JP5381348B2 - 光源装置、照明系、プロジェクター - Google Patents

光源装置、照明系、プロジェクター Download PDF

Info

Publication number
JP5381348B2
JP5381348B2 JP2009133250A JP2009133250A JP5381348B2 JP 5381348 B2 JP5381348 B2 JP 5381348B2 JP 2009133250 A JP2009133250 A JP 2009133250A JP 2009133250 A JP2009133250 A JP 2009133250A JP 5381348 B2 JP5381348 B2 JP 5381348B2
Authority
JP
Japan
Prior art keywords
light
light source
reflector
spot
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009133250A
Other languages
English (en)
Other versions
JP2010281893A5 (ja
JP2010281893A (ja
Inventor
秀文 坂田
進 有賀
貴之 松原
武士 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009133250A priority Critical patent/JP5381348B2/ja
Priority to US12/788,504 priority patent/US8506128B2/en
Publication of JP2010281893A publication Critical patent/JP2010281893A/ja
Publication of JP2010281893A5 publication Critical patent/JP2010281893A5/ja
Application granted granted Critical
Publication of JP5381348B2 publication Critical patent/JP5381348B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、光源装置、照明系、プロジェクターに関する。
大画面画像を表示可能な装置の1つとしてプロジェクターが知られている。プロジェクターは、例えば照明系、画像形成装置、投射レンズを備えている。照明系から射出された照明光は、画像形成装置により像に形成される。この像が投射レンズにより拡大投射され、直視型の画像表示装置よりも容易に大画面画像を得ることができる。
照明系に用いられる光源装置としては、高圧水銀ランプ等の光源、リフレクターを含んだものが知られている。リフレクターは、光源を焦点とする回転放物体や回転楕円体により構成されている。従来のリフレクターは、発光点を含んだ回転軸周りの全周にわたって反射面が光源を囲んでいる全周型のものである。光源から射出された光は、リフレクターで反射して光源装置の外部に射出されて取り出される。
プロジェクターには、装置を小型にすること、低消費電力にすること、高輝度な画像を表示可能にすること等が期待されている。プロジェクターを小型にすることが可能な技術として、特許文献1、2に提案されている技術が挙げられる。
特許文献1、2の光源装置は、第一のリフレクター、第二のリフレクター、及び光源を備えている。第一のリフレクターの反射面は、回転楕円面の一部により構成されており、回転軸を含んだ分割面で回転楕円面を分割した形状になっている。第二のリフレクターの反射面は、球面の一部になっており、前記の分割面で球面を分割した形状になっている。第一のリフレクターの反射面は、第二のリフレクターの反射面と向かい合うように配置されている。第一のリフレクターの反射面の1つの焦点は、第二のリフレクターの焦点と一致しており、かつ光源の発光点と一致している。
光源から第二のリフレクターに向かう光は、第二のリフレクターで反射して折り返され、発光点を通って第一のリフレクターに入射する。光源から第一のリフレクターに向かう光は、第二のリフレクターを経由した光とともに光源装置の外部に射出される。
特許文献1、2の技術によれば、第二のリフレクターを光源と同程度の大きさにすることができ、光源装置自体を略半分の大きさに小型化することができる。また、第一のリフレクターの反射面は、光軸に直交する面への投影面積が全周型のリフレクターの略半分になっているので、光源装置から取り出される光のスポットサイズが略半分になる。したがって、光源装置から光が入射する画像形成装置や投射レンズ、レンズ等の光学素子等を小型化することも可能になる。
特許第3350003号明細書 特許第3923560号明細書
特許文献1、2の技術にあっては、プロジェクターを格段に小型にすることが可能であるが、光の損失を低減する観点で改善すべき点がある。
放電型の光源は、以下のような発光原理により光を発することが知られている。発光管(放電管)内に封入された放電ガスは、アーク放電に起因する電子と衝突する。これにより、放電ガスの一部が励起状態となり、また放電ガスの一部がイオン化してプラズマになる。励起状態の放電ガスは、基底状態又は準安定状態に戻り、励起状態とのエネルギー差に応じた光を放射する。プラズマとなった放電ガスは、電子と再結合して結合エネルギーに応じた光を放射する。
特許文献1、2の光源装置において、第二のリフレクターで反射した光の輝度分布は、光源像の輝度分布とパターン及び位置が略一致する。すなわち、第2リフレクターで反射した光において輝度が高い部分であるほど、プラズマ密度が高い領域に入射する。したがって、全周型のリフレクターを用いた光源装置よりも光の損失が増加してしまい、高輝度の画像を表示することが難しくなることや、プロジェクターの消費電力が増加すること等の不都合を生じてしまう。
本発明は、前記事情に鑑み成されたものであって、装置を小型にすることが可能であるとともに光の損失を低減可能な光源装置を提供することを目的の1つとする。小型化が可能であるとともに、明るい照明光を低消費電力で得られる照明系を提供することを目的の1つとする。小型化が可能であるとともに、高輝度な画像を低消費電力で表示可能なプロジェクターを提供することを目的の1つとする。
本発明の第1態様の光源装置は、光を射出する光源と、前記光源の一部を囲んで設けられ、前記光源から射出された光を反射させて光軸方向に射出する第1リフレクターと、
前記光源の前記一部と異なる部分の少なくとも一部を囲んで設けられ、前記光源から射出された光を反射させて前記第1リフレクターに向けて射出する第2リフレクターと、を備え、前記第1リフレクターの焦点位置が前記光源の発光点と略一致しているとともに、前記光軸方向に直交する面方向において、前記第2リフレクターの焦点位置が前記第1リフレクターの焦点位置からずれており、前記光源から射出されて第2リフレクターで反射した光の集光スポットの位置が、少なくとも前記光軸方向に直交する面方向において、前記光源における発光スポットの位置からずれていることを特徴とする。
本発明の第2態様の光源装置は、光を射出する光源と、前記光源の一部を囲んで設けられ、前記光源から射出された光を反射させて光軸方向に射出する第1リフレクターと、前記光源の前記一部と異なる部分の少なくとも一部を囲んで設けられ、前記光源から射出された光を反射させて前記第1リフレクターに向けて射出する第2リフレクターと、を備え、前記第2リフレクターの焦点位置が前記第1リフレクターの焦点位置と略一致しているとともに、前記第1リフレクターの焦点位置が前記光源の発光点からずれており、前記光源から射出されて第2リフレクターで反射した光の集光スポットの位置が、少なくとも前記光軸方向に直交する面方向において、前記光源における発光スポットの位置からずれていることを特徴とする。
このようにすれば、光源から第2リフレクターに向けて射出された光が、第2リフレクターで反射して第1リフレクターに入射し、光源から第1リフレクターに向けて射出された光とともに光軸方向に取り出される。第2リフレクターを第1リフレクターよりも小型にしても同程度の光量が得られるので、光源装置を容易に小型にすることできる。一般に発光スポットの中心部は、発光スポットの周縁部よりもプラズマ密度が高くなっており、光の吸収率が高くなっている。第2リフレクターで反射した光の集光スポットの位置が光源の発光スポットの中心部の位置からずれているので、発光スポットの中心部におけるプラズマに光が吸収されることによる光の損失が低減される。
以上のように本発明の光源装置は、小型化が可能であり光の損失を低減可能なものになっている。
前記光源は、所定の光源軸に沿って互いに離れて配置された一対の電極を含み、前記一対の電極の間に前記発光スポットが形成されるようになっており、前記集光スポットにおける輝度の重心位置と前記光源軸とを含む検査面において、前記集光スポットの輝度極大部が、前記発光スポットの輝度極大部からずれるようになっている構成であってもよい。
発光スポットの極大輝度部は、プラズマ密度が極大となる領域とほぼ一致すると考えられる。集光スポットの極大輝度部が発光スポットの極大輝度部からずれるようになっているので、プラズマに吸収される光量が低減され、光の損失が低減される。
前記検査面において互いに独立した2方向について前記集光スポットの輝度極大位置が前記発光スポットの輝度極大位置からずれる量を比較すると、前記2方向のうちで前記発光スポットの輝度変化率が相対的に大きい第1方向では、前記発光スポットの輝度変化率が相対的に小さい第2方向よりも前記ずれる量が大きくなっている構成であってもよい。
このようにすれば、発光スポットの輝度変化率が急勾配である方向において、発光スポットの輝度極大位置からの集光スポットの輝度極大位置のずれ量を大きくしているので、発光スポットと対応する部分の集光スポットの輝度が集光スポットの最大輝度よりも低下する量が、ずれ量に比して効果的に大きくなる。したがって、プラズマ密度が相対的に高い領域を通る光量を効果的に減らすことができ、プラズマに吸収される光量をずれ量に比して効果的に低減することができる。よって、集光スポットの発光スポットからのずれ量を最小限度にすることができ、光源装置から射出される光全体における配光特性を良好にすることができる。
前記光源軸に直交する面が前記検査面と交差する交差線上において、前記集光スポットの輝度分布の半値幅に対応する領域が前記発光スポットの輝度分布の半値幅に対応する領域と重なり合わないようになっている構成であってもよい。
集光スポットの輝度分布の半値幅に対応する領域が、発光スポットの輝度分布の半値幅に対応する領域と重ならないようになっていれば、第2リフレクターで反射した光においてプラズマを通る光の割合が格段に低くなり、プラズマに吸収される光量が格段に低減される。
前記第1リフレクターにおいて前記光源から光が入射する部分の形状が前記光源の発光点を含んだ対称面に対して略面対称になっているとともに、前記第2リフレクターにおいて前記光源から光が入射する部分の形状が前記対称面に対して略面対称になっており、前記集光スポットの輝度の重心位置が、前記対称面内で前記発光点からずれている構成であってもよい。
このようにすれば、第1リフレクター、第2リフレクターのいずれにおいても光源から光が入射する部分の形状が、発光点を含んだ対称面に対して略面対称になっているので、光源装置から取り出される光の輝度分布が対称面に対して対称になる。
前記第1リフレクターの焦点位置が前記光源の発光点と略一致しているとともに、前記第2リフレクターの焦点位置が前記第1リフレクターの焦点位置からずれている構成であってもよい。
このようにすれば、第2リフレクターの焦点位置が発光点と異なる位置になるので、集光スポットを発光スポットからずらすことができる。
前記第2リフレクターの焦点位置が前記第1リフレクターの焦点位置と略一致しているとともに、前記第1リフレクターの焦点位置が前記光源の発光点からずれている構成であってもよい。
このようにすれば、第2リフレクターの焦点位置が発光点と異なる位置になるので、集光スポットを発光スポットからずらすことができる。第2リフレクターの焦点位置が第1リフレクターの焦点位置と略一致しているので、光源装置から取り出される光の輝度分布の対称性を改善することが可能になる。
前記第1リフレクターの焦点位置と、前記第2リフレクターの焦点位置と、前記光源の発光点とが互いに独立している構成であってもよい。
このようにすれば、第2リフレクターの焦点位置が発光点と異なる位置になるので、集光スポットを発光スポットからずらすことができる。また、第2リフレクターで反射して間接的に第1リフレクターに入射する間接光の輝度分布を、光源から第1リフレクターに直接的に入射する直接光の輝度分布と独立して設計することができる。光源装置から取り出される光の輝度分布は、直接光に由来する輝度分布と、間接光に由来する輝度分布とを重ね合わせたパターンになるので、取り出される光の輝度分布の設計自由度が高くなる。
本発明の照明系は、前記の本発明に係る光源装置と、複数のレンズ部を含んで構成され、前記光源装置から射出された光の輝度分布を均一化する輝度均一化素子と、前記輝度均一化素子から射出された光の偏光状態を揃える複数の偏光変換セルを含んで構成された偏光変換素子と、を備え、前記レンズ部は、前記偏光変換セルと1対1で対応しているとともに該レンズ部を通る光を該偏光変換セルの光入射領域に集光するようになっており、前記光源装置において前記第2リフレクターを経由した光と前記光源から第1リフレクターに直接的に入射した光とが前記偏光変換セルの光入射領域に収まるように、前記集光スポットの前記発光スポットからのずれ量が設定されていることを特徴とする。
本発明に係る光源装置は小型化が可能であり光の損失が低減されているので、本発明の照明系を小型することができ、また低消費電力で高輝度な光が得られるものにすることができる。第2リフレクターを経由した光と光源から第1リフレクターに直接的に入射した光とが偏光変換セルの光入射領域に収まるように、集光スポットの発光スポットからのずれ量が設定されているので、光入射領域の外側に光が入射することによる光の損失が低減され、光の利用効率が高くなる。
本発明のプロジェクターは、前記の本発明に係る光源装置を含んで構成された照明系又は前記の本発明に係る照明系と、前記照明系から射出された光により画像を形成する画像形成装置と、前記画像形成装置により形成された画像を投射する投射光学系と、を備えていることを特徴とする。
本発明に係る光源装置を含んで構成された照明系又は本発明に係る照明系は、小型化が可能であり低消費電力で高輝度な光が得られるので、本発明のプロジェクターを小型にすることができ、また低消費電力で高輝度の画像が得られるものにすることができる。
第1実施形態に係る光源装置の概略構成を示す斜視図である。 第1実施形態の光源装置の(a)は断面図、(b)は平面図である。 光源から射出される光を示す(a)は側方図、(b)は正面図である。 (a)は発光スポットと集光スポットとで輝度分布の比較を示す概念図であり、(b)は(a)のA−A’線に沿った輝度分布を示す概念図である。 (a)、(b)は、第2実施形態の光源装置を示す正面図である。 (a)、(b)は、第3実施形態の光源装置を示す正面図である。 (a)、(b)は、第4実施形態の光源装置を示す正面図である。 第5実施形態に係る照明系の概略構成を示す模式図である。 第5実施形態における偏光変換素子を拡大して示す模式図である。 第6実施形態に係るプロジェクターの概略構成を示す模式図である。 第7実施形態に係るプロジェクターの概略構成を示す模式図である。
以下、図面を参照しつつ本発明の実施形態を説明するが、本発明の技術範囲は以下の実施形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で多様な変形が可能である。説明に用いる図面において、特徴的な部分を分かりやすく示すために、図面中の構造の寸法や縮尺を実際の構造に対して異ならせている場合がある。また、実施形態において同様の構成要素については、同じ符号を付して図示し、その詳細な説明を省略する場合がある。
[第1実施形態]
図1は、本発明の第1実施形態に係る光源装置1の概略構成を示す斜視図である。
図1に示すように光源装置1は、光源10、リフレクター11を含んでいる。リフレクター11は、第1リフレクター12、第2リフレクター13を含んでいる。第1リフレクター12、第2リフレクター13は、それぞれが凹面状の反射面を含んでおり、互いの反射面が向かい合うように配置されている。光源10は、第1リフレクター12と第2リフレクター13とに囲まれる領域に配置されている。光源10は、概ね光源軸(以下、ランプ軸と称する)10Aの軸方向に延在しており、ランプ軸10A周りで略軸対称な形状になっている。光源装置1の光軸は、ランプ軸10Aと略平行になっている。
以下、図1に示したXYZ直交座標系を設定し、これに基づいて部材の位置関係を説明する。このXYZ直交座標系において、光源装置1の光軸と平行な方向すなわちランプ軸10Aと平行な方向をZ方向とし、光軸に直交する面内で互いに直交する方向をそれぞれX方向、Y方向とする。第2リフレクター13において光が入射する部分は主として、ランプ軸10Aを含んだ所定の面(以下、境界面と称することがある)を挟む一方の領域に配置されている。ここでは、この境界面の法線方向をY方向としている。第2リフレクター13の反射面は、第1リフレクター12の反射面とY方向において向かい合っている。
図2(a)は、ランプ軸10Aを含みYZ面に平行な面における光源装置1の断面構成を模式的に示す図である。図2(b)は、ランプ軸10Aに直交する面内における光源装置1の構成要素の位置関係を示す平面図(Z正方向から見た正面図)である。図2(b)には、発光点17を通りランプ軸10Aに直交する断面における反射面13aを模式的に図示している。
光源10は、高圧水銀ランプやメタルハライドランプ、キセノンランプ等のランプ光源により構成されている。図2(a)に示すように、光源10は、発光管14、及び発光管14内に封止された一対の電極15、16を含んでいる。発光管14は中空のものであり、発光管14内に放電ガスや不活性ガス等が封入されている。
電極15、16は、例えばタングステン等からなっている。電極15、16は、ランプ軸10Aと平行な方向(Z方向)に延在しており、Z方向において所定の間隔だけ互いに離れて配置されている。電極15、16は、図示略の配線を介して電源と電気的に接続される。発光管14は、電極15、16を被覆してランプ軸10Aに沿って延在する筒状部141と、電極15、16の間の中央部を中心とする球状部142とを含んでいる。
電極15、16間に電圧を印加すると、電極15、16間にアーク放電が生じる。発光管14内の放電ガスは、アーク放電に起因する電子と衝突してエネルギーを受け取る。これにより、放電ガスの一部が励起され、あるいはイオン化される。励起状態となった放電ガスは、基底状態又は準安定状態に戻るときに、励起状態とのエネルギー差に応じた光を放射する。イオン化された放電ガス(プラズマ)は、電子と再結合して結合エネルギーに応じた光を放射する。このように電極15、16間には、略放射状に広がる光が発生し、電極15、16の間に発光スポットS1が形成される。光源10は、発光スポットS1の輝度の重心位置に発光点17を有する点光源とみなすこともできる。
第1リフレクター12及び第2リフレクター13は、光源10から発せられた光を反射させて概ね光軸1Aの軸方向に進行させるものである。第1リフレクター12は、第2リフレクター13と発光点17を挟んで配置されている。
第1リフレクター12の反射面12aは、回転楕円面の一部を含んでいる。この回転楕円面は、発光点17と略一致する位置に焦点の1つを有しランプ軸10Aを長軸方向とする楕円を、ランプ軸10Aを回転軸として回転させた曲面である。反射面12aは、この回転楕円面のうちの境界面P1を挟む部分の一方(Y正方向側)を主体として構成されている。
第2リフレクター13の反射面13aは、球面の一部を含んでいる。この球面の中心となる焦点位置13bは、Y方向及びZ方向において発光点17と略一致しており、X方向において発光点17とずれている。すなわち、焦点位置13bは、発光点17を含みランプ軸10Aに直交する面内に含まれており、この面内で発光点17と異なる位置になっている。ここでは、球面において境界面P1を挟む一方(Y負方向側)の領域に位置する部分が、反射面13aにおいて光が入射する部分の主体になっている。第2リフレクター13は、反射面13aが第1リフレクター12の反射面12aに向かって凹となるように配置されている。
図3(a)は、図2(a)に示した断面図に対応させて、発光点17から射出される光を模式的に示す概念図である。図3(b)は、図2(b)に示した正面図に対応させて、発光点17から射出される光を模式的に示す概念図である。
図3(a)、(b)に示すように、発光点17から第1リフレクター12に向けて射出された光L1は、反射面12aに入射して反射し、反射面12aを構成する回転楕円面の第2焦点に集光される。発光点17から第2リフレクター13に向けて射出された光L2は、反射面13aに入射して反射する。反射面13aで反射した光L2は、集光スポットS2に集光された後、第1リフレクター12に向かって進行する。集光スポットS2とは、スポットサイズが最小になる領域のことである。第2リフレクター13の反射面13aで反射した光L2が略一点に集光される場合には、集光スポットS2は略一点となる。図3(b)に示すように、焦点位置13bが発光点17と異なる位置になっているので、集光スポットS2はランプ軸10Aに直交する面内で発光スポットS1からずれた位置に形成される。第1リフレクター12に入射した光L2は、反射面12aで反射して、光L1とともに光源装置1の外部に取り出される。
図4(a)は、検査面における発光スポットS1の輝度分布D1と、検査面における集光スポットS2の輝度分布D2との比較を示す概念図であり、図4(b)は、図4(a)のA−A’線における輝度分布を示す概念図である。検査面は、集光スポットS2における輝度の重心位置18とランプ軸10Aとを含む面のことであり、ここでは図2(b)に示した境界面P1と略一致している。輝度分布D1は、検査面における光源像(アーク像)に相当する。
図4(a)に示すように、輝度分布D1は、電極15、16間の中心位置(発光点17)を含みランプ軸10Aに直交する面(中心面P2と称する)に対して、略面対称な分布になっている。輝度分布D1は、中心面P2と電極15との間、及び中心面P2と電極16との間に、それぞれ輝度が極大となる輝度極大位置C1を含んでいる。輝度分布D1において、相対的に輝度が高い領域(輝度極大部)D1aは、輝度極大位置C1を含んでおり、対称面と電極15との間、及び対称面と電極16との間にそれぞれ位置している。領域D1aの各々の外側に、領域D1aよりも輝度が低い領域D1bが位置している。領域D1bの外側に、領域D1bよりも輝度が低い領域D1cが位置している。輝度分布D1における輝度変化率は、ランプ軸10Aと直交する方向(X方向、Y方向)の輝度変化率が、ランプ軸10Aの軸方向(Z方向)の輝度変化率よりも大きくなっている。
集光スポットS2の輝度分布D2は、輝度分布D1と分布パターンが概ね同様になっており、輝度分布D1がX方向にずれた分布になっている。輝度分布D2において、相対的に輝度が高い領域(輝度極大部)D2aは、集光スポットS2における輝度極大位置C2を含んでおり、中心面P2と電極15との間、及び中心面P2と電極16との間にそれぞれ位置している。領域D2aの各々の外側に、領域D2aよりも輝度が低い領域D2bが位置している。領域D2bの外側に、領域D2bよりも輝度が低い領域D2cが位置している。
図4(b)に示すように、輝度分布D1は輝度極大位置C1にて輝度が極大値B1となり、半値幅に対応する範囲R1において輝度が半値B2(極大値B1の1/2)以上になっている。輝度分布D2は輝度極大位置C2にて輝度が極大値B1となり、範囲R2において輝度が半値B2以上になっている。
輝度極大位置C2の輝度極大位置C1からの位置ずれ量に着目すると、発光スポットS1の輝度分布D1において相対的に輝度変化率が高い方向(ここではX方向)の位置ずれ量が、相対的に輝度変化率が低い方向(Z方向)の位置ずれ量よりも大きくなっている。また、範囲R2が範囲R1と重ならないようになっている。位置ずれ量や範囲R2は、第2リフレクター13の反射面13aの位置や形状により調整可能である。
なお、ここでは、輝度分布D1、D2の分布パターンや極大値が等しいとして説明しているが、輝度分布D1、D2の分布パターンや極大値が互いに異なる場合もありえる。この場合には、輝度分布D1、D2の各々の半値幅に対応する範囲が、互いに重ならないようにするとよい。
以上のような構成の光源装置1は、集光スポットS2の輝度分布D2において輝度が相対的に強い領域が、発光スポットS1の輝度分布D1において輝度が相対的に強い領域と重ならないようになっている。すなわち、第2リフレクターの反射面の焦点位置が発光点と一致している構成と比較して、第2リフレクター13の反射面13aで反射した光L2のうち、発光スポットS1において輝度が高い領域を通る光の光量が少なくなっている。
放電型の光源の発光原理を鑑みると、発光スポットS1において輝度が相対的に高い領域は、発光時のプラズマ密度が相対的に高い領域であると考えられる。一般に、光がプラズマを通るときに、プラズマの組成に応じたスペクトル光が吸収されることが知られている。
光源装置1にあっては、プラズマ密度が相対的に高い領域を避けて第2リフレクター13から第1リフレクター12に光L2を進行させるので、プラズマに吸収される光量が低減される。したがって、光源装置1における光の損失を低減することができ、消費電力を増加させることなく光量を増やすことができる。特に、反射面13aで反射した光L2の輝度分布D2の半値幅が、発光スポットS1の輝度分布D1の半値幅と重ならないようにすれば、プラズマに吸収される光量が格段に低減される。
発光点17を含みランプ軸10Aを含んだ面内で集光スポットS2の位置を調整しているので、ランプ軸10Aの軸方向で集光スポットS2の位置を調整するよりも電極15、16に遮られる光量が少なくなり、光の利用効率が高くなっている。
また、第1リフレクター12の反射面12aが、発光点17の周囲においてランプ軸10Aの周りの一部のみを囲んでおり、ランプ軸周りの全周を囲む全周型のものよりも小型になっている。発光点17から第2リフレクター13に向けて射出された光が、反射面13aで反射して第1リフレクター12を介して外部に取り出されるので、全周型のリフレクターを用いた光源装置よりも装置を小型化することができる。
[第2実施形態]
次に、本発明の第2実施形態に係る光源装置について説明する。
図5(a)は、第2実施形態の光源装置2について、ランプ軸10Aに直交する面内における光源装置2の構成要素の位置関係を示す平面図である。図5(b)は、図5(a)に示した平面図に対応させて、発光点から射出される光を模式的に示す概念図である。
図5(a)に示すように、光源装置2は、光源10、第1リフレクター22、第2リフレクター23を含んでいる。第1リフレクター22、第2リフレクター23は、第1実施形態と同様のものである。光源装置2は、構成要素の位置関係が第1実施形態と異なっている。第1リフレクター22の反射面22aの焦点位置は、第2リフレクター23の反射面23aの焦点位置23bと略一致している。ランプ軸10Aに直交する面内での焦点位置23bは、X方向において発光点17からずれており、Y方向及びZ方向において発光点17と略一致している。
図5(b)に示すように、発光点17から反射面22aに向けて射出された光L1は、反射面22aで反射して、光源装置2の外部に取り出される。また、発光点17から反射面23aに向けて射出された光L2は、反射面23aで反射する。反射面23aで反射した光L2は、集光されて発光点17と異なる位置でスポットサイズが最小となった後、反射面22aに入射する。反射面22aに入射した光L2は、反射して光L1とともに光軸方向に射出され、光源装置2の外部に取り出される。
このような構成の光源装置2は、第1実施形態と同様に、小型化が可能であるとともに低消費電力で高輝度の光が得られるものになっている。また、第1リフレクター22及び第2リフレクター23からなるリフレクターの形状が、焦点位置23bを含んだYZ面に対して面対称となり、このリフレクターから射出される光全体としての輝度分布の対称性を高めることが可能になる。
[第3実施形態]
次に、本発明の第3実施形態に係る光源装置について説明する。
図6(a)は、第3実施形態の光源装置3について、ランプ軸10Aに直交する面内における光源装置3の構成要素の位置関係を示す平面図である。図6(b)は、図6(a)に示した平面図に対応させて、発光点から射出される光を模式的に示す概念図である。
図6(a)に示すように、光源装置3は、光源10、第1リフレクター32、第2リフレクター33を含んでいる。第1リフレクター32、第2リフレクター33は、第1実施形態と同様のものである。光源装置3は、構成要素の位置関係が第1、第2実施形態と異なっている。第1リフレクター32の反射面32aの焦点位置32b、第2リフレクター33の反射面33aの焦点位置33b、及び発光点17は、ランプ軸10Aに直交する面方向での位置が、いずれもX方向において互いに独立しており、いずれもY方向及びZ方向において略一致している。
図6(b)に示すように、発光点17から反射面32aに向けて射出された光L1は、反射面32aで反射して、光源装置3の外部に取り出される。また、発光点17から反射面33aに向けて射出された光L2は、反射面33aで反射する。反射面33aで反射した光L2は、集光されて発光点17と異なる位置でスポットサイズが最小となった後、反射面32aに入射する。反射面32aに入射した光L2は、反射して光L1とともに光軸1Aの軸方向に射出され、光源装置3の外部に取り出される。
このような構成の光源装置3は、第1、第2実施形態と同様に、小型化が可能であるとともに低消費電力で高輝度の光が得られるものになっている。また、反射面32aの焦点位置32bと、反射面33aの焦点位置33bと、発光点17とが互いに独立しているので、光源装置3から射出される光全体における輝度分布を、第1、第2実施形態よりも高い自由度で調整することができる。
すなわち、発光点17と焦点位置32bとの相対位置を調整することにより、発光点17から第1リフレクター32に向けて射出された光L1に由来する輝度分布のパターンを調整することができる。同様に、発光点17と焦点位置33bとの相対位置を調整することにより、光L2に由来する輝度分布のパターンを調整することができる。光源装置3から外部に取り出される光全体の輝度分布は、光L1、L2に由来する輝度分布を重ね合わせたパターンになり、これらパターンを互いに独立して調整可能であるので、取り出される光の輝度分布を高い自由度で設計可能になる。
[第4実施形態]
次に、本発明の第4実施形態に係る光源装置について説明する。
図7(a)は、第4実施形態の光源装置4について、ランプ軸10Aに直交する面内における光源装置4の構成要素の位置関係を示す平面図である。図7(b)は、図7(a)に示した平面図に対応させて、発光点から射出される光を模式的に示す概念図である。
図7(a)に示すように、光源装置4は、光源10、第1リフレクター42、第2リフレクター43を含んでいる。第1リフレクター42、第2リフレクター43は、第1実施形態と同様のものである。光源装置4は、構成要素の位置関係が第1〜第3実施形態と異なっている。第1リフレクター42の反射面42aの焦点位置は、第2リフレクター43の反射面43aの焦点位置43bと略一致している。すなわち、第1リフレクター42の反射面42aにおいて光が入射する部分は、ランプ軸10Aと焦点位置43bとを含む対称面P3に対して略面対称になっている。また、第2リフレクター43の反射面43aにおいて光が入射する部分も、対称面P3に対して略面対称になっている。ランプ軸10Aに直交する面方向で焦点位置43bは、X方向及びZ方向において発光点17と略一致しており、Y方向において発光点17と異なっている。
図7(b)に示すように、発光点17から反射面42aに向けて射出された光L1は、反射面42aで反射して、光源装置4の外部に取り出される。また、発光点17から反射面43aに向けて射出された光L2は、反射面43aで反射する。反射面43aで反射した光L2は、集光されて発光点17からY方向にずれた位置でスポットサイズが最小となり、反射面42aに入射する。反射面42aに入射した光L2は、反射して光L1とともに光軸方向に射出され、光源装置4の外部に取り出される。第4実施形態における検査面、すなわち集光スポットS2における輝度の重心位置とランプ軸10Aとを含む面は、対称面P3と略一致している。検査面において、集光スポットの最大輝度位置は、発光スポットの最大輝度位置からY方向にずれている。
このような構成の光源装置4は、第1〜第3実施形態と同様に、小型化が可能であるとともに低消費電力で高輝度の光が得られるものになっている。また、焦点位置43bとランプ軸10Aとを含む面(図7(a)、(b)では1点鎖線にて図示している)に対して、反射面42a、43aがいずれも面対称になっており、しかもこの面内に発光点17が位置しているので、光源装置4から射出される光全体の輝度分布がこの面に対して略面対称になる。
なお、第1〜第3実施形態では集光スポットS2が発光スポットS1から主としてX方向にずれており、第4実施形態では集光スポットS2が発光スポットS1から主としてY方向にずれているが、X方向及びY方向にずれている構成にしてもよい。
集光スポットについては、少なくともランプ軸10Aに直交する面方向での位置が発光スポットからずれていればよく、ランプ軸10Aに直交する面方向での位置とZ方向の位置とがずれている構成であってもよい。
第4実施形態では、第1リフレクター12の焦点位置と第2リフレクター13の焦点位置が略一致しているが、これら焦点位置が一致していなくてもよい。この場合には、第1リフレクター12の焦点位置が、発光点17と略一致していてもよい。
第1リフレクターの反射面の形状としては、回転楕円面以外の形状であってもよく、例えば回転放物面の一部により構成されていてもよい。この場合には、第1リフレクター12から射出された光を平行化する光学系等の構成を適宜変更するとよい。
第2リフレクターの反射面の形状としては、第1リフレクター12に向かって凹となる自由曲面、あるいは非球面であってもよい。自由曲面としては、ゼルニケ多項式面、xy多項式面、拡張スプライン面等の曲面や、スプライン曲線やベジェ曲線等の自由曲線を、発光点17と異なる位置を通りランプ軸10Aと平行な回転軸周りに回転させて得られる曲面等が挙げられる。非球面としては、非球面レンズ等の形状表現に用いられる非球面の式により表される曲面が挙げられる。非球面の形状は、非球面の式における形状係数(非球面係数)により定義される。第1リフレクターの反射面の形状や第2リフレクターの反射面の形状を調整することにより、光源装置から射出される光の輝度分布を調整することができ、例えば輝度分布の対称性を改善することが可能である。
[第5実施形態]
次に、本発明の第5実施形態に係る照明系について説明する。
図8は、第5実施形態の照明系5の概略構成を示す断面模式図であり、図9は偏光変換素子を拡大して示す断面模式図である。図8に示すように、照明系5は、光源装置1及び照明光学系50を含んでいる。照明光学系50の構成要素は、照明系5の光軸5Aに沿って配列されている。光軸5Aは、光源装置1の光軸と略一致している。照明光学系50は、光源装置1から光軸5Aの下流に向かって、平行化レンズ51、レンズアレイ52、53、偏光変換素子54、重畳レンズ55がこの順に配置された構成になっている。
平行化レンズ51は、凹レンズにより構成されており、光源装置1から射出された光を平行化するものである。
レンズアレイ52、53は、平行化レンズ51から射出された光の輝度分布を均一化するものである。レンズアレイ52は、複数のレンズ部521を含んでおり、レンズアレイ53は複数のレンズ部531を含んでいる。レンズ部521は、レンズ部531と1対1で対応している。平行化レンズ51から射出された光は、複数のレンズ部521に空間的に分かれて入射する。レンズ部521は、入射した光を対応するレンズ部531に結像させる。これにより、複数のレンズ部531の各々に、二次光源像が形成される。
偏光変換素子54は、レンズアレイ52、53から射出された光L5(図9参照)の偏光状態を揃えるものである。偏光変換素子54は、複数の偏光変換セル541を含んでいる。偏光変換セル541は、レンズ部531と1対1で対応している。レンズ部531に形成された二次光源像からの光L5は、このレンズ部531に対応する偏光変換セル541の入射領域542に入射する。光源装置1から射出される光は、発光スポットS1に由来する光と、集光スポットS2に由来する光とを含んでいる。ここでは、図4(a)に示した輝度分布D2に対応する光が偏光変換セルの入射領域の外側に入射しないように、輝度分布D2の輝度分布D1からのずれ量(図4(a)ではX方向のずれ量)が設定されている。
偏光変換セル541の各々には、入射領域542に対応させて、偏光ビームスプリッタ膜543(以下、PBS膜543と称する)及び位相差板545が設けられている。入射領域542に入射した光L5は、PBS膜543によりPBS膜543に対するP偏光L51とS偏光L52とに分離される。P偏光L51、S偏光L52の一方の偏光(ここではS偏光L52)は、反射部材544で反射した後、位相差板545に入射する。位相差板545に入射した光L52は、位相差板545により偏光状態が他方の偏光(ここではP偏光L51)の偏光状態に変換されてP偏光L53になり、P偏光L51とともに射出される。
重畳レンズ55は、偏光変換素子54から射出された光を被照明領域にて重畳させるものである。光源装置1から射出された光は、空間的に分割された後、重畳されることにより輝度分布が均一化されて光軸5A周りの軸対称性が高められる。
以上のような構成の照明系5にあっては、本発明に係る光源装置1を用いているので光の損失が低減され、低消費電力で明るい照明光を得ることが可能になっている。光源装置1から射出される光全体が偏光変換素子54の入射領域に収まるように、輝度分布D2のずれ量が設定されているので、偏光変換素子54の入射領域外に光が入射することによる光の損失が防止される。
また、光源装置1は、全周型のリフレクターを用いるものよりも小型化が可能になっており、光源装置1自体を小型にすることにより照明系5を小型にすることができる。光源装置1から射出される光のスポットサイズが、全周型のリフレクターを用いるものよりも小径になるので、この光が入射する照明光学系50の構成要素を小型にすることができる。したがって、照明光学系50を小型にすることもでき、照明系5を格段に小型にすることができる。
[第6実施形態]
次に、本発明の第6実施形態に係るプロジェクターについて説明する。
図10は、第6実施形態のプロジェクター6の概略構成を示す模式図である。
図10に示すようにプロジェクター6は、照明系60、色分離光学系61、画像形成装置62a〜62c、色合成素子63、投射光学系64を含んでいる。本実施形態の照明系60は、本発明に係る照明系により構成されている。
プロジェクター6は、概略すると以下のように動作する。照明系60から射出された光は、色分離光学系61により複数の色光に分離される。色分離光学系61により分離された複数の色光は、それぞれ対応する画像形成装置62a〜62cに入射して変調される。画像形成装置62a〜62cにより変調された複数の色光は、色合成素子63に入射して合成される。色合成素子63により合成された光は、投射光学系64により壁やスクリーン等の被投射面9に拡大投射され、フルカラーの投射画像が表示される。以下、プロジェクター6の各構成要素について説明する。
色分離光学系61は、ダイクロイックミラー611、612、ミラー613〜615、フィールドレンズ616a〜616c、リレーレンズ617、618を含んでいる。ダイクロイックミラー611、612は、例えばガラス表面に誘電体多層膜を積層したものである。ダイクロイックミラー611、612は、所定の波長帯域の色光を選択的に反射させ、それ以外の波長帯域の色光を透過させる特性を有している。ここでは、ダイクロイックミラー611が緑色光と青色光とを反射させ、ダイクロイックミラー612が緑色光を反射させる。
照明系60から射出された光Lは、ダイクロイックミラー611に入射する。光Lのうちの赤色光Laは、ダイクロイックミラー611を通ってミラー613に入射し、ミラー613で反射してフィールドレンズ616aに入射する。赤色光Laは、フィールドレンズ616aにより平行化された後に、画像形成装置62aに入射する。
光Lのうちの緑色光Lbと青色光Lcとは、ダイクロイックミラー611で反射して、ダイクロイックミラー612に入射する。緑色光Lbは、ダイクロイックミラー612で反射してフィールドレンズ616bに入射する。緑色光Lbは、フィールドレンズ616bにより平行化された後に、画像形成装置62bに入射する。
ダイクロイックミラー612を通った青色光Lcは、リレーレンズ617を通りミラー614で反射した後、リレーレンズ618を通りミラー615で反射してフィールドレンズ616cに入射する。青色光Lcは、フィールドレンズ616cにより平行化された後に、画像形成装置62cに入射する。
画像形成装置62a〜62cは、例えば透過型の液晶ライトバルブ等の光変調装置により構成される。画像形成装置62a〜62cは、画像情報を含んだ画像信号を供給するPC等の信号源(図示略)と電気的に接続されている。画像形成装置62a〜62cは、供給された画像信号に基づいて、入射光を画素ごとに変調して画像を形成する。画像形成装置62a〜62cは、それぞれ赤色画像、緑色画像、青色画像を形成する。画像形成装置62a〜62cにより変調(形成)された光(画像)は、色合成素子63に入射する。
色合成素子63は、ダイクロイックプリズム等により構成される。ダイクロイックプリズムは、4つの三角柱プリズムが互いに貼り合わされた構造になっている。三角柱プリズムにおいて貼り合わされる面は、ダイクロイックプリズムの内面になる。ダイクロイックプリズムの内面に、赤色光が反射し緑色光が透過するミラー面と、青色光が反射し緑色光が透過するミラー面とが互いに直交して形成されている。ダイクロイックプリズムに入射した緑色光は、ミラー面を通ってそのまま射出される。ダイクロイックプリズムに入射した赤色光、青色光は、ミラー面で選択的に反射あるいは透過して、緑色光の射出方向と同じ方向に射出される。このようにして3つの色光(画像)が重ね合わされて合成され、合成された色光が投射光学系64によって被投射面9に拡大投射される。
以上のような構成のプロジェクター6にあっては、本発明に係る照明系60を用いているので、高輝度の照明光により画像形成装置62a〜62cを照明することができ、高輝度の画像を表示することができる。また、照明系60が低消費電力になっているので、プロジェクター6も低消費電力のものになっている。
なお、照明系60としては、本発明に係る光源装置に適宜選択される光学系を組み合わせた照明系を用いることもできる。第6実施形態では三板式のプロジェクター6を例示しているが、単板式のプロジェクターを構成することも可能である。また、画像形成装置として、反射型の液晶ライトバルブやデジタルミラーデバイスを採用することもできる。この場合には、画像形成装置の種類に応じて、光源装置と画像形成装置との間の光路に配置される光学系や、画像形成装置と投射光学系との間の光路に配置される光学系、投射光学系等を適宜変更するとよい。
[第7実施形態]
次に、本発明の第7実施形態に係るプロジェクターを説明する。第7実施形態が第6実施形態と異なる点は、光源装置から射出される光の輝度分布が照度均一化素子により均一化される点、画像形成装置がデジタルミラーデバイス(DMD)により構成されている点である。
図11は、第7実施形態のプロジェクター7の概略構成を示す模式図である。図11に示すようにプロジェクター7は、光源装置70、カラーホイール71、照度均一化素子72、画像形成装置73、投射光学系74を含んでいる。光源装置70は、本発明の光源装置を適用したものであり、ここでは白色の光L70を射出するようになっている。
カラーホイール71は、円板部と、円板部を回転可能に支持する回転支持機構を含んでいる。円板部は、扇状の複数のカラーフィルターにより構成されている。複数のカラーフィルターは、入射光のうちの所定の波長帯域の色光を選択的に通すようになっている。カラーフィルターに対応する波長帯域は、複数のカラーフィルターで互いに異なっている。円板部を回転させると、光源装置70から光が入射する領域に、異なる波長帯域に対応する複数のカラーフィルターが時間的に切り替えられて配置されるようになっている。これにより、カラーホイール71から射出される光L71の波長帯域が時間的に切り替えられる。
照度均一化素子72は、ロッドレンズ等により構成されており、カラーホイール71から射出された光L71が入射する位置に配置されている。照度均一化素子72に入射した光は、輝度分布が均一化されて射出された後に、画像形成装置73に入射する。
画像形成装置73は、画素ごとに独立して駆動される複数の可動ミラーを含んでいる。可動ミラーは、照度均一化素子72からの入射光の光軸に対する角度が可変になっている。可動ミラーの角度をスイッチングさせて可動ミラーを駆動すると、可動ミラーで反射した光の進行方向がスイッチングされ、可動ミラーから投射光学系74に向かって進行する光により画素が形成される。1画素において、入射光を投射光学系74に向けて反射させる期間が1フレームの表示期間に対して占める割合が高くなるほど、この画素が明表示になる。このように、画像形成装置73は、画素ごとに入射光を変調することが可能になっている。
信号源から画像形成装置73に供給される画像信号には、赤色画像、緑色画像、青色画像のそれぞれに対応した階調情報が含まれている。画像形成装置73は、入射光の波長帯域に対応させて、すなわちカラーホイール71の回転に同期させて赤色画像、緑色画像、及び青色画像を時分割して形成する。赤色画像、緑色画像、及び青色画像は、時間順次で投射光学系74により被投射面9に投射される。赤色画像、緑色画像、及び青色画像が合成されて視認されることにより、フルカラーの投射画像が表示される。
以上のような構成のプロジェクター7にあっては、光源装置70が本発明に係る光源装置により構成されているので、高輝度の照明光により画像形成装置73を照明することができ、高輝度の画像を表示することができる。また、光源装置70が低消費電力になっているので、プロジェクター7も低消費電力のものになっている。また、光源装置70を小型にすることや、光源装置70から被投射面9に至る光路に配置される各種構成要素を小型にすることができ、プロジェクター7を格段に小型にすることが可能になっている。
1、2、3、4、70・・・光源装置、5、60・・・照明系、6、7・・・プロジェクター、10・・・光源、10A・・・ランプ軸、12、22、32、42・・・第1リフレクター、12a、22a、32a、42a・・・第1リフレクターの反射面、13、23、33、43・・・第2リフレクター、13a、23a、33a、43a・・・第2リフレクターの反射面、13b、23b・・・第2リフレクターの焦点位置、14・・・発光管、15、16・・・電極、17・・・発光点、62a〜62c・・・画像形成装置、64、74・・・投射光学系

Claims (8)

  1. 光を射出する光源と、
    前記光源の一部を囲んで設けられ、前記光源から射出された光を反射させて光軸方向に射出する第1リフレクターと、
    前記光源の前記一部と異なる部分の少なくとも一部を囲んで設けられ、前記光源から射出された光を反射させて前記第1リフレクターに向けて射出する第2リフレクターと、を備え、
    前記第1リフレクターの焦点位置が前記光源の発光点と略一致しているとともに、前記光軸方向に直交する面方向において、前記第2リフレクターの焦点位置が前記第1リフレクターの焦点位置からずれており、
    前記光源から射出されて第2リフレクターで反射した光の集光スポットの位置が、少なくとも前記光軸方向に直交する面方向において、前記光源における発光スポットの位置からずれていることを特徴とする光源装置。
  2. 光を射出する光源と、
    前記光源の一部を囲んで設けられ、前記光源から射出された光を反射させて光軸方向に射出する第1リフレクターと、
    前記光源の前記一部と異なる部分の少なくとも一部を囲んで設けられ、前記光源から射出された光を反射させて前記第1リフレクターに向けて射出する第2リフレクターと、を備え、
    前記第2リフレクターの焦点位置が前記第1リフレクターの焦点位置と略一致しているとともに、前記第1リフレクターの焦点位置が前記光源の発光点からずれており、
    前記光源から射出されて第2リフレクターで反射した光の集光スポットの位置が、少なくとも前記光軸方向に直交する面方向において、前記光源における発光スポットの位置からずれていることを特徴とする光源装置。
  3. 前記光源は、所定の光源軸に沿って互いに離れて配置された一対の電極を含み、前記一対の電極の間に前記発光スポットが形成されるようになっており、
    前記集光スポットにおける輝度の重心位置と前記光源軸とを含む検査面において、前記集光スポットの輝度極大部が、前記発光スポットの輝度極大部からずれるようになっていることを特徴とする請求項1又は2に記載の光源装置。
  4. 前記検査面において互いに独立した2方向について前記集光スポットの輝度極大位置が前記発光スポットの輝度極大位置からずれる量を比較すると、前記2方向のうちで前記発光スポットの輝度変化率が相対的大きい第1方向では、前記発光スポットの輝度変化率が相対的小さい第2方向よりも前記ずれる量が大きくなっていることを特徴とする請求項に記載の光源装置。
  5. 前記光源軸に直交する面が前記検査面と交差する交差線上において、前記集光スポットの輝度分布の半値幅に対応する領域が前記発光スポットの輝度分布の半値幅に対応する領域と重なり合わないようになっていることを特徴とする請求項3又は4に記載の光源装置。
  6. 記集光スポットの輝度の重心位置が、前記発光点からずれていることを特徴とする請求項1〜のいずれか一項に記載の光源装置。
  7. 請求項1〜のいずれか一項に記載の光源装置と、
    複数のレンズ部を含んで構成され、前記光源装置から射出された光の輝度分布を均一化する輝度均一化素子と、
    前記輝度均一化素子から射出された光の偏光状態を揃える複数の偏光変換セルを含んで構成された偏光変換素子と、を備え、
    前記レンズ部は、前記偏光変換セルと1対1で対応しているとともに該レンズ部を通る光を該偏光変換セルの光入射領域に集光するようになっており、
    前記光源装置において前記第2リフレクターを経由した光と前記光源から第1リフレクターに直接的に入射した光とが前記偏光変換セルの光入射領域に収まるように、前記集光スポットの前記発光スポットからのずれ量が設定されていることを特徴とする照明系。
  8. 請求項1〜のいずれか一項に記載の光源装置を含んで構成された照明系又は請求項に記載の照明系と、
    前記照明系から射出された光により画像を形成する画像形成装置と、
    前記画像形成装置により形成された画像を投射する投射光学系と、を備えていることを特徴とするプロジェクター。
JP2009133250A 2009-06-02 2009-06-02 光源装置、照明系、プロジェクター Expired - Fee Related JP5381348B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009133250A JP5381348B2 (ja) 2009-06-02 2009-06-02 光源装置、照明系、プロジェクター
US12/788,504 US8506128B2 (en) 2009-06-02 2010-05-27 Light source device, illumination system, and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133250A JP5381348B2 (ja) 2009-06-02 2009-06-02 光源装置、照明系、プロジェクター

Publications (3)

Publication Number Publication Date
JP2010281893A JP2010281893A (ja) 2010-12-16
JP2010281893A5 JP2010281893A5 (ja) 2012-05-31
JP5381348B2 true JP5381348B2 (ja) 2014-01-08

Family

ID=43219848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133250A Expired - Fee Related JP5381348B2 (ja) 2009-06-02 2009-06-02 光源装置、照明系、プロジェクター

Country Status (2)

Country Link
US (1) US8506128B2 (ja)
JP (1) JP5381348B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140888A (ja) * 2008-11-14 2010-06-24 Seiko Epson Corp 照明装置、プロジェクタ
US9494805B2 (en) 2013-03-26 2016-11-15 Lightspeed Design, Inc. Stereoscopic light recycling device
JP5684438B1 (ja) * 2013-08-06 2015-03-11 オリンパス株式会社 光源光学系、ファイバ光源、顕微鏡および自動車用前照灯
US9482408B2 (en) 2014-06-06 2016-11-01 Terralux, Inc. Light source for uniform illumination of an area
CN107454718B (zh) * 2017-08-31 2023-11-28 广州光联电子科技有限公司 一种具有修正色温功能的led灯光源及光学***

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE308699B (ja) * 1968-04-23 1969-02-24 Vaegbelysning Ab
FR2580782B1 (fr) * 1985-04-22 1987-07-10 Cibie Projecteurs Projecteur de route pour vehicule automobile incorporant un reflecteur elliptique et un reflecteur parabolique
US4956759A (en) * 1988-12-30 1990-09-11 North American Philips Corporation Illumination system for non-imaging reflective collector
US5560699A (en) * 1993-09-02 1996-10-01 General Electric Company Optical coupling arrangement between a lamp and a light guide
FR2733604B1 (fr) 1995-04-28 1997-06-27 Thomson Multimedia Sa Dispositif d'eclairement
JPH11143378A (ja) * 1997-11-07 1999-05-28 Nagano Kogaku Kenkyusho:Kk 照明装置
JP2001042433A (ja) * 1999-06-08 2001-02-16 Karlheinz Strobl 高性能光エンジンシステム、その構成要素、並びにその製造方法
US6672740B1 (en) * 1999-07-01 2004-01-06 Cogent Light Technologies, Inc. Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors
JP3350003B2 (ja) 1999-10-01 2002-11-25 エヌイーシービューテクノロジー株式会社 プロジェクタ用光源装置
JP3926957B2 (ja) * 1999-12-09 2007-06-06 株式会社小糸製作所 車輌用前照灯及びその反射鏡の形成方法
EP1319194A2 (en) * 2000-09-20 2003-06-18 Wavien, Inc. Light condensing and collecting systems using lensed light pipes
US6565235B2 (en) * 2000-10-26 2003-05-20 Cogent Light Technologies Inc. Folding an arc into itself to increase the brightness of an arc lamp
CA2437059A1 (en) * 2001-02-21 2002-09-26 Wavien, Inc. Illumination system using filament lamps
TW576933B (en) * 2001-05-25 2004-02-21 Wavien Inc Collecting and condensing system, method for collecting electromagnetic radiation emitted by a source, tapered light pipe (TLP), numerical aperture (NA) conversion device, and portable front projection system
JP2003043580A (ja) * 2001-07-30 2003-02-13 Mitsubishi Electric Corp ランプ、偏光変換光学系および画像表示装置
US7213944B2 (en) * 2003-04-18 2007-05-08 Matsushita Electric Industrial Co., Ltd. Light source apparatus, lighting apparatus and projection display apparatus
US7040768B2 (en) 2003-05-22 2006-05-09 Seiko Epson Corporation Light source unit, illumination optical device, projector, and method of manufacturing light source unit
JP2005038685A (ja) * 2003-07-18 2005-02-10 Seiko Epson Corp 照明装置、プロジェクタ及び発光管

Also Published As

Publication number Publication date
US8506128B2 (en) 2013-08-13
JP2010281893A (ja) 2010-12-16
US20100302510A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
WO2011118536A1 (ja) 投写型映像表示装置および光源装置
US20070297061A1 (en) Optical Integrator, Illuminator and Projection Type Image Display
JP2007294337A (ja) 照明装置及びプロジェクタ
US8308309B2 (en) Lighting device and projector
KR20010025115A (ko) 이중 램프 조명 시스템 및 이중 램프 조명 시스템 내장형투사 시스템
JP4572989B2 (ja) 照明装置、投写型表示装置、および光学インテグレータ
JPH10333115A (ja) 投射型液晶表示装置
JP5381348B2 (ja) 光源装置、照明系、プロジェクター
JP6406736B2 (ja) プロジェクタおよび画像表示方法
WO2005036255A1 (ja) 照明装置及びこれを備えたプロジェクタ
JP4464118B2 (ja) 照明光学系及びそれを有する画像表示装置
JP2005197208A (ja) 光源ランプ及びプロジェクタ
JP5625932B2 (ja) 投射型表示装置
US10015455B2 (en) Optical apparatus and image projection apparatus having multiple reflective light modulators and multiple dichroic surface that separate light into multiple color lights and combines them
JP2011100102A (ja) プロジェクター
JPWO2005019927A1 (ja) 照明装置及びこれを備えたプロジェクタ
JP4400352B2 (ja) 光源装置及びプロジェクタ
JP2004157405A (ja) 照明光学系およびこれを用いた投写型表示装置
JP2008234897A (ja) 光源装置及びプロジェクタ
JP3984932B2 (ja) プロジェクタ
JP2007249138A (ja) 照明装置及びプロジェクタ
JP2010286542A (ja) 照明装置およびプロジェクター
JP2005258469A (ja) 照明装置
JP2010129503A (ja) 照明装置及びこれを備えるプロジェクタ
JP2007294338A (ja) 照明装置及びプロジェクタ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees