JP5075354B2 - Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell - Google Patents

Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell Download PDF

Info

Publication number
JP5075354B2
JP5075354B2 JP2006138639A JP2006138639A JP5075354B2 JP 5075354 B2 JP5075354 B2 JP 5075354B2 JP 2006138639 A JP2006138639 A JP 2006138639A JP 2006138639 A JP2006138639 A JP 2006138639A JP 5075354 B2 JP5075354 B2 JP 5075354B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
photoelectrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006138639A
Other languages
Japanese (ja)
Other versions
JP2007311162A (en
Inventor
章夫 清原
俊紀 岡本
健太郎 井津
貞一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2006138639A priority Critical patent/JP5075354B2/en
Publication of JP2007311162A publication Critical patent/JP2007311162A/en
Application granted granted Critical
Publication of JP5075354B2 publication Critical patent/JP5075354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、逆電流の発生による光電変換特性の低下を防止することができ、かつ、透明電極と金属酸化物半導体多孔質層との密着性を確保することが可能な色素増感太陽電池用光電極及び色素増感太陽電池に関する。 The present invention is for a dye-sensitized solar cell that can prevent a decrease in photoelectric conversion characteristics due to the occurrence of a reverse current and can secure adhesion between a transparent electrode and a metal oxide semiconductor porous layer. The present invention relates to a photoelectrode and a dye-sensitized solar cell.

色素増感太陽電池は、身近な材料である金属酸化物半導体多孔膜を利用した太陽電池であり、シリコン太陽電池に比べて、高価な材料やプロセスを必要とせず、安価な太陽電池を実現できるデバイスとして実用化が期待されている。 A dye-sensitized solar cell is a solar cell that uses a metal oxide semiconductor porous film, which is a familiar material, and does not require expensive materials and processes compared to a silicon solar cell, and can realize an inexpensive solar cell. Practical use is expected as a device.

色素増感太陽電池は、通常、透明電極基板に金属酸化物半導体多孔質層を形成し色素を担持させた光電極と、基板に導電層を形成した正電極とを電解質層を介して挟み込んだ構成となっている。
このような色素増感太陽電池の基本原理は、特許文献1に開示されているように、以下の通りである。まず、色素増感太陽電池に光が照射されると、金属酸化物半導体多孔質層表面に吸着された増感色素が光を吸収し、色素分子内の電子が励起され、電子が半導体へ渡される。これにより、光電極側で電子が発生し、この電子が電気回路を通じて、正電極に移動する。そして、正電極に移動した電子は、電解質層を通じて光電極に戻る。このような過程が繰り返されることで、電気エネルギーが生じる。
In a dye-sensitized solar cell, a photoelectrode in which a metal oxide semiconductor porous layer is formed on a transparent electrode substrate to carry the dye and a positive electrode in which a conductive layer is formed on the substrate are usually sandwiched through an electrolyte layer. It has a configuration.
The basic principle of such a dye-sensitized solar cell is as follows, as disclosed in Patent Document 1. First, when the dye-sensitized solar cell is irradiated with light, the sensitizing dye adsorbed on the surface of the metal oxide semiconductor porous layer absorbs light, excites electrons in the dye molecule, and passes the electrons to the semiconductor. It is. Thereby, electrons are generated on the photoelectrode side, and the electrons move to the positive electrode through the electric circuit. Then, the electrons that have moved to the positive electrode return to the photoelectrode through the electrolyte layer. By repeating such a process, electric energy is generated.

しかしながら、電解質層が液体からなる場合、色素増感太陽電池は、透明電極が電解質層に接触した構造となることから、透明電極から電解質層へ電子が漏れだす逆電子移動と呼ばれる内部短絡現象が発生し、光の照射とは関係なく逆電流が流れることに起因して光電変換効率が低下するという問題があった。 However, when the electrolyte layer is made of a liquid, the dye-sensitized solar cell has a structure in which the transparent electrode is in contact with the electrolyte layer. Therefore, an internal short-circuit phenomenon called reverse electron transfer in which electrons leak from the transparent electrode to the electrolyte layer occurs. There is a problem that the photoelectric conversion efficiency is lowered due to the occurrence of a reverse current regardless of light irradiation.

このような問題に対して、特許文献2には、導電性支持体と半導体微粒子含有層との間に下塗り層が形成された光電変換素子が開示されている。このような光電変換素子では、下塗り層として、酸化チタン、酸化亜鉛等の半導体からなる緻密な薄膜を形成することで、対極と導電性支持体との短絡を防止している。
また、特許文献3には、透明基板と光電変換層との間に、酸化チタン、酸化亜鉛等の半導体からなる逆電子注入防止層を形成することにより、界面導電性の向上を図り、逆電子の移動を抑制することが可能な色素増感太陽電池が開示されている。
For such a problem, Patent Document 2 discloses a photoelectric conversion element in which an undercoat layer is formed between a conductive support and a semiconductor fine particle-containing layer. In such a photoelectric conversion element, a short film between the counter electrode and the conductive support is prevented by forming a dense thin film made of a semiconductor such as titanium oxide or zinc oxide as the undercoat layer.
Patent Document 3 discloses that a reverse electron injection prevention layer made of a semiconductor such as titanium oxide or zinc oxide is formed between a transparent substrate and a photoelectric conversion layer, thereby improving interfacial conductivity and reverse electrons. A dye-sensitized solar cell capable of suppressing the movement of is disclosed.

一方、近年では、ガラス基板ではなく、基板として樹脂フィルムを用いた色素増感太陽電池が開発されている。これにより、軽量で柔軟性のある太陽電池を実現することができ、固定型だけでなく移動型の太陽電池としてモバイル用途への応用が期待されている。
しかしながら、特許文献2及び特許文献3の方法では、下塗り層や逆電子注入防止層を形成する際に、半導体を結晶化させるため、500℃程度の高温で加熱する必要があり、基板として樹脂フィルムを用いた場合は、これらの方法を用いることはできなかった。また、特許文献2及び特許文献3の方法で、下塗り層や逆電子注入防止層を形成した場合、半導体層と透明電極との密着性が低下し、特に、半導体層は通常多孔質体であることから、積層面における接触面積が小さく、密着性を向上させることは困難であった。
特許第2664194号公報 特開2001−156314号公報 特開2002−151168号公報
On the other hand, in recent years, dye-sensitized solar cells using a resin film as a substrate instead of a glass substrate have been developed. Thereby, a lightweight and flexible solar cell can be realized, and application to mobile use is expected as a mobile solar cell as well as a stationary type.
However, in the methods of Patent Document 2 and Patent Document 3, it is necessary to heat at a high temperature of about 500 ° C. in order to crystallize the semiconductor when forming the undercoat layer or the reverse electron injection prevention layer. However, these methods could not be used. Further, when an undercoat layer or a reverse electron injection preventing layer is formed by the methods of Patent Document 2 and Patent Document 3, the adhesion between the semiconductor layer and the transparent electrode is lowered, and in particular, the semiconductor layer is usually a porous body. Therefore, the contact area on the laminated surface is small, and it is difficult to improve the adhesion.
Japanese Patent No. 2664194 JP 2001-156314 A JP 2002-151168 A

本発明は、逆電流の発生による光電変換特性の低下を防止することができ、かつ、透明電極と金属酸化物半導体多孔質層との密着性を確保することが可能な色素増感太陽電池用光電極及び色素増感太陽電池を提供する。 The present invention is for a dye-sensitized solar cell that can prevent a decrease in photoelectric conversion characteristics due to the occurrence of a reverse current and can secure adhesion between a transparent electrode and a metal oxide semiconductor porous layer. A photoelectrode and a dye-sensitized solar cell are provided.

本発明は、透明基板、透明電極、逆電流防止層及び金属酸化物半導体多孔質層がこの順で積層された色素増感太陽電池用光電極であって、前記透明基板は、樹脂フィルム基板であり、前記逆電流防止層は、ガリウムドープ酸化亜鉛を含有し、スパッタリング法で形成されたものであり、前記金属酸化物半導体多孔質層は、酸化亜鉛からなる色素増感太陽電池用光電極である。 The present invention is a dye-sensitized solar cell photoelectrode in which a transparent substrate, a transparent electrode, a reverse current prevention layer and a metal oxide semiconductor porous layer are laminated in this order, and the transparent substrate is a resin film substrate The reverse current prevention layer contains gallium-doped zinc oxide and is formed by a sputtering method, and the metal oxide semiconductor porous layer is a photoelectrode for a dye-sensitized solar cell made of zinc oxide. is there.

本発明者らは鋭意検討した結果、色素増感太陽電池用光電極の金属酸化物半導体多孔質層と透明電極との間に、ガリウムドープ酸化亜鉛を含有する逆電流防止層を形成することで、逆電流の発生による光電変換特性の低下を抑制することができ、かつ、透明電極と金属酸化物半導体多孔質層との密着性を確保することが可能な色素増感太陽電池用光電極となることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have formed a reverse current prevention layer containing gallium-doped zinc oxide between the metal oxide semiconductor porous layer of the photoelectrode for dye-sensitized solar cell and the transparent electrode. A photoelectrode for a dye-sensitized solar cell capable of suppressing a decrease in photoelectric conversion characteristics due to the occurrence of a reverse current and ensuring adhesion between the transparent electrode and the metal oxide semiconductor porous layer; As a result, the present invention has been completed.

本発明の色素増感太陽電池用光電極は、透明基板、透明電極、逆電流防止層及び金属酸化物半導体多孔質層がこの順で積層されたものである。 The photoelectrode for a dye-sensitized solar cell of the present invention is obtained by laminating a transparent substrate, a transparent electrode, a reverse current prevention layer, and a metal oxide semiconductor porous layer in this order.

本発明の色素増感太陽電池用光電極は、透明電極と金属酸化物半導体多孔質層との間に、ガリウムドープ酸化亜鉛を含有する逆電流防止層を有する。
本発明では、逆電流防止層の材質としてガリウムドープ酸化亜鉛を用いることで、透明電極から電解質への電子移動の抑制効果を更に高めることができ、光電変換特性の低下を効果的に防止することができる。また、ガリウムドープ酸化亜鉛を含有する逆電流防止層は、緻密な構造を有することから、透明電極との接触面積も大きく、金属酸化物半導体多孔質層との親和性も高いため、透明電極と金属酸化物半導体多孔質層とを強力に密着させることが可能となる。
更に、ガリウムドープ酸化亜鉛を含有する逆電流防止層は、スパッタリング法等を用いることで、高温加熱工程を経ることなく、180℃以下のような低温でも膜形成が可能となることから、透明基板として樹脂フィルム基板を使用する場合にも容易に形成することができる。
The photoelectrode for dye-sensitized solar cell of the present invention has a reverse current prevention layer containing gallium-doped zinc oxide between the transparent electrode and the metal oxide semiconductor porous layer.
In the present invention, by using gallium-doped zinc oxide as the material of the reverse current prevention layer, the effect of suppressing the electron transfer from the transparent electrode to the electrolyte can be further enhanced, and the deterioration of the photoelectric conversion characteristics can be effectively prevented. Can do. In addition, since the reverse current prevention layer containing gallium-doped zinc oxide has a dense structure, the contact area with the transparent electrode is large and the affinity with the metal oxide semiconductor porous layer is high. The metal oxide semiconductor porous layer can be strongly adhered.
Furthermore, since the reverse current prevention layer containing gallium-doped zinc oxide can be formed at a low temperature of 180 ° C. or less without using a high-temperature heating process by using a sputtering method or the like, a transparent substrate It can be easily formed even when using a resin film substrate.

図1は、本発明の色素増感太陽電池用光電極の一例を示す模式断面図である。図1に示すように、色素増感太陽電池用光電極10は、透明基板4、透明電極3、逆電流防止層2及び金属酸化物半導体多孔質層1がこの順で積層した構成となっており、色素が吸着した金属酸化物半導体多孔質からなる金属酸化物半導体多孔質層1と、ITO等からなる透明電極3との間には、ガリウムドープ酸化亜鉛を含有する逆電流防止層2が積層されている。ここで、逆電流防止層2は、透明電極3から金属酸化物半導体多孔質層1に存在する電解質へ電子が逆流して内部短絡が起こることを防止しつつ、透明電極3と金属酸化物半導体多孔質層1との密着性を高める効果を有する。 FIG. 1 is a schematic cross-sectional view showing an example of the photoelectrode for dye-sensitized solar cell of the present invention. As shown in FIG. 1, the dye-sensitized solar cell photoelectrode 10 has a configuration in which a transparent substrate 4, a transparent electrode 3, a reverse current prevention layer 2, and a metal oxide semiconductor porous layer 1 are laminated in this order. In addition, a reverse current prevention layer 2 containing gallium-doped zinc oxide is provided between a metal oxide semiconductor porous layer 1 made of a metal oxide semiconductor porous material adsorbed with a dye and a transparent electrode 3 made of ITO or the like. Are stacked. Here, the reverse current prevention layer 2 prevents the backflow of electrons from the transparent electrode 3 to the electrolyte present in the metal oxide semiconductor porous layer 1 to cause an internal short circuit, and the transparent electrode 3 and the metal oxide semiconductor. It has the effect of improving the adhesion with the porous layer 1.

本発明で用いるガリウムドープ酸化亜鉛ガリウムのドープ量は、好ましい下限が3重量%、好ましい上限が10重量%である。3重量%未満であると、単なる抵抗膜となって、光電変換効率が低下することがあり、10重量%を超えると、逆電子が流れやすくなり、光電変換効率が低下することがある。 The preferable lower limit of the doping amount of gallium-doped zinc gallium oxide used in the present invention is 3% by weight, and the preferable upper limit is 10% by weight. If it is less than 3% by weight, it becomes a simple resistance film, and the photoelectric conversion efficiency may be lowered. If it exceeds 10% by weight, the reverse electrons may easily flow, and the photoelectric conversion efficiency may be lowered.

上記逆電流防止層におけるガリウムドープ酸化亜鉛は、結晶性が高いものであることが好ましい。アモルファスのように、結晶性が低いと上記逆電流防止層中を電子が通過しやすくなり、逆電子移動の抑制効果が低下する。 The gallium-doped zinc oxide in the reverse current prevention layer is preferably highly crystalline. If the crystallinity is low as in the case of amorphous, it becomes easier for electrons to pass through the reverse current prevention layer, and the effect of suppressing reverse electron transfer is reduced.

上記逆電流防止層の膜厚の好ましい下限は10nm、好ましい上限は100nmである。10nm未満であると、膜厚を均一に形成することが困難となり、ピンホール等が発生しやすくなるとともに、充分な逆電流防止効果、内部短絡防止効果が得られないことがある。また、色素担持量が少なくなり、得られる色素増感太陽電池の光電変換特性も低下することがある。100nmを超えると、膜厚が厚すぎ、逆電流防止層が抵抗となって、短絡電流値が低下することから、セル特性が不充分なものとなることがある。 The preferable lower limit of the thickness of the reverse current prevention layer is 10 nm, and the preferable upper limit is 100 nm. If it is less than 10 nm, it is difficult to form a uniform film thickness, pinholes and the like are likely to occur, and sufficient reverse current prevention effect and internal short circuit prevention effect may not be obtained. In addition, the amount of the dye supported is reduced, and the photoelectric conversion characteristics of the obtained dye-sensitized solar cell may be deteriorated. If it exceeds 100 nm, the film thickness is too thick, the reverse current prevention layer becomes a resistance, and the short circuit current value decreases, so that the cell characteristics may be insufficient.

上記透明基板としては、透明なものであれば特に限定されず、例えば、ガラス基板、樹脂フィルム基板等を用いることができる。なかでも、軽量で柔軟性のある色素増感太陽電池が得られることから、樹脂フィルム基板を用いることが好ましい。
上記樹脂フィルム基板としては、入射する光を妨げず、適度の強度を有するものであれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスルフォン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、環状ポリオレフィン等の耐熱性を有する透明性樹脂からものが挙げられる。
上記樹脂フィルム基板の厚みの好ましい下限は100μm、好ましい上限は3mmである。厚みを上記範囲内とすることで、適当な剛性と柔軟性をもたせることが可能となる。
The transparent substrate is not particularly limited as long as it is transparent, and for example, a glass substrate, a resin film substrate, or the like can be used. Especially, since a lightweight and flexible dye-sensitized solar cell is obtained, it is preferable to use a resin film board | substrate.
The resin film substrate is not particularly limited as long as it does not block incident light and has an appropriate strength. For example, polyethylene terephthalate, polyethylene naphthalate, polysulfone, polycarbonate, polyethersulfone, polyarylate, cyclic Examples thereof include a heat-resistant transparent resin such as polyolefin.
The minimum with the preferable thickness of the said resin film board | substrate is 100 micrometers, and a preferable upper limit is 3 mm. By setting the thickness within the above range, appropriate rigidity and flexibility can be provided.

上記透明電極としては、例えば、ITO、SnO、ZnO、GZO、AZO等からなるものが好ましく、なかでも、抵抗率が小さく安定であり、透明性が高いという性質を有することから、ITOからなるものが好ましい。 The transparent electrode is preferably made of, for example, ITO, SnO 2 , ZnO, GZO, AZO, etc. Among them, it is made of ITO because it has a property that the resistivity is small and stable and the transparency is high. Those are preferred.

本発明の色素増感太陽電池用光電極は、上記逆電流防止層上に金属酸化物半導体微粒子からなる金属酸化物半導体多孔質層を有する。 The dye-sensitized solar cell photoelectrode of the present invention has a metal oxide semiconductor porous layer made of metal oxide semiconductor fine particles on the reverse current prevention layer.

上記金属酸化物半導体多孔質層を構成する金属酸化物としては、例えば、n型の半導体性を示すTiO、ZnO、SnO、WO等の金属酸化物半導体等が挙げられる。これらのなかでは、TiO、ZnOが好ましい。 The metal oxide constituting the metal oxide semiconductor porous layer, for example, TiO 2 illustrating the n-type semiconductor property, ZnO, SnO 2, WO metal oxide semiconductor such as 3. Of these, TiO 2 and ZnO are preferable.

上記金属酸化物半導体多孔質層の膜厚の好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、色素担持量が少なくなるとともに、得られる色素増感太陽電池の光電変換特性も低下することがあり、20μmを超えても、金属酸化物半導体多孔質層中の電子の拡散長が限られているために光電変換特性向上に寄与せず、逆に電解質液の金属酸化物半導体多孔質層への浸入が困難になることから光電変換特性が低下することがある。 The preferable lower limit of the film thickness of the metal oxide semiconductor porous layer is 1 μm, and the preferable upper limit is 20 μm. When the thickness is less than 1 μm, the amount of the dye supported decreases, and the photoelectric conversion characteristics of the resulting dye-sensitized solar cell may be deteriorated. Even if the thickness exceeds 20 μm, the diffusion of electrons in the metal oxide semiconductor porous layer Since the length is limited, it does not contribute to the improvement of the photoelectric conversion characteristics, and conversely, it becomes difficult for the electrolyte solution to enter the metal oxide semiconductor porous layer, so that the photoelectric conversion characteristics may be deteriorated.

上記金属酸化物半導体多孔質層に色素を担持させることにより、光照射によって起電力を発生させる色素増感太陽電池用光電極として用いることができる。 By supporting a dye on the metal oxide semiconductor porous layer, it can be used as a photoelectrode for a dye-sensitized solar cell that generates an electromotive force by light irradiation.

本発明の色素増感太陽電池に用いる色素としては、光エネルギーにより生じた電子を金属酸化物半導体多孔質層に送る機能を有するものであれば特に限定されないが、上記金属酸化物半導体多孔質層と強固に吸着させるための官能基を有するものが好ましい。上記官能基としては例えば、カルボン酸基、カルボン酸無水基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基等が挙げられる。
具体的には、ルテニウム金属錯体系色素や各種の有機色素を使用することができ、例えば、エオシンY、フルオレセイン、エリスロシンB、フロキシンB、ローズベンガル、フルオレクソン、マーキュロクロム、ジブロモフルオレセイン、ピロガロールレッド等のキサンテン系色素;クマリン343等のクマリン系色素;ブロモフェノールブルー、ブロモチモールブルー、フェノールフタレイン等のトリフェニルメタン系色素;シアニン系色素、メロシアニン系色素、インジゴ系色素、オキソノール系色素、ポルフィリン系色素、フタロシアニン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、スクアリリウム系色素、ペリレンテトラカルボン酸誘導体;Ru、Os等のポリピリジン錯体;アントシアニン、クチナシ色素、ウコン色素、ベニバナ色素、カロテノイド色素、コチニール色素、パプリカ色素等の天然色素等が挙げられる。
The dye used in the dye-sensitized solar cell of the present invention is not particularly limited as long as it has a function of sending electrons generated by light energy to the metal oxide semiconductor porous layer, but the metal oxide semiconductor porous layer is not limited thereto. And those having a functional group for adsorbing firmly. Examples of the functional group include a carboxylic acid group, a carboxylic anhydride group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group.
Specifically, ruthenium metal complex dyes and various organic dyes can be used, such as eosin Y, fluorescein, erythrosin B, phloxine B, rose bengal, fluorexone, mercurochrome, dibromofluorescein, pyrogallol red, etc. Xanthene dyes; coumarin dyes such as coumarin 343; triphenylmethane dyes such as bromophenol blue, bromothymol blue, phenolphthalein; cyanine dyes, merocyanine dyes, indigo dyes, oxonol dyes, porphyrin dyes Phthalocyanine dyes, azo dyes, quinone dyes, quinoneimine dyes, squarylium dyes, perylene tetracarboxylic acid derivatives; polypyridine complexes such as Ru and Os; anthocyanins, gardenia dyes, turmeric Arsenide, safflower pigment, carotenoid pigments, cochineal dyes, natural pigments, and the like, such as paprika pigment.

本発明の色素増感太陽電池用光電極は、例えば、スパッタリング法、真空蒸着法等により、樹脂フィルム基板にITOからなる透明電極を形成した後、上記透明電極上にスパッタリング法を用いて逆電流防止層を形成する。そして、上記逆電流防止層上に金属酸化物半導体多孔質層を形成し、更に、上記金属酸化物半導体多孔質層に色素を担持させる方法等により製造することができる。 The photoelectrode for dye-sensitized solar cell of the present invention is formed by forming a transparent electrode made of ITO on a resin film substrate by, for example, a sputtering method, a vacuum deposition method, etc., and then using a sputtering method on the transparent electrode. A prevention layer is formed. And it can manufacture by the method etc. which form a metal oxide semiconductor porous layer on the said reverse current prevention layer, and also carry | support a pigment | dye in the said metal oxide semiconductor porous layer.

上記逆電流防止層は、スパッタリング法によって形成することが好ましい。これにより、180℃以下の比較的低温で逆電流防止層を形成することが可能となり、樹脂フィルム基板を使用する場合にも好適に形成することができる。具体的には、ガリウムドープ酸化亜鉛の多結晶体をターゲットとして、不活性ガス雰囲気下でスパッタリングを行う方法等が挙げられる。 The reverse current prevention layer is preferably formed by a sputtering method. This makes it possible to form the reverse current prevention layer at a relatively low temperature of 180 ° C. or lower, and it can be suitably formed even when a resin film substrate is used. Specifically, a method of performing sputtering in an inert gas atmosphere using a gallium-doped zinc oxide polycrystal as a target can be used.

上記金属酸化物半導体多孔質層を形成する方法としては特に限定されず、例えば、金属酸化物半導体粒子を水等の溶媒に分散させた溶液を透明電極上に塗布し、加熱を行うことにより乾燥焼成して膜を形成する塗布法;所望の金属のアルコキシド化合物や塩化物を含有するアルコール溶液を透明電極上に塗布し、加熱を行うことにより乾燥焼成して膜を形成するゾル−ゲル法;金属塩を含む電解質溶液中に透明電極基板を浸漬し、電気化学的に透明電極基板上に金属や金属酸化物の膜を形成する電析法等の方法を用いることができる。 The method for forming the metal oxide semiconductor porous layer is not particularly limited. For example, a solution in which metal oxide semiconductor particles are dispersed in a solvent such as water is applied on a transparent electrode and dried by heating. An application method in which a film is formed by firing; a sol-gel method in which an alcohol solution containing a desired metal alkoxide compound or chloride is applied onto a transparent electrode, and dried and fired by heating to form a film; A method such as an electrodeposition method in which a transparent electrode substrate is immersed in an electrolyte solution containing a metal salt and a metal or metal oxide film is electrochemically formed on the transparent electrode substrate can be used.

上記塗布法やゾル−ゲル法において、透明電極上に溶液を塗布する方法としては特に限定されず、例えば、印刷法、スプレー法、スピンコーティング法、ディップ法等が挙げられる。 In the coating method and the sol-gel method, the method for coating the solution on the transparent electrode is not particularly limited, and examples thereof include a printing method, a spray method, a spin coating method, and a dip method.

上記電析法は、高温の焼成工程を行うことなく、結晶性の高い金属酸化物半導体多孔質層を得ることが可能であることから、特に樹脂フィルム基板を使用する場合に好適に行うことができる。具体的には例えば、金属塩を含有する電析浴中にテンプレート色素を混合し、作用極に透明電極基板、対向極に亜鉛等の金属を配置し、酸素をバブリングしながら参照電極に対して定電圧を印加する3電極法による方法等を用いることができる。 The electrodeposition method is preferably performed particularly when a resin film substrate is used because a highly crystalline metal oxide semiconductor porous layer can be obtained without performing a high-temperature firing step. it can. Specifically, for example, a template dye is mixed in an electrodeposition bath containing a metal salt, a transparent electrode substrate is disposed on the working electrode, a metal such as zinc is disposed on the counter electrode, and oxygen is bubbled with respect to the reference electrode. A method using a three-electrode method in which a constant voltage is applied can be used.

上記色素を担持させる方法としては、例えば、上記色素を含有する溶液に、上記金属酸化物半導体多孔質層が形成された樹脂フィルム基板を浸漬した後、乾燥を行う方法等が挙げられる。
上記金属酸化物半導体多孔質層が形成された樹脂フィルム基板を浸漬する際の浸漬時間の好ましい下限は5分、好ましい上限は20時間である。5分未満であると、色素溶液が金属酸化物半導体多孔質層の内部まで充分に浸透しないことがあり、20時間を超えると、金属酸化物半導体多孔質層への色素の吸着量が多くなりすぎ、使用後に色素の脱落が発生したり、電解質液の浸透を阻害してセル特性の低下や劣化を招いたりすることがある。
Examples of the method for supporting the dye include a method in which the resin film substrate on which the metal oxide semiconductor porous layer is formed is immersed in a solution containing the dye and then dried.
The preferable lower limit of the immersion time when the resin film substrate on which the metal oxide semiconductor porous layer is formed is immersed is 5 minutes, and the preferable upper limit is 20 hours. If it is less than 5 minutes, the dye solution may not sufficiently penetrate into the metal oxide semiconductor porous layer. If it exceeds 20 hours, the amount of dye adsorbed on the metal oxide semiconductor porous layer will increase. In some cases, the pigment may fall off after use, or the penetration of the electrolyte solution may be hindered, resulting in deterioration or deterioration of cell characteristics.

上記色素を含有する溶液に用いる溶媒としては、色素を溶解することができ、基板フィルムを劣化させないものであれば特に限定されず、例えば、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等が挙げられる。 The solvent used in the solution containing the dye is not particularly limited as long as it can dissolve the dye and does not deteriorate the substrate film. For example, alcohols such as ethanol, ketones such as acetone, diethyl ether, and the like. And ethers such as acetonitrile and the like.

本発明の色素増感太陽電池用光電極と、電解質層と、正電極とをこの順で積層することにより、色素増感太陽電池を製造することができる。このような色素増感太陽電池もまた、本発明の1つである。具体的には例えば、電解質を含有する溶液を本発明の色素増感太陽電池用光電極上に塗工し、電解質層を形成した後、正電極を積層する方法や、色素増感太陽電池用光電極と電解質溶液注入口を有する正電極とを積層した後、上記電解質溶液注入口から電解質溶液を注入する方法等により製造することができる。 A dye-sensitized solar cell can be manufactured by laminating the photoelectrode for dye-sensitized solar cell of the present invention, the electrolyte layer, and the positive electrode in this order. Such a dye-sensitized solar cell is also one aspect of the present invention. Specifically, for example, a solution containing an electrolyte is coated on the photoelectrode for dye-sensitized solar cell of the present invention, an electrolyte layer is formed, and then a positive electrode is laminated, or light for dye-sensitized solar cell After the electrode and the positive electrode having the electrolyte solution injection port are stacked, it can be manufactured by a method of injecting the electrolyte solution from the electrolyte solution injection port.

上記電解質層は、電解質溶液からなるものであってもよく、電解質溶液をゲル化剤によって半固体化したものであってもよい。また、上記電解質層としては、電子、ホール、イオン等を輸送できる物質であれば特に限定されず、例えば、CuI、CuSCN、NiO、CuO、KI等のp型半導体固体ホール輸送材料、ヨウ素/ヨウ化物、臭素/臭化物等の酸化還元電解質を有機溶媒に溶解した溶液を用いることができる。
上記有機溶媒としては、例えば、ニトリル系のアセトニトリル、メトキシプロピオニトリルや炭化水素系のプロピレンカルボナート、ジエチルカルボナート、γ―ブチロラクタンやポリエチレングリコール等の多価アルコールが挙げられる。
これらの中では、金属酸化物半導体多孔質層の内部まで浸透しやすく、金属酸化物半導体多孔質層に吸着させた色素が脱離しにくいことから、酸化還元電解質を有機溶媒に溶解した溶液が好ましい。
The electrolyte layer may be composed of an electrolyte solution, or may be a semi-solidified electrolyte solution with a gelling agent. The electrolyte layer is not particularly limited as long as it is a substance that can transport electrons, holes, ions, and the like. For example, a p-type semiconductor solid hole transport material such as CuI, CuSCN, NiO, Cu 2 O, and KI, iodine A solution in which a redox electrolyte such as / iodide and bromine / bromide is dissolved in an organic solvent can be used.
Examples of the organic solvent include polyhydric alcohols such as nitrile acetonitrile, methoxypropionitrile, hydrocarbon propylene carbonate, diethyl carbonate, γ-butyrolactan, and polyethylene glycol.
Among these, a solution in which a redox electrolyte is dissolved in an organic solvent is preferable because it easily penetrates into the metal oxide semiconductor porous layer and the dye adsorbed on the metal oxide semiconductor porous layer is difficult to desorb. .

上記正電極としては特に限定されず、例えば、本発明の色素増感太陽電池用光電極と同様の樹脂フィルム基板に、透明電極と白金触媒層とを積層したもの等を用いることができる。なお、上記正電極の基板及び電極には、本発明の色素増感太陽電池用光電極に使用する樹脂フィルム基板や透明電極と異なり、必ずしも透明性は必要とされず、ニッケルやタングステン等の耐触性のある金属やカーボン、グラファイト等の炭素材料等を用いることができる。 It does not specifically limit as said positive electrode, For example, what laminated | stacked the transparent electrode and the platinum catalyst layer on the resin film board | substrate similar to the photoelectrode for dye-sensitized solar cells of this invention can be used. Unlike the resin film substrate and transparent electrode used for the dye-sensitized solar cell photoelectrode of the present invention, the positive electrode substrate and electrode do not necessarily require transparency, and are resistant to nickel, tungsten, and the like. Tactile metals and carbon materials such as carbon and graphite can be used.

本発明では、色素増感太陽電池用光電極の金属酸化物半導体多孔質層と透明電極との間に、ガリウムドープ酸化亜鉛を含有する逆電流防止層を形成することにより、逆電流の発生による光電変換特性の低下を抑制することができ、かつ、透明電極と金属酸化物半導体多孔質層との密着性を確保することが可能な色素増感太陽電池用光電極とすることができる。 In the present invention, by forming a reverse current prevention layer containing gallium-doped zinc oxide between the metal oxide semiconductor porous layer and the transparent electrode of the photoelectrode for dye-sensitized solar cell, It can be set as the photoelectrode for dye-sensitized solar cells which can suppress the fall of a photoelectric conversion characteristic and can ensure the adhesiveness of a transparent electrode and a metal oxide semiconductor porous layer.

(実施例1)
(ガリウムドープ酸化亜鉛薄膜の形成)
PETフィルムにITO膜を製膜した透明電極基板に、RFスパッタリング法によりガリウムドープ酸化亜鉛(GZO)薄膜を製膜した。なお、スパッタリングは、GZOターゲットを用い、スパッタリング装置(アルパック社製、SBH−5215RD)を使用することにより行った。
Example 1
(Formation of gallium-doped zinc oxide thin film)
A gallium-doped zinc oxide (GZO) thin film was formed by RF sputtering on a transparent electrode substrate obtained by forming an ITO film on a PET film. Sputtering was performed by using a GZO target and using a sputtering apparatus (Alpac, SBH-5215RD).

(酸化亜鉛多孔膜の形成)
得られたガリウムドープ酸化亜鉛薄膜が形成された透明電極基板上に、10×20mmの矩形パターンのマスキングを施し、電析法により酸化亜鉛多孔膜を製膜した。電析は、上記の酸化亜鉛薄膜が形成された透明電極フィルム基板を作用極とし、対極を白金線として、参照電極(SCE)に飽和カロメル電極を用いる3電極法により行った。
電析の手順としては、まず、透明基板をKClの100mM/L水溶液200mLに浸漬し、白金対極を用いて予備電界印加を40分間行い、基板表面を清浄化した。その後、電析浴にZnClを5.2M/L濃度になるように添加して、Zn対極を用いて10分間電析を行い、酸化亜鉛ボトム層を成膜した。その後、電析浴に、エオシンY色素を45 μM/L濃度になるように添加して酸化亜鉛多孔膜の電析を行った。浴温は70℃で、酸素を流量100sccmで浴中にバブリングし、くし刃を電析浴中で往復摺動させて直接的に撹拌しながら、電位−1.0V(vs.SCE)の定電位で30分間電析を行った。
得られたエオシンY色素含有酸化亜鉛膜を0.1MのKOHに一晩浸漬後、水洗することにより、エオシンY色素を脱着して酸化亜鉛多孔膜を得た。この基板を120℃で60分間乾燥処理した後、有機色素D149(三菱製紙社製)0.3mMをt−ブタノールとアセトニトリルとの混合溶媒に溶解した色素溶液に1時間浸漬して、色素を担持させた酸化亜鉛多孔膜層を有する光電極を作製した。
(Formation of zinc oxide porous film)
On the transparent electrode substrate on which the obtained gallium-doped zinc oxide thin film was formed, a 10 × 20 mm rectangular pattern was masked, and a zinc oxide porous film was formed by electrodeposition. Electrodeposition was performed by a three-electrode method using the transparent electrode film substrate on which the zinc oxide thin film was formed as a working electrode, a counter electrode as a platinum wire, and a saturated calomel electrode as a reference electrode (SCE).
As a procedure for electrodeposition, first, the transparent substrate was immersed in 200 mL of a 100 mM / L aqueous solution of KCl, and a preliminary electric field was applied for 40 minutes using a platinum counter electrode to clean the substrate surface. Thereafter, ZnCl 2 was added to the electrodeposition bath so as to have a concentration of 5.2 M / L, and electrodeposition was performed using a Zn counter electrode for 10 minutes to form a zinc oxide bottom layer. Thereafter, eosin Y dye was added to the electrodeposition bath to a concentration of 45 μM / L, and the zinc oxide porous film was electrodeposited. The bath temperature was 70 ° C., oxygen was bubbled into the bath at a flow rate of 100 sccm, and the potential was set to −1.0 V (vs. SCE) while the comb blade was reciprocally slid in the electrodeposition bath and stirred directly. Electrodeposition was performed at a potential for 30 minutes.
The obtained eosin Y dye-containing zinc oxide film was immersed in 0.1 M KOH overnight and then washed with water to desorb the eosin Y dye to obtain a zinc oxide porous film. The substrate was dried at 120 ° C. for 60 minutes, and then immersed in a dye solution in which 0.3 mM of organic dye D149 (Mitsubishi Paper Co., Ltd.) was dissolved in a mixed solvent of t-butanol and acetonitrile for 1 hour to carry the dye. A photoelectrode having a zinc oxide porous membrane layer was prepared.

この光電極に、PETフィルムに透明導電膜であるITO膜と白金膜とをスパッタリング法で積層した正電極とを重ね合わせて、セルの周縁部をアイオノマー樹脂フィルムで熱溶着して空セルを作製した。この空セルに電解質液(ヨウ素0.05mol/L、t−プロピルアンモニウムヨージド0.5mol/L、溶媒:プロピレンカルボナート)を注入し、UV硬化樹脂で注入口を封止して、色素増感太陽電池セルを作製した。 An empty cell is fabricated by superimposing a positive electrode made of a ITO film, which is a transparent conductive film, and a platinum film laminated on the PET film by sputtering, and thermally welding the peripheral edge of the cell with an ionomer resin film. did. An electrolyte solution (iodine 0.05 mol / L, t-propylammonium iodide 0.5 mol / L, solvent: propylene carbonate) was injected into this empty cell, and the injection port was sealed with a UV curable resin to increase the dye concentration. A solar cell was prepared.

(比較例1)
ガリウムドープ酸化亜鉛薄膜を形成しなかった以外は、実施例1と同様にして色素増感太陽電池セルを作製した。
(Comparative Example 1)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the gallium-doped zinc oxide thin film was not formed.

(比較例2)
実施例1において、ガリウムドープ酸化亜鉛薄膜の代わりに、下記の方法で酸化亜鉛薄膜を形成した以外は、実施例1と同様にして色素増感太陽電池セルを作製した。
(Comparative Example 2)
In Example 1, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that instead of the gallium-doped zinc oxide thin film, a zinc oxide thin film was formed by the following method.

(酸化亜鉛薄膜の形成)
PETフィルムにITO膜を製膜した透明電極基板に、RFスパッタリング法により酸化亜鉛薄膜を製膜した。なお、スパッタリングは、酸化亜鉛ターゲットを用い、スパッタリング装置(アルパック社製、SBH−5215RD)を使用することにより行った。
(Formation of zinc oxide thin film)
A zinc oxide thin film was formed by RF sputtering on a transparent electrode substrate obtained by forming an ITO film on a PET film. Sputtering was performed by using a zinc oxide target and using a sputtering apparatus (SBH-5215RD, manufactured by Alpac).

(評価)
(1)光電変換特性
実施例1及び比較例1、2で得られた色素増感太陽電池セルについて、光源強度が1SUN(100mW/cm)であるソーラーシミュレータを用い、短絡電流密度、曲線因子(FF;フィルファクター)及び光電変換効率を測定した。結果を表1に示した。
(Evaluation)
(1) Photoelectric conversion characteristics For the dye-sensitized solar cells obtained in Example 1 and Comparative Examples 1 and 2, using a solar simulator with a light source intensity of 1 SUN (100 mW / cm 2 ), the short-circuit current density and the fill factor (FF; fill factor) and photoelectric conversion efficiency were measured. The results are shown in Table 1.

(2)密着性
実施例及び比較例で得られた色素増感太陽電池セルについて、24時間保管した後、セロハンテープを圧着・剥離し、酸化亜鉛多孔膜の剥離の有無を確認することで、酸化亜鉛多孔膜の密着性を評価した。なお、判断基準は、酸化亜鉛多孔膜が剥離しない場合を○、酸化亜鉛多孔膜が剥離した場合を×とした。
(2) Adhesiveness About dye-sensitized solar cells obtained in Examples and Comparative Examples, after storing for 24 hours, the cellophane tape was pressure-bonded and peeled, and the presence or absence of peeling of the zinc oxide porous film was confirmed. The adhesion of the zinc oxide porous film was evaluated. In addition, as a judgment criterion, the case where the zinc oxide porous film was not peeled was marked as ◯, and the case where the zinc oxide porous film was peeled was marked as x.

Figure 0005075354
Figure 0005075354

表1に示すように、実施例1で得られた色素増感太陽電池セルは、短絡電流密度、曲線因子及び光電変換効率が高く、比較例1のように、ガリウムドープ酸化亜鉛薄膜を形成していないものと比較しても、短絡電流密度、曲線因子及び光電変換効率が向上していた。また、比較例1で得られた色素増感太陽電池セルでは、透明電極と酸化亜鉛多孔膜との密着性の低下が見られた。更に、比較例2で得られた色素増感太陽電池セルは、密着性に優れるものの、短絡電流密度、曲線因子及び光電変換効率が何れも著しく低いものとなっていた。 As shown in Table 1, the dye-sensitized solar cell obtained in Example 1 has high short-circuit current density, fill factor, and photoelectric conversion efficiency, and formed a gallium-doped zinc oxide thin film as in Comparative Example 1. Compared with those that did not, the short circuit current density, the fill factor, and the photoelectric conversion efficiency were improved. Moreover, in the dye-sensitized solar cell obtained in Comparative Example 1, a decrease in adhesion between the transparent electrode and the zinc oxide porous film was observed. Furthermore, although the dye-sensitized solar cell obtained in Comparative Example 2 was excellent in adhesion, all of the short-circuit current density, the fill factor, and the photoelectric conversion efficiency were extremely low.

本発明によれば、逆電流の発生による光電変換特性の低下を防止することができ、かつ、透明電極と金属酸化物半導体多孔質層との密着性を確保することが可能な色素増感太陽電池用光電極及び色素増感太陽電池を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the dye-sensitized solar which can prevent the fall of the photoelectric conversion characteristic by generation | occurrence | production of a reverse current, and can ensure the adhesiveness of a transparent electrode and a metal oxide semiconductor porous layer. A battery photoelectrode and a dye-sensitized solar cell can be provided.

本発明の色素増感太陽電池用光電極の一例を示す模式断面図ある。It is a schematic cross section which shows an example of the photoelectrode for dye-sensitized solar cells of this invention.

符号の説明Explanation of symbols

1 金属酸化物半導体多孔質層
2 逆電流防止層
3 透明電極
4 透明基板
1 Metal oxide semiconductor porous layer 2 Reverse current prevention layer 3 Transparent electrode 4 Transparent substrate

Claims (3)

透明基板、透明電極、逆電流防止層及び金属酸化物半導体多孔質層がこの順で積層された色素増感太陽電池用光電極であって、
前記透明基板は、樹脂フィルム基板であり、
前記逆電流防止層は、ガリウムドープ酸化亜鉛を含有し、スパッタリング法で形成されたものであり、
前記金属酸化物半導体多孔質層は、酸化亜鉛からなる
ことを特徴とする色素増感太陽電池用光電極。
A transparent electrode, a transparent electrode, a reverse current prevention layer and a metal oxide semiconductor porous layer are laminated in this order, a photoelectrode for a dye-sensitized solar cell,
The transparent substrate is a resin film substrate,
The reverse current prevention layer contains gallium-doped zinc oxide and is formed by a sputtering method,
The photoelectrode for a dye-sensitized solar cell, wherein the metal oxide semiconductor porous layer is made of zinc oxide .
逆電流防止層は、膜厚が10〜20nmであることを特徴とする請求項1記載の色素増感太陽電池用光電極。2. The dye-sensitized solar cell photoelectrode according to claim 1, wherein the reverse current prevention layer has a thickness of 10 to 20 nm. 請求項1又は2記載の色素増感太陽電池用光電極と、電解質層と、正電極とがこの順に積層されていることを特徴とする色素増感太陽電池。 3. A dye-sensitized solar cell, wherein the photoelectrode for a dye-sensitized solar cell according to claim 1 or 2, an electrolyte layer, and a positive electrode are laminated in this order.
JP2006138639A 2006-05-18 2006-05-18 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell Expired - Fee Related JP5075354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138639A JP5075354B2 (en) 2006-05-18 2006-05-18 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138639A JP5075354B2 (en) 2006-05-18 2006-05-18 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2007311162A JP2007311162A (en) 2007-11-29
JP5075354B2 true JP5075354B2 (en) 2012-11-21

Family

ID=38843840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138639A Expired - Fee Related JP5075354B2 (en) 2006-05-18 2006-05-18 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5075354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108613A (en) * 2008-10-28 2010-05-13 Oike Ind Co Ltd Transparent conductive laminate for dye-sensitized solar cell and manufacturing method thereof, and dye-sensitized solar cell
JP2011142028A (en) 2010-01-08 2011-07-21 Hitachi Zosen Corp Method of forming buffer layer in dye-sensitized solar cell
KR101170904B1 (en) 2010-01-13 2012-08-03 삼성코닝정밀소재 주식회사 Counter electrode plate and dye-sensitized solar cell having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578786B2 (en) * 2003-07-23 2010-11-10 株式会社フジクラ Method for producing dye-sensitized solar cell
EP1677316A4 (en) * 2003-10-23 2009-08-26 Bridgestone Corp Transparent conductive substrate, electrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2006012517A (en) * 2004-06-24 2006-01-12 Toppan Printing Co Ltd Metal oxide structure, and dye sensitized solar battery
JP4963165B2 (en) * 2005-03-28 2012-06-27 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module

Also Published As

Publication number Publication date
JP2007311162A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5192154B2 (en) Method for producing dye-sensitized solar cell
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
CN101930854A (en) Dye-sensitized solar cells and manufacturing method for thereof
JP2010177109A (en) Composition for forming underlayer, method of manufacturing underlayer, method of manufacturing photoelectrode, method of manufacturing solar cell, and solar cell module
JP2004152613A (en) Dye-sensitized solar cell
JP4312991B2 (en) Method for producing dye-sensitized solar cell
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4982067B2 (en) Method for producing photoelectrode for dye-sensitized solar cell
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP5075354B2 (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell
JP2004127849A (en) Carbon electrode and dye-sensitized solar cell with the same
JP2010277854A (en) Dye-sensitized solar cell and organic solvent-free electrolyte for dye-sensitized solar cell
JP5046195B2 (en) Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and method for producing metal oxide electrode
JP5096755B2 (en) Dye-sensitized solar cell
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2013026189A (en) Solar cell
JP5337423B2 (en) Dye-sensitized solar cell and method for producing dye-sensitized solar cell
JP2007299671A (en) Dye-sensitized solar cell
JP4507834B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
JP5189869B2 (en) Electrolytic solution and dye-sensitized solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP4537693B2 (en) Dye-sensitized solar cell
JP2005243498A (en) Method of manufacturing oxide semiconductor electrode, and method of manufacturing dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees