JP5364291B2 - Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell - Google Patents

Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell Download PDF

Info

Publication number
JP5364291B2
JP5364291B2 JP2008126395A JP2008126395A JP5364291B2 JP 5364291 B2 JP5364291 B2 JP 5364291B2 JP 2008126395 A JP2008126395 A JP 2008126395A JP 2008126395 A JP2008126395 A JP 2008126395A JP 5364291 B2 JP5364291 B2 JP 5364291B2
Authority
JP
Japan
Prior art keywords
bonding
joining
weight
parts
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008126395A
Other languages
Japanese (ja)
Other versions
JP2009277449A (en
Inventor
靖彦 水流
一剛 森
俊武 倉重
嘉範 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008126395A priority Critical patent/JP5364291B2/en
Publication of JP2009277449A publication Critical patent/JP2009277449A/en
Application granted granted Critical
Publication of JP5364291B2 publication Critical patent/JP5364291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、固体電解質型燃料電池(以下、「SOFC」と記載する。)や水蒸気電解セル等の電極と他の構造部材を電気的に接合する場合に用いられる接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCに関する。   The present invention relates to a bonding material used when an electrode such as a solid oxide fuel cell (hereinafter referred to as “SOFC”) or a steam electrolysis cell and other structural members are electrically bonded, and bonding using the same. The present invention relates to a member, a joining method, and an SOFC having the joining member.

SOFCの要部の一般的な構成として、図1に示すものが知られている。発電膜2は、イットリア安定化ジルコニアの固体電解質膜4と、その両面に形成された燃料側電極3と空気側電極5とから構成され、ディンプル状の形状をしている。発電膜2の燃料側電極3の側には、燃料側電極3と電気的に接続されたインターコネクタ7が設けられ、発電膜2の空気側電極5の側には、空気側電極5と電気的に接続されたインターコネクタ7が設けられている。こうした構成のSOFCにおいては、インターコネクタ7と燃料側電極3との間、インターコネクタ7と空気側電極5との間に一般的に導電性接合部材11、12が用いられている。   As a general configuration of the main part of the SOFC, the one shown in FIG. 1 is known. The power generation membrane 2 includes a solid electrolyte membrane 4 of yttria-stabilized zirconia, a fuel side electrode 3 and an air side electrode 5 formed on both sides thereof, and has a dimple shape. An interconnector 7 electrically connected to the fuel side electrode 3 is provided on the fuel side electrode 3 side of the power generation membrane 2, and the air side electrode 5 and the electrical side are connected to the air side electrode 5 side of the power generation membrane 2. Connected interconnector 7 is provided. In the SOFC having such a configuration, conductive joining members 11 and 12 are generally used between the interconnector 7 and the fuel-side electrode 3 and between the interconnector 7 and the air-side electrode 5.

導電性接合部材11、12はペースト状の接合材を焼結して形成することができる。燃料側の導電性接合部材11を形成する接合材としては、例えば、酸化ニッケル(NiO)、酸化鉄(Fe)および酸化チタン(TiO)をベース材料として含む接合材が、良好な導電性、接合性を有する接合部材を形成する材料として提案されている(例えば、特許文献1参照。)。
特開2005−158268号公報
The conductive bonding members 11 and 12 can be formed by sintering a paste-like bonding material. As the bonding material for forming the fuel-side conductive bonding member 11, for example, a bonding material containing nickel oxide (NiO), iron oxide (Fe 2 O 3 ), and titanium oxide (TiO 2 ) as a base material is preferable. It has been proposed as a material for forming a joining member having conductivity and joining properties (see, for example, Patent Document 1).
JP 2005-158268 A

上記NiO、FeおよびTiOをベース材料として含む接合材を用いてSOFCを構成した場合、SOFCの運転中にNiOおよびFeがそれぞれNiおよびFeに還元されることで、燃料側導電性接合部材11の導電性を確保している。
しかし、NiOおよびFeが還元される際に体積収縮を伴うため、接合部材がやや多孔質になり、酸化雰囲気で製造したときと比べて、還元処理後の接合強度が低下するという問題がある。
When the SOFC is configured using the bonding material including NiO, Fe 2 O 3 and TiO 2 as the base material, the fuel is obtained by reducing NiO and Fe 2 O 3 to Ni and Fe, respectively, during the operation of the SOFC. The conductivity of the side conductive bonding member 11 is ensured.
However, when NiO and Fe 2 O 3 are reduced, the shrinkage of the volume is accompanied, so that the joining member becomes slightly porous and the joining strength after the reduction treatment is reduced as compared with the case where the joining member is manufactured in an oxidizing atmosphere. There is.

本発明は、このような事情に鑑みてなされたものであって、還元処理後も接合強度の低下のないあるいは接合強度の低下が少ない接合部材を形成する接合材を提供することを目的とする。
また本発明は、前記接合材より形成され、SOFCの運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部材を提供することを目的とする。
また本発明は、前記接合材を用いて、SOFCにおける燃料側電極とインターコネクタ等の他の部材とのあいだ等に、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を形成する接合方法を提供することを目的とする。
また本発明は、燃料側電極とインターコネクタ等の他の部材とのあいだ等において、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を有し、信頼性が向上したSOFCを提供することを目的とする。
This invention is made | formed in view of such a situation, Comprising: It aims at providing the bonding | jointing material which forms the joining member which does not have the fall of joining strength after a reduction process, or there is little decline in joining strength. .
It is another object of the present invention to provide a joining member which is formed from the joining material and whose joining strength is not easily lowered even when used in a reducing atmosphere in SOFC operation or the like.
Further, the present invention uses the above-mentioned bonding material to provide a bonding portion in which the bonding strength is not easily lowered even when used in a reducing atmosphere during operation or the like between the fuel-side electrode in SOFC and another member such as an interconnector. An object is to provide a bonding method to be formed.
In addition, the present invention provides a SOFC having improved reliability, including a joint portion between the fuel side electrode and another member such as an interconnector, in which the joint strength is not easily lowered even when used in a reducing atmosphere in operation or the like. The purpose is to provide.

上記課題を解決するために、本発明は、以下の手段を採用する。
本発明の接合材は、酸化ニッケル(NiO)と、酸化マンガン(MnO)とを、合計100重量部含有するベース材料を含み、前記酸化マンガンの量を20重量部以上30重量部以下とした。
上記本発明の接合材は、ベース材料に酸化マンガンを用いることにより、SOFCの燃料側導電性接合部材に用いても、還元処理後の収縮が小さくなり、還元処理後の強度低下を抑えることができる。
In order to solve the above problems, the present invention employs the following means.
The bonding material of the present invention includes a base material containing a total of 100 parts by weight of nickel oxide (NiO) and manganese oxide (MnO 2 ), and the amount of the manganese oxide is 20 parts by weight or more and 30 parts by weight or less. .
By using manganese oxide as a base material, the bonding material of the present invention reduces shrinkage after reduction treatment and suppresses strength reduction after reduction treatment even when used as a fuel-side conductive joining member for SOFC. it can.

本発明に係る接合部材は、複数の部材の間に配置された前記本発明の接合材を焼結して得られる。
従って、本発明の接合部材は、上述の通り、SOFCの燃料側に用いた場合に、還元処理後の収縮が小さくなり、還元処理後の強度低下を抑えることができる。
The joining member according to the present invention is obtained by sintering the joining material of the present invention disposed between a plurality of members.
Therefore, as described above, when the joining member of the present invention is used on the fuel side of SOFC, the shrinkage after the reduction treatment is reduced, and the strength reduction after the reduction treatment can be suppressed.

本発明に係る接合方法は、前記本発明の接合材を複数の部材の間に配置し、該接合材を焼結する方法である。
従って、本発明の接合方法によれば、SOFCにおける燃料側電極とインターコネクタ等の部材間に、接合強度に優れた接合部を形成することができる。
The bonding method according to the present invention is a method in which the bonding material of the present invention is disposed between a plurality of members and the bonding material is sintered.
Therefore, according to the bonding method of the present invention, it is possible to form a bonded portion having excellent bonding strength between the fuel-side electrode and the interconnector and the like in the SOFC.

本発明に係るSOFCは、複数の部材と、該複数の部材の間を接合する前記本発明の接合部材とを有する。
従って、本発明のSOFCは、燃料側電極とインターコネクタ等の部材間の接合部の接合強度を高めることができるので、信頼性に優れる。
The SOFC according to the present invention includes a plurality of members and the joining member of the present invention that joins between the plurality of members.
Therefore, the SOFC of the present invention is excellent in reliability because it can increase the bonding strength of the bonding portion between the fuel side electrode and the interconnector.

本発明によれば、還元処理後も接合強度の低下のないあるいは接合強度の低下が少ない接合部材を形成する接合材を提供することができる。
また本発明によれば、SOFCの運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部材を提供することができる。
また本発明によれば、SOFCにおける燃料側電極とインターコネクタ等の他の部材とのあいだ等に、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を形成する接合方法を提供することができる。
また本発明によれば、燃料側電極とインターコネクタ等の他の部材とのあいだ等において、運転等において還元雰囲気で使用しても接合強度が低下しにくい接合部を有し、信頼性が向上したSOFCを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the joining material which forms the joining member which does not show the fall of joining strength after a reduction process or there is little decline in joining strength can be provided.
Further, according to the present invention, it is possible to provide a joining member in which the joining strength is not easily lowered even when used in a reducing atmosphere in SOFC operation or the like.
Further, according to the present invention, there is provided a joining method for forming a joint portion in which the joining strength is not easily lowered even when used in a reducing atmosphere in operation or the like between the fuel side electrode in SOFC and another member such as an interconnector. Can be provided.
In addition, according to the present invention, there is a joint between the fuel side electrode and another member such as an interconnector, etc., and the joint strength is not easily lowered even when used in a reducing atmosphere in operation, etc., and reliability is improved. SOFC can be provided.

以下、本発明の実施形態について説明する。
本発明の第1の実施形態は、酸化ニッケル(NiO)と、酸化マンガン(MnO)とを、合計100重量部含有するベース材料を含み、前記酸化マンガンの量が20重量部以上30重量部以下(酸化ニッケルの量を80重量部以下70重量部以上)である接合材である。
Hereinafter, embodiments of the present invention will be described.
The first embodiment of the present invention includes a base material containing a total of 100 parts by weight of nickel oxide (NiO) and manganese oxide (MnO 2 ), and the amount of the manganese oxide is 20 parts by weight or more and 30 parts by weight. The bonding material is below (the amount of nickel oxide is 80 parts by weight or less and 70 parts by weight or more).

酸化マンガンは還元処理後の接合部材の収縮を低減し、還元処理後の強度低下を抑えるために添加される。酸化マンガンが20重量部未満では所望の還元収縮低減効果が得られず、還元処理後の接合強度が低下するので好ましくない。また、酸化マンガンが30重量部を超えた場合は、還元処理後の接合部材が膨張することがあり、この場合も還元処理後の接合強度が低下するので好ましくない。   Manganese oxide is added to reduce the shrinkage of the joint member after the reduction treatment and to suppress the strength reduction after the reduction treatment. If manganese oxide is less than 20 parts by weight, the desired reduction shrinkage reduction effect cannot be obtained, and the bonding strength after the reduction treatment is lowered, which is not preferable. Moreover, when manganese oxide exceeds 30 weight part, the joining member after a reduction process may expand | swell, and since the joining strength after a reduction process also falls in this case, it is unpreferable.

酸化ニッケルの粒径は、0.3μm以上5μm以下が好ましい。酸化ニッケルの粒径が0.3μm未満では、接合部材の収縮率が大きくなり、大気熱処理時にひび割れが発生して接合強度が低下するので好ましくない。酸化ニッケルの粒径が5μmを超えると、接合部材の焼結性が低下し、接合部材の接合強度が低下するので好ましくない。酸化ニッケルの粒径は、0.5μm以上1.5μm以下がより好ましい。   The particle diameter of nickel oxide is preferably 0.3 μm or more and 5 μm or less. When the particle diameter of nickel oxide is less than 0.3 μm, the shrinkage rate of the joining member increases, and cracks are generated during heat treatment in the atmosphere, resulting in a decrease in joining strength. When the particle size of nickel oxide exceeds 5 μm, the sinterability of the joining member is lowered, and the joining strength of the joining member is lowered. The particle diameter of nickel oxide is more preferably 0.5 μm or more and 1.5 μm or less.

酸化マンガンの粒径は、0.5μm以上5μm以下が好ましい。酸化マンガンの粒径が0.5μm未満では、接合部材の収縮率が大きくなり、大気熱処理時にひび割れが発生して接合強度が低下するので好ましくない。酸化マンガンの粒径が5μmを超えると、接合部材の焼結性が低下し、接合部材の接合強度が低下するので好ましくない。酸化マンガンの粒径は、0.8μm以上2μm以下がより好ましい。   The particle size of manganese oxide is preferably 0.5 μm or more and 5 μm or less. If the particle size of manganese oxide is less than 0.5 μm, the shrinkage rate of the joining member increases, cracking occurs during the air heat treatment, and the joining strength decreases, which is not preferable. When the particle size of manganese oxide exceeds 5 μm, the sinterability of the joining member is lowered, and the joining strength of the joining member is lowered, which is not preferable. The particle size of manganese oxide is more preferably 0.8 μm or more and 2 μm or less.

前記ベース材料は、その100重量部に対し、熱膨張調整材を10重量部以上20重量部以下含有してもよい。
一般に、接合部材は還元される際に体積収縮を伴うため、やや多孔質になり、酸化雰囲気で製造したときと比べて、還元処理後の接合強度が低下するという問題がある。このような還元収縮を防止する目的で、前記熱膨張調整材が添加される。
前記熱膨張調整材の含有量が10重量部未満では、還元収縮防止の効果が小さく不充分となる場合があり好ましくない。また、前記熱膨張調整材の含有量が20重量部を超えると導電性の低下を生ずる場合があるので好ましくない。
The base material may contain 10 parts by weight or more and 20 parts by weight or less of a thermal expansion adjusting material with respect to 100 parts by weight of the base material.
Generally, since the joining member is accompanied by volume shrinkage when being reduced, the joining member becomes slightly porous, and there is a problem that the joining strength after the reduction treatment is reduced as compared with the case where the joining member is manufactured in an oxidizing atmosphere. In order to prevent such reduction shrinkage, the thermal expansion adjusting material is added.
When the content of the thermal expansion adjusting material is less than 10 parts by weight, the effect of preventing reduction shrinkage may be small and insufficient, which is not preferable. In addition, if the content of the thermal expansion adjusting material exceeds 20 parts by weight, the conductivity may be lowered, which is not preferable.

前記熱膨張調整材は、アルミナ、窒化ケイ素、炭化ケイ素およびコージェライトからなる群より選ばれる少なくとも一種の材料を含むことが好ましい。
これら材料の熱膨張係数は、アルミナが約8×10−6/℃、窒化ケイ素が約4×10−6/℃、炭化ケイ素が約5×10−6/℃、コージェライトが約2×10−6/℃であり、いずれの材料も本発明の接合材において良好な還元収縮防止効果を有する熱膨張調整材として機能する。
The thermal expansion adjusting material preferably contains at least one material selected from the group consisting of alumina, silicon nitride, silicon carbide, and cordierite.
The thermal expansion coefficients of these materials are about 8 × 10 −6 / ° C. for alumina, about 4 × 10 −6 / ° C. for silicon nitride, about 5 × 10 −6 / ° C. for silicon carbide, and about 2 × 10 6 for cordierite. The temperature is −6 / ° C., and any material functions as a thermal expansion adjusting material having a good reduction shrinkage preventing effect in the bonding material of the present invention.

前記熱膨張調整材は、平均粒径5μm以上15μm以下の粒子状の熱膨張調整材であることが好ましい。
前記熱膨張調整材の平均粒径が5μmより小さいと、接合部材の収縮率が大きくなり、大気熱処理時にひび割れが発生して接合強度が低下するので好ましくない。また、熱膨張調整材の平均粒径が15μmより大きいと、接合部材の焼結性が低下し、接合部材の接合強度が低下するので好ましくない。
The thermal expansion adjusting material is preferably a particulate thermal expansion adjusting material having an average particle diameter of 5 μm to 15 μm.
When the average particle diameter of the thermal expansion adjusting material is smaller than 5 μm, the shrinkage rate of the joining member is increased, cracks are generated during the atmospheric heat treatment, and the joining strength is lowered. Moreover, when the average particle diameter of the thermal expansion adjusting material is larger than 15 μm, the sinterability of the joining member is lowered, and the joining strength of the joining member is lowered, which is not preferable.

前記接合材は前記ベース材料に加えてビヒクルを含むものが望ましい。
ビヒクルは、接合材を焼結する際に蒸発し、焼結後の接合部材中には残留しない原料であるが、ビヒクルを用いることにより接合材のベース材料をペースト状にし、取り扱いを容易にすることができる。
ビヒクルは、粉体を分散できるものであれば特に限定されないが、好ましくは、ブチルカルビトール、テレピン油、ブタノール等が挙げられ、特に好ましくはブチルカルビトールである。ビヒクルの添加量は、ビヒクルの種類によって異なるが、ベース材料を100重量部とすると、30重量部以上50重量部以下添加することが好ましい。
The bonding material preferably includes a vehicle in addition to the base material.
The vehicle is a raw material that evaporates when the bonding material is sintered and does not remain in the sintered bonding member. By using the vehicle, the base material of the bonding material is made into a paste to facilitate handling. be able to.
The vehicle is not particularly limited as long as it can disperse the powder, but preferably includes butyl carbitol, turpentine oil, butanol and the like, and particularly preferably butyl carbitol. The addition amount of the vehicle varies depending on the type of the vehicle, but when the base material is 100 parts by weight, it is preferable to add 30 parts by weight or more and 50 parts by weight or less.

本発明の第2の実施形態は、前記第1の実施形態による接合材を複数の部材の間に配置し、該接合材を焼結する接合方法ならびにこの接合方法により前記接合材から得られた接合部材である。   In the second embodiment of the present invention, the bonding material according to the first embodiment is disposed between a plurality of members, and the bonding material is sintered from the bonding material, and the bonding material is obtained from the bonding material by the bonding method. It is a joining member.

接合の対象となる前記複数の部材としては、SOFCの構成部材が挙げられ、SOFCの運転時に還元雰囲気となる燃料側部材が、還元時の接合強度の低下を抑制できるという本発明の接合材の効果が発揮できるので好適である。従って、本実施形態の接合方法は、SOFCの燃料側電極と他の燃料側部材(例えばインターコネクタ)との接合に好適に適用できる。   Examples of the plurality of members to be joined include SOFC constituent members, and the fuel-side member that is in a reducing atmosphere during operation of the SOFC can suppress a reduction in joining strength during reduction. This is preferable because the effect can be exhibited. Therefore, the joining method of the present embodiment can be suitably applied to joining of the SOFC fuel-side electrode and another fuel-side member (for example, an interconnector).

本実施形態の接合方法においては、公知の塗布方法が採用され、例えばスクリーンプリント法を採用することができる。例えば、インターコネクタとディンプル状の固体電解質上に製膜された燃料側電極とをスクリーンプリント法で接合する場合には、まずペースト状の接合材を、スクリーンにあいた穴から印刷するスクリーンプリントの方法により、インターコネクタの平板上に100〜200μmの厚さに均一に塗布し、発電膜を載せて、空気中で熱処理を行う。熱処理では、200℃までにビヒクルを蒸発させ、その後さらにSOFCの作業温度を考慮して1000℃以上、好ましくは1000〜1250℃で処理して焼結させる。この熱処理は、特に好ましくは1250℃で4時間の処理である。この熱処理により前記接合材が焼結し、本実施形態の接合部材となる。   In the bonding method of the present embodiment, a known coating method is employed, for example, a screen printing method can be employed. For example, when joining an interconnector and a fuel-side electrode formed on a dimple-like solid electrolyte by a screen printing method, first a screen printing method of printing a paste-like joining material from a hole in the screen Thus, the film is uniformly applied to a thickness of 100 to 200 μm on the flat plate of the interconnector, the power generation film is placed, and heat treatment is performed in air. In the heat treatment, the vehicle is evaporated up to 200 ° C., and is further processed and sintered at 1000 ° C. or higher, preferably 1000 to 1250 ° C. in consideration of the working temperature of SOFC. This heat treatment is particularly preferably a treatment at 1250 ° C. for 4 hours. By this heat treatment, the bonding material is sintered and becomes the bonding member of this embodiment.

本発明の第3の実施形態は、複数の部材と、該複数の部材の間を接合する前記第2の実施形態による接合部材とを有するSOFCである。
前記複数の部材としては、SOFCの運転時に還元雰囲気となる燃料側部材が、還元時の接合強度の低下を抑制できるという本発明の接合材の効果が発揮できるので好適である。従って、本実施形態のSOFCとしては、SOFCの燃料側電極と他の燃料側部材(例えばインターコネクタ)とが前記第2の実施形態による接合部材で接合されたSOFCが挙げられる。
The third embodiment of the present invention is an SOFC having a plurality of members and the joining member according to the second embodiment that joins the plurality of members.
As the plurality of members, the fuel-side member that is in a reducing atmosphere during the operation of the SOFC is preferable because the effect of the bonding material of the present invention that can suppress a decrease in bonding strength during reduction can be achieved. Therefore, the SOFC of this embodiment includes an SOFC in which a fuel-side electrode of the SOFC and another fuel-side member (for example, an interconnector) are joined by the joining member according to the second embodiment.

本実施形態のSOFCは、燃料側で用いられる接合部材を前記第2の実施形態による接合部材に代えた以外は、従来のSOFCと同様の構成とすることができる。従って、以下、前述の図1を参照して本実施形態のSOFCの構成例を説明する。前述の構成要素と同様の機能を有する構成要素については、同じ符号を用いて説明する。なお、本発明のSOFCは、以下の構成例に限定されない。   The SOFC of this embodiment can have the same configuration as that of a conventional SOFC except that the joining member used on the fuel side is replaced with the joining member according to the second embodiment. Therefore, a configuration example of the SOFC of this embodiment will be described below with reference to FIG. Components having functions similar to those of the above-described components will be described using the same reference numerals. The SOFC of the present invention is not limited to the following configuration example.

図1に示すように、発電膜2は、イットリア安定化ジルコニアの固体電解質膜4と、その両面に形成された燃料側電極3と空気側電極5とから構成され、ディンプル状の形状をしている。発電膜2の燃料側電極3の側には、燃料側電極3と電気的に接続されたインターコネクタ7が設けられ、発電膜2の空気側電極5の側には、空気側電極5と電気的に接続されたインターコネクタ7が設けられている。インターコネクタ7と空気側電極5との間には、この部位の使用環境に適合した導電性接合部材12が用いられている。またインターコネクタ7と燃料側電極3との間には、前記第2の実施形態による接合部材11が用いられている。   As shown in FIG. 1, the power generation membrane 2 is composed of a solid electrolyte membrane 4 of yttria-stabilized zirconia, a fuel side electrode 3 and an air side electrode 5 formed on both sides thereof, and has a dimple-like shape. Yes. An interconnector 7 electrically connected to the fuel side electrode 3 is provided on the fuel side electrode 3 side of the power generation membrane 2, and the air side electrode 5 and the electrical side are connected to the air side electrode 5 side of the power generation membrane 2. Connected interconnector 7 is provided. Between the interconnector 7 and the air side electrode 5, the electroconductive joining member 12 suitable for the use environment of this site | part is used. Further, the joining member 11 according to the second embodiment is used between the interconnector 7 and the fuel side electrode 3.

次に、本発明を実験例に基づき説明するが、本発明はこれら実験例に限定されるものではない。   Next, the present invention will be described based on experimental examples, but the present invention is not limited to these experimental examples.

実験例1
表1に示した分量の酸化ニッケル粉末と酸化マンガン粉末に、ビヒクル(混合溶媒)としてブチルカルビトールを加えて、アルミナ製3本ロールミルを用いて混練し、ペースト状として、実施例1および2ならびに比較例1および2の接合材ペーストのサンプルを得た。
また、上記酸化ニッケル粉末と酸化マンガン粉末の混合粉末に代えて酸化ニッケル粉末と酸化鉄粉末を重量比70:30で含む混合粉末を用いた以外は上記と同様にして、比較例3の接合材ペーストのサンプルを得た。
Experimental example 1
To the nickel oxide powder and manganese oxide powder of the amount shown in Table 1, butyl carbitol was added as a vehicle (mixed solvent) and kneaded using a three-roll mill made of alumina. Samples of the bonding material pastes of Comparative Examples 1 and 2 were obtained.
The bonding material of Comparative Example 3 was the same as above except that a mixed powder containing nickel oxide powder and iron oxide powder in a weight ratio of 70:30 was used instead of the mixed powder of nickel oxide powder and manganese oxide powder. A sample of paste was obtained.

これら接合材ペーストのサンプルを用いて、図2に示す発電膜とインターコネクタの接合サンプルを作製し、以下に説明する方法で接合部の接合強度を測定した。
まず、接合材ペーストを30mm角のインターコネクタ22の片面に100〜200μmの厚さに均一に塗布し、この塗布部分に、30mm角の発電膜23の燃料側電極側を接着した。次に接合材ペーストを大気中1250℃で4時間にわたって焼付処理をしたのち炉冷し、導電性接合部材21の大気焼成後サンプルとした。また、さらに1000℃で4%H−Nバランス雰囲気で還元処理を施したものを、導電性接合部材21の還元処理後サンプルとした。
Using the samples of the bonding material paste, a bonding sample of the power generation film and the interconnector shown in FIG. 2 was prepared, and the bonding strength of the bonding portion was measured by the method described below.
First, the bonding material paste was uniformly applied to one side of a 30 mm square interconnector 22 to a thickness of 100 to 200 μm, and the fuel side electrode side of the 30 mm square power generation film 23 was adhered to this applied portion. Next, the bonding material paste was baked at 1250 ° C. in the atmosphere for 4 hours and then cooled in the furnace to obtain a sample of the conductive bonding member 21 after air baking. Further, a sample subjected to reduction treatment at 1000 ° C. in a 4% H 2 —N 2 balance atmosphere was used as a sample after the reduction treatment of the conductive bonding member 21.

上記大気焼成後サンプルおよび還元処理後サンプルのそれぞれについて、インターコネクタ22と、固体電解質膜4の両面に燃料極電極13及び空気側電極15を形成してなる発電膜23の燃料側電極13側との接合強度を測定するために、インターコネクタ22を接着剤でアクリル板25に接着し、発電膜23の空気側電極15側には重しを入れられるような容器27を取り付けた。この容器に重しを入れていき、インターコネクタ22と発電膜23の燃料側電極側とがはがれる重量を測定し、導電性接合部材21の接合強度を評価した。測定結果を表1に示す。   For each of the air-fired sample and the reduction-treated sample, the interconnector 22 and the fuel-side electrode 13 side of the power generation membrane 23 in which the fuel electrode 13 and the air-side electrode 15 are formed on both surfaces of the solid electrolyte membrane 4; In order to measure the bonding strength, the interconnector 22 was adhered to the acrylic plate 25 with an adhesive, and a container 27 was attached on the air electrode 15 side of the power generation film 23 so that a weight could be placed. The container was weighed, the weight by which the interconnector 22 and the fuel electrode 23 side of the power generation membrane 23 were peeled off was measured, and the bonding strength of the conductive bonding member 21 was evaluated. The measurement results are shown in Table 1.

また、上記接合材ペーストのサンプルを大気中で焼成して棒状の焼結体を作製して長さを測定した。この焼結体をさらに1000℃で4%H−Nバランス雰囲気で還元処理し、再び長さを測定した。大気焼成後の焼結体の長さと還元処理後の焼結体の長さから、各サンプルの還元収縮率を求めた。結果を表1に示す。 Moreover, the sample of the said joining material paste was baked in air | atmosphere, the rod-shaped sintered compact was produced, and the length was measured. This sintered body was further reduced at 1000 ° C. in a 4% H 2 —N 2 balance atmosphere, and the length was measured again. From the length of the sintered body after firing in the air and the length of the sintered body after the reduction treatment, the reduction shrinkage rate of each sample was determined. The results are shown in Table 1.

表1に示した結果から、酸化ニッケルと、酸化マンガンとを、合計100重量部含有するベース材料を含み、前記酸化マンガンの量が20重量部以上30重量部以下である接合材でSOFCの燃料側接合部材を形成することにより、還元処理後の収縮が小さくなり、還元処理後の強度低下が抑えられることが分かる。
酸化マンガンが20重量部未満では所望の還元収縮低減効果が得られず、還元処理後の接合強度が低下することがわかる。また、酸化マンガンが30重量部を超えた場合は、還元処理後の接合部材が膨張することがあり、この場合も還元処理後の接合強度が低下することがわかる。
From the results shown in Table 1, the fuel of SOFC is a joining material including a base material containing 100 parts by weight of nickel oxide and manganese oxide in a total amount of 20 parts by weight or more and 30 parts by weight or less. It can be seen that by forming the side joining member, the shrinkage after the reduction treatment is reduced, and the strength reduction after the reduction treatment is suppressed.
It can be seen that if the manganese oxide is less than 20 parts by weight, the desired reduction shrinkage reduction effect cannot be obtained, and the bonding strength after the reduction treatment is lowered. Moreover, when manganese oxide exceeds 30 weight part, it turns out that the joining member after a reduction process may expand | swell, and also in this case, the joint strength after a reduction process falls.

Figure 0005364291
Figure 0005364291

実験例2
重量比70:30の酸化ニッケル粉末(粒径1μm)および酸化マンガン粉末(粒径1μm)を合計85重量部とし、これに表2に示す熱膨張調整用粉末を15重量部加えて、実施例3〜8ならびに比較例4および5のベース材料とした。また従来例として、酸化ニッケル(NiO)粉末、酸化鉄(Fe)粉末および酸化チタン(TiO)粉末を重量比40:40:20で混合したものを比較例6のベース材料とした。これらベース材料にビヒクル(混合溶媒)としてブチルカルビトールを加えて、アルミナ製3本ロールミルを用いて混練し、ペースト状として、接合材ペーストの各サンプルを得た。
Experimental example 2
A total of 85 parts by weight of 70:30 nickel oxide powder (particle diameter 1 μm) and manganese oxide powder (particle diameter 1 μm) in a weight ratio of 70:30, and 15 parts by weight of the thermal expansion adjusting powder shown in Table 2 were added thereto. The base materials of 3 to 8 and Comparative Examples 4 and 5 were used. Further, as a conventional example, a mixture of nickel oxide (NiO) powder, iron oxide (Fe 2 O 3 ) powder and titanium oxide (TiO 2 ) powder in a weight ratio of 40:40:20 was used as the base material of Comparative Example 6. . Butyl carbitol was added as a vehicle (mixed solvent) to these base materials and kneaded using a three-roll mill made of alumina to obtain each sample of the bonding material paste as a paste.

これら接合材ペーストのサンプルを用いて、実験例1と同様の方法で接合部の接合強度を測定した。測定結果を表2に示す。   Using these bonding material paste samples, the bonding strength of the bonding portion was measured in the same manner as in Experimental Example 1. The measurement results are shown in Table 2.

表2に示した結果から、酸化ニッケル、酸化マンガンおよび粒径5μm以上15μm以下の熱膨張調整材を含有するベース材料を含む接合材を用いて形成された接合部材は、還元処理後の接合強度が従来の接合部材より高いということが分かる。   From the results shown in Table 2, the joining member formed using a joining material including nickel oxide, manganese oxide and a base material containing a thermal expansion adjusting material having a particle size of 5 μm or more and 15 μm or less has a bonding strength after reduction treatment. It can be seen that is higher than the conventional joining member.

熱膨張調整材(アルミナ)の粒径が5μm未満の比較例4では、接合部材の収縮率が大きくなるので、大気焼成後サンプルではひび割れが発生し、接合強度が低下することが分かる。従って、熱膨張調整材の粒径が5μm未満では好ましくないことが分かる。
また、熱膨張調整材(アルミナ)の粒径が15μmより大きい比較例5では、接合材の焼結性が低下するので、接合強度が低下することが分かる。従って、熱膨張調整材の粒径が15μmより大きいと好ましくないことが分かる。
In Comparative Example 4 in which the particle size of the thermal expansion adjusting material (alumina) is less than 5 μm, the shrinkage rate of the joining member is increased, so that it can be seen that cracking occurs in the sample after air firing, and the joining strength is reduced. Therefore, it can be seen that the particle size of the thermal expansion adjusting material is less than 5 μm.
Further, in Comparative Example 5 in which the particle size of the thermal expansion adjusting material (alumina) is larger than 15 μm, it can be seen that the bonding strength decreases because the sintering property of the bonding material decreases. Therefore, it is understood that it is not preferable that the particle size of the thermal expansion adjusting material is larger than 15 μm.

また、実施例6〜8より、熱膨張係数が約8×10−6/℃のアルミナだけでなく、約4×10−6/℃の窒化ケイ素、約5×10−6/℃の炭化ケイ素、約2×10−6/℃のコージェライト等も良好な還元収縮防止効果を有する熱膨張調整材として機能することがわかる。 Further, from Examples 6 to 8, not only alumina having a thermal expansion coefficient of about 8 × 10 −6 / ° C., but also silicon nitride of about 4 × 10 −6 / ° C., silicon carbide of about 5 × 10 −6 / ° C. It can be seen that cordierite of about 2 × 10 −6 / ° C. functions as a thermal expansion adjusting material having a good effect of preventing reduction shrinkage.

Figure 0005364291
Figure 0005364291

実験例3
酸化ニッケル粉末および酸化マンガン粉末の粒径を表3に示すとおりに変え、アルミナ粉末の粒径を全て10μmとした以外は実験例2と同様の方法により、実施例9〜11ならびに比較例7および8の接合材ペーストのサンプルを作製し、これを用いて、実験例1と同様の方法で接合部の接合強度を測定した。測定結果を表3に示す。
Experimental example 3
Examples 9 to 11 and Comparative Examples 7 and 7 were made in the same manner as in Experimental Example 2 except that the particle sizes of the nickel oxide powder and the manganese oxide powder were changed as shown in Table 3 and the particle size of the alumina powder was all 10 μm. A sample of 8 bonding material paste was prepared, and using this, the bonding strength of the bonded portion was measured in the same manner as in Experimental Example 1. Table 3 shows the measurement results.

酸化ニッケルの粒径が0.3μm未満の比較例7では、接合部材の収縮率が大きくなるので、大気焼成後サンプルではひび割れが発生し、接合強度が低下することが分かる。従って、酸化ニッケルの粒径が0.3μm未満では好ましくないことが分かる。
酸化ニッケルの粒径が5μmより大きい比較例8では、接合材の焼結性が低下するので、接合強度が低下することが分かる。従って、酸化ニッケルの粒径が5μmより大きいと好ましくないことが分かる。
In Comparative Example 7 in which the particle size of nickel oxide is less than 0.3 μm, the shrinkage rate of the joining member is increased, so that it can be seen that cracking occurs in the sample after air firing, and the joining strength is reduced. Therefore, it can be seen that the nickel oxide particle size is less than 0.3 μm.
In Comparative Example 8 in which the particle size of nickel oxide is larger than 5 μm, it can be seen that the bonding strength decreases because the sinterability of the bonding material decreases. Therefore, it is understood that it is not preferable that the particle diameter of nickel oxide is larger than 5 μm.

また、酸化マンガンの粒径が0.5μm未満の比較例7では、接合部材の収縮率が大きくなるので、大気焼成後サンプルではひび割れが発生し、接合強度が低下することが分かる。従って、酸化マンガンの粒径が0.5μm未満では好ましくないことが分かる。
酸化マンガンの粒径が5μmより大きい比較例8では、接合材の焼結性が低下するので、接合強度が低下することが分かる。従って、酸化マンガンの粒径が5μmより大きいと好ましくないことが分かる。
Further, in Comparative Example 7 in which the particle size of manganese oxide is less than 0.5 μm, the shrinkage rate of the joining member is increased, so that it can be seen that cracking occurs in the sample after air firing, and the joining strength is reduced. Therefore, it can be seen that the manganese oxide particle size is less than 0.5 μm.
In Comparative Example 8 in which the particle size of manganese oxide is larger than 5 μm, it can be seen that the bonding strength decreases because the sinterability of the bonding material decreases. Therefore, it is understood that it is not preferable that the particle size of manganese oxide is larger than 5 μm.

Figure 0005364291
Figure 0005364291

SOFCの一例を示す概略図である。It is the schematic which shows an example of SOFC. 実験例1ないし実験例3において大気焼成後および還元処理後の接合強度測定を行った接合サンプルを示す概略図である。It is the schematic which shows the joining sample which performed the joint strength measurement after air baking and the reduction process in Experimental example 1 thru | or Experimental example 3. FIG.

符号の説明Explanation of symbols

11,12,21 導電性接合部材
2,23 発電膜
3,13 燃料側電極
4,14 固体電解質膜
5,15 空気側電極
7,22 インターコネクタ
11, 12, 21 Conductive joining member 2, 23 Power generation membrane 3, 13 Fuel side electrode 4, 14 Solid electrolyte membrane 5, 15 Air side electrode 7, 22 Interconnector

Claims (13)

還元雰囲気で使用される接合材であり、
酸化ニッケルと、
酸化マンガンと
を、合計100重量部含有するベース材料を含み、
前記酸化マンガンの量が20重量部以上30重量部以下である接合材。
It is a bonding material used in a reducing atmosphere,
Nickel oxide,
Including a base material containing a total of 100 parts by weight of manganese oxide;
A bonding material in which the amount of the manganese oxide is 20 parts by weight or more and 30 parts by weight or less.
前記ベース材料100重量部のうち、熱膨張調整材を10重量部以上20重量部以下含有する請求項1に記載の接合材。   The bonding material according to claim 1, comprising a thermal expansion adjusting material in an amount of 10 parts by weight to 20 parts by weight, out of 100 parts by weight of the base material. 前記熱膨張調整材が、アルミナ、窒化ケイ素、炭化ケイ素およびコージェライトからなる群より選ばれる少なくとも一種の材料を含む請求項1または請求項2に記載の接合材。   The bonding material according to claim 1 or 2, wherein the thermal expansion adjusting material includes at least one material selected from the group consisting of alumina, silicon nitride, silicon carbide, and cordierite. 前記熱膨張調整材が、平均粒径5μm以上15μm以下の粒子状の熱膨張調整材である請求項2から請求項3のいずれか一項に記載の接合材。   The bonding material according to any one of claims 2 to 3, wherein the thermal expansion adjusting material is a particulate thermal expansion adjusting material having an average particle diameter of 5 µm to 15 µm. 前記ベース材料とビヒクルとを含む請求項1から請求項4のいずれか一項に記載の接合材。   The joining material according to any one of claims 1 to 4, comprising the base material and a vehicle. 複数の部材の間に配置された請求項1から請求項5のいずれか一項に記載の接合材を焼結して得られた接合部材。   The joining member obtained by sintering the joining material as described in any one of Claims 1-5 arrange | positioned between several members. 請求項1から請求項5のいずれか一項に記載の接合材を複数の部材の間に配置し、
該接合材を焼結する接合方法。
The bonding material according to any one of claims 1 to 5 is disposed between a plurality of members,
A joining method for sintering the joining material.
前記複数の部材が、固体電解質型燃料電池における燃料側部材を含む請求項7に記載の接合方法。   The joining method according to claim 7, wherein the plurality of members include fuel-side members in a solid oxide fuel cell. 前記複数の部材が、固体電解質型燃料電池における燃料側電極と他の燃料側部材とを含む請求項7に記載の接合方法。   The joining method according to claim 7, wherein the plurality of members include a fuel-side electrode and another fuel-side member in the solid oxide fuel cell. 複数の部材と、
該複数の部材の間を接合する請求項6に記載の接合部材と
を有する固体電解質型燃料電池。
A plurality of members;
A solid oxide fuel cell comprising: a joining member according to claim 6 that joins the plurality of members.
前記複数の部材が、燃料側部材を含む請求項10に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 10, wherein the plurality of members include fuel-side members. 前記複数の部材が、固体電解質型燃料電池における燃料側電極と他の燃料側部材とを含む請求項10に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 10, wherein the plurality of members include a fuel side electrode and another fuel side member in the solid oxide fuel cell. 酸化ニッケルと、  Nickel oxide,
酸化マンガンと  With manganese oxide
を、合計100重量部含有するベース材料を含み、A base material containing a total of 100 parts by weight,
前記酸化マンガンの量が20重量部以上30重量部以下である固体電解質型燃料電池用接合材。  A solid oxide fuel cell bonding material, wherein the amount of manganese oxide is 20 parts by weight or more and 30 parts by weight or less.
JP2008126395A 2008-05-13 2008-05-13 Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell Expired - Fee Related JP5364291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126395A JP5364291B2 (en) 2008-05-13 2008-05-13 Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126395A JP5364291B2 (en) 2008-05-13 2008-05-13 Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2009277449A JP2009277449A (en) 2009-11-26
JP5364291B2 true JP5364291B2 (en) 2013-12-11

Family

ID=41442703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126395A Expired - Fee Related JP5364291B2 (en) 2008-05-13 2008-05-13 Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5364291B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290601A (en) * 1985-06-19 1986-12-20 松下電器産業株式会社 Metalized composition
JPH09142913A (en) * 1995-09-20 1997-06-03 Co-Op Chem Co Ltd Inorganic composition
JP3891790B2 (en) * 2001-04-13 2007-03-14 三菱重工業株式会社 Conductive bonding material

Also Published As

Publication number Publication date
JP2009277449A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
JP5667078B2 (en) Reduction-oxidation resistant electrodes for solid oxide fuel cells
JP5357347B1 (en) Metal paste for gas sensor electrode formation
WO2014115867A1 (en) Metal paste for gas sensor electrode formation
JP2009016109A (en) Cell for solid oxide fuel battery, and solid oxide fuel battery
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2020079189A (en) Structural body and solid oxide fuel cell stack
WO2017146120A1 (en) Metal paste for forming gas sensor electrode
JP5330849B2 (en) Conductive bonding material and solid oxide fuel cell having the same
JP6212328B2 (en) Metal paste for gas sensor electrode formation
JP5364291B2 (en) Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell
JP2008034179A (en) Jointing material, jointing member, jointing method, and solid electrolyte fuel cell
JP2009231052A (en) Solid oxide type fuel battery cell and its manufacturing method
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JP2008200724A (en) Joining material, joint member, joining method, and solid electrolyte fuel cell
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JP6452424B2 (en) Electrode material and solid oxide fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JP5364292B2 (en) Conductive bonding material, bonding member, bonding method, solid oxide fuel cell and bonding material for solid oxide fuel cell
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP3150807B2 (en) Bonding material for solid oxide fuel cell stack and method for producing the same
JP4517949B2 (en) Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
JP2005174585A (en) Conductive jointing material paste
JP2008207188A (en) Joining material, joining member, joining method, and solid electrolyte fuel cell
JP5137416B2 (en) Current collecting material for fuel electrode, solid oxide fuel cell unit cell and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5364291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees