JP5337423B2 - Dye-sensitized solar cell and method for producing dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell and method for producing dye-sensitized solar cell Download PDF

Info

Publication number
JP5337423B2
JP5337423B2 JP2008195410A JP2008195410A JP5337423B2 JP 5337423 B2 JP5337423 B2 JP 5337423B2 JP 2008195410 A JP2008195410 A JP 2008195410A JP 2008195410 A JP2008195410 A JP 2008195410A JP 5337423 B2 JP5337423 B2 JP 5337423B2
Authority
JP
Japan
Prior art keywords
zinc oxide
layer
dye
porous layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008195410A
Other languages
Japanese (ja)
Other versions
JP2010033915A (en
Inventor
俊紀 岡本
貞一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2008195410A priority Critical patent/JP5337423B2/en
Publication of JP2010033915A publication Critical patent/JP2010033915A/en
Application granted granted Critical
Publication of JP5337423B2 publication Critical patent/JP5337423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell having superior photo-electric conversion characteristics and high adhesiveness of a substrate with a zinc oxide porous layer, and to provide a manufacturing method of the dye-sensitized solar cell. <P>SOLUTION: The dye-sensitized solar cell has a photoelectrode on which a zinc oxide bottom layer, a zinc oxide dense layer, and a zinc oxide porous layer are laid on top on another in this order on a transparent conductive layer of a substrate on which the transparent conductive layer is formed. A die is supported on the zinc oxide dense layer and the zinc oxide porous layer, the zinc oxide dense layer having a BET specific surface area of 10 to 42 m<SP>2</SP>/g, and the zinc oxide porous layer having a BET specific surface area of 43 to 58 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池及び色素増感太陽電池の製造方法に関する。 The present invention relates to a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between a substrate and a zinc oxide porous layer, and a method for producing the dye-sensitized solar cell.

色素増感太陽電池は、身近な材料である金属酸化物半導体多孔膜を利用した太陽電池であり、シリコン太陽電池に比べて、高価な材料やプロセスを必要とせず、安価な太陽電池を実現できるデバイスとして実用化が期待されている。 A dye-sensitized solar cell is a solar cell that uses a metal oxide semiconductor porous film, which is a familiar material, and does not require expensive materials and processes compared to a silicon solar cell, and can realize an inexpensive solar cell. Practical use is expected as a device.

このような色素増感太陽電池の基本原理は、特許文献1に開示されているように、以下の通りである。まず、色素増感太陽電池に光が照射されると、金属酸化物半導体多孔質層表面に吸着された増感色素が光を吸収し、色素分子内の電子が励起され、電子が半導体へ渡される。これにより、光電極側で電子が発生し、この電子が電気回路を通じて、正電極に移動する。そして、正電極に移動した電子は、電解質層を通じて光電極に戻る。このような過程が繰り返されることで、電気エネルギーが生じ、高い光電変換効率が実現されている。 The basic principle of such a dye-sensitized solar cell is as follows, as disclosed in Patent Document 1. First, when the dye-sensitized solar cell is irradiated with light, the sensitizing dye adsorbed on the surface of the metal oxide semiconductor porous layer absorbs light, excites electrons in the dye molecule, and passes the electrons to the semiconductor. It is. Thereby, electrons are generated on the photoelectrode side, and the electrons move to the positive electrode through the electric circuit. Then, the electrons that have moved to the positive electrode return to the photoelectrode through the electrolyte layer. By repeating such a process, electric energy is generated and high photoelectric conversion efficiency is realized.

このうち、色素増感太陽電池の光電極の一部である金属酸化物半導体多孔質層を形成する方法としては、液相法や気相法等、多くの方法があるが、従来は金属酸化物半導体微粒子を溶媒に分散させた半導体多孔膜用分散液を基板に塗布した後、乾燥焼成して成膜する方法が一般的であった。 Among these, there are many methods such as a liquid phase method and a gas phase method for forming a metal oxide semiconductor porous layer that is a part of a photoelectrode of a dye-sensitized solar cell. In general, a method for forming a film by applying a dispersion for a semiconductor porous film, in which fine semiconductor particles are dispersed in a solvent, to a substrate, followed by drying and baking.

一方、近年では、電析法を用いて金属酸化物半導体多孔質層を形成することにより、色素増感太陽電池を製造する方法が行われている。電析法は、湿式の成膜法であり、100℃以下の低温での成膜が可能となることから、特に基板としてプラスチックフィルムを使用する場合に有効に用いられる。しかしながら、電析法を用いた場合は、焼成が不要であるという利点を有するものの、得られる金属酸化物半導体多孔質層の表面積が小さくなるため、色素を充分に担持させることができず、色素増感太陽電池の光電変換率を高めるのが難しいという問題があった。
また、特許文献2には、電解液にテンプレート化合物を添加し、電析によって酸化亜鉛薄膜を形成した後、テンプレート化合物をアルカリで脱着することにより、多孔質酸化亜鉛層を形成する方法が開示されている。
しかしながら、このような方法を用いる場合は、色素の吸着量を増加させ、得られる色素増感太陽電池の光電変換率を向上させるために、多孔質酸化亜鉛層の空隙率を高める必要があるが、空隙率を高めると、基板と多孔質酸化亜鉛層との密着性が低下して、多孔質酸化亜鉛層の剥離が生じたりすることがあった。
特許第2664194号公報 特開2004−6235号公報
On the other hand, in recent years, a method for producing a dye-sensitized solar cell has been performed by forming a metal oxide semiconductor porous layer using an electrodeposition method. The electrodeposition method is a wet film formation method, and can be formed at a low temperature of 100 ° C. or lower, and thus is effectively used particularly when a plastic film is used as a substrate. However, when the electrodeposition method is used, although there is an advantage that firing is unnecessary, the surface area of the obtained metal oxide semiconductor porous layer is small, so that the dye cannot be sufficiently supported, and the dye There was a problem that it was difficult to increase the photoelectric conversion rate of the sensitized solar cell.
Patent Document 2 discloses a method of forming a porous zinc oxide layer by adding a template compound to an electrolytic solution, forming a zinc oxide thin film by electrodeposition, and then desorbing the template compound with an alkali. ing.
However, when such a method is used, it is necessary to increase the porosity of the porous zinc oxide layer in order to increase the amount of dye adsorbed and improve the photoelectric conversion rate of the resulting dye-sensitized solar cell. When the porosity is increased, the adhesion between the substrate and the porous zinc oxide layer is lowered, and the porous zinc oxide layer may be peeled off.
Japanese Patent No. 2664194 JP 2004-6235 A

本発明は、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池及び色素増感太陽電池の製造方法を提供する。 The present invention provides a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between a substrate and a zinc oxide porous layer and a method for producing the dye-sensitized solar cell.

本発明は、透明導電層が形成された基板の前記透明導電層上に、酸化亜鉛ボトム層、酸化亜鉛緻密層及び酸化亜鉛多孔質層が順次積層された光電極を有する色素増感太陽電池であって、前記酸化亜鉛ボトム層は、空孔を有しない層であり、前記酸化亜鉛緻密層及び酸化亜鉛多孔質層には色素が担持されており、前記酸化亜鉛緻密層は、BET比表面積が10〜42m/g、空孔率が30〜75%であり、前記酸化亜鉛多孔質層は、BET比表面積が43〜58m/g、空孔率が80〜90%である色素増感太陽電池である。 The present invention provides a dye-sensitized solar cell having a photoelectrode in which a zinc oxide bottom layer, a zinc oxide dense layer, and a zinc oxide porous layer are sequentially laminated on the transparent conductive layer of the substrate on which the transparent conductive layer is formed. The zinc oxide bottom layer is a layer having no pores, and a dye is supported on the zinc oxide dense layer and the zinc oxide porous layer, and the zinc oxide dense layer has a BET specific surface area. 10 to 42 m 2 / g , porosity is 30 to 75% , and the zinc oxide porous layer has a BET specific surface area of 43 to 58 m 2 / g and a porosity of 80 to 90% . It is a solar cell.

本発明者らは鋭意検討した結果、酸化亜鉛ボトム層及び酸化亜鉛多孔質層の間に、酸化亜鉛緻密層を形成し、酸化亜鉛緻密層及び酸化亜鉛多孔質層のBET比表面積をそれぞれ所定の範囲内とすることにより、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention formed a dense zinc oxide layer between the zinc oxide bottom layer and the zinc oxide porous layer, and the BET specific surface areas of the zinc oxide dense layer and the zinc oxide porous layer were respectively determined to be predetermined. By making it within the range, it was found that a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between the substrate and the zinc oxide porous layer was obtained, and the present invention was completed. It was.

図1は、本発明の色素増感太陽電池の一例を示す模式図である。
本発明の色素増感太陽電池は、透明基板1、透明電極2、酸化亜鉛ボトム層9、酸化亜鉛緻密層8及び酸化亜鉛多孔質層7をこの順で有する光電極と対向電極12とが周縁部に形成されたシール11を介して積層された構造となっている。また、色素増感太陽電池の内部には電解質溶液10が内包されている。そして、酸化亜鉛緻密層8及び酸化亜鉛多孔質層7の空孔部には色素4が担持されている。図1に示すように、本発明では、酸化亜鉛多孔質層7には多量の色素を担持できるとともに、酸化亜鉛緻密層8の存在によって酸化亜鉛ボトム層9や透明電極2と酸化亜鉛多孔質層7との密着性は充分に確保される。従って、酸化亜鉛緻密層8を形成することで、優れた光電変換特性と、透明基板1及び酸化亜鉛多孔質層7の密着性との両立を更に確実に行うことができる。
FIG. 1 is a schematic view showing an example of the dye-sensitized solar cell of the present invention.
In the dye-sensitized solar cell of the present invention, a transparent electrode 1, a transparent electrode 2, a zinc oxide bottom layer 9, a zinc oxide dense layer 8 and a zinc oxide porous layer 7 in this order and a counter electrode 12 are peripheral. It has a structure in which it is laminated via a seal 11 formed in the part. Moreover, the electrolyte solution 10 is included in the inside of a dye-sensitized solar cell. The dye 4 is supported in the pores of the zinc oxide dense layer 8 and the zinc oxide porous layer 7. As shown in FIG. 1, in the present invention, the zinc oxide porous layer 7 can carry a large amount of dye, and the presence of the zinc oxide dense layer 8 makes the zinc oxide bottom layer 9 and the transparent electrode 2 and the zinc oxide porous layer. Adhesion with 7 is sufficiently ensured. Therefore, by forming the zinc oxide dense layer 8, it is possible to more reliably achieve both excellent photoelectric conversion characteristics and adhesion between the transparent substrate 1 and the zinc oxide porous layer 7.

本発明の色素増感太陽電池に用いられる基板としては、入射する光を妨げず、適度な強度を有するものであれば特に限定されず、例えば、ガラス、透明樹脂からなるシート、フィルム等が挙げられる。
上記透明樹脂としては特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスルフォン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、環状ポリオレフィン等の耐熱性を有する透明性樹脂からなるものが挙げられる。
上記基板の厚みの好ましい下限は100μm、好ましい上限は3mmである。厚みを上記範囲内とすることで、適当な剛性と柔軟性をもたせることが可能となる。
The substrate used in the dye-sensitized solar cell of the present invention is not particularly limited as long as it does not interfere with incident light and has an appropriate strength, and examples thereof include glass, a sheet made of a transparent resin, a film, and the like. It is done.
The transparent resin is not particularly limited, and examples thereof include those made of a transparent resin having heat resistance such as polyethylene terephthalate, polyethylene naphthalate, polysulfone, polycarbonate, polyethersulfone, polyarylate, and cyclic polyolefin.
The minimum with the preferable thickness of the said board | substrate is 100 micrometers, and a preferable upper limit is 3 mm. By setting the thickness within the above range, appropriate rigidity and flexibility can be provided.

上記透明導電層(電極)としては、例えば、ITO、SnO、FTO、ZnO、GZO、AZO等からなるものが好ましく、なかでも、ITOからなるものが好ましい。 The transparent conductive layer as an (electrode), for example, ITO, SnO 2, FTO, ZnO, GZO, is made of AZO, etc. Preferably, among others, made of ITO are preferred.

本発明の色素増感太陽電池は、上記透明導電層が形成された基板の透明導電層上に、酸化亜鉛ボトム層、酸化亜鉛緻密層及び酸化亜鉛多孔質層が順次積層された光電極を有する。 The dye-sensitized solar cell of the present invention has a photoelectrode in which a zinc oxide bottom layer, a zinc oxide dense layer, and a zinc oxide porous layer are sequentially laminated on the transparent conductive layer of the substrate on which the transparent conductive layer is formed. .

上記光電極は、酸化亜鉛ボトム層を有する。上記酸化亜鉛ボトム層は、酸化亜鉛を含有し、かつ、空孔を有しない層である。上記酸化亜鉛ボトム層を有することで、酸化亜鉛多孔質層は、透明電極と酸化亜鉛緻密層との密着性を向上させることができる。また、上記酸化亜鉛ボトム層は、電解質溶液の基板への浸入を防止し、透明電極から電解質溶液に流れる逆電子を抑制する役割を有する。 The photoelectrode has a zinc oxide bottom layer. The zinc oxide bottom layer is a layer containing zinc oxide and having no pores. By having the said zinc oxide bottom layer, the zinc oxide porous layer can improve the adhesiveness of a transparent electrode and a zinc oxide dense layer. The zinc oxide bottom layer has a role of preventing the electrolyte solution from entering the substrate and suppressing back electrons flowing from the transparent electrode to the electrolyte solution.

上記酸化亜鉛ボトム層の厚さの好ましい下限は5nm、好ましい上限は100nmである。5nm未満であると、逆電子を防止する効果が低下し、100nmを超えると、絶縁層となって酸化亜鉛多孔質層と透明電極との間で抵抗損失が発生し、色素増感太陽電池の光電変換特性が低下する。 A preferable lower limit of the thickness of the zinc oxide bottom layer is 5 nm, and a preferable upper limit is 100 nm. When the thickness is less than 5 nm, the effect of preventing reverse electrons is reduced. When the thickness exceeds 100 nm, an insulating layer is formed and a resistance loss occurs between the zinc oxide porous layer and the transparent electrode. The photoelectric conversion characteristics deteriorate.

上記光電極は、酸化亜鉛緻密層を有する。上記酸化亜鉛緻密層は、酸化亜鉛を含有し、かつ、酸化亜鉛多孔質層よりも多孔性の低い層である。上記酸化亜鉛緻密層を有することで、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性との両立を好適に行うことができる。 The photoelectrode has a zinc oxide dense layer. The zinc oxide dense layer is a layer containing zinc oxide and having a lower porosity than the zinc oxide porous layer. By having the said zinc oxide dense layer, coexistence with the outstanding photoelectric conversion characteristic and the adhesiveness of a board | substrate and a zinc oxide porous layer can be performed suitably.

上記酸化亜鉛緻密層におけるBET比表面積の下限は10m/g、上限は42m/gである。10m/g未満であると、酸化亜鉛多孔質層との密着性が低下したり、色素の担持量が不充分となったりし、42m/gを超えると、酸化亜鉛ボトム層との密着性が不充分となる。好ましい下限は20m/g、好ましい上限は35m/gである。 The lower limit of the BET specific surface area in the dense zinc oxide layer is 10 m 2 / g, and the upper limit is 42 m 2 / g. If it is less than 10 m 2 / g, the adhesion with the zinc oxide porous layer may be reduced or the amount of the dye supported may be insufficient. If it exceeds 42 m 2 / g, the adhesion with the zinc oxide bottom layer may be reduced. Insufficient sex. A preferred lower limit is 20 m 2 / g and a preferred upper limit is 35 m 2 / g.

上記酸化亜鉛緻密層における空孔率の好ましい下限は30%、好ましい上限は75%である。30%未満であると、酸化亜鉛多孔質層との密着性が不充分となったり、色素の担持量が不充分となったりすることがあり、75%を超えると、酸化亜鉛ボトム層との密着性が低下することがある。より好ましい下限は40%、より好ましい上限は60%である。 The preferable lower limit of the porosity in the zinc oxide dense layer is 30%, and the preferable upper limit is 75%. If it is less than 30%, the adhesion with the zinc oxide porous layer may be insufficient or the amount of the dye supported may be insufficient. If it exceeds 75%, the adhesion with the zinc oxide bottom layer may occur. Adhesion may be reduced. A more preferred lower limit is 40%, and a more preferred upper limit is 60%.

上記酸化亜鉛緻密層の膜厚の好ましい下限は0.1μm、好ましい上限は3μmである。0.1μm未満であると、密着性向上の効果が低下することがあり、3μmを超えると、色素担持量が不充分となることから光電変換特性が低下することがある。 A preferable lower limit of the thickness of the zinc oxide dense layer is 0.1 μm, and a preferable upper limit is 3 μm. When the thickness is less than 0.1 μm, the effect of improving the adhesion may be lowered. When the thickness exceeds 3 μm, the amount of the dye supported becomes insufficient, and the photoelectric conversion characteristics may be lowered.

上記光電極は、酸化亜鉛多孔質層を有する。上記酸化亜鉛多孔質層は、酸化亜鉛を含有し、かつ、多孔性の高い層である。上記酸化亜鉛多孔質層を有することで、多量の色素を担持することができ、優れた光電変換特性を実現できる。 The photoelectrode has a zinc oxide porous layer. The zinc oxide porous layer contains zinc oxide and is a highly porous layer. By having the said zinc oxide porous layer, a large amount of pigment | dyes can be carry | supported and the outstanding photoelectric conversion characteristic is realizable.

上記酸化亜鉛多孔質層におけるBET比表面積の下限は43m/g、上限は58m/gである。43m/g未満であると、色素の担持量が不充分となり、58m/gを超えると、酸化亜鉛緻密層との密着性が不充分となる。好ましい下限は44m/g、好ましい上限は52m/gである。 The lower limit of the BET specific surface area in the zinc oxide porous layer is 43 m 2 / g, and the upper limit is 58 m 2 / g. When the amount is less than 43 m 2 / g, the amount of the dye supported becomes insufficient, and when it exceeds 58 m 2 / g, the adhesion with the dense zinc oxide layer becomes insufficient. A preferred lower limit is 44 m 2 / g and a preferred upper limit is 52 m 2 / g.

上記酸化亜鉛多孔質層における空孔率の好ましい下限は80%、好ましい上限は90%である。80%未満であると、色素の担持量が不充分となり、90%を超えると、酸化亜鉛緻密層との密着性が低下することがある。より好ましい下限は83%、より好ましい上限は88%である。 The preferable lower limit of the porosity in the zinc oxide porous layer is 80%, and the preferable upper limit is 90%. If it is less than 80%, the amount of the dye supported becomes insufficient, and if it exceeds 90%, the adhesion to the dense zinc oxide layer may be lowered. A more preferred lower limit is 83%, and a more preferred upper limit is 88%.

上記酸化亜鉛多孔質層の膜厚の好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、色素担持量が少なくなるとともに、得られる色素増感太陽電池の光電変換特性も低下することがあり、20μmを超えても、酸化亜鉛多孔質層中の電子の拡散長が限られているために光電変換特性向上に寄与せず、逆に電解質溶液の酸化亜鉛多孔質層への浸入が困難になることから光電変換特性が低下することがある。 The preferable lower limit of the thickness of the zinc oxide porous layer is 1 μm, and the preferable upper limit is 20 μm. When the thickness is less than 1 μm, the amount of the dye supported decreases, and the photoelectric conversion characteristics of the resulting dye-sensitized solar cell may be deteriorated. Even when the thickness exceeds 20 μm, the diffusion length of electrons in the zinc oxide porous layer is small. Since it is limited, it does not contribute to the improvement of the photoelectric conversion characteristics, and conversely, it becomes difficult for the electrolyte solution to enter the zinc oxide porous layer, so that the photoelectric conversion characteristics may deteriorate.

上記酸化亜鉛多孔質層は、BET比表面積や空孔率の異なる複数の層からなるものとしてもよい。例えば、基板と反対側にBET比表面積や空孔率の高い上層を形成し、基板側にBET比表面積や空孔率の低い下層を形成する場合、上層では高いBET比表面積や空孔率によって、より多くの色素を担持させることができ、下層は色素の担持量は少なくなるものの、透明電極との接触面積が大きくなることから、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性との両立を更に好適に行うことができる。
なお、上記酸化亜鉛多孔質層は、BET比表面積が上記範囲内である必要があるが、上記酸化亜鉛多孔質層がBET比表面積の異なる複数の層からなるものである場合、何れかの層のBET比表面積が上記範囲外であっても、上記酸化亜鉛多孔質層全体のBET比表面積が上記範囲内であれば本発明に含まれる。
The zinc oxide porous layer may be composed of a plurality of layers having different BET specific surface areas and porosity. For example, when an upper layer with a high BET specific surface area or porosity is formed on the side opposite to the substrate and a lower layer with a low BET specific surface area or porosity is formed on the substrate side, the upper layer has a high BET specific surface area or porosity. , More dye can be supported, and the lower layer has a smaller amount of supported dye, but the contact area with the transparent electrode is increased, so that excellent photoelectric conversion characteristics and the substrate and zinc oxide porous layer Coexistence with adhesiveness can be more suitably performed.
The zinc oxide porous layer needs to have a BET specific surface area within the above range. If the zinc oxide porous layer is composed of a plurality of layers having different BET specific surface areas, any layer is used. Even if the BET specific surface area is outside the above range, it is included in the present invention if the BET specific surface area of the entire zinc oxide porous layer is within the above range.

上記酸化亜鉛緻密層及び酸化亜鉛多孔質層には、色素が担持されている。これにより、光照射によって起電力を発生させる色素増感太陽電池用の光電極として用いることができる。 A pigment is supported on the zinc oxide dense layer and the zinc oxide porous layer. Thereby, it can be used as a photoelectrode for a dye-sensitized solar cell that generates an electromotive force by light irradiation.

本発明の色素増感太陽電池に用いる色素としては、光エネルギーにより生じた電子を酸化亜鉛多孔質層に送る機能を有するものであれば特に限定されないが、上記酸化亜鉛多孔質層と強固に吸着させるための官能基を有するものが好ましい。上記官能基としては例えば、カルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基等が挙げられる。
具体的には、ルテニウム金属錯体系色素や各種の有機色素を使用することができ、例えば、エオシンY、フルオレセイン、エリスロシンB、フロキシンB、ローズベンガル、ローダミンB、フルオレクソン、マーキュロクロム、ジブロモフルオレセイン、ピロガロールレッド等のキサンテン系色素;クマリン343等のクマリン系色素;ブロモフェノールブルー、ブロモチモールブルー、フェノールフタレイン等のトリフェニルメタン系色素;シアニン系色素、メロシアニン系色素、インジゴ系色素、オキソノール系色素、ポルフィリン系色素、フタロシアニン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、スクアリリウム系色素、ペリレンテトラカルボン酸誘導体;Ru、Os等のポリピリジン錯体;アントシアニン、クチナシ色素、ウコン色素、ベニバナ色素、カロテノイド色素、コチニール色素、パプリカ色素等の天然色素等が挙げられる。
The dye used in the dye-sensitized solar cell of the present invention is not particularly limited as long as it has a function of sending electrons generated by light energy to the zinc oxide porous layer, but strongly adsorbs with the zinc oxide porous layer. What has the functional group for making it do is preferable. Examples of the functional group include a carboxylic acid group, a carboxylic anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group.
Specifically, ruthenium metal complex dyes and various organic dyes can be used. For example, eosin Y, fluorescein, erythrosin B, phloxine B, rose bengal, rhodamine B, fluorexone, mercurochrome, dibromofluorescein, pyrogallol Xanthene dyes such as red; coumarin dyes such as coumarin 343; triphenylmethane dyes such as bromophenol blue, bromothymol blue, and phenolphthalein; cyanine dyes, merocyanine dyes, indigo dyes, oxonol dyes, Porphyrin dyes, phthalocyanine dyes, azo dyes, quinone dyes, quinone imine dyes, squarylium dyes, perylene tetracarboxylic acid derivatives; polypyridine complexes such as Ru and Os; anthocyanins, cutina Dyes, turmeric pigment, safflower pigment, carotenoid pigments, cochineal dyes, natural pigments, and the like, such as paprika pigment.

上記光電極と、電解質層と、対向電極とをこの順で積層することにより、色素増感太陽電池を製造することができる。具体的には例えば、電解質を含有する溶液を光電極上に塗工し、電解質層を形成した後、対向電極を積層する方法や、光電極と電解質溶液注入口を有する対向電極とを積層した後、上記電解質溶液注入口から電解質溶液を注入する方法等により製造することができる。 A dye-sensitized solar cell can be manufactured by laminating the photoelectrode, the electrolyte layer, and the counter electrode in this order. Specifically, for example, after a solution containing an electrolyte is applied on the photoelectrode to form an electrolyte layer, a method of laminating the counter electrode, or after laminating the photoelectrode and the counter electrode having an electrolyte solution inlet Further, it can be manufactured by a method of injecting an electrolyte solution from the electrolyte solution inlet.

上記電解質層は、電解質溶液からなるものであってもよく、電解質溶液をゲル化剤によって半固体化したものであってもよい。また、上記電解質層としては、電子、ホール、イオン等を輸送できる物質であれば特に限定されず、例えば、CuI、CuSCN、NiO、CuO、KI等のp型半導体固体ホール輸送材料、ヨウ素/ヨウ化物、臭素/臭化物等の酸化還元電解質を有機溶媒に溶解した溶液を用いることができる。
上記有機溶媒としては、例えば、ニトリル系のアセトニトリル、メトキシプロピオニトリルや炭化水素系のプロピレンカルボナート、ジエチルカルボナート、γ―ブチロラクタンやポリエチレングリコール等の多価アルコールが挙げられる。
これらの中では、嵩高く、酸化亜鉛多孔質層に吸着させた色素が脱着しにくいことから、酸化還元電解質を有機溶媒に溶解した溶液が好ましい。
The electrolyte layer may be composed of an electrolyte solution, or may be a semi-solidified electrolyte solution with a gelling agent. The electrolyte layer is not particularly limited as long as it is a substance that can transport electrons, holes, ions, and the like. For example, a p-type semiconductor solid hole transport material such as CuI, CuSCN, NiO, Cu 2 O, and KI, iodine A solution in which a redox electrolyte such as / iodide and bromine / bromide is dissolved in an organic solvent can be used.
Examples of the organic solvent include polyhydric alcohols such as nitrile acetonitrile, methoxypropionitrile, hydrocarbon propylene carbonate, diethyl carbonate, γ-butyrolactan, and polyethylene glycol.
Among these, a solution in which a redox electrolyte is dissolved in an organic solvent is preferable because it is bulky and the dye adsorbed on the zinc oxide porous layer is difficult to desorb.

上記対向電極としては特に限定されず、例えば、光電極と同様の基板や透明導電層からなるものを用いることができる。
なお、上記対向電極の基板及び導電層には、光電極に使用する基板や透明導電層と異なり、必ずしも透明性は必要とされず、チタンやタングステン等の耐食性のある金属、カーボン、グラファイト等の炭素材料、PEDOT/PSS等の導電性高分子等を用いることができる。
The counter electrode is not particularly limited, and for example, a substrate made of the same substrate as the photoelectrode or a transparent conductive layer can be used.
Unlike the substrate and transparent conductive layer used for the photoelectrode, the counter electrode substrate and the conductive layer do not necessarily require transparency, such as corrosion-resistant metals such as titanium and tungsten, carbon, graphite, etc. Carbon materials, conductive polymers such as PEDOT / PSS, and the like can be used.

本発明の色素増感太陽電池は、例えば、透明導電層が形成されたフィルム基板の前記透明導電層上に、亜鉛塩を含有する電析液を用いて電析法により成膜することにより酸化亜鉛ボトム層を形成する工程1、前記酸化亜鉛ボトム層上に、亜鉛塩とテンプレート化合物とを含有する電析液を用いて電析法により成膜することにより酸化亜鉛緻密層用薄膜を形成する工程2、前記酸化亜鉛緻密層用薄膜上に亜鉛塩とテンプレート化合物とを含有する電析液を用いて電析法により成膜することにより酸化亜鉛多孔質層用薄膜を形成する工程3、前記酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜に含まれるテンプレート化合物を脱着することにより、酸化亜鉛緻密層及び酸化亜鉛多孔質層を形成する工程4、及び、前記酸化亜鉛緻密層及び酸化亜鉛多孔質層に色素を担持させる工程5を有する製造方法によって製造することができる。このような色素増感太陽電池の製造方法もまた、本発明の1つである。 The dye-sensitized solar cell of the present invention is oxidized by, for example, forming a film by an electrodeposition method using an electrodeposition solution containing a zinc salt on the transparent conductive layer of the film substrate on which the transparent conductive layer is formed. Step 1 for forming a zinc bottom layer, forming a thin film for a dense zinc oxide layer by forming a film on the zinc oxide bottom layer by an electrodeposition method using an electrodeposition solution containing a zinc salt and a template compound Step 2, forming a zinc oxide porous layer thin film by forming a film by an electrodeposition method using an electrodeposition solution containing a zinc salt and a template compound on the zinc oxide dense layer thin film, Step 4 of forming a zinc oxide dense layer and a zinc oxide porous layer by desorbing a template compound contained in the zinc oxide dense layer thin film and the zinc oxide porous layer thin film, and the zinc oxide dense layer and the oxide It can be produced by a production method having a step 5 for supporting the dye on the lead porous layer. Such a method for producing a dye-sensitized solar cell is also one aspect of the present invention.

図2は、本発明の色素増感太陽電池の製造方法のうち、光電極を製造する工程を示す模式図である。本発明では、まず、透明導電層2が形成された基板1の透明導電層2上に、酸化亜鉛ボトム層9、酸化亜鉛緻密層用薄膜6、酸化亜鉛多孔質層用薄膜5を順に形成する(図2a)。酸化亜鉛緻密層用薄膜6及び酸化亜鉛多孔質層用薄膜5には、テンプレート化合物3が含まれており、各層でテンプレート化合物3の含有量が異なっている。
次いで、アルカリ等を用いてテンプレート化合物3を脱着させることにより、酸化亜鉛緻密層8及び酸化亜鉛多孔質層7を形成する(図2b)。
更に、得られた酸化亜鉛緻密層8及び酸化亜鉛多孔質層7に色素4を担持させることにより、色素増感太陽電池用の光電極とすることができる(図2c)。
図2に示すように、本発明では、例えば、酸化亜鉛緻密層用薄膜6及び酸化亜鉛多孔質層用薄膜5のテンプレート化合物含有量を変更させることで、空孔特性が異なる酸化亜鉛緻密層8及び酸化亜鉛多孔質層7を形成することができる。
また、テンプレート化合物3を脱着した後の酸化亜鉛多孔質層7は充分な空孔率を有することから、得られる色素増感太陽電池は光電変換特性に優れ、更に、酸化亜鉛緻密層8を有することで、基板と酸化亜鉛多孔質膜7との密着性が高くなることから、酸化亜鉛多孔質層7の剥離等を生じにくくすることができる。
FIG. 2 is a schematic view showing a process for producing a photoelectrode in the method for producing a dye-sensitized solar cell of the present invention. In the present invention, first, a zinc oxide bottom layer 9, a zinc oxide dense layer thin film 6, and a zinc oxide porous layer thin film 5 are sequentially formed on the transparent conductive layer 2 of the substrate 1 on which the transparent conductive layer 2 is formed. (Figure 2a). The zinc oxide dense layer thin film 6 and the zinc oxide porous layer thin film 5 contain the template compound 3, and the content of the template compound 3 is different in each layer.
Subsequently, the dense zinc oxide layer 8 and the porous zinc oxide layer 7 are formed by desorbing the template compound 3 using an alkali or the like (FIG. 2b).
Furthermore, it can be set as the photoelectrode for dye-sensitized solar cells by making the obtained zinc oxide dense layer 8 and the zinc oxide porous layer 7 carry the pigment | dye 4 (FIG. 2c).
As shown in FIG. 2, in the present invention, for example, the zinc oxide dense layer 8 having different pore characteristics can be obtained by changing the template compound content in the zinc oxide dense layer thin film 6 and the zinc oxide porous layer thin film 5. And the zinc oxide porous layer 7 can be formed.
Moreover, since the zinc oxide porous layer 7 after desorbing the template compound 3 has a sufficient porosity, the obtained dye-sensitized solar cell is excellent in photoelectric conversion characteristics, and further has a zinc oxide dense layer 8. Thereby, since the adhesiveness of a board | substrate and the zinc oxide porous membrane 7 becomes high, peeling of the zinc oxide porous layer 7 etc. can be made hard to produce.

一方、図3は、従来の方法を用いた場合、即ち、酸化亜鉛緻密層を形成しない場合である。従来の方法では、図3bに示すように空孔率の非常に高い酸化亜鉛多孔質膜7のみが得られる。この場合、図3cに示すように、色素4の担持量が非常に大きくなるものの、透明導電層2と酸化亜鉛多孔質層7との接触面積が非常に小さくなり、透明導電層2と酸化亜鉛多孔質層7との密着性が大幅に低下する。従って、得られる色素増感太陽電池において、酸化亜鉛多孔質層7の剥離が発生しやすくなる。 On the other hand, FIG. 3 shows a case where a conventional method is used, that is, a case where a dense zinc oxide layer is not formed. In the conventional method, as shown in FIG. 3b, only the zinc oxide porous film 7 having a very high porosity can be obtained. In this case, as shown in FIG. 3c, although the amount of the dye 4 supported becomes very large, the contact area between the transparent conductive layer 2 and the zinc oxide porous layer 7 becomes very small, and the transparent conductive layer 2 and zinc oxide Adhesiveness with the porous layer 7 is significantly reduced. Therefore, in the obtained dye-sensitized solar cell, peeling of the zinc oxide porous layer 7 is likely to occur.

本発明の色素増感太陽電池の製造方法では、まず、透明導電層が形成されたフィルム基板の前記透明導電層上に、亜鉛塩を含有する電析液を用いて電析法により成膜することにより酸化亜鉛ボトム層を形成する工程1、前記酸化亜鉛ボトム層上に、亜鉛塩とテンプレート化合物とを含有する電析液を用いて電析法により成膜することにより酸化亜鉛緻密層用薄膜を形成する工程2、及び、前記酸化亜鉛緻密層用薄膜上に亜鉛塩とテンプレート化合物とを含有する電析液を用いて電析法により成膜することにより酸化亜鉛多孔質層用薄膜を形成する工程3を行う。 In the method for producing a dye-sensitized solar cell of the present invention, first, a film is formed by an electrodeposition method using an electrodeposition solution containing a zinc salt on the transparent conductive layer of the film substrate on which the transparent conductive layer is formed. Step 1 for forming a zinc oxide bottom layer by forming a thin film for a dense zinc oxide layer by forming a film on the zinc oxide bottom layer by an electrodeposition method using an electrodeposition solution containing a zinc salt and a template compound And forming a zinc oxide porous layer thin film by forming a film by an electrodeposition method using an electrodeposition solution containing a zinc salt and a template compound on the zinc oxide dense layer thin film. Step 3 is performed.

本発明の色素増感太陽電池では、電析法によって、酸化亜鉛ボトム層、酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜を成膜する。上記電析法は、原料粒子分散液を塗布し、焼結させる方法等のように、高温の焼成工程を行う必要がなく、樹脂フィルムを基板として用いる場合にも好適に使用することができ、また、結晶性の高い酸化亜鉛ボトム層、酸化亜鉛緻密層及び酸化亜鉛多孔質層用薄膜を得ることができる。 In the dye-sensitized solar cell of the present invention, a zinc oxide bottom layer, a zinc oxide dense layer thin film, and a zinc oxide porous layer thin film are formed by electrodeposition. The electrodeposition method does not require a high-temperature baking step, such as a method of applying a raw material particle dispersion and sintering, and can be suitably used when a resin film is used as a substrate. In addition, a zinc oxide bottom layer, a zinc oxide dense layer, and a zinc oxide porous layer thin film having high crystallinity can be obtained.

上記電析法によって酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜を形成する方法としては、具体的には例えば、亜鉛塩及びテンプレート化合物を含有する電析液中に透明電極を形成した基板を浸漬し、作用極に透明電極、対向極に亜鉛を配置し、酸素をバブリングしながら参照電極に対して負の定電圧を印加する3電極法等が挙げられる。 As a method for forming a zinc oxide dense layer thin film and a zinc oxide porous layer thin film by the electrodeposition method, specifically, for example, a transparent electrode was formed in an electrodeposition solution containing a zinc salt and a template compound. Examples include a three-electrode method in which a substrate is immersed, a transparent electrode is disposed on the working electrode, zinc is disposed on the counter electrode, and a negative constant voltage is applied to the reference electrode while bubbling oxygen.

上記亜鉛塩としては、電析後に酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜が得られるものであれば特に限定されず、例えば、ZnCl、ZnBr、ZnI等が挙げられる。
上記亜鉛塩の電析液中の濃度の好ましい下限は1mM/L、好ましい上限は50mM/Lである。1mM/L未満であると、充分な酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜を形成できないことがあり、50mM/Lを超えると、亜鉛に対する酸素の供給が不充分となり亜鉛金属の析出が発生することがある。
The zinc salt is not particularly limited as long as a zinc oxide dense layer thin film and a zinc oxide porous layer thin film can be obtained after electrodeposition, and examples thereof include ZnCl 2 , ZnBr 2 , and ZnI 2 .
A preferable lower limit of the concentration of the zinc salt in the electrodeposition solution is 1 mM / L, and a preferable upper limit is 50 mM / L. If the concentration is less than 1 mM / L, sufficient zinc oxide dense layer thin film and zinc oxide porous layer thin film may not be formed. If the concentration exceeds 50 mM / L, supply of oxygen to zinc is insufficient, and zinc metal Precipitation may occur.

上記テンプレート化合物とは、亜鉛塩とともに電析液中に添加し、電析成膜することによって、酸化亜鉛緻密層用薄膜又は酸化亜鉛多孔質層用薄膜の内部表面に吸着され、かつ、所定の脱着手段によって脱着可能な化合物のことをいう。上記テンプレート化合物は、上述の性質を有し、亜鉛塩の水溶液等の電析液に溶解しやすいものであれば特に限定されないが、電気化学的に還元性を有する芳香族化合物のようなπ電子を有する有機化合物が好適である。特に、有機色素であるキサンテン系色素が好適であり、具体的には例えば、エオシンY、エリスロシンY、フロキシンB、ローズベンガル、ローダミンB等が挙げられる。 The template compound is adsorbed on the inner surface of the zinc oxide dense layer thin film or the zinc oxide porous layer thin film by adding it to the electrodeposition solution together with the zinc salt and forming the electrodeposited film. It refers to a compound that can be desorbed by desorption means. The template compound is not particularly limited as long as it has the above-mentioned properties and can be easily dissolved in an electrodeposition solution such as an aqueous solution of zinc salt, but π-electrons such as an aromatic compound having electrochemical reduction properties. Organic compounds having are preferred. Particularly preferred are xanthene dyes which are organic dyes, and specific examples include eosin Y, erythrosine Y, phloxine B, rose bengal, rhodamine B and the like.

上記亜鉛塩とテンプレート化合物とを含有する電析液には、上記亜鉛塩及びテンプレート化合物に加えて、凝集防止等を目的として、界面活性剤等の適当な添加剤を配合してもよい。 In the electrodeposition liquid containing the zinc salt and the template compound, in addition to the zinc salt and the template compound, an appropriate additive such as a surfactant may be blended for the purpose of preventing aggregation.

本発明では、上記工程2及び工程3では、テンプレート化合物の含有量を変化させる方法、電析法において酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜を形成する際に電析液の流速を変化させる方法等を行うことによって、得られる酸化亜鉛緻密層及び酸化亜鉛多孔質層の空孔特性を変化させることができる。なお、これらの方法は併用してもよい。 In the present invention, in steps 2 and 3, the flow rate of the electrodeposition solution when forming the thin film for the zinc oxide dense layer and the thin film for the zinc oxide porous layer in the method for changing the content of the template compound and the electrodeposition method. By performing a method of changing the pore size, the pore characteristics of the obtained zinc oxide dense layer and zinc oxide porous layer can be changed. These methods may be used in combination.

本発明において、上記テンプレート化合物の含有量を変化させる方法を用いる場合、上記工程2におけるテンプレート化合物の電析液中の含有量の好ましい下限は20μM/L、好ましい上限は90μM/Lである。上記テンプレート化合物の電析液中の含有量が20μM/L未満であると、酸化亜鉛緻密層用薄膜中のテンプレート化合物含有量が少なくなるため、形成される酸化亜鉛緻密層の比表面積が低下し、色素の担持量が低下する。上記テンプレート化合物の電析液中の含有量が90μM/Lを超えると、形成される酸化亜鉛緻密層の比表面積が大きくなりすぎて透明電極と酸化亜鉛多孔質層との密着性が低下することがある。より好ましい下限は40μM/L、より好ましい上限は80μM/Lである。 In this invention, when using the method of changing content of the said template compound, the minimum with preferable content in the electrodeposition liquid of the template compound in the said process 2 is 20 micromol / L, and a preferable upper limit is 90 micromol / L. If the content of the template compound in the electrodeposition solution is less than 20 μM / L, the content of the template compound in the zinc oxide dense layer thin film decreases, and the specific surface area of the formed zinc oxide dense layer decreases. , The amount of dye supported decreases. When the content of the template compound in the electrodeposition solution exceeds 90 μM / L, the specific surface area of the formed zinc oxide dense layer becomes too large and the adhesion between the transparent electrode and the zinc oxide porous layer is reduced. There is. A more preferable lower limit is 40 μM / L, and a more preferable upper limit is 80 μM / L.

上記工程2において、上記電析法によって形成される酸化亜鉛緻密層用薄膜におけるテンプレート化合物の含有量の好ましい下限が3重量%、好ましい上限が5重量%である。
上記酸化亜鉛緻密層用薄膜のテンプレート化合物含有量を上記範囲内とすることで、本発明の色素増感太陽電池は、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性とを両立したものとなる。なお、上記酸化亜鉛緻密層用薄膜のテンプレート化合物含有量は、例えば、酸化亜鉛緻密層用薄膜より採取した所定量の試料の400℃までの重量減少率を測定することにより求めることができる。
上記酸化亜鉛緻密層用薄膜のテンプレート化合物含有量が3重量%未満であると、形成される酸化亜鉛緻密層用薄膜のBET比表面積や空孔率が低下して、色素の担持量が低下したり、電解液が浸透しにくくなったりすることから、得られる色素増感太陽電池の光電変換特性が大幅に低下する。5重量%を超えると、透明導電層と形成される酸化亜鉛緻密層用薄膜との接触面積が非常に小さくなり、透明導電層と酸化亜鉛緻密層用薄膜との密着性が大幅に低下する。従って、得られる色素増感太陽電池において、酸化亜鉛多孔質層の剥離が発生しやすくなる。より好ましい下限は3.5重量%、より好ましい上限は4.5重量%である。
In the step 2, the preferable lower limit of the content of the template compound in the zinc oxide dense layer thin film formed by the electrodeposition method is 3% by weight, and the preferable upper limit is 5% by weight.
By making the template compound content of the zinc oxide dense layer thin film within the above range, the dye-sensitized solar cell of the present invention has excellent photoelectric conversion characteristics and adhesion between the substrate and the zinc oxide porous layer. It becomes compatible. The template compound content of the zinc oxide dense layer thin film can be determined, for example, by measuring the weight reduction rate up to 400 ° C. of a predetermined amount of sample taken from the zinc oxide dense layer thin film.
When the template compound content of the zinc oxide dense layer thin film is less than 3% by weight, the BET specific surface area and porosity of the formed zinc oxide dense layer thin film are lowered, and the amount of the dye supported is lowered. Or the electrolytic solution of the obtained dye-sensitized solar cell is greatly deteriorated. If it exceeds 5% by weight, the contact area between the transparent conductive layer and the formed zinc oxide dense layer thin film becomes very small, and the adhesion between the transparent conductive layer and the zinc oxide dense layer thin film is greatly reduced. Therefore, in the obtained dye-sensitized solar cell, peeling of the zinc oxide porous layer is likely to occur. A more preferred lower limit is 3.5% by weight, and a more preferred upper limit is 4.5% by weight.

上記工程3におけるテンプレート化合物の電析液中の含有量の好ましい下限は150μM/L、好ましい上限は1000μM/Lである。上記テンプレート化合物の電析液中の含有量が150μM/L未満であると、酸化亜鉛多孔質層用薄膜中のテンプレート化合物含有量が少なくなるため、形成される酸化亜鉛多孔質層の比表面積が低下し、色素の担持量が低下して、得られる色素増感太陽電池の光電変化特性が悪化する。上記テンプレート化合物の電析液中の含有量が1000μM/Lを超えると、形成される酸化亜鉛多孔質層の比表面積が大きくなりすぎて透明電極と酸化亜鉛多孔質層との密着性が低下することがある。より好ましい下限は200μM/L、より好ましい上限は600μM/Lである。
なお、後述のように空孔率の異なる複数の層からなる酸化亜鉛多孔質層を形成する場合は、透明電極と酸化亜鉛多孔質層との密着性が向上することから、上記テンプレート化合物の電析液中の濃度を800μM/L程度としても、充分な密着性を有する色素増感太陽電池が得られる。
The minimum with preferable content in the electrodeposition liquid of the template compound in the said process 3 is 150 micromol / L, and a preferable upper limit is 1000 micromol / L. When the content of the template compound in the electrodeposition solution is less than 150 μM / L, the content of the template compound in the zinc oxide porous layer thin film is reduced, so that the specific surface area of the formed zinc oxide porous layer is The amount of the dye supported decreases, and the photoelectric change characteristics of the resulting dye-sensitized solar cell deteriorate. When the content of the template compound in the electrodeposition solution exceeds 1000 μM / L, the specific surface area of the formed zinc oxide porous layer becomes too large, and the adhesion between the transparent electrode and the zinc oxide porous layer decreases. Sometimes. A more preferable lower limit is 200 μM / L, and a more preferable upper limit is 600 μM / L.
In addition, when forming a zinc oxide porous layer composed of a plurality of layers having different porosity as described later, the adhesion between the transparent electrode and the zinc oxide porous layer is improved. Even when the concentration in the depositing solution is about 800 μM / L, a dye-sensitized solar cell having sufficient adhesion can be obtained.

上記工程3において、上記電析法によって形成される酸化亜鉛多孔質層用薄膜におけるテンプレート化合物の含有量の好ましい下限が5重量%、好ましい上限が9重量%である。
上記酸化亜鉛多孔質層用薄膜のテンプレート化合物含有量を上記範囲内とすることで、本発明の色素増感太陽電池は、優れた光電変換特性と、基板及び酸化亜鉛多孔質層の密着性とを両立したものとなる。上記酸化亜鉛多孔質層用薄膜のテンプレート化合物含有量が5重量%未満であると、形成される酸化亜鉛多孔質層のBET比表面積や空孔率が低下して、色素の担持量が低下したり、電解液が浸透しにくくなったりすることから、得られる色素増感太陽電池の光電変換特性が大幅に低下する。9重量%を超えると、酸化亜鉛緻密層と形成される酸化亜鉛多孔質層との接触面積が非常に小さくなり、酸化亜鉛緻密層と酸化亜鉛多孔質層との密着性が大幅に低下する。従って、得られる色素増感太陽電池において、酸化亜鉛多孔質層の剥離が発生しやすくなる。より好ましい下限は7重量%、より好ましい上限は8重量%である。
In the step 3, a preferable lower limit of the content of the template compound in the zinc oxide porous layer thin film formed by the electrodeposition method is 5% by weight, and a preferable upper limit is 9% by weight.
By setting the content of the template compound of the zinc oxide porous layer thin film within the above range, the dye-sensitized solar cell of the present invention has excellent photoelectric conversion characteristics and adhesion between the substrate and the zinc oxide porous layer. Will be compatible. When the template compound content of the zinc oxide porous layer thin film is less than 5% by weight, the BET specific surface area and porosity of the formed zinc oxide porous layer are reduced, and the amount of the dye supported is reduced. Or the electrolytic solution of the obtained dye-sensitized solar cell is greatly deteriorated. When it exceeds 9% by weight, the contact area between the zinc oxide dense layer and the formed zinc oxide porous layer becomes very small, and the adhesion between the zinc oxide dense layer and the zinc oxide porous layer is greatly reduced. Therefore, in the obtained dye-sensitized solar cell, peeling of the zinc oxide porous layer is likely to occur. A more preferred lower limit is 7% by weight, and a more preferred upper limit is 8% by weight.

本発明において、上記電析液の流速を変化させる方法を用いる場合、上記工程2における電析液の流速の好ましい下限は1cm/s、好ましい上限は30cm/sである。上記電析液の流速が1cm/s未満であると、形成される酸化亜鉛緻密層の比表面積が低下し、色素の担持量が低下する。上記電析液の流速が30cm/sを超えると、形成される酸化亜鉛緻密層の比表面積が大きくなりすぎて透明電極と酸化亜鉛多孔質層との密着性が低下することがある。より好ましい下限は5cm/s、より好ましい上限は20cm/sである。 In the present invention, when the method for changing the flow rate of the electrodeposition solution is used, the preferred lower limit of the flow rate of the electrodeposition solution in Step 2 is 1 cm / s, and the preferred upper limit is 30 cm / s. When the flow rate of the electrodeposition solution is less than 1 cm / s, the specific surface area of the formed zinc oxide dense layer is lowered, and the amount of the dye supported is lowered. When the flow rate of the electrodeposition liquid exceeds 30 cm / s, the specific surface area of the formed zinc oxide dense layer becomes too large, and the adhesion between the transparent electrode and the zinc oxide porous layer may be lowered. A more preferable lower limit is 5 cm / s, and a more preferable upper limit is 20 cm / s.

また、上記工程3における電析液の流速の好ましい下限は40cm/s、好ましい上限は80cm/sである。上記電析液の流速が40cm/s未満であると、形成される酸化亜鉛緻密層の比表面積が低下し、色素の担持量が低下する。上記電析液の流速が80cm/sを超えると、形成される酸化亜鉛多孔質層の比表面積が大きくなりすぎて酸化亜鉛多孔質層の密着性が低下することがある。より好ましい下限は50cm/s、より好ましい上限は60cm/sである。 Moreover, the preferable minimum of the flow rate of the electrodeposition liquid in the said process 3 is 40 cm / s, and a preferable upper limit is 80 cm / s. When the flow rate of the electrodeposition solution is less than 40 cm / s, the specific surface area of the formed zinc oxide dense layer is lowered, and the amount of the dye supported is lowered. When the flow rate of the electrodeposition liquid exceeds 80 cm / s, the specific surface area of the formed zinc oxide porous layer becomes too large, and the adhesion of the zinc oxide porous layer may be lowered. A more preferable lower limit is 50 cm / s, and a more preferable upper limit is 60 cm / s.

本発明では、次いで、上記酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜に含まれるテンプレート化合物を脱着することにより、酸化亜鉛緻密層及び酸化亜鉛多孔質層を形成する工程4を行う。 In the present invention, step 4 of forming the zinc oxide dense layer and the zinc oxide porous layer is then performed by desorbing the template compound contained in the zinc oxide dense layer thin film and the zinc oxide porous layer thin film.

上記テンプレート化合物を脱着する方法としては特に限定されず、使用するテンプレート化合物によって種々の方法を用いることができる。具体的には例えば、テンプレート化合物がカルボキシル基、スルホン酸基又はリン酸基等のアンカー基を有する化合物である場合、水酸化ナトリウム、水酸化カリウム等のアルカリ溶液を用いて洗浄することによってテンプレート化合物の脱着を行うことができる。
上記アルカリ溶液を用いてテンプレート化合物の脱着を行う場合、上記アルカリ溶液のpHの好ましい下限は10、好ましい上限は13である。
The method for desorbing the template compound is not particularly limited, and various methods can be used depending on the template compound to be used. Specifically, for example, when the template compound is a compound having an anchor group such as a carboxyl group, a sulfonic acid group or a phosphoric acid group, the template compound is washed by using an alkaline solution such as sodium hydroxide or potassium hydroxide. Can be desorbed.
When the template compound is desorbed using the alkaline solution, the preferred lower limit of the pH of the alkaline solution is 10, and the preferred upper limit is 13.

本発明では、形成された酸化亜鉛緻密層及び酸化亜鉛多孔質層に色素を担持させる工程5を行う。 In this invention, the process 5 which makes a formed zinc oxide dense layer and a zinc oxide porous layer carry | support a pigment | dye is performed.

上記色素を担持させる方法としては、例えば、上記色素を含有する溶液に、上記酸化亜鉛多孔質層が形成された樹脂フィルム基板を浸漬した後、乾燥を行う方法等が挙げられる。
上記色素を含有する溶液に用いる溶媒としては、色素を溶解することができ、基板を劣化させないものであれば特に限定されず、例えば、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等が挙げられる。
Examples of the method for supporting the dye include a method in which the resin film substrate on which the zinc oxide porous layer is formed is immersed in a solution containing the dye and then dried.
The solvent used in the solution containing the dye is not particularly limited as long as it can dissolve the dye and does not deteriorate the substrate. For example, alcohols such as ethanol, ketones such as acetone, diethyl ether, and the like Ethers, acetonitrile and the like.

上記方法で得られた光電極と、電解質層と、対向電極とをこの順で積層することにより、色素増感太陽電池を製造することができる。具体的には例えば、電解質を含有する溶液を光電極上に塗工し、電解質層を形成した後、対向電極を積層する方法や、光電極と電解質溶液注入口を有する対向電極とを積層した後、上記電解質溶液注入口から電解質溶液を注入する方法等により製造することができる。 A dye-sensitized solar cell can be manufactured by laminating the photoelectrode obtained by the above method, the electrolyte layer, and the counter electrode in this order. Specifically, for example, after a solution containing an electrolyte is applied on the photoelectrode to form an electrolyte layer, a method of laminating the counter electrode, or after laminating the photoelectrode and the counter electrode having an electrolyte solution inlet Further, it can be manufactured by a method of injecting an electrolyte solution from the electrolyte solution inlet.

本発明では、酸化亜鉛ボトム層及び酸化亜鉛多孔質層の間に、酸化亜鉛緻密層を形成し、酸化亜鉛緻密層及び酸化亜鉛多孔質層のBET比表面積をそれぞれ所定の範囲内とすることにより、適度な空孔率を有する酸化亜鉛多孔質層が得られることから、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔質層との密着性の高い色素増感太陽電池を実現することが可能となる。
また、本発明の色素増感太陽電池の製造方法を用いることにより、基板と酸化亜鉛多孔質層との密着性に優れ、得られる色素増感太陽電池が充分な光電変換特性を有する色素増感太陽電池を好適に製造することができる。
In the present invention, a dense zinc oxide layer is formed between the zinc oxide bottom layer and the zinc oxide porous layer, and the BET specific surface areas of the zinc oxide dense layer and the zinc oxide porous layer are each within a predetermined range. Since a zinc oxide porous layer with an appropriate porosity can be obtained, a dye-sensitized solar cell having excellent photoelectric conversion characteristics and high adhesion between the substrate and the zinc oxide porous layer is realized. It becomes possible to do.
Further, by using the method for producing a dye-sensitized solar cell of the present invention, the dye-sensitized solar cell having excellent adhesion between the substrate and the zinc oxide porous layer and having a sufficient photoelectric conversion property is obtained. A solar cell can be suitably manufactured.

以下に本発明の実施例を挙げて更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
(酸化亜鉛ボトム層の形成)
PETフィルムにITO膜を成膜した透明電極基板上に、10mm×20mmの矩形パターンのマスキングを施し、回転電極装置による電析法により酸化亜鉛ボトム層を成膜した。電析は、上記透明電極基板を作用極とし、対極を白金線及びZn線として、参照電極(SCE)は飽和カメロル電極を用いる3電極法により行った。
電析の手順としては、まず透明電極基板を、KClの100Mm/Lの水溶液230mLを入れた電析水に浸積し、浴温を70℃に加熱し、酸素を流量100sccmで浴中にバブリングしながら、透明電極基板を500rpmで回転(基板上の液流速52cm/s)させて、白金対極を用いて電位−1.0V(vs.SCE)の定電位で40分間の予備電解を行い、基板表面を清浄化した。
その後、電析浴にZnClを濃度5.0mM/Lになるように添加して、透明電極基板の回転数を100rpm(基板上の液流速10cm/s)に低下させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で1分間電析を行うことにより、酸化亜鉛ボトム層を成膜した。
Example 1
(Formation of zinc oxide bottom layer)
A 10 mm × 20 mm rectangular pattern was masked on a transparent electrode substrate on which an ITO film was formed on a PET film, and a zinc oxide bottom layer was formed by electrodeposition using a rotating electrode device. The electrodeposition was performed by a three-electrode method using the transparent electrode substrate as a working electrode, the counter electrode as a platinum wire and a Zn wire, and a reference electrode (SCE) using a saturated camelol electrode.
As a procedure for electrodeposition, first, a transparent electrode substrate is immersed in electrodeposition water containing 230 mL of a 100 Mm / L aqueous solution of KCl, the bath temperature is heated to 70 ° C., and oxygen is bubbled into the bath at a flow rate of 100 sccm. While rotating the transparent electrode substrate at 500 rpm (liquid flow rate on the substrate 52 cm / s), preliminary electrolysis for 40 minutes at a constant potential of −1.0 V (vs. SCE) using a platinum counter electrode, The substrate surface was cleaned.
Thereafter, ZnCl 2 is added to the electrodeposition bath so as to have a concentration of 5.0 mM / L, the rotational speed of the transparent electrode substrate is reduced to 100 rpm (liquid flow rate on the substrate is 10 cm / s), and a Zn counter electrode is used. A zinc oxide bottom layer was formed by performing electrodeposition at a constant potential of −1.0 V (vs. SCE) for 1 minute.

(酸化亜鉛緻密層用薄膜の形成)
その後、電析浴にテンプレート化合物であるエオシンY色素を60μM/L濃度になるように添加して、透明電極基板の回転数を100rpm(基板上の液流速10cm/s)にして、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛緻密層用薄膜を形成した。
(Formation of thin film for zinc oxide dense layer)
Thereafter, eosin Y dye, which is a template compound, is added to the electrodeposition bath so as to have a concentration of 60 μM / L, the rotational speed of the transparent electrode substrate is set to 100 rpm (liquid flow rate on the substrate is 10 cm / s), and the Zn counter electrode is set. Using this, electrodeposition was performed at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form a thin film for zinc oxide dense layer containing eosin Y dye.

(酸化亜鉛多孔質層用薄膜の形成)
その後、電析浴に、エオシンY色素を120μM/L濃度になるように添加して、透明電極基板の回転数を、300rpm(基板上の液流速31cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の下層を形成した。
更に続けて、電析浴に、エオシンY色素を300μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
Thereafter, eosin Y dye is added to the electrodeposition bath to a concentration of 120 μM / L, the number of rotations of the transparent electrode substrate is increased to 300 rpm (liquid flow rate on the substrate of 31 cm / s), and a Zn counter electrode is used. Then, electrodeposition was performed at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form a lower layer of the eosin Y dye-containing zinc oxide porous layer thin film.
Subsequently, eosin Y dye was added to the electrodeposition bath so as to have a concentration of 300 μM / L, the number of rotations of the transparent electrode substrate was increased to 500 rpm (liquid flow rate on the substrate 52 cm / s), and the Zn counter electrode was Then, electrodeposition was performed at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(酸化亜鉛緻密層及び酸化亜鉛多孔層の形成)
得られたエオシンY色素含有酸化亜鉛緻密層用薄膜及びエオシンY色素含有酸化亜鉛多孔質層用薄膜を、0.1MのKOH水溶液に一晩浸積後、水洗することによりエオシンY色素を脱着して、酸化亜鉛緻密層、及び、下層及び上層の2層からなる酸化亜鉛多孔層の多層膜を得た。
(Formation of zinc oxide dense layer and zinc oxide porous layer)
The obtained eosin Y dye-containing thin film for zinc oxide dense layer and eosin Y dye-containing zinc oxide porous layer thin film were immersed in a 0.1 M KOH aqueous solution overnight and then washed with water to desorb eosin Y dye. Thus, a zinc oxide dense layer and a multilayer film of a porous zinc oxide layer composed of a lower layer and an upper layer were obtained.

(色素増感太陽電池セルの組立)
得られた基板を100℃で30分乾燥処理した後、有機色素(D149、三菱製紙社製)0.5mMとデオキシコール酸1mMとをt−ブタノールとアセトニトリルの1:1混合溶媒に溶解した色素溶液に40分浸積して、色素を担持させた酸化亜鉛緻密層、及び、酸化亜鉛多孔層を有する光電極を作製した。
(Assembly of dye-sensitized solar cells)
The obtained substrate was dried at 100 ° C. for 30 minutes, and then an organic dye (D149, manufactured by Mitsubishi Paper Industries) 0.5 mM and deoxycholic acid 1 mM were dissolved in a 1: 1 mixed solvent of t-butanol and acetonitrile. It was immersed in the solution for 40 minutes to produce a photoelectrode having a dense zinc oxide layer carrying a dye and a porous zinc oxide layer.

得られた光電極基板に、PETフィルムに透明導電膜であるITO膜と白金膜をスパッタ法で積層した対極基板と重ねて、セル周辺部をアイオノマー樹脂フィルムで熱溶着して空セルを作製した。この空セルに電解質液(ヨウ素0.1mol/L、1,2−ジメチル−3−プロピルイミダゾリウムイオダイド1.0mol/L、溶媒としてプロピレンカルボナートを注入し、UV硬化樹脂で注入口を封止して、色素増感太陽電池セルを作製した。 The obtained photoelectrode substrate was overlaid with a counter electrode substrate obtained by laminating an ITO film, which is a transparent conductive film, and a platinum film on a PET film by sputtering, and the cell periphery was thermally welded with an ionomer resin film to produce an empty cell. . An electrolyte solution (iodine 0.1 mol / L, 1,2-dimethyl-3-propylimidazolium iodide 1.0 mol / L, propylene carbonate as a solvent was injected into the empty cell, and the injection port was sealed with a UV curable resin. Then, a dye-sensitized solar cell was produced.

(実施例2)
実施例1の(酸化亜鉛多孔質層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Example 2)
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that (Formation of thin film for zinc oxide porous layer) in Example 1 was performed according to the following procedure.

(酸化亜鉛多孔質層用薄膜の形成)
電析浴に、エオシンY色素を300μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で20分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
Eosin Y dye is added to the electrodeposition bath to a concentration of 300 μM / L, the number of revolutions of the transparent electrode substrate is increased to 500 rpm (liquid flow rate on the substrate is 52 cm / s), and the potential − Electrodeposition was performed at a constant potential of 1.0 V (vs. SCE) for 20 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(実施例3)
実施例1の(酸化亜鉛緻密層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Example 3)
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that (Formation of thin film for zinc oxide dense layer) in Example 1 was performed according to the following procedure.

(酸化亜鉛緻密層用薄膜の形成)
電析浴にテンプレート化合物であるエオシンY色素を30μM/L濃度になるように添加して、透明電極基板の回転数を50rpm(基板上の液流速5cm/s)にして、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛緻密層用薄膜を形成した。
(Formation of thin film for zinc oxide dense layer)
A template compound, eosin Y dye, was added to the electrodeposition bath to a concentration of 30 μM / L, the transparent electrode substrate was rotated at 50 rpm (liquid flow rate on the substrate was 5 cm / s), and a Zn counter electrode was used. Electrodeposition was carried out at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form an eosin Y dye-containing zinc oxide dense layer thin film.

(実施例4)
実施例1の(酸化亜鉛緻密層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
Example 4
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that (Formation of thin film for zinc oxide dense layer) in Example 1 was performed according to the following procedure.

(酸化亜鉛緻密層用薄膜の形成)
その後、電析浴にテンプレート化合物であるエオシンY色素を90μM/L濃度になるように添加して、透明電極基板の回転数を200rpm(基板上の液流速20cm/s)にして、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛緻密層用薄膜を形成した。
(Formation of thin film for zinc oxide dense layer)
Thereafter, eosin Y dye, which is a template compound, is added to the electrodeposition bath to a concentration of 90 μM / L, the rotation speed of the transparent electrode substrate is 200 rpm (liquid flow rate on the substrate is 20 cm / s), and the Zn counter electrode is Using this, electrodeposition was performed at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form a thin film for zinc oxide dense layer containing eosin Y dye.

(実施例5)
実施例1の(酸化亜鉛多孔質層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Example 5)
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that (Formation of thin film for zinc oxide porous layer) in Example 1 was performed according to the following procedure.

(酸化亜鉛多孔質層用薄膜の形成)
電析浴に、エオシンY色素を120μM/L濃度になるように添加して、透明電極基板の回転数を、300rpm(基板上の液流速31cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の下層を形成した。
更に続けて、電析浴に、エオシンY色素を600μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
The eosin Y dye is added to the electrodeposition bath so as to have a concentration of 120 μM / L, the number of rotations of the transparent electrode substrate is increased to 300 rpm (liquid flow rate on the substrate of 31 cm / s), and the potential is obtained using a Zn counter electrode. Electrodeposition was performed at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form a lower layer of the eosin Y dye-containing zinc oxide porous layer thin film.
Subsequently, eosin Y dye was added to the electrodeposition bath so as to have a concentration of 600 μM / L, the number of rotations of the transparent electrode substrate was increased to 500 rpm (liquid flow rate on the substrate: 52 cm / s), and the Zn counter electrode was Then, electrodeposition was performed at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(比較例1)
実施例1の(酸化亜鉛緻密層用薄膜の形成)を行わず、(酸化亜鉛多孔質層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 1)
A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that (Formation of zinc oxide dense layer thin film) of Example 1 was not carried out and (Formation of zinc oxide porous layer thin film) was carried out in the following procedure. I got a cell.

(酸化亜鉛多孔質層用薄膜の形成)
電析浴に、エオシンY色素を300μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で20分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
Eosin Y dye is added to the electrodeposition bath to a concentration of 300 μM / L, the number of revolutions of the transparent electrode substrate is increased to 500 rpm (liquid flow rate on the substrate is 52 cm / s), and the potential − Electrodeposition was performed at a constant potential of 1.0 V (vs. SCE) for 20 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(比較例2)
実施例1の(酸化亜鉛緻密層用薄膜の形成)を行わず、(酸化亜鉛多孔質層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 2)
A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that (Formation of zinc oxide dense layer thin film) of Example 1 was not carried out and (Formation of zinc oxide porous layer thin film) was carried out in the following procedure. I got a cell.

(酸化亜鉛多孔質層用薄膜の形成)
電析浴に、エオシンY色素を300μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で30分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
Eosin Y dye is added to the electrodeposition bath to a concentration of 300 μM / L, the number of revolutions of the transparent electrode substrate is increased to 500 rpm (liquid flow rate on the substrate is 52 cm / s), and the potential − Electrodeposition was performed at a constant potential of 1.0 V (vs. SCE) for 30 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(比較例3)
実施例1の(酸化亜鉛緻密層用薄膜の形成)を行わず、(酸化亜鉛多孔質層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 3)
A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that (Formation of zinc oxide dense layer thin film) of Example 1 was not carried out and (Formation of zinc oxide porous layer thin film) was carried out in the following procedure. I got a cell.

(酸化亜鉛多孔質層用薄膜の形成)
電析浴に、エオシンY色素を60μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で30分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
To the electrodeposition bath, eosin Y dye is added so as to have a concentration of 60 μM / L, the number of rotations of the transparent electrode substrate is increased to 500 rpm (liquid flow rate on the substrate is 52 cm / s), and the potential − Electrodeposition was performed at a constant potential of 1.0 V (vs. SCE) for 30 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(比較例4)
実施例1の(酸化亜鉛緻密層用薄膜の形成)及び(酸化亜鉛多孔質層用薄膜の形成)を以下の手順で行った以外は実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 4)
A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that (Formation of a thin film for a zinc oxide dense layer) and (Formation of a thin film for a zinc oxide porous layer) of Example 1 were performed in the following procedure. It was.

(酸化亜鉛緻密層用薄膜の形成)
電析浴にテンプレート化合物であるエオシンY色素を100μM/L濃度になるように添加して、透明電極基板の回転数を100rpm(基板上の液流速10cm/s)にして、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で10分間電析を行い、エオシンY色素含有酸化亜鉛緻密層用薄膜を形成した。
(Formation of thin film for zinc oxide dense layer)
A template compound, eosin Y dye, was added to the electrodeposition bath to a concentration of 100 μM / L, the transparent electrode substrate was rotated at 100 rpm (liquid flow rate on the substrate was 10 cm / s), and a Zn counter electrode was used. Electrodeposition was carried out at a constant potential of −1.0 V (vs. SCE) for 10 minutes to form an eosin Y dye-containing zinc oxide dense layer thin film.

(酸化亜鉛多孔質層用薄膜の形成)
電析浴に、エオシンY色素を300μM/L濃度になるように添加して、透明電極基板の回転数を500rpm(基板上の液流速52cm/s)に上昇させ、Zn対極を用いて電位−1.0V(vs.SCE)の定電位で20分間電析を行い、エオシンY色素含有酸化亜鉛多孔質層用薄膜の上層を形成した。
(Formation of thin film for zinc oxide porous layer)
Eosin Y dye is added to the electrodeposition bath to a concentration of 300 μM / L, the number of revolutions of the transparent electrode substrate is increased to 500 rpm (liquid flow rate on the substrate is 52 cm / s), and the potential − Electrodeposition was performed at a constant potential of 1.0 V (vs. SCE) for 20 minutes to form an upper layer of the eosin Y dye-containing zinc oxide porous layer thin film.

(比較例5)
(酸化チタン多孔質層の形成)
PETフィルムにITO膜を成膜した透明電極基板上に、10mm×20mmの矩形パターンのマスキングを施し、酸化チタンペースト(昭和電工製SP−210)をスピンコートし、100℃で60分間乾燥して、厚さ5.6μmの酸化チタン多孔膜を形成した。
それ以外は、実施例1と同様にして色素増感太陽電池セルを得た。
(Comparative Example 5)
(Formation of titanium oxide porous layer)
On a transparent electrode substrate on which an ITO film is formed on a PET film, a 10 mm × 20 mm rectangular pattern is masked, and a titanium oxide paste (SP-210 manufactured by Showa Denko) is spin-coated and dried at 100 ° C. for 60 minutes. A titanium oxide porous film having a thickness of 5.6 μm was formed.
Other than that was carried out similarly to Example 1, and obtained the dye-sensitized solar cell.

(評価)
以下の手順で評価を行った。結果を表1に示した。なお、BET比表面積測定及び空孔率測定は、色素を担持する前の酸化亜鉛緻密層、酸化亜鉛多孔質層又は酸化チタン多孔質層について行った。
(Evaluation)
Evaluation was performed according to the following procedure. The results are shown in Table 1. In addition, the BET specific surface area measurement and the porosity measurement were performed on the zinc oxide dense layer, the zinc oxide porous layer, or the titanium oxide porous layer before supporting the dye.

(1) 密着性
実施例及び比較例で得られた光電極の酸化亜鉛多孔質層又は酸化チタン多孔質層に碁盤目状のマス目を入れ、テープ剥離試験後に残った酸化亜鉛多孔質層又は酸化チタン多孔質層のマス目を計測する碁盤目試験により、酸化亜鉛多孔質層又は酸化チタン多孔質層の密着性を評価した。
(1) Adhesiveness A grid-like cell is put in the zinc oxide porous layer or titanium oxide porous layer of the photoelectrode obtained in the examples and comparative examples, and the zinc oxide porous layer remaining after the tape peeling test or The adhesion of the zinc oxide porous layer or the titanium oxide porous layer was evaluated by a cross-cut test for measuring the squares of the titanium oxide porous layer.

(2) BET比表面積測定
実施例及び比較例で得られた光電極の酸化亜鉛緻密層、酸化亜鉛多孔質層又は酸化チタン多孔質層を基板から剥離し粉体にして,窒素吸着法(日本ベル製BELLSORP)によりBET比表面積を測定した。但し、酸化亜鉛多孔質層が積層膜の場合、各層の空孔率を直接求めることは困難なので、同じ条件で単層膜を成膜して上記の方法で求めた値を代用した。
(2) Measurement of BET specific surface area Zinc oxide dense layer, zinc oxide porous layer or titanium oxide porous layer of the photoelectrode obtained in Examples and Comparative Examples was peeled from the substrate to form a powder, and the nitrogen adsorption method (Japan) The BET specific surface area was measured by BELLSORP manufactured by Bell. However, when the zinc oxide porous layer is a laminated film, it is difficult to directly determine the porosity of each layer. Therefore, a single layer film was formed under the same conditions, and the value obtained by the above method was substituted.

(3) 空孔率測定
実施例及び比較例と同一条件にて所定の膜厚まで電析して得られる酸化亜鉛緻密層、酸化亜鉛多孔質層又は酸化チタン多孔質層を乾燥した後、各層の膜厚をレーザー顕微鏡で測定し、削り落とした膜について精密天秤で重量を測定した。これらの測定値を基に各層の空孔率を下記式(1)を用いて算出した。
空孔率=(1−(層の重量/(層の体積×比重)))×100 (1)
なお、各層の体積は面積×膜厚で求めることができる。
ただし、酸化亜鉛多孔質層が積層構造である場合、各層の空孔率を直接求めることは困難であるため、同じ条件で単層膜を成膜して上記の方法で求めた値を代用した。
(3) Porosity measurement After drying a dense zinc oxide layer, a zinc oxide porous layer or a titanium oxide porous layer obtained by electrodeposition to a predetermined film thickness under the same conditions as in Examples and Comparative Examples, each layer was dried. The film thickness of the film was measured with a laser microscope, and the weight of the scraped film was measured with a precision balance. Based on these measured values, the porosity of each layer was calculated using the following formula (1).
Porosity = (1- (layer weight / (layer volume × specific gravity))) × 100 (1)
The volume of each layer can be obtained by area × film thickness.
However, when the zinc oxide porous layer has a laminated structure, it is difficult to directly determine the porosity of each layer. Therefore, a single layer film was formed under the same conditions, and the value obtained by the above method was substituted. .

(4) 光電変換特性
実施例及び比較例において得られた色素増感太陽電池セルについて、光源強度が1SUN(100mW/cm)であるソーラーシミュレーターを用いて光電交換特性を示した。
(4) Photoelectric conversion characteristic About the dye-sensitized solar cell obtained in the Example and the comparative example, the photoelectric exchange characteristic was shown using the solar simulator whose light source intensity | strength is 1SUN (100 mW / cm < 2 >).

Figure 0005337423
Figure 0005337423

表1に示すように、実施例1〜5で得られた色素増感太陽電池セルは、酸化亜鉛多孔質層の膜厚が厚く色素担持量が多くなり、膜の密着性も充分であるので、高い光電変換効率が得られた。
これに対して、比較例2で得られた色素増感太陽電池セルは、酸化亜鉛多孔質層と基板との密着性が悪く、膜の剥離が発生したために、光電変換特性を測定することができなかった。
また、比較例4で得られた色素増感太陽電池セルは、セルの光電変換特性が不充分なものとなっていた。
また、比較例5で得られた色素増感太陽電池セルでは、酸化チタン多孔質層のBET比表面積や空孔率が酸化亜鉛多孔質層と大きく異なっており、光電変換効率も不充分なものとなっていた。
As shown in Table 1, the dye-sensitized solar cells obtained in Examples 1 to 5 have a thick zinc oxide porous layer, a large amount of dye supported, and sufficient film adhesion. High photoelectric conversion efficiency was obtained.
In contrast, the dye-sensitized solar cell obtained in Comparative Example 2 has poor adhesion between the zinc oxide porous layer and the substrate, and film peeling occurred, so that the photoelectric conversion characteristics can be measured. could not.
Moreover, the dye-sensitized solar cell obtained in Comparative Example 4 had insufficient cell photoelectric conversion characteristics.
Further, in the dye-sensitized solar cell obtained in Comparative Example 5, the BET specific surface area and porosity of the titanium oxide porous layer are greatly different from those of the zinc oxide porous layer, and the photoelectric conversion efficiency is insufficient. It was.

本発明によれば、優れた光電変換特性を有し、かつ、基板と酸化亜鉛多孔膜との密着性の高い色素増感太陽電池及び色素増感太陽電池の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding photoelectric conversion characteristic, and can provide the manufacturing method of a dye-sensitized solar cell with high adhesiveness of a board | substrate and a zinc oxide porous film, and a dye-sensitized solar cell.

本発明の色素増感太陽電池の一例を示す模式図である。It is a schematic diagram which shows an example of the dye-sensitized solar cell of this invention. (a)〜(c)は、本発明の色素増感太陽電池を構成する光電極の製造方法を示す模式図である。(A)-(c) is a schematic diagram which shows the manufacturing method of the photoelectrode which comprises the dye-sensitized solar cell of this invention. (a)〜(c)は、従来の色素増感太陽電池を構成する光電極の製造方法を示す模式図である。(A)-(c) is a schematic diagram which shows the manufacturing method of the photoelectrode which comprises the conventional dye-sensitized solar cell.

符号の説明Explanation of symbols

1 基板
2 透明電極
3 テンプレート化合物
4 色素
5 酸化亜鉛多孔質層用薄膜
6 酸化亜鉛緻密層用薄膜
7 酸化亜鉛多孔質層
8 酸化亜鉛緻密層
9 酸化亜鉛ボトム層
10 電解質液
11 シール
12 対向電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent electrode 3 Template compound 4 Dye 5 Thin film for zinc oxide porous layer 6 Thin film for zinc oxide dense layer 7 Zinc oxide porous layer 8 Zinc oxide dense layer 9 Zinc oxide bottom layer 10 Electrolyte solution 11 Seal 12 Counter electrode

Claims (3)

透明導電層が形成された基板の前記透明導電層上に、酸化亜鉛ボトム層、酸化亜鉛緻密層及び酸化亜鉛多孔質層が順次積層された光電極を有する色素増感太陽電池であって、
前記酸化亜鉛ボトム層は、空孔を有しない層であり、
前記酸化亜鉛緻密層及び酸化亜鉛多孔質層には色素が担持されており、
前記酸化亜鉛緻密層は、BET比表面積が10〜42m/g、空孔率が30〜75%であり、
前記酸化亜鉛多孔質層は、BET比表面積が43〜58m/g、空孔率が80〜90%である
ことを特徴とする色素増感太陽電池。
A dye-sensitized solar cell having a photoelectrode in which a zinc oxide bottom layer, a zinc oxide dense layer, and a zinc oxide porous layer are sequentially laminated on the transparent conductive layer of the substrate on which the transparent conductive layer is formed,
The zinc oxide bottom layer is a layer having no pores,
A dye is supported on the zinc oxide dense layer and the zinc oxide porous layer,
The zinc oxide dense layer has a BET specific surface area of 10 to 42 m 2 / g and a porosity of 30 to 75% .
The zinc oxide porous layer has a BET specific surface area of 43 to 58 m 2 / g and a porosity of 80 to 90% .
請求項1記載の色素増感太陽電池の製造方法であって、
透明導電層が形成されたフィルム基板の前記透明導電層上に、亜鉛塩を含有する電析液を用いて電析法により成膜することにより酸化亜鉛ボトム層を形成する工程1、
前記酸化亜鉛ボトム層上に、亜鉛塩とテンプレート化合物とを含有する電析液を用いて電析法により成膜することにより酸化亜鉛緻密層用薄膜を形成する工程2、
前記酸化亜鉛緻密層用薄膜上に亜鉛塩とテンプレート化合物とを含有する電析液を用いて電析法により成膜することにより酸化亜鉛多孔質層用薄膜を形成する工程3、
前記酸化亜鉛緻密層用薄膜及び酸化亜鉛多孔質層用薄膜に含まれるテンプレート化合物を脱着することにより、酸化亜鉛緻密層及び酸化亜鉛多孔質層を形成する工程4、及び、
前記酸化亜鉛緻密層及び酸化亜鉛多孔質層に色素を担持させる工程5を有する
ことを特徴とする色素増感太陽電池の製造方法。
A method for producing a dye-sensitized solar cell according to claim 1,
Step 1 of forming a zinc oxide bottom layer by forming a film by an electrodeposition method using an electrodeposition solution containing a zinc salt on the transparent conductive layer of the film substrate on which the transparent conductive layer is formed,
Forming a thin film for a dense zinc oxide layer by forming a film on the zinc oxide bottom layer by an electrodeposition method using an electrodeposition solution containing a zinc salt and a template compound;
Step 3 of forming a zinc oxide porous layer thin film by forming a film by an electrodeposition method using an electrodeposition solution containing a zinc salt and a template compound on the zinc oxide dense layer thin film,
Forming a zinc oxide dense layer and a zinc oxide porous layer by desorbing a template compound contained in the zinc oxide dense layer thin film and the zinc oxide porous layer thin film; and
A method for producing a dye-sensitized solar cell, comprising the step 5 of supporting a dye on the zinc oxide dense layer and the zinc oxide porous layer.
テンプレート化合物は、キサンテン系色素であることを特徴とする請求項記載の色素増感太陽電池の製造方法。 The method for producing a dye-sensitized solar cell according to claim 2 , wherein the template compound is a xanthene dye.
JP2008195410A 2008-07-29 2008-07-29 Dye-sensitized solar cell and method for producing dye-sensitized solar cell Expired - Fee Related JP5337423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195410A JP5337423B2 (en) 2008-07-29 2008-07-29 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195410A JP5337423B2 (en) 2008-07-29 2008-07-29 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2010033915A JP2010033915A (en) 2010-02-12
JP5337423B2 true JP5337423B2 (en) 2013-11-06

Family

ID=41738144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195410A Expired - Fee Related JP5337423B2 (en) 2008-07-29 2008-07-29 Dye-sensitized solar cell and method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5337423B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136140A1 (en) * 2010-04-27 2011-11-03 京セラ株式会社 Photoelectric converter
TWI758940B (en) * 2020-11-06 2022-03-21 國立成功大學 Dye adsorption method of photoelectrode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285974A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photosensitized photovolatic power generation element
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device
JP2002008740A (en) * 2000-06-22 2002-01-11 Yamaha Corp Dye sensitized photocell and its manufacturing method
JP2002222968A (en) * 2001-01-25 2002-08-09 Fuji Photo Film Co Ltd Photoelectric converter and photoelectrochemical cell
JP3883120B2 (en) * 2002-03-29 2007-02-21 財団法人名古屋産業科学研究所 Porous zinc oxide thin film for dye-sensitized solar cell substrate, zinc oxide / dye composite thin film for photoelectrode material of dye-sensitized solar cell, production method thereof, and dye using zinc oxide / dye composite thin film as photoelectrode material Sensitized solar cell
JP4596305B2 (en) * 2002-06-14 2010-12-08 日立金属株式会社 Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JP2005039013A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Method of depositing porous metal compound thin film, and organic dye-sensitized solar cell
JP4601285B2 (en) * 2003-11-07 2010-12-22 大日本印刷株式会社 Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
EP1589548A1 (en) * 2004-04-23 2005-10-26 Sony Deutschland GmbH A method of producing a porous semiconductor film on a substrate
JP4848661B2 (en) * 2005-03-30 2011-12-28 大日本印刷株式会社 Method for producing dye-sensitized solar cell substrate and dye-sensitized solar cell substrate
JP5024582B2 (en) * 2005-08-09 2012-09-12 島根県 Oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell provided with the same
JP5122121B2 (en) * 2006-12-14 2013-01-16 電源開発株式会社 Semiconductor electrode and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2010033915A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5192154B2 (en) Method for producing dye-sensitized solar cell
Nam et al. A new mussel‐inspired polydopamine sensitizer for dye‐sensitized solar cells: controlled synthesis and charge transfer
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP2005174934A (en) Dye-sensitive solar cell, and method for manufacturing the same
JP2008130553A (en) Dye-sensitized solar battery and manufacturing method of dye-sensitized solar battery
JP2005222942A (en) Dye sensitized solar cell with optical absorption wavelength band extended, and its manufacturing method
JP2010218770A (en) Dye-sensitized solar cell and its manufacturing method
CN102549835B (en) Dye-sensitised solar cell
JP5475145B2 (en) Photoelectric conversion element
JP2010118158A (en) Paste composition for photoelectric conversion element, manufacturing method of porous membrane for photoelectric conversion element, and photoelectric conversion element
JP4982067B2 (en) Method for producing photoelectrode for dye-sensitized solar cell
KR101107069B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell prepared using the same
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
CN104185886B (en) The manufacture method of dye-sensitized solar cell and dye-sensitized solar cell
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP5181550B2 (en) Photoelectric conversion element
JP2013118127A (en) Photoelectrode using carbon nano-tube
JP5337423B2 (en) Dye-sensitized solar cell and method for producing dye-sensitized solar cell
JP2007115602A (en) Titanium dioxide dispersing element for dye sensitized solar battery
TW200905892A (en) Photoelectric conversion electrode, manufacturing method of the same, and dye-sensitized solar cell
JP5096755B2 (en) Dye-sensitized solar cell
JP5075354B2 (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell
Wang et al. Hybridized dye-sensitized solar cells for persistent power generation free of sun illumination
JP4668660B2 (en) Method for producing porous metal oxide dye composite film
JP2007299671A (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130619

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees