角α(136°)の正四角錐形のダイヤモンド圧子を用いて荷重をP(kg)、圧痕の対角線長さの平均をd(mm)とすると、高度は下記式で示される。
今回の荷重は0.3kgとする。

HV=2P・sin(α/2)/d2=1.854P/d2
4)SEMの観察
検査目的の部位からSEMの観察に適した大きさの長方形試料を作成し、日立SEM-EDX S-3000を用いて表面を観測する。
5)腐食分析
試料を磨き、鏡面に仕上げた後5%硝酸溶液を塗布し、腐食試験を行った。72時間腐食後の日立SEM-EDX S-3000を用いて表面を観測する。
6)XPS分析
角5x20x1mm3ぐらいのサンプルを用意し、Kratos Axis Ultra DLD XPS装置を用いてXPS分析を行った。X線源:Mgアルファ(1256.6eV)電流10mA、電圧15kVである。
7)ラマン分光分析
角5x1mmぐらいのサンプルを用意し、Kaiser社製ラマン分光装置を用いてスペクトル解析を行った。商社レーザー光の波長は532nmであった。
[製造例]
Example 1
CNT is dispersed and mixed in an iron matrix, and CNT steel is manufactured using a forging method.
After heating in the step of heating and reducing plate-shaped ball steel with charcoal, in the state just before melting (approximately 900 ° C.), on one surface, carbon nanotubes (particle size 5 to 300 nm) 10 g is divided into 5 times, and it is uniformly dispersed and folded and trained 5 times so that the surface on which the nanostructured carbon material is dispersed is on the inside. A ball steel with a nanostructured carbon material-containing layer formed as a layered structure was produced as a special metal material.
As a result of observing a cross section of the obtained ball steel with a puller, a lattice-like nanostructured carbon material-containing layer is confirmed.
Experimental Method 1) Sample was cut from the site for sample processing and preparation inspection purposes. In order to avoid alteration due to cutting heat, the yarn was cut slowly with a saw. The cut surface is perpendicular to the stack. Since the cut surface has a large number of irregularities as it is and is not suitable for microscopic observation, grinding and polishing are performed. In this experiment, 400, 800, and 1500 emery papers are used. Finally, an alumina abrasive was dropped on the disk of the polishing machine to finish it to a mirror surface.
2) Observation of tissue
The metal structure was observed using Olynpus BX51. Although the sample is a mirror surface, it cannot be observed as it is. Therefore, the surface was wiped with alcohol, and after water was blown away, it was corroded with 5% nitric acid alcohol.
3) Measurement of hardness Vickers hardness HV was measured. Using a square pyramid shaped diamond indenter with apex angle α (136 °), assuming that the load is P (kg) and the average diagonal length of the indentation is d (mm), the altitude is expressed by the following equation.
The load this time is 0.3 kg.

HV = 2P · sin (α / 2) / d 2 = 1.854 P / d 2
4) Observation of SEM A rectangular sample with a size suitable for SEM observation is created from the target site for inspection, and the surface is observed using Hitachi SEM-EDX S-3000.
5) The corrosion analysis sample was polished and finished to a mirror surface, and then a 5% nitric acid solution was applied to conduct a corrosion test. The surface is observed using Hitachi SEM-EDX S-3000 after 72 hours of corrosion.
6) A sample having an XPS analysis angle of about 5 × 20 × 1 mm 3 was prepared, and XPS analysis was performed using a Kratos Axis Ultra DLD XPS apparatus. X-ray source: Mg alpha (1256.6 eV) current 10 mA, voltage 15 kV.
7) Raman spectroscopic analysis A sample having an angle of about 5 × 1 mm was prepared, and spectral analysis was performed using a Raman spectroscope manufactured by Kaiser. The wavelength of the trading company laser beam was 532 nm.
[Production example]

上記実施例1で得られる玉鋼より小刀を製造し、製造工程及び仕上がり状態を目視により観察したところ、従来の玉鋼から製造した小刀より、粘りのある鋼であって、刃の焼入れ時に反りもなく、匂い口の柔らかい焼巻刃に仕上がっていた。   A sword is manufactured from the ball steel obtained in Example 1, and the manufacturing process and the finished state are visually observed. The sword manufactured from the conventional ball steel is sticky steel and warps when the blade is quenched. It was finished with a soft savory scalloped blade.

本発明の特殊金属材料の製造方法によれば、ナノ構造炭素材料を含有する金属材料を簡単な工程・あるいは必須の工程中で得ることができ、安価に優れた軽量性、強靭性、かつ防錆性を金属材料に付与できるため、本発明で得られる金属材料は工業用、医療用などの二次加工により成形を行う金属加工用の原料として利用される。特に、軽量性、強靭性、かつ防錆性の点からは、刀剣、剃刀、カッター等の刃物類への利用が有効であり、耐摩耗性に優れることから、軸受け材、ベアリング材、ピストン、シリンダーの材料として有効である。また、ナノ構造炭素材料による滑り性や電気伝導性の向上から、電線、コイル材、センサー材等の電子部品材料への利用も有効である。さらに、極少量であるため省エネルギーにも有効である。   According to the method for producing a special metal material of the present invention, a metal material containing a nanostructured carbon material can be obtained in a simple process or an essential process, and is excellent in light weight, toughness, and prevention at low cost. Since rustability can be imparted to the metal material, the metal material obtained in the present invention is used as a raw material for metal processing that is formed by secondary processing such as industrial use and medical use. In particular, from the point of lightness, toughness, and rust prevention, it is effective to use for blades such as swords, razors, cutters, etc., and since it has excellent wear resistance, bearing materials, bearing materials, pistons, It is effective as a cylinder material. In addition, the use of nanostructured carbon materials for electronic component materials such as electric wires, coil materials, and sensor materials is also effective because of improved slipperiness and electrical conductivity. Furthermore, since it is a very small amount, it is also effective for energy saving.

Claims (4)

(a) 原料金属板を積層して各金属板間にナノ構造炭素材料を介在させて積層体となす積層工程と、(b) 該積層体を大気中ナノ構造炭素材料酸化分解温度以下の積層体鍛造可能温度域に加熱する工程と、(c) 上記積層体を非溶融状態で鍛造する工程とからなるカーボンナノ構造材料を含有する金属材料の製造方法であって、上記原料金属板が玉鋼からなり、上記鍛造温度が400℃以上1000℃以下であることを特徴とする製造方法。 (a) a lamination step of laminating a raw metal plate and interposing a nanostructured carbon material between each metal plate to form a laminate, and (b) laminating the laminate below the oxidative decomposition temperature of the nanostructured carbon material in the atmosphere A method for producing a metal material containing a carbon nanostructure material comprising: a step of heating to a body forging temperature range; and (c) a step of forging the laminate in a non-molten state, wherein the raw metal plate is a ball A production method comprising steel, wherein the forging temperature is 400 ° C. or higher and 1000 ° C. or lower. 上記積層工程と鍛造工程を複数回繰り返すことにより繰り返し回数に応じてカーボン分散率及びカーボン含有量を調整することを特徴とする請求項1記載の製造方法。 2. The method according to claim 1, wherein the carbon dispersion rate and the carbon content are adjusted according to the number of repetitions by repeating the laminating step and the forging step a plurality of times. 上記積層体を原料金属板を折り畳んで形成する請求項1記載の製造方法。 The manufacturing method of Claim 1 which forms the said laminated body by folding a raw material metal plate. 上記ナノ構造炭素材料がカーボンナノチューブである請求項1記載の製造方法。
The manufacturing method according to claim 1, wherein the nanostructured carbon material is a carbon nanotube.
JP2009554359A 2008-02-20 2009-02-19 Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method Active JP5384372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554359A JP5384372B2 (en) 2008-02-20 2009-02-19 Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008039443 2008-02-20
JP2008039443 2008-02-20
PCT/JP2009/052856 WO2009104665A1 (en) 2008-02-20 2009-02-19 Manufacturing method for metal materials that comprise carbon nanostructure materials and cnt steel manufactured therefrom
JP2009554359A JP5384372B2 (en) 2008-02-20 2009-02-19 Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method

Publications (2)

Publication Number Publication Date
JPWO2009104665A1 JPWO2009104665A1 (en) 2011-06-23
JP5384372B2 true JP5384372B2 (en) 2014-01-08

Family

ID=40985543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009554359A Active JP5384372B2 (en) 2008-02-20 2009-02-19 Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method

Country Status (2)

Country Link
JP (1) JP5384372B2 (en)
WO (1) WO2009104665A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107400838A (en) * 2017-09-19 2017-11-28 安徽恒利增材制造科技有限公司 A kind of high-wearing feature hot die steel and preparation method thereof
JP2020196145A (en) * 2019-05-31 2020-12-10 日立造船株式会社 Laminate and method for manufacturing laminate
CN112024896B (en) * 2020-10-16 2023-03-28 湘潭大学 Preparation method of CNTs-ZA27 zinc-aluminum-based composite bar with high C content
CN114433763A (en) * 2022-01-26 2022-05-06 重庆墨希科技有限公司 Folding forging method and device for high-conductivity graphene metal composite material
CN115747622A (en) * 2022-11-11 2023-03-07 唐山市丰润区兴泰耐磨材料有限公司 Wear-resistant steel ball and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051782A1 (en) * 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
JP2006147170A (en) * 2004-11-16 2006-06-08 Sumitomo Electric Ind Ltd Conductive material and its manufacturing method
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049369B2 (en) * 2002-07-31 2008-02-20 京セラキンセキ株式会社 Polishing carrier
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051782A1 (en) * 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
JP2006147170A (en) * 2004-11-16 2006-06-08 Sumitomo Electric Ind Ltd Conductive material and its manufacturing method
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material

Also Published As

Publication number Publication date
JPWO2009104665A1 (en) 2011-06-23
WO2009104665A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
Dong et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms
JP5384372B2 (en) Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method
Sahoo et al. Surface modification of aluminium by graphene impregnation
Akbarpour et al. Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes
Jafari et al. Mechanical and microstructural characterization of Cu/CNT nanocomposite layers fabricated via friction stir processing
JPWO2006120803A1 (en) High thermal conductive composite material and its manufacturing method
CN110125179B (en) Graphene composite metal and preparation method thereof
Azarniya et al. Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites
Borkar et al. Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites
CN106735247B (en) A kind of preparation method of the porous metals of multilayered structure/nano-sized carbon phase composite materials
CN115233077A (en) CoCrNi-based medium entropy alloy with high aluminum content and high titanium content and strengthened nano coherent precipitation and preparation method thereof
WO2020117102A1 (en) Method for producing copper-based nano-composite material reinforced with carbon nanofibres
Uriza-Vega et al. Mechanical behavior of multiwalled carbon nanotube reinforced 7075 aluminum alloy composites prepared by mechanical milling and hot extrusion
KR20120068915A (en) A compound material comprising a metal and nanoparticles
Akçamlı et al. Processing and characterization of graphene nano-platelet (GNP) reinforced aluminum matrix composites
Radhamani et al. Structural, mechanical and corrosion properties of CNT-304 stainless steel nanocomposites
Wang et al. Interface structure and properties of CNTs/Cu composites fabricated by electroless deposition and spark plasma sintering
Gupta et al. Synergetic effect of CeO2 doping on structural and tribological behavior of Fe-Al2O3 metal matrix nanocomposites
Manjunatha et al. Development and comparative studies of aluminum-based carbon nano tube metal matrix composites using powder metallurgy and stir casting technology
Bastwros et al. Fabrication of graphene reinforced aluminum composite by semi-solid processing
Katzensteiner et al. Influence of Processing Parameters on the Mechanical Properties of HPT‐Deformed Nickel/Carbon Nanotube Composites
Kumar et al. Effect of xGnP/MWCNT reinforcement on mechanical, wear behavior and crystallographic texture of copper-based metal matrix composite
Kumar et al. Effect of graphene addition on flexural properties of Al 6061 nanocomposites
Wilson et al. Processing of titanium single-walled carbon nanotube metal-matrix composites by the induction melting method
JP6471483B2 (en) Method for producing fibrous carbon-containing iron-based sintered alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5384372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250