JP2008034179A - Jointing material, jointing member, jointing method, and solid electrolyte fuel cell - Google Patents

Jointing material, jointing member, jointing method, and solid electrolyte fuel cell Download PDF

Info

Publication number
JP2008034179A
JP2008034179A JP2006204600A JP2006204600A JP2008034179A JP 2008034179 A JP2008034179 A JP 2008034179A JP 2006204600 A JP2006204600 A JP 2006204600A JP 2006204600 A JP2006204600 A JP 2006204600A JP 2008034179 A JP2008034179 A JP 2008034179A
Authority
JP
Japan
Prior art keywords
parts
weight
bonding
less
jointing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006204600A
Other languages
Japanese (ja)
Inventor
Akira Ogawa
亮 小川
Kazutaka Mori
一剛 森
Hiroshi Kishizawa
浩 岸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006204600A priority Critical patent/JP2008034179A/en
Publication of JP2008034179A publication Critical patent/JP2008034179A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jointing material used for forming a jointing member having a high conductivity and a superior durability in jointing strength and having a sufficient sintering performance even at a low temperature, a jointing member using this and a jointing method, and an SOFC having this jointing member. <P>SOLUTION: The jointing material contains a base material consisting of NiO and Fe<SB>2</SB>O<SB>3</SB>, and in the base material, 50 parts. wt or more and 90 parts wt, or less is NiO, 10 parts wt. or more and 50 parts wt. or less is Fe<SB>2</SB>O<SB>3</SB>, and 5 parts wt. or more and 30 parts wt. or less is a particulate with particle size of 0.1 μm or more and 1 μm or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解質型燃料電池(以下、「SOFC」と記載する。)や水蒸気電解セル等の電極と他の構造部材を電気的に接合する場合に用いられる接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCに関する。また、本発明は、SOFCにおいて、各種昇温パターンでも使用できる接合材、特に、燃料側電極と他の構造部材との接合に使用する接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCに関する。   The present invention relates to a bonding material used when an electrode such as a solid oxide fuel cell (hereinafter referred to as “SOFC”) or a steam electrolysis cell and other structural members are electrically bonded, and bonding using the same. The present invention relates to a member, a joining method, and an SOFC having the joining member. Further, the present invention provides a joining material that can be used in various temperature rising patterns in SOFC, particularly a joining material used for joining a fuel side electrode and another structural member, a joining member and a joining method using the joining material, and this The present invention relates to an SOFC having a joining member.

SOFCの一般的な構成としては、図2に示すものが知られている。発電膜1は、イットリア安定化ジルコニア2とその両面に形成された電極3a、3bから構成される。発電膜1の片側には電極接続用波板4a、インターコネクタ5aが形成され、他の片側には電極接続用波板4b、インターコネクタ5bが形成されている。こうした構成のSOFCにおいて、インターコネクタ5aと電気接続用波板4aとの間、電気接続用波板4aと電極3aとの間、電極3bと電極接続用波板4bとの間、電気接続用波板4bとインターコネクタ5bとの間には、一般に導電性接合部材が用いられている。   As a general configuration of the SOFC, one shown in FIG. 2 is known. The power generation film 1 includes yttria-stabilized zirconia 2 and electrodes 3a and 3b formed on both sides thereof. An electrode connecting corrugated plate 4a and an interconnector 5a are formed on one side of the power generation film 1, and an electrode connecting corrugated plate 4b and an interconnector 5b are formed on the other side. In the SOFC having such a configuration, the electrical connection wave between the interconnector 5a and the electrical connection corrugated plate 4a, between the electrical connection corrugated plate 4a and the electrode 3a, between the electrode 3b and the electrical connection corrugated plate 4b, and so on. In general, a conductive joining member is used between the plate 4b and the interconnector 5b.

他のSOFCの要部の一般的な構成として、図3に示すものが知られている。発電膜12は、イットリア安定化ジルコニアの固体電解質膜14と、その両面に形成された燃料側電極13と空気側電極15とから構成され、ディンプル状の形状をしている。発電膜12の燃料側電極13の側には、燃料側電極13と電気的に接続されたインターコネクタ17が設けられ、発電膜12の空気側電極15の側には、空気側電極15と電気的に接続されたインターコネクタ17が設けられている。こうした構成のSOFCにおいては、インターコネクタ17と燃料側電極13との間、インターコネクタ17と空気側電極15との間に一般的に導電性接合部材11、16が用いられている。   As a general configuration of the main part of another SOFC, the one shown in FIG. 3 is known. The power generation membrane 12 includes a solid electrolyte membrane 14 of yttria-stabilized zirconia, a fuel side electrode 13 and an air side electrode 15 formed on both sides thereof, and has a dimple shape. An interconnector 17 that is electrically connected to the fuel side electrode 13 is provided on the fuel side electrode 13 side of the power generation membrane 12, and the air side electrode 15 and the electrical side are connected to the air side electrode 15 side of the power generation membrane 12. Connected interconnector 17 is provided. In the SOFC having such a configuration, conductive joining members 11 and 16 are generally used between the interconnector 17 and the fuel side electrode 13 and between the interconnector 17 and the air side electrode 15.

前記図2および図3に示した構成のSOFCにおいて、前記導電性接合部材は一般に、電極と他の構成部材との間に配置されたペースト状の接合材を焼結することにより形成される。SOFCでは、一般的に約1000℃の作動温度にて発電が行われるため、導電性接合部材にもこの温度に耐える耐熱性が要求される。
ところで、一般的に低温で各部材間を電気的に接合する場合は、前記接合材として銀ペーストや白金ペーストが知られている。ここで、銀ペーストは銀の電気抵抗が低く、導電性接着剤として一般的に使用されている。しかし、銀の融点は約960℃であり、上記SOFCのように1000℃で発電するものには使用できない。また、白金ペーストの場合は1000℃でも使用可能であるが、コスト高になるという問題点がある。
In the SOFC having the configuration shown in FIGS. 2 and 3, the conductive joining member is generally formed by sintering a paste-like joining material disposed between an electrode and another constituent member. In SOFC, since power generation is generally performed at an operating temperature of about 1000 ° C., the conductive joining member is also required to have heat resistance that can withstand this temperature.
By the way, generally, when electrically joining members at low temperatures, silver paste or platinum paste is known as the joining material. Here, the silver paste has a low electric resistance of silver and is generally used as a conductive adhesive. However, the melting point of silver is about 960 ° C., and it cannot be used for the power generation at 1000 ° C. like the SOFC. In the case of platinum paste, it can be used even at 1000 ° C., but there is a problem that the cost is increased.

そこで、酸化ニッケルと酸化鉄と酸化チタンを含む接合材が提案されている(例えば、特許文献1参照。)。
さらに、酸化ニッケルと酸化鉄とビヒクルとを含む導電性接合材であって、酸化ニッケルと酸化鉄の合計100重量部のうち、70〜90重量部が酸化ニッケルであり、10〜30重量部が酸化鉄であり、該酸化ニッケルの30〜70重量%を金属ニッケルで置換した接合材が提案されている(例えば、特許文献2参照。)。
Thus, a bonding material containing nickel oxide, iron oxide, and titanium oxide has been proposed (see, for example, Patent Document 1).
Furthermore, it is a conductive bonding material containing nickel oxide, iron oxide and vehicle, and 70 to 90 parts by weight is nickel oxide and 10 to 30 parts by weight is a total of 100 parts by weight of nickel oxide and iron oxide. There has been proposed a bonding material that is iron oxide, in which 30 to 70% by weight of the nickel oxide is replaced with metallic nickel (see, for example, Patent Document 2).

上述のSOFCは、定格運転時には自らの発熱により上記作動温度を維持し、定格運転を継続する(熱自立する)ことができる。しかし、SOFCの起動の際には、外部から高温熱源で昇温する必要がある。昇温は、空気、窒素、水素又は酸素を数パーセント添加した窒素等の雰囲気における各種昇温パターンで行われる。   The above-mentioned SOFC can maintain the operating temperature by its own heat generation during rated operation, and can continue the rated operation (thermal independence). However, when starting up the SOFC, it is necessary to raise the temperature from the outside with a high-temperature heat source. The temperature rise is performed in various temperature rise patterns in an atmosphere such as nitrogen to which several percent of air, nitrogen, hydrogen, or oxygen is added.

特開平8−287930号公報JP-A-8-287930 特開2002−309203号公報JP 2002-309203 A

前記特許文献1に記載の接合材は、焼結後の接合強度が十分ではなく、上記各種昇温パターンで昇温した際に割れや剥離を生じることがあった。また、この接合材より得られた導電性部材は、SOFC運転において導電性が十分ではなく、上記各種昇温パターンにおいて昇温した際に、より高い導電性を有することが望まれていた。
前記特許文献2に記載の接合材は、熱処理時の熱収縮が小さく、接合強度に優れているものの、金属ニッケルが高価であるため、コスト高の問題は解消しない。
また、発電膜等のSOFCの他の部材の焼結温度の低温化にともない、接合材の焼結温度の低温化が課題となっており、現状より低い温度での焼結性が求められている。
The bonding material described in Patent Document 1 does not have sufficient bonding strength after sintering, and sometimes cracks or peels when the temperature is raised with the various temperature rising patterns. Further, the conductive member obtained from this bonding material is not sufficiently conductive in the SOFC operation, and it has been desired to have higher conductivity when the temperature is raised in the above various temperature rising patterns.
Although the bonding material described in Patent Document 2 has small thermal shrinkage during heat treatment and excellent bonding strength, the problem of high cost is not solved because metallic nickel is expensive.
In addition, as the sintering temperature of other SOFC members such as power generation membranes has decreased, the sintering temperature of bonding materials has become a problem, and sinterability at lower temperatures than the current situation is required. Yes.

本発明は、このような事情に鑑みてなされたものであって、高い導電性と優れた接合強度の耐久性を有する接合部材を形成するために用いられる接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCを提供することを目的とする。
また本発明は、低い温度でも十分な焼結性を有する接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCを提供することを目的とする。
The present invention has been made in view of such circumstances, a bonding material used for forming a bonding member having high conductivity and durability with excellent bonding strength, a bonding member using the bonding material, and It is an object of the present invention to provide a joining method and an SOFC having the joining member.
It is another object of the present invention to provide a bonding material having sufficient sinterability even at a low temperature, a bonding member and a bonding method using the bonding material, and an SOFC having the bonding member.

上記課題を解決するために、本発明は、以下の手段を採用する。
すなわち、本発明にかかる接合材は、NiOおよびFeからなるベース材料を含む接合材であって、前記ベース材料100重量部のうち、50重量部以上90重量部以下がNiOであり、10重量部以上50重量部以下がFeであり、かつ前記ベース材料100重量部のうち、5重量部以上30重量部以下が粒径0.1μm以上1μm以下の微粒である。好ましくは、前記ベース材料100重量部のうち、70重量部以上95重量部以下が粒径3μm以上10μm以下の中粒である。
この接合材は、焼結して接合部材を形成した際に、高い導電性と優れた接合強度の耐久性を有する。またこの接合材は、低い温度でも十分な焼結性を有する。
In order to solve the above problems, the present invention employs the following means.
That is, the bonding material according to the present invention is a bonding material including a base material composed of NiO and Fe 2 O 3 , and 50 parts by weight or more and 90 parts by weight or less of 100 parts by weight of the base material is NiO. 10 parts by weight or more and 50 parts by weight or less is Fe 2 O 3 , and among 100 parts by weight of the base material, 5 parts by weight or more and 30 parts by weight or less are fine particles having a particle diameter of 0.1 μm or more and 1 μm or less. Preferably, 70 parts by weight or more and 95 parts by weight or less of 100 parts by weight of the base material are medium grains having a particle size of 3 μm or more and 10 μm or less.
This bonding material has high conductivity and excellent bonding strength durability when sintered to form a bonding member. Further, this bonding material has sufficient sinterability even at a low temperature.

上記本発明の接合材は、ビヒクルを含むことが望ましい。
ビヒクルは、接合材を焼結する際に蒸発し、焼結後の接合部材中には残留しない原料であるが、ビヒクルを用いることにより接合材のベース材料をペースト状にし、取り扱いを容易にすることができる。
The bonding material of the present invention preferably includes a vehicle.
The vehicle is a raw material that evaporates when the bonding material is sintered and does not remain in the sintered bonding member. By using the vehicle, the base material of the bonding material is made into a paste to facilitate handling. be able to.

本発明の接合部材は、複数の部材間に配置された上記本発明の接合材を、1100℃以上1300℃以下の焼き付け温度で、1時間以上20時間以下の焼き付け時間で焼き付けて得られたものである。
この接合部材は、高い導電性と優れた接合強度の耐久性を有する。
The bonding member of the present invention is obtained by baking the bonding material of the present invention arranged between a plurality of members at a baking temperature of 1100 ° C. or higher and 1300 ° C. or lower and a baking time of 1 hour or longer and 20 hours or shorter. It is.
This joining member has durability of high conductivity and excellent joining strength.

本発明の接合方法は、上記本発明の接合材を複数の部材間に配置する工程と、該接合材を1100℃以上1300℃以下の焼き付け温度、1時間以上20時間以下の焼き付け時間で焼き付ける工程とを有する。
この接合方法によれば、低温の焼き付け温度でも高い導電性と優れた接合強度の耐久性を有する接合が可能となる。
The bonding method of the present invention includes a step of arranging the bonding material of the present invention between a plurality of members, and a step of baking the bonding material at a baking temperature of 1100 ° C. to 1300 ° C. for a baking time of 1 hour to 20 hours. And have.
According to this bonding method, it is possible to perform bonding having high conductivity and durability with excellent bonding strength even at a low baking temperature.

上記本発明の接合方法において、前記複数の部材間に配置した接合材の厚さを50μm以上450μm以下とすることが好ましい。
接合材の厚さを上記範囲とすることで、高い乾燥接合強度および焼結後接合強度が得られる。
In the above-described bonding method of the present invention, it is preferable that the thickness of the bonding material disposed between the plurality of members is 50 μm or more and 450 μm or less.
By setting the thickness of the bonding material within the above range, high dry bonding strength and post-sintering bonding strength can be obtained.

本発明のSOFCは、複数の部材と、該複数の部材間を接合する上記本発明の接合部材とを有する。前記接合部材は、好ましくは燃料を流通する空間に配される。また、好ましくは前記複数の部材の少なくとも一つは燃料側電極である。
このSOFCは、接合部分の導電性と接合強度に優れた耐久性のあるSOFCとなる。
The SOFC of the present invention has a plurality of members and the joining member of the present invention that joins the plurality of members. The joining member is preferably arranged in a space through which fuel flows. Preferably, at least one of the plurality of members is a fuel side electrode.
This SOFC is a durable SOFC excellent in the conductivity and bonding strength of the bonded portion.

本発明によれば、高い導電性と優れた接合強度の耐久性を有する接合部材を形成するために用いられる接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCを提供することができる。さらに本発明によれば、低い温度でも十分な焼結性を有する接合材、これを用いた接合部材および接合方法、ならびにこの接合部材を有するSOFCを提供することができる。   According to the present invention, a bonding material used for forming a bonding member having high conductivity and durability of excellent bonding strength, a bonding member and a bonding method using the bonding material, and an SOFC having the bonding member are provided. can do. Furthermore, according to the present invention, it is possible to provide a bonding material having sufficient sinterability even at a low temperature, a bonding member and a bonding method using the same, and an SOFC having the bonding member.

以下に、本発明の実施形態について、図1から図3を用いて説明する。
本発明の実施形態に係る接合材は、NiOとFeとからなるベース材料を含む。本発明の実施形態で用いるNiOおよびFeは、特に限定されず通常使用されるものを用いることができる。本発明の実施形態に係る接合材は、ベース材料(NiOおよびFe)を100重量部とすると、50重量部以上90重量部以下がNiOであり、10重量部以上50重量部以下がFeである。NiOが90重量部より多く、Feが10重量部より少ないと、焼結力が弱い。また、NiOが50重量部より少なく、Feが50重量部より多いと、焼結が進みすぎる。より好ましくは、65重量部以上90重量部以下がNiOであり、10重量部以上35重量部以下がFeである。約80重量部をNiO、約20重量部をFeとするのが最も好ましい。
金属ニッケルは高価であり、コスト高となるので、この接合材には含まれないことが好ましい。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.
The bonding material according to the embodiment of the present invention includes a base material made of NiO and Fe 2 O 3 . NiO and Fe 2 O 3 used in the embodiment of the present invention are not particularly limited, and those usually used can be used. In the bonding material according to the embodiment of the present invention, when the base material (NiO and Fe 2 O 3 ) is 100 parts by weight, 50 to 90 parts by weight is NiO, and 10 to 50 parts by weight. Fe 2 O 3 . When NiO is more than 90 parts by weight and Fe 2 O 3 is less than 10 parts by weight, the sintering force is weak. On the other hand, if NiO is less than 50 parts by weight and Fe 2 O 3 is more than 50 parts by weight, sintering proceeds too much. More preferably, 65 parts by weight or more and 90 parts by weight or less is NiO, and 10 parts by weight or more and 35 parts by weight or less are Fe 2 O 3 . Most preferably, about 80 parts by weight NiO and about 20 parts by weight Fe 2 O 3 .
Since nickel metal is expensive and expensive, it is preferable not to be included in this bonding material.

本発明の実施形態に係る接合材において、前記ベース材料100重量部のうち、70重量部以上95重量部以下が粒径3μm以上10μm以下の中粒であり、5重量部以上30重量部以下が粒径0.1μm以上1μm以下の微粒である。
上記粒径範囲の中粒は、接合材を焼き付けて得られる接合部材において構造材となる役割を有し、また上記粒径範囲の微粒は、接合材の焼結性(低温での接着性)を向上する役割を有すると考えられる。
前記中粒が70重量部より少なく、前記微粒が30重量部より多いと、接合材を焼き付ける際の熱収縮が大きくなり、割れや剥離等の欠陥を生じやすくなるので好ましくない。また、前記中粒が95重量部より多く、前記微粒が5重量部より少ないと、焼結性、すなわち低温での接着性の向上が見込めないので好ましくない。より好ましくは、75重量部以上90重量部以下が中粒であり、10重量部以上25重量部以下が微粒である。約80重量部を中粒、約20重量部を微粒とするのが最も好ましい。
前記ベース材料は、NiOおよびFeを上記の割合で混合してから焼結した後に粉砕し、上記所定の割合の中粒および微粒とすることにより得られる。
In the bonding material according to the embodiment of the present invention, of 100 parts by weight of the base material, 70 parts by weight or more and 95 parts by weight or less are medium grains having a particle size of 3 μm or more and 10 μm or less, and 5 parts by weight or more and 30 parts by weight or less. Fine particles having a particle size of 0.1 μm or more and 1 μm or less.
Medium grains in the above particle size range have a role as a structural material in the bonding member obtained by baking the bonding material, and fine particles in the above particle diameter range are sinterability of the bonding material (adhesion at low temperature). It is thought that it has a role to improve.
If the amount of the medium grains is less than 70 parts by weight and the amount of the fine particles is more than 30 parts by weight, thermal shrinkage during baking of the bonding material increases, and defects such as cracking and peeling are liable to occur. On the other hand, it is not preferable that the medium grain is more than 95 parts by weight and the fine grain is less than 5 parts by weight because improvement of sinterability, that is, adhesion at low temperatures cannot be expected. More preferably, 75 parts by weight or more and 90 parts by weight or less are medium grains, and 10 parts by weight or more and 25 parts by weight or less are fine grains. Most preferably, about 80 parts by weight are medium grains and about 20 parts by weight are fine grains.
The base material can be obtained by mixing NiO and Fe 2 O 3 in the above proportions, sintering and then pulverizing them into the above-mentioned predetermined proportion of medium grains and fine grains.

本発明の実施形態に係る接合材は、上記ベース材料をビヒクルを用いてペースト状にしたものである。ビヒクルは、粉体を分散できるものであれば特に限定されないが、好ましくは、ブチルカルビトール、テレピン油、ブタノール等が挙げられ、特に好ましくはブチルカルビトールである。ビヒクルの添加量は、ビヒクルの種類によって異なるが、ベース材料を100重量部とすると、30重量部以上50重量部以下添加することが好ましい。   The bonding material according to the embodiment of the present invention is obtained by pasting the base material using a vehicle. The vehicle is not particularly limited as long as it can disperse the powder, but preferably includes butyl carbitol, turpentine oil, butanol and the like, and particularly preferably butyl carbitol. The addition amount of the vehicle varies depending on the type of the vehicle, but when the base material is 100 parts by weight, it is preferable to add 30 parts by weight or more and 50 parts by weight or less.

本発明の実施形態に係る接合材は、例えば、図2に示す構成のSOFCにおいて、燃料(水素)を流通する側の前記インターコネクタ5aと電気接続用波板4aとの間、燃料を流通する側の電気接続用波板4aと電極3aとの間、酸素(空気)を流通する側の電極3bと電極接続用波板4bとの間、酸素を流通する側の電気接続用波板4bとインターコネクタ5bとの間に用いることができる。但し、本実施形態に係る接合材は、焼結して接合部材とされた後に、還元することにより導電性となるので、還元雰囲気である燃料を流通する側の前記インターコネクタ5aと電気接続用波板4aとの間、燃料を流通する側の電気接続用波板4aと電極3aとの間において用いることが好ましい。   For example, in the SOFC having the configuration shown in FIG. 2, the bonding material according to the embodiment of the present invention distributes fuel between the interconnector 5a on the side through which fuel (hydrogen) flows and the corrugated plate 4a for electrical connection. Between the side electrical connection corrugated plate 4a and the electrode 3a, between the electrode 3b on the side that circulates oxygen (air) and the electrode connection corrugated plate 4b, and on the side of the electrical connection corrugated plate 4b that circulates oxygen It can be used between the interconnector 5b. However, since the joining material according to the present embodiment becomes conductive by being reduced after being sintered into a joining member, it is for electrical connection with the interconnector 5a on the side where the fuel that is the reducing atmosphere is circulated. It is preferable to use between the corrugated plate 4a and the electrode 3a between the electrical connection corrugated plate 4a and the electrode 3a.

本発明の実施形態に係る接合材の使用例を図1に示す。発電膜21は、イットリア安定化ジルコニア(YSZ)22とその両面に形成された酸化ニッケルとYSZの混合物である燃料側電極23a、酸素側電極23bから構成される。発電膜21の片側には本発明の接合材24を介して電極接続用波板25が形成されている。なお、SOFC全体の構成は、図2に示すような構成とする。   An example of use of the bonding material according to the embodiment of the present invention is shown in FIG. The power generation film 21 includes yttria-stabilized zirconia (YSZ) 22 and a fuel side electrode 23a and an oxygen side electrode 23b which are a mixture of nickel oxide and YSZ formed on both surfaces thereof. An electrode connecting corrugated plate 25 is formed on one side of the power generation film 21 via the bonding material 24 of the present invention. The configuration of the entire SOFC is as shown in FIG.

本発明の実施形態に係る接合材の塗布方法は、公知の方法が用いられ、例えばスクリーンプリント法が挙げられる。例えば、インターコネクタと電極接続用波板をスクリーンプリント法で接合する場合には、ペースト状の接合材を、スクリーンにあいた穴から印刷するスクリーンプリントの方法により、インターコネクタの平板上に50μm以上450μm以下、より好ましくは200μm以上300μm以下の厚さに均一に塗布し、接続用波板を載せて、空気中で熱処理を行う。接合材の塗布厚さを上記範囲とすることで、乾燥後接合強度および焼結後接合強度を高くすることができる。熱処理は、200℃までにビヒクルが蒸発するが、その後さらにSOFCの作業温度を考慮して1000℃以上、好ましくは1100℃以上1300℃以下の温度で熱処理して焼結させる。本実施形態によれば、1250℃以下、さらには1200℃以下の熱処理温度でも、還元後に接続抵抗が低抵抗となり、剥離も生じにくい接続部材を形成することができる。従って、低温焼結により、コスト高となる高温対応用以外の接合対象が広がり、より耐久性があり、コストダウンを図ったSOFCの製造が可能となる。本実施形態によれば、例えばNiOを80重量部、Feを20重量部とし、中粒を80重量部、微粒を20重量部とした場合、1100℃の低熱処理温度でも、1時間〜5時間の熱処理時間で焼結が可能であり、焼結して得られた接合部材は還元後の接続抵抗が低抵抗となり、剥離も生じない。 As a method for applying the bonding material according to the embodiment of the present invention, a known method is used, for example, a screen printing method. For example, when the interconnector and the corrugated plate for electrode connection are joined by the screen printing method, a paste-like joining material is printed on the flat plate of the interconnector by a screen printing method by printing from a hole in the screen. Hereinafter, more preferably, the coating is uniformly applied to a thickness of 200 μm or more and 300 μm or less, a corrugated plate for connection is placed, and heat treatment is performed in air. By setting the coating thickness of the bonding material within the above range, the bonding strength after drying and the bonding strength after sintering can be increased. In the heat treatment, the vehicle evaporates by 200 ° C. After that, the heat treatment is further performed at a temperature of 1000 ° C. or higher, preferably 1100 ° C. or higher and 1300 ° C. or lower in consideration of the working temperature of SOFC. According to this embodiment, even at a heat treatment temperature of 1250 ° C. or lower, further 1200 ° C. or lower, it is possible to form a connection member whose connection resistance becomes low after reduction and hardly peels off. Therefore, the low temperature sintering expands the range of joining objects other than those for high temperature, which is costly, and makes it possible to manufacture SOFCs that are more durable and reduce costs. According to this embodiment, for example, when NiO is 80 parts by weight, Fe 2 O 3 is 20 parts by weight, medium grains are 80 parts by weight, and fine grains are 20 parts by weight, even at a low heat treatment temperature of 1100 ° C. for 1 hour Sintering is possible in a heat treatment time of ˜5 hours, and the joined member obtained by sintering has a low connection resistance after reduction, and no peeling occurs.

なお、本発明の実施形態に係る接合材は、図3に示したディンプル形状の発電膜12を有するSOFCにおいて、インターコネクタ17と燃料側電極13との間、インターコネクタ17と空気側電極15との間に用いることもできる。この場合の接合材の塗布および熱処理は、上記図2に示したSOFCの場合と同様に行うことができる。但し、本実施形態に係る接合材は、焼結して接合部材とされた後に、還元することにより導電性となるので、還元雰囲気であるインターコネクタ17と燃料側電極13との間において用いることが好ましい。   In the SOFC having the dimple-shaped power generation membrane 12 shown in FIG. 3, the bonding material according to the embodiment of the present invention is provided between the interconnector 17 and the fuel side electrode 13, the interconnector 17, the air side electrode 15, and the like. It can also be used between. In this case, the bonding material can be applied and heat-treated in the same manner as in the SOFC shown in FIG. However, since the joining material according to this embodiment becomes conductive by being reduced after being sintered into a joining member, it is used between the interconnector 17 and the fuel-side electrode 13 that are in a reducing atmosphere. Is preferred.

上記のように本実施形態の接合材を焼結して得られた接合部材は、還元後に接続抵抗が低抵抗となり、導電性となる。
上記のようにして製造された本実施形態のSOFCは、定格運転時には自らの発熱により上記作動温度を維持し、定格運転を継続する(熱自立する)ことができるが、SOFCの起動の際には、外部から高温熱源で昇温する必要がある。昇温は、空気、窒素、水素又は酸素を数パーセント添加した窒素等の雰囲気における各種昇温パターンで、運転温度である約1000℃に達するまで行われる。本実施形態による接合部材は、いずれの昇温パターンにおいても、割れや剥離等の欠陥を生じることがなく、優れた接合強度の耐久性を備えたものとなる。また、本実施形態による接合部材は、いずれの昇温パターンを経た場合でも、高い導電性を示す。
As described above, the joining member obtained by sintering the joining material of the present embodiment has a low connection resistance after reduction and becomes conductive.
The SOFC of this embodiment manufactured as described above can maintain the above operating temperature by its own heat generation during rated operation and can continue the rated operation (thermal self-sustained). Needs to be heated from the outside with a high-temperature heat source. The temperature rise is performed in various temperature rise patterns in an atmosphere such as nitrogen to which several percent of air, nitrogen, hydrogen, or oxygen is added until the operating temperature reaches about 1000 ° C. The joining member according to the present embodiment does not cause defects such as cracking and peeling in any temperature rising pattern, and has excellent joining strength durability. In addition, the joining member according to the present embodiment exhibits high conductivity even when any temperature rising pattern is passed.

(実施例)
以下、本発明を実施例に基づき説明するが、本発明はこれに限定されるものではない。
実験例1
NiOおよびFeを、表1に示す組成で混合した後に焼結したものを、粉砕、分級し、粒径3μm以上10μm以下の中粒と、粒径0.1μm以上1μm以下の微粒とを得た。中粒80重量部および微粒20重量部からなるベース材料と、ビヒクル(混合溶媒)としてのブチルカルビトールとを、アルミナ製3本ロールミルを用いて混練し、ペースト状としたものを試作接合材とした。SOFC用のインターコネクタと電極接続用波板を模擬した平板と波板を用意し、平板に表1に示す組成の試作接合材をスクリーンプリント法で厚さ約300μm塗布した後に波板と接着し、乾燥後、空気雰囲気中1150℃で1時間保持して焼き付けを行った。次に100%H雰囲気中1000℃で3時間還元処理を行った。このようにして得たサンプルについて、接合強度および導電性を検証した。結果を表1に示す。接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。また、導電性の評価において、「○」は0.4Ω以下であり、×は0.4Ωより大きい場合である。
(Example)
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this.
Experimental example 1
NiO and Fe 2 O 3 mixed with the composition shown in Table 1 and then sintered are pulverized and classified, medium particles having a particle size of 3 μm to 10 μm, fine particles having a particle size of 0.1 μm to 1 μm, Got. A base material composed of 80 parts by weight of medium grains and 20 parts by weight of fine grains and butyl carbitol as a vehicle (mixed solvent) were kneaded using a three-roll mill made of alumina, and a paste was obtained as a prototype joining material. did. Prepare a flat plate and a corrugated plate simulating an SOFC interconnector and electrode connecting corrugated plate, and apply a trial bonding material having the composition shown in Table 1 to the flat plate with a thickness of about 300 μm by screen printing, and then bond it to the corrugated plate. After drying, baking was carried out by holding at 1150 ° C. for 1 hour in an air atmosphere. Next, reduction treatment was performed at 1000 ° C. for 3 hours in a 100% H 2 atmosphere. The sample obtained in this manner was verified for bonding strength and conductivity. The results are shown in Table 1. In the evaluation of the bonding strength, “◯” indicates that the bonding strength is good, “Δ” indicates that the bonding strength is reasonable, and “×” indicates that the bonding is inferior. In the evaluation of conductivity, “◯” is 0.4Ω or less, and “×” is greater than 0.4Ω.

Figure 2008034179
Figure 2008034179

実験例2
80重量部のNiOおよび20重量部のFeを混合した後に焼結したものを、粉砕、分級し、粒径3μm以上10μm以下の中粒と、粒径0.1μm以上1μm以下の微粒とを得た。表2に示す割合で中粒および微粒を混合してベース材料とし、このベース材料と、ビヒクル(混合溶媒)としてのブチルカルビトールとを、アルミナ製3本ロールミルを用いて混練し、ペースト状としたものを試作接合材とした。SOFC用のインターコネクタと接続用波板を模擬した平板と波板を用意し、平板に表2に示す混合比の試作接合材をスクリーンプリント法で厚さ約300μm塗布した後に波板と接着し、乾燥後、空気雰囲気中1150℃で1時間保持して焼き付けを行った。次に100%H雰囲気中1000℃で3時間還元処理を行った。このようにして得たサンプルについて、接合強度および導電性を検証した。結果を表2に示す。接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。また、導電性の評価において、「○」は0.4Ω以下であり、×は0.4Ωより大きい場合である。
Experimental example 2
What was sintered after mixing 80 parts by weight of NiO and 20 parts by weight of Fe 2 O 3 was pulverized and classified, and medium particles having a particle size of 3 μm or more and 10 μm or less, and fine particles having a particle size of 0.1 μm or more and 1 μm or less And got. A base material is prepared by mixing medium and fine particles in the ratio shown in Table 2, and this base material and butyl carbitol as a vehicle (mixed solvent) are kneaded using a three-roll mill made of alumina, This was used as a prototype joining material. Prepare a flat plate and a corrugated plate simulating the SOFC interconnector and connecting corrugated plate, and apply a trial bonding material with a mixing ratio shown in Table 2 on the flat plate to a thickness of about 300 μm by screen printing, then bond it to the corrugated plate. After drying, baking was carried out by holding at 1150 ° C. for 1 hour in an air atmosphere. Next, reduction treatment was performed at 1000 ° C. for 3 hours in a 100% H 2 atmosphere. The sample obtained in this manner was verified for bonding strength and conductivity. The results are shown in Table 2. In the evaluation of the bonding strength, “◯” indicates that the bonding strength is good, “Δ” indicates that the bonding strength is reasonable, and “×” indicates that the bonding is inferior. In the evaluation of conductivity, “◯” is 0.4Ω or less, and “×” is greater than 0.4Ω.

Figure 2008034179
Figure 2008034179

実験例3
80重量部のNiOおよび20重量部のFeを混合した後に焼結したものを、粉砕、分級し、粒径3μm以上10μm以下の中粒と、粒径0.1μm以上1μm以下の微粒とを得た。中粒80重量部および微粒20重量部からなるベース材料と、ビヒクル(混合溶媒)としてのブチルカルビトールとを、アルミナ製3本ロールミルを用いて混練し、ペースト状としたものを試作接合材とした。SOFC用のインターコネクタと接続用波板を模擬した平板と波板を用意し、平板にこの試作接合材をスクリーンプリント法で厚さ約300μm塗布した後に波板と接着し、乾燥後、空気雰囲気中、表3に示した焼き付け温度で1時間保持して焼き付けを行った。次に100%H雰囲気中1000℃で3時間還元処理を行った。このようにして得たサンプルについて、接合強度および導電性を検証した。結果を表3に示す。接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。また、導電性の評価において、「○」は0.4Ω以下であり、×は0.4Ωより大きい場合である。
Experimental example 3
What was sintered after mixing 80 parts by weight of NiO and 20 parts by weight of Fe 2 O 3 was pulverized and classified, and medium particles having a particle size of 3 μm or more and 10 μm or less, and fine particles having a particle size of 0.1 μm or more and 1 μm or less And got. A base material composed of 80 parts by weight of medium grains and 20 parts by weight of fine grains and butyl carbitol as a vehicle (mixed solvent) were kneaded using a three-roll mill made of alumina, and a paste was obtained as a prototype joining material. did. Prepare a flat plate and a corrugated plate simulating SOFC interconnector and connecting corrugated plate, apply this prototype bonding material to the flat plate with a thickness of about 300μm by screen printing method, adhere to the corrugated plate, dry, and then air atmosphere During the baking, the baking temperature shown in Table 3 was held for 1 hour. Next, reduction treatment was performed at 1000 ° C. for 3 hours in a 100% H 2 atmosphere. The sample obtained in this manner was verified for bonding strength and conductivity. The results are shown in Table 3. In the evaluation of the bonding strength, “◯” indicates that the bonding strength is good, “Δ” indicates that the bonding strength is reasonable, and “×” indicates that the bonding is inferior. In the evaluation of conductivity, “◯” is 0.4Ω or less, and “×” is greater than 0.4Ω.

Figure 2008034179
Figure 2008034179

実験例4
80重量部のNiOおよび20重量部のFeを混合した後に焼結したものを、粉砕、分級し、粒径3μm以上10μm以下の中粒と、粒径0.1μm以上1μm以下の微粒とを得た。中粒80重量部および微粒20重量部からなるベース材料と、ビヒクル(混合溶媒)としてのブチルカルビトールとを、アルミナ製3本ロールミルを用いて混練し、ペースト状としたものを試作接合材とした。SOFC用のインターコネクタと接続用波板を模擬した平板と波板を用意し、平板にこの試作接合材をスクリーンプリント法で厚さ約300μm塗布した後に波板と接着し、乾燥後、空気雰囲気中1100℃で表4に示した焼き付け時間で保持して焼き付けを行った。次に100%H雰囲気中1000℃で3時間還元処理を行った。このようにして得たサンプルについて、接合強度および導電性を検証した。結果を表4に示す。接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。また、導電性の評価において、「○」は0.4Ω以下であり、×は0.4Ωより大きい場合である。
尚、焼き付け時間が20時間より長くなると、製造コスト高となるため、20時間以下が好ましい。
Experimental Example 4
What was sintered after mixing 80 parts by weight of NiO and 20 parts by weight of Fe 2 O 3 was pulverized and classified, and medium particles having a particle size of 3 μm or more and 10 μm or less, and fine particles having a particle size of 0.1 μm or more and 1 μm or less And got. A base material composed of 80 parts by weight of medium grains and 20 parts by weight of fine grains and butyl carbitol as a vehicle (mixed solvent) were kneaded using a three-roll mill made of alumina, and a paste was obtained as a prototype joining material. did. Prepare a flat plate and a corrugated plate simulating SOFC interconnector and connecting corrugated plate, apply this prototype bonding material to the flat plate with a thickness of about 300μm by screen printing method, adhere to the corrugated plate, dry, and then air atmosphere Baking was performed while maintaining the baking time shown in Table 4 at 1100 ° C. Next, reduction treatment was performed at 1000 ° C. for 3 hours in a 100% H 2 atmosphere. The sample obtained in this manner was verified for bonding strength and conductivity. The results are shown in Table 4. In the evaluation of the bonding strength, “◯” indicates that the bonding strength is good, “Δ” indicates that the bonding strength is reasonable, and “×” indicates that the bonding is inferior. In the evaluation of conductivity, “◯” is 0.4Ω or less, and “×” is greater than 0.4Ω.
Note that if the baking time is longer than 20 hours, the manufacturing cost increases, and therefore, 20 hours or less is preferable.

Figure 2008034179
Figure 2008034179

実験例5
80重量部のNiOおよび20重量部のFeを混合した後に焼結したものを、粉砕、分級し、粒径3μm以上10μm以下の中粒と、粒径0.1μm以上1μm以下の微粒とを得た。中粒80重量部および微粒20重量部からなるベース材料と、ビヒクル(混合溶媒)としてのブチルカルビトールとを、アルミナ製3本ロールミルを用いて混練し、ペースト状としたものを試作接合材とした。また、比較用の接合材として、上記ベース材料の組成を80重量部NiO、10重量部のFe、および10重量部のTiOに代えたものも用意した。SOFC用のインターコネクタと接続用波板を模擬した平板と波板を用意し、平板にこの試作接合材をスクリーンプリント法で厚さ約300μm塗布した後に波板と接着し、乾燥後、空気雰囲気中1100℃で1時間保持して焼き付けを行った。次に、表5に示す雰囲気中で1000℃まで昇温した後、100%H雰囲気中1000℃で3時間還元処理を行った。このようにして得たサンプルについて、接合強度および導電性を検証した。結果を表5に示す。接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。また、導電性は接続抵抗値で示す。
ベース材料にTiOが含まれると、昇温雰囲気によっては接合強度や接続抵抗に難が有るため、本発明ではTiOを含まないことが好ましいことが分かる。
Experimental Example 5
What was sintered after mixing 80 parts by weight of NiO and 20 parts by weight of Fe 2 O 3 was pulverized and classified, and medium particles having a particle size of 3 μm or more and 10 μm or less, and fine particles having a particle size of 0.1 μm or more and 1 μm or less And got. A base material composed of 80 parts by weight of medium grains and 20 parts by weight of fine grains and butyl carbitol as a vehicle (mixed solvent) were kneaded using a three-roll mill made of alumina, and a paste was obtained as a prototype joining material. did. Further, as a bonding material for comparison, a material in which the composition of the base material was replaced with 80 parts by weight of NiO, 10 parts by weight of Fe 2 O 3 , and 10 parts by weight of TiO 2 was also prepared. Prepare a flat plate and a corrugated plate simulating SOFC interconnector and connecting corrugated plate, apply this prototype bonding material to the flat plate with a thickness of about 300μm by screen printing method, adhere to the corrugated plate, dry, and then air atmosphere Baking was carried out while maintaining at 1100 ° C. for 1 hour. Then, after raising the temperature to 1000 ° C. in an atmosphere shown in Table 5 were subjected to 3 hours reduction treatment at 1000 ° C. in a 100% H 2 atmosphere. The sample obtained in this manner was verified for bonding strength and conductivity. The results are shown in Table 5. In the evaluation of the bonding strength, “◯” indicates that the bonding strength is good, “Δ” indicates that the bonding strength is reasonable, and “×” indicates that the bonding is inferior. Conductivity is indicated by a connection resistance value.
When TiO 2 is contained in the base material, it is found that it is preferable not to contain TiO 2 in the present invention because there are difficulties in bonding strength and connection resistance depending on the temperature rising atmosphere.

Figure 2008034179
Figure 2008034179

実験例6
80重量部のNiOおよび20重量部のFeを混合した後に焼結したものを、粉砕、分級し、粒径3μm以上10μm以下の中粒と、粒径0.1μm以上1μm以下の微粒とを得た。中粒80重量部および微粒20重量部からなるベース材料と、ビヒクル(混合溶媒)としてのブチルカルビトールとを、アルミナ製3本ロールミルを用いて混練し、ペースト状としたものを試作接合材とした。SOFC用のインターコネクタと接続用波板を模擬した平板と波板を用意し、平板にこの試作接合材をスクリーンプリント法で表6に示す厚さで塗布した後に波板と接着し、乾燥後、空気雰囲気中1100℃で1時間保持して焼き付けを行った。次に100%H雰囲気中1000℃で3時間還元処理を行った。このようにして得たサンプルについて、乾燥後接合強度および焼結後接合強度を検証した。結果を表6に示す。乾燥後接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。また、焼結後接合強度の評価において、「○」は接合強度が良好なもの、「△」は接合強度がまずまずのもの、「×」は接合が劣るものである。
Experimental Example 6
What was sintered after mixing 80 parts by weight of NiO and 20 parts by weight of Fe 2 O 3 was pulverized and classified, and medium particles having a particle size of 3 μm or more and 10 μm or less, and fine particles having a particle size of 0.1 μm or more and 1 μm or less And got. A base material composed of 80 parts by weight of medium grains and 20 parts by weight of fine grains and butyl carbitol as a vehicle (mixed solvent) were kneaded using a three-roll mill made of alumina, and a paste was obtained as a prototype joining material. did. Prepare a flat plate and corrugated sheet simulating SOFC interconnector and connecting corrugated sheet, and apply this prototype bonding material to the flat plate with the thickness shown in Table 6 after bonding to the corrugated sheet. Baking was carried out by holding at 1100 ° C. for 1 hour in an air atmosphere. Next, reduction treatment was performed at 1000 ° C. for 3 hours in a 100% H 2 atmosphere. About the sample obtained in this way, the joint strength after drying and the joint strength after sintering were verified. The results are shown in Table 6. In the evaluation of the bond strength after drying, “◯” indicates that the bond strength is good, “Δ” indicates that the bond strength is reasonable, and “×” indicates that the bond is poor. In the evaluation of the bonding strength after sintering, “◯” indicates that the bonding strength is good, “Δ” indicates that the bonding strength is reasonable, and “×” indicates that the bonding is inferior.

Figure 2008034179
Figure 2008034179

本発明の接合部材を用いたSOFCの要部の概略図である。It is the schematic of the principal part of SOFC using the joining member of this invention. SOFCの一例を示す概略図である。It is the schematic which shows an example of SOFC. SOFCの他の例を示す概略図である。It is the schematic which shows the other example of SOFC.

符号の説明Explanation of symbols

1 発電膜
2 固体電解質膜
3a 電極
3b 電極
4a 電気接続用波板
4b 電気接続用波板
5a インターコネクタ
5b インターコネクタ
11 導電性接合部材
12 発電膜
13 燃料側電極
14 固体電解質膜
15 空気側電極
16 導電性接合部材
17 インターコネクタ
21 発電膜
22 イットリア安定化ジルコニア(YSZ)
23a 燃料側電極
23b 酸素側電極
24 導電性接合部材
25 電極接続用波板
DESCRIPTION OF SYMBOLS 1 Electric power generation membrane 2 Solid electrolyte membrane 3a Electrode 3b Electrode 4a Electrical connection corrugated plate 4b Electrical connection corrugated plate 5a Interconnector 5b Interconnector 11 Conductive joining member 12 Power generation membrane 13 Fuel side electrode 14 Solid electrolyte membrane 15 Air side electrode 16 Conductive bonding member 17 Interconnector 21 Power generation film 22 Yttria stabilized zirconia (YSZ)
23a Fuel side electrode 23b Oxygen side electrode 24 Conductive joining member 25 Electrode connection corrugated plate

Claims (9)

NiOおよびFeからなるベース材料を含む接合材であって、前記ベース材料100重量部のうち、50重量部以上90重量部以下がNiOであり、10重量部以上50重量部以下がFeであり、かつ
前記ベース材料100重量部のうち、5重量部以上30重量部以下が粒径0.1μm以上1μm以下の微粒である接合材。
A joining material including a base material made of NiO and Fe 2 O 3 , wherein 50 parts by weight or more and 90 parts by weight or less are NiO, and 10 parts by weight or more and 50 parts by weight or less are Fe parts out of 100 parts by weight of the base material. 2 O 3 and a bonding material in which 5 parts by weight or more and 30 parts by weight or less of 100 parts by weight of the base material are fine particles having a particle diameter of 0.1 μm or more and 1 μm or less.
前記ベース材料100重量部のうち、70重量部以上95重量部以下が粒径3μm以上10μm以下の中粒である請求項1に記載の接合材。   2. The bonding material according to claim 1, wherein, in 100 parts by weight of the base material, 70 parts by weight or more and 95 parts by weight or less are medium grains having a particle size of 3 μm or more and 10 μm or less. ビヒクルを含む請求項1または請求項2に記載の接合材。   The bonding material according to claim 1, comprising a vehicle. 複数の部材間に配置された請求項1から請求項3のいずれかに記載の接合材を、1100℃以上1300℃以下の焼き付け温度、1時間以上20時間以下の焼き付け時間で焼き付けて得られた接合部材。   The bonding material according to any one of claims 1 to 3 disposed between a plurality of members is obtained by baking at a baking temperature of 1100 ° C or higher and 1300 ° C or lower and a baking time of 1 hour or longer and 20 hours or shorter. Joining member. 請求項1から請求項3のいずれかに記載の接合材を複数の部材間に配置する工程と、
該接合材を1100℃以上1300℃以下の焼き付け温度、1時間以上20時間以下の焼き付け時間で焼き付ける工程を有する接合方法。
Arranging the bonding material according to any one of claims 1 to 3 between a plurality of members;
A bonding method including a step of baking the bonding material at a baking temperature of 1100 ° C. or higher and 1300 ° C. or lower and a baking time of 1 hour or longer and 20 hours or shorter.
前記複数の部材間に配置した接合材の厚さを50μm以上450μm以下とする請求項5に記載の接合方法。   The bonding method according to claim 5, wherein a thickness of the bonding material disposed between the plurality of members is set to 50 μm or more and 450 μm or less. 複数の部材と、
該複数の部材間を接合する請求項4に記載の接合部材と
を有する固体電解質燃料電池。
A plurality of members;
A solid electrolyte fuel cell comprising: the joining member according to claim 4 joining the plurality of members.
前記接合部材が燃料を流通する空間に配された請求項7に記載の固体電解質燃料電池。   The solid electrolyte fuel cell according to claim 7, wherein the joining member is disposed in a space through which fuel flows. 前記複数の部材の少なくとも一つが燃料側電極である請求項8に記載の固体電解質燃料電池。   The solid electrolyte fuel cell according to claim 8, wherein at least one of the plurality of members is a fuel side electrode.
JP2006204600A 2006-07-27 2006-07-27 Jointing material, jointing member, jointing method, and solid electrolyte fuel cell Withdrawn JP2008034179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204600A JP2008034179A (en) 2006-07-27 2006-07-27 Jointing material, jointing member, jointing method, and solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204600A JP2008034179A (en) 2006-07-27 2006-07-27 Jointing material, jointing member, jointing method, and solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2008034179A true JP2008034179A (en) 2008-02-14

Family

ID=39123386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204600A Withdrawn JP2008034179A (en) 2006-07-27 2006-07-27 Jointing material, jointing member, jointing method, and solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2008034179A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252376A (en) * 2008-04-01 2009-10-29 Noritake Co Ltd Method of manufacturing solid-oxide fuel cell and calcining tool for manufacture thereof
JP2014072035A (en) * 2012-09-28 2014-04-21 Kyocera Corp Cell stack, fuel battery module, and fuel battery device
JP2015043292A (en) * 2013-08-26 2015-03-05 日本特殊陶業株式会社 Solid oxide fuel cell and manufacturing method thereof
JP2016178022A (en) * 2015-03-20 2016-10-06 日本特殊陶業株式会社 Fuel cell stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252376A (en) * 2008-04-01 2009-10-29 Noritake Co Ltd Method of manufacturing solid-oxide fuel cell and calcining tool for manufacture thereof
JP2014072035A (en) * 2012-09-28 2014-04-21 Kyocera Corp Cell stack, fuel battery module, and fuel battery device
JP2015043292A (en) * 2013-08-26 2015-03-05 日本特殊陶業株式会社 Solid oxide fuel cell and manufacturing method thereof
JP2016178022A (en) * 2015-03-20 2016-10-06 日本特殊陶業株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
JP5483539B2 (en) Joining method
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2007141842A (en) Method and material for connecting electrode with inter-connection layer in solid oxide fuel cell stack
WO2013015115A1 (en) Solid-oxide fuel cell
JP3891790B2 (en) Conductive bonding material
JP2008034179A (en) Jointing material, jointing member, jointing method, and solid electrolyte fuel cell
JP2017076520A (en) Electrode material for solid oxide type fuel cell, and solid oxide type fuel cell arranged by use thereof
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP2010103122A (en) Solid oxide fuel cell, and method of manufacturing the same
JP5330849B2 (en) Conductive bonding material and solid oxide fuel cell having the same
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JP2008200724A (en) Joining material, joint member, joining method, and solid electrolyte fuel cell
JP2005174585A (en) Conductive jointing material paste
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP2009087539A (en) Fuel battery cell and fuel battery cell stack, as well as fuel battery
JP5030747B2 (en) Method for producing solid oxide fuel cell and firing jig used in the method
JP5364292B2 (en) Conductive bonding material, bonding member, bonding method, solid oxide fuel cell and bonding material for solid oxide fuel cell
JP6165051B2 (en) Manufacturing method of fuel cell member
JP2004335483A (en) Conductive bonding material
JP5364291B2 (en) Bonding material, bonding member, bonding method, solid oxide fuel cell, and bonding material for solid oxide fuel cell
JP5546560B2 (en) Electrode for solid oxide fuel cell and method for producing the same
JP5308493B2 (en) Coating material and coating method for fuel cell separator, and cell stack using coating material and coating method for fuel cell separator
JP3377703B2 (en) Conductive bonding agent

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006