JP2007115602A - Titanium dioxide dispersing element for dye sensitized solar battery - Google Patents

Titanium dioxide dispersing element for dye sensitized solar battery Download PDF

Info

Publication number
JP2007115602A
JP2007115602A JP2005307747A JP2005307747A JP2007115602A JP 2007115602 A JP2007115602 A JP 2007115602A JP 2005307747 A JP2005307747 A JP 2005307747A JP 2005307747 A JP2005307747 A JP 2005307747A JP 2007115602 A JP2007115602 A JP 2007115602A
Authority
JP
Japan
Prior art keywords
titanium dioxide
dye
sensitized solar
solar cell
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005307747A
Other languages
Japanese (ja)
Inventor
Ryohei Mori
良平 森
Tsutomu Ueda
勉 上田
Kazuo Sakai
和夫 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Pigment Co Ltd
Original Assignee
Fuji Pigment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Pigment Co Ltd filed Critical Fuji Pigment Co Ltd
Priority to JP2005307747A priority Critical patent/JP2007115602A/en
Publication of JP2007115602A publication Critical patent/JP2007115602A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium dioxide dispersing element for a dye sensitized solar battery which can be manufactured by a simple and low cost method, a titanium dioxide thin film formed by using the dispersing element and the dye sensitized solar battery manufactured by using the thin film. <P>SOLUTION: The titanium dioxide dispersing element for the dye sensitized solar battery is composed containing a cellulose system or a butyral system additive with terpineol, alcohols, glycol ethers, or glycol ether acetates as an independent or mixed solvent. In this case, an organic titanium compound or a niobium compound is added to these dispersing elements. Furthermore, the titanium dioxide and polyvinyl butyral resin are made into solid chips with two rolls and the chips are dissolved and produced. In addition, the titanium dioxide thin film formed by using the titanium dioxide dispersing element, and the dye sensitive solar battery manufactured by using the film is manufactured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色素増感型太陽電池電極用の二酸化チタンをベースとした印刷用分散体及びその分散体を用いて作製した多孔質二酸化チタン薄膜、光電変換素子および色素増感型太陽電池であって、分散体は主に溶媒と二酸化チタン粒子と有機バインダからなる前記成形体用の組成物。   The present invention is a printing dispersion based on titanium dioxide for a dye-sensitized solar cell electrode, a porous titanium dioxide thin film produced using the dispersion, a photoelectric conversion element, and a dye-sensitized solar cell. The dispersion is a composition for a molded body mainly composed of a solvent, titanium dioxide particles, and an organic binder.

近年、太陽電池は地球環境を配慮したクリーンなエネルギー源の一つとして大きな注目を集めている。しかし、シリコン系半導体等を使用した従来の太陽電池には、製造コストが高い、原料供給が不十分などの課題が残されており、まだ広く普及するには至っていない。   In recent years, solar cells have attracted a great deal of attention as one of the clean energy sources considering the global environment. However, conventional solar cells using silicon-based semiconductors and the like still have problems such as high manufacturing costs and insufficient raw material supply, and have not yet spread widely.

光化学電池の中でも、グレッツェルらによって公知化された(Nature 1991,353,737−740)色素増感型湿式太陽電池は、極めて低コストかつ高効率であり、この公知化以降、多くの研究がなされてきた。色素増感型太陽電池は、ガラスやポリマーといった支持体上に優れた導電性と透明性を兼ね備えた酸化インジウム系膜(ITO)やフッ素などをドープした酸化スズ系膜(FTO)がコーティングした基板(導電性支持体)上に、さらに、安価な材料である数十ナノメートルサイズの酸化チタンの多孔質構造の膜をn型酸化物半導体として積層した光電変換素子を陰極とし、同様の基板上に主に白金の薄膜を積層した陽極を用いて、主にヨウ素などの酸化還元イオンを含んだ電解液を介して陰極と陽極を配置した構造が一般的である。   Among photochemical cells, the dye-sensitized wet solar cell (Nature 1991, 353, 737-740) known by Gretzell et al. Is extremely low-cost and highly efficient, and many studies have been made since this publicization. I came. A dye-sensitized solar cell is a substrate coated with an indium oxide film (ITO) having excellent conductivity and transparency on a support such as glass or polymer, or a tin oxide film (FTO) doped with fluorine. On the same substrate, a photoelectric conversion element in which a porous structure film of titanium oxide having a size of several tens of nanometers, which is an inexpensive material, is stacked as an n-type oxide semiconductor on a (conductive support) is used as a cathode. In general, a structure in which a cathode and an anode are mainly disposed through an electrolytic solution mainly containing oxidation-reduction ions such as iodine using an anode in which platinum thin films are laminated.

陰極には太陽光の可視領域の波長の光を吸収し励起電子を発生させるために、錯体色素に代表される光増感剤が担持されていることが多い。光増感剤から発生した励起電子は、n型酸化物半導体に移動し、更に両電極を接続する導線を通って陽極へ移動する。陽極へ移動した電子は、電解液を還元し、電解液は電子を放出して酸化状態となった光増感剤を還元する。こうした一連の流れを繰り返すことで、色素増感型湿式太陽電池は機能する。しかしながら実用化のためにはさらなる変換効率の向上が必要であり、より高い光電変換性能を有する二酸化チタン薄膜が必要とされている。
特開2001−243995号公報 特開2002−100416号公報 特開2002−367686号公報 特開2002−280087号公報 特開2003−007358号公報 特開2003−288954号公報 特開2003−308889号公報 特開2003−317815号公報
The cathode often carries a photosensitizer typified by a complex dye in order to absorb light having a wavelength in the visible region of sunlight and generate excited electrons. Excited electrons generated from the photosensitizer move to the n-type oxide semiconductor, and further move to the anode through the conducting wire connecting both electrodes. The electrons that have moved to the anode reduce the electrolytic solution, and the electrolytic solution releases the electrons to reduce the photosensitizer that is in an oxidized state. By repeating such a series of flows, the dye-sensitized wet solar cell functions. However, further improvement in conversion efficiency is necessary for practical use, and a titanium dioxide thin film having higher photoelectric conversion performance is required.
JP 2001-243955 A JP 2002-100416 A Japanese Patent Laid-Open No. 2002-367686 JP 2002-280087 A JP 2003-007358 A JP 2003-288754 A JP 2003-308889 A JP 2003-317815 A

本発明の目的は簡便且つより安価な手法により二酸化チタン分散体 および半導体微粒子薄膜、並びに該薄膜を用いることにより高い光電変換効率を有する光電変換素子及び該光電変換素子からなる色素増感型太陽電池を提供することである。   An object of the present invention is to provide a titanium dioxide dispersion and a semiconductor fine particle thin film by a simple and cheap method, a photoelectric conversion element having high photoelectric conversion efficiency by using the thin film, and a dye-sensitized solar cell comprising the photoelectric conversion element. Is to provide.

本発明者らはこのような状況に鑑み鋭意検討した結果、スクリーン印刷において適切な分散体特性を維持でき、しかもこれを焼成して得られる半導体多孔膜に何ら悪影響を与えることのない、高い光電変換効率を有する二酸化チタン微粒子薄膜を作製することができる分散体組成を見出し、本発明に到達した。すなわち、本発明において、第1の発明の要旨は、有機溶媒30〜90重量部、酸化物半導体5〜60重量部及びエチルセルロース1〜30重量部、もしくはポリビニルブチラール1〜30重量部を含む色素増感型太陽電池用二酸化チタン印刷用分散体にある。また、第2の発明の要旨は、この印刷用分散体にチタンアルコキシド等の有機チタン化合物を0.1〜30重量部、もしくはニオビウムエトキシドなどのニオビウム化合物を0.1〜30重量部含む印刷用分散体にある。第3の発明は二本ロールにより高圧処理し二酸化チタンと樹脂を固形化しチップとし、これを溶解して作製した印刷用分散体にある。また同様にこの印刷用分散体にチタンアルコキシド等の有機チタン化合物0.1〜30重量部、もしくはニオビウム化合物を0.1〜30重量部を含む印刷用分散体にある。さらに第4の発明は、透明導電性基板の導電層上に上記の印刷用分散体をスクリーン印刷し、これを焼成することを特徴とする半導体多孔膜の形成方法にある。さらに、第5の発明の要旨は透明導電性基板上に増感色素を担持した半導体多孔膜を有してなる半導体電極と、該半導体電極と間隔をおいて対向配置された対極と、これら半導体電極と対極の間に設けられそれらの極と接する電解質とを含む色素増感型太陽電池において、半導体多孔膜が上記の印刷用分散体を用いて形成されたものであることを特徴とする色素増感型太陽電池にある。   As a result of intensive studies in view of such a situation, the present inventors have been able to maintain appropriate dispersion characteristics in screen printing, and also have high photoelectric properties that do not have any adverse effect on the semiconductor porous film obtained by firing the same. The inventors have found a dispersion composition capable of producing a titanium dioxide fine particle thin film having conversion efficiency, and have reached the present invention. That is, in the present invention, the gist of the first invention is a dye-enhancement comprising 30 to 90 parts by weight of an organic solvent, 5 to 60 parts by weight of an oxide semiconductor and 1 to 30 parts by weight of ethyl cellulose, or 1 to 30 parts by weight of polyvinyl butyral. It is in a dispersion for printing titanium dioxide for sensitive solar cells. The gist of the second invention is that the printing dispersion comprises 0.1 to 30 parts by weight of an organic titanium compound such as titanium alkoxide or 0.1 to 30 parts by weight of a niobium compound such as niobium ethoxide. is there. A third invention is a printing dispersion produced by high-pressure treatment with two rolls to solidify titanium dioxide and resin into chips and dissolve them. Similarly, the printing dispersion includes 0.1 to 30 parts by weight of an organic titanium compound such as titanium alkoxide or 0.1 to 30 parts by weight of a niobium compound. Furthermore, a fourth invention is a method for forming a semiconductor porous film, characterized in that the printing dispersion is screen-printed on a conductive layer of a transparent conductive substrate and fired. Further, the fifth aspect of the invention is to provide a semiconductor electrode having a semiconductor porous film carrying a sensitizing dye on a transparent conductive substrate, a counter electrode disposed opposite to the semiconductor electrode at an interval, and these semiconductors. A dye-sensitized solar cell including an electrolyte provided between an electrode and a counter electrode and in contact with the electrode, wherein the semiconductor porous film is formed using the printing dispersion described above In sensitized solar cells.

本発明の印刷用分散体においては、分散媒としては、テルピネオール、アルコール類、グリコールエーテル類、グリコールエーテルアセテート類を用いることが出来るが、特にこれに限定されるものではなく、エチルセルロースもしくはポリビニルブチラールを溶解するものであればどのようなものも用いることができ、プロピレングリコールモノメチルエーテルアセタート、メチルセロソルブ、エチルセロソルブなどのエチレングリコールモノアルキルエーテル類、ジエチレングリコールモノメチルエーテルなど種々の有機溶媒を単独、あるいは2種以上を組み合わせたものを求める分散体特性に応じて使用することができる。   In the dispersion for printing of the present invention, terpineol, alcohols, glycol ethers, glycol ether acetates can be used as a dispersion medium, but the invention is not particularly limited thereto, and ethyl cellulose or polyvinyl butyral is used. Any solvent can be used as long as it dissolves, and various organic solvents such as ethylene glycol monoalkyl ethers such as propylene glycol monomethyl ether acetate, methyl cellosolve and ethyl cellosolve, diethylene glycol monomethyl ether alone, or 2 It can be used depending on the dispersion properties for which a combination of seeds or more is desired.

TiO2としては、市販の微粒子や、水熱合成法、ゾルゲル法などにより得られたものを使用することができる。また固形化したチップ由来のTiO2も使用することができる。TiO2は5〜60重量部用いられる。しかし、スクリーン印刷に適当な粘度を有する分散体を作製する必要があること、及び太陽電池電極として電解液が浸透し易く、かつ光に対する批表面積が広い適度なTiO2充填程度を有するTiO2薄膜を作製できる分散体を作製する必要があるということから、5〜15重量部であることが好ましい。 As TiO 2 , commercially available fine particles, those obtained by a hydrothermal synthesis method, a sol-gel method, or the like can be used. Also, solidified chip-derived TiO 2 can be used. TiO 2 is used in an amount of 5 to 60 parts by weight. However, it is necessary to prepare a dispersion having a viscosity suitable for screen printing, and a TiO 2 thin film having an appropriate degree of TiO 2 filling that allows an electrolyte to penetrate as a solar cell electrode and has a large critical surface area for light. Since it is necessary to produce a dispersion capable of producing the above, it is preferably 5 to 15 parts by weight.

エチルセルロース及びポリビニルブチラールは5000という比較的低分子量のものから1,000,000以上の高分子量のものまで、求める粘度などに応じて種々のものを用いることができ、異なる分子量のものを組み合わせて用いることができる。エチルセルロース及びポリビニルブチラールは1〜30重量部用いられるが、スクリーン印刷に適当な粘度を有する分散体を作製する必要があること、及び太陽電池電極として電解液が浸透し易く、かつ光に対する批表面積が広い適度なTiO2充填程度を有するTiO2薄膜を作製できる分散体を作製する必要があるということから、5〜15重量部であることが好ましい。本発明の印刷用分散体には、上記の成分以外にも必要に応じてキレート剤、消泡剤、レベリング剤、分散剤などを添加してもよい。 A variety of ethyl cellulose and polyvinyl butyral can be used depending on the desired viscosity from a relatively low molecular weight of 5000 to a high molecular weight of 1,000,000 or more, and those having different molecular weights are used in combination. be able to. Ethylcellulose and polyvinyl butyral are used in an amount of 1 to 30 parts by weight, but it is necessary to prepare a dispersion having a viscosity suitable for screen printing, and the electrolyte is easy to penetrate as a solar cell electrode and has a critical surface area against light. Since it is necessary to produce a dispersion capable of producing a TiO 2 thin film having a wide appropriate degree of TiO 2 filling, it is preferably 5 to 15 parts by weight. In addition to the above components, a chelating agent, an antifoaming agent, a leveling agent, a dispersing agent and the like may be added to the printing dispersion of the present invention as necessary.

チタンアルコキシド等の有機チタン化合物は0.1〜30重量部用いられるが、1〜20重量部であることが好ましい。チタンアルコキシドを分散体中に混合することで、焼結後の二酸化チタン薄膜中の二酸化チタン微粒子間において、光励起によって生じた電子―ホール対の再結合中心となるボトルネックの部分を太くすることにより、電子の流れを促進する効果があると期待される。本発明の印刷用分散体には、上記の成分以外にも必要に応じてキレート剤、消泡剤、レベリング剤、分散剤などを添加してもよい。   The organic titanium compound such as titanium alkoxide is used in an amount of 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight. By mixing titanium alkoxide into the dispersion, the bottleneck part that becomes the recombination center of electron-hole pairs generated by photoexcitation between the titanium dioxide fine particles in the sintered titanium dioxide thin film is thickened. It is expected to have the effect of promoting the flow of electrons. In addition to the above components, a chelating agent, an antifoaming agent, a leveling agent, a dispersing agent and the like may be added to the printing dispersion of the present invention as necessary.

ニオビウム化合物は0.1〜30重量部用いられるが、0.1〜10重量部であることが好ましい。ニオビウム化合物を分散体に混合することで、ニオビウムのドーピング効果による光電流値の向上が可能である。本発明の印刷用分散体には、上記の成分以外にも必要に応じてキレート剤、消泡剤、レベリング剤、分散剤などを添加してもよい。   The niobium compound is used in an amount of 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight. By mixing the niobium compound into the dispersion, the photocurrent value can be improved by the doping effect of niobium. In addition to the above components, a chelating agent, an antifoaming agent, a leveling agent, a dispersing agent and the like may be added to the printing dispersion of the present invention as necessary.

本発明の印刷用分散体は、分散媒に酸化物半導体粒子を加えエチルセルロースもしくはポリビニルブチラールを徐々に加えることによって得ることができる。   The printing dispersion of the present invention can be obtained by adding oxide semiconductor particles to a dispersion medium and gradually adding ethyl cellulose or polyvinyl butyral.

次に、半導体多孔膜の形成方法について説明する。本発明においては、透明導電性基板の導電層上に上記の印刷用分散体をスクリーン印刷する。透明導電性基板は、透明基板の少なくとも一方の面に透明導電層が形成されたものである。本発明に用いられる透明基板としては、光透過性の素材からなる板が用いられ、ガラス、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常太陽電池の透明基板として用いられるものであればどのようなものも用いることができ、電解質への耐性などを考慮して適宜選択すればよいが、用途上、できるだけ光透過性の高い基板が好ましい。   Next, a method for forming a semiconductor porous film will be described. In the present invention, the printing dispersion is screen-printed on the conductive layer of the transparent conductive substrate. The transparent conductive substrate has a transparent conductive layer formed on at least one surface of the transparent substrate. As the transparent substrate used in the present invention, a plate made of a light transmissive material is used, and glass, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, etc., which are usually used as transparent substrates for solar cells. Any substrate can be used, and the substrate may be selected as appropriate in consideration of resistance to the electrolyte. However, a substrate having as high a light transmission as possible is preferable for use.

透明基板の少なくとも一方の面には金属、炭素、導電性金属酸化物層などからなる透明導電層が形成されている。金属層や炭素層を形成する場合には透明性を著しく損ねない構造とすることが好ましく、導電性と透明性を損なわない薄膜を形成できるものという観点から金属の種類も適宜選択される。導電性金属酸化物としては、例えばITO、SnO2 、フッ素ドープのSnO2 、導電性ZnOなどを用いることができる。好ましい透明導電性基板として、例えば、フッ素ドープのSnO2 、ITOなどを蒸着した導電性ガラスを例示できる。 A transparent conductive layer made of metal, carbon, a conductive metal oxide layer or the like is formed on at least one surface of the transparent substrate. When forming a metal layer or a carbon layer, it is preferable to have a structure that does not significantly impair transparency, and the type of metal is also appropriately selected from the viewpoint that a thin film that does not impair conductivity and transparency can be formed. As the conductive metal oxide, for example, ITO, SnO 2 , fluorine-doped SnO 2 , conductive ZnO, or the like can be used. As a preferable transparent conductive substrate, for example, conductive glass on which fluorine-doped SnO 2 , ITO or the like is deposited can be exemplified.

本発明において用いられるスクリーン印刷法は通常のスクリーン印刷法を採用でき、透明導電性基板上に形成すべき多孔質膜の形状に合わせた形状の穴を開けた型枠を用い、スクリーンに密着させ、これを用いてスクリーン印刷機により上記の印刷用分散体を塗布する。スクリーンはナイロンやステンレス製のものが好ましく用いられ、メッシュは用いた金属酸化物の粒度、分散体の粘度などに応じて適宜選択される。印刷された塗膜の厚みは5〜200μm程度であることが好ましい。こうして得られた塗膜を、仮乾燥後、焼成することによって、半導体多孔質膜が透明導電性基板上に形成される。適切な仮乾燥の温度は用いた分散液によって異なるが、通常、50〜150℃で行う。乾燥はどのような方法をも用い得るが、加熱板、IR炉、熱風循環炉等による乾燥が好ましい。焼成温度は180〜500℃であることが好ましい。   As the screen printing method used in the present invention, a normal screen printing method can be adopted, and a mold having a hole in a shape corresponding to the shape of the porous film to be formed on the transparent conductive substrate is used, and the screen printing method is adhered to the screen. Using this, the above-mentioned printing dispersion is applied by a screen printer. The screen is preferably made of nylon or stainless steel, and the mesh is appropriately selected according to the particle size of the metal oxide used, the viscosity of the dispersion, and the like. The thickness of the printed coating film is preferably about 5 to 200 μm. The coating film obtained in this way is temporarily dried and then baked to form a semiconductor porous film on the transparent conductive substrate. The appropriate temporary drying temperature varies depending on the dispersion used, but is usually 50 to 150 ° C. Although any method can be used for drying, drying by a heating plate, an IR furnace, a hot air circulating furnace or the like is preferable. The firing temperature is preferably 180 to 500 ° C.

次に、本発明の色素増感型太陽電池について説明する。この色素増感型太陽電池(以下、太陽電池と略記する。)は、透明導電性基板の導電性を有する面に増感色素を担持した半導体多孔膜を成膜した半導体電極と、該半導体電極と間隔をおいて対向配置された対極と、これら半導体電極と対極の間に設けられ、それらの極と接する電解質からなる。透明導電性基板上の導電層の上には上記のようにして形成された半導体多孔膜に増感色素を担持させて、半導体電極が形成される。増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニン等の含金属錯体をはじめ、エオシン、ローダミン、メロシアニンなどの有機色素なども使用することができ、用途、使用半導体に適した励起挙動をとるものを特に限定無く選ぶことができる。対極としては、基板の上に導電膜を設けた電極が用いられ、例えば導電性基板上に炭素や白金などの層を、蒸着、スパッタ、塩化白金酸塗布後に熱処理を行ったものなどを用いることができるが、電極として用いられるものであれば特に限定されるものではない。   Next, the dye-sensitized solar cell of the present invention will be described. This dye-sensitized solar cell (hereinafter abbreviated as a solar cell) includes a semiconductor electrode in which a semiconductor porous film carrying a sensitizing dye is formed on a conductive surface of a transparent conductive substrate, and the semiconductor electrode And a counter electrode disposed opposite to each other, and an electrolyte that is provided between the semiconductor electrode and the counter electrode and is in contact with the electrodes. On the conductive layer on the transparent conductive substrate, a semiconductor electrode is formed by supporting a sensitizing dye on the semiconductor porous film formed as described above. As sensitizing dyes, ruthenium complexes containing bipyridine structure, terpyridine structure, etc. as ligands, metal-containing complexes such as porphyrin, phthalocyanine, and organic dyes such as eosin, rhodamine, merocyanine, etc. can be used. Those having an excitation behavior suitable for the semiconductor used can be selected without particular limitation. As the counter electrode, an electrode in which a conductive film is provided on a substrate is used. For example, a layer such as carbon or platinum on a conductive substrate, which has been subjected to heat treatment after vapor deposition, sputtering, chloroplatinic acid coating, or the like is used. However, it is not particularly limited as long as it can be used as an electrode.

該半導体電極と対極とは、間隔をおいて対向配置されており、これらの電極の間にはこれらの極に接触するように電解質が設けられる。電解質としては酸化・還元種を含む電解液であってもよく、この電解液を高分子マトリクスでゲル化させたものでもよく、電解液の代替として導電性高分子やp型半導体によるホール輸送層を設けたものであってもよい。電解液の場合は、酸化・還元種を含む非水系電解液が好ましく用いられる。本発明においては、これらをあわせて電解質という。   The semiconductor electrode and the counter electrode are arranged to face each other with a space therebetween, and an electrolyte is provided between these electrodes so as to be in contact with these electrodes. The electrolyte may be an electrolytic solution containing oxidation / reduction species, or the electrolytic solution may be gelled with a polymer matrix. As an alternative to the electrolytic solution, a hole transport layer made of a conductive polymer or a p-type semiconductor may be used. May be provided. In the case of an electrolytic solution, a non-aqueous electrolytic solution containing oxidizing / reducing species is preferably used. In the present invention, these are collectively referred to as an electrolyte.

酸化・還元種として用いられる塩類としては、例えばアニオンとして、ヨウ化物イオン、臭化物イオンなどを、また、カチオンとしてリチウムイオン、テトラプロピルアンモニウムイオン、イミダゾリウムイオンなどを用いることができるが、これらに限定されるものではない。さらに必要に応じてヨウ素などを添加してもよい。   Examples of salts used as oxidation / reduction species include iodide ions, bromide ions, and the like as anions, and lithium ions, tetrapropylammonium ions, imidazolium ions, and the like as cations. Is not to be done. Further, iodine or the like may be added as necessary.

電解液が非水系の場合は溶媒としては、例えば、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、炭酸エチレン、炭酸プロピレン、γ−ブチロラクトンなどを用いることができるが、色素増感型太陽電池の電解液として既に報告されているものであればどのようなものも用いることができ、求める特性に応じて適宜選択され、これらの溶媒を適宜組み合わせて用いることもできる。   When the electrolyte is non-aqueous, examples of the solvent include acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, γ-butyrolactone, etc. Any one that has already been reported can be used, and it is appropriately selected according to the desired characteristics, and these solvents can be used in appropriate combination.

半導体電極と対極の間の周辺部にはエポキシ樹脂などからなる封止剤が設けられ、電解液が漏出したり、揮発性成分が揮発したりするのを防いでいる。   A sealant made of an epoxy resin or the like is provided in the peripheral part between the semiconductor electrode and the counter electrode to prevent the electrolytic solution from leaking out and the volatile component from volatilizing.

本発明の印刷用分散体はスクリーン印刷を行うことができ、この分散体を用いて連続してスクリーン印刷を行った場合、均一な塗膜を得ることができ、これを焼成して得られる半導体多孔膜もショット間のずれの少ない、良好な多孔膜となる。さらにこの多孔膜を用いて得られる色素増感型太陽電池も良好な光電特性を示す。これは、分散体にエチルセルロースもしくはポリビニルブチラールが添加されているので、これを用いて得られた半導体多孔膜は比較的大きな空孔を有し、多孔膜内への電解液の浸透が容易となるためと考えられる。また、チタンアルコキシド等の有機チタン化合物が分散体に添加されると焼結した時に、光によって励起された電子―ホールの再結合中心と言われているチタニア粒子間のボトルネックが改善され、変換効率が上昇する。また、ニオビウムをドープすることによりドナー密度が増加し、薄膜の導電性が増加し変換効率の向上を可能にした。さらに二本ロールにより高圧をかけ作製した固形化チップを元に作製した二酸化チタン分散体は、同組成の単に混合しただけの分散体と比較して、高い変換効率を示す太陽電池を作製できた。   The dispersion for printing of the present invention can be screen-printed, and when screen-printing is continuously performed using this dispersion, a uniform coating film can be obtained, and a semiconductor obtained by firing the film. The porous film is also a good porous film with little deviation between shots. Furthermore, a dye-sensitized solar cell obtained using this porous film also shows good photoelectric characteristics. This is because ethylcellulose or polyvinyl butyral is added to the dispersion, so that the semiconductor porous film obtained using this has relatively large pores, so that the electrolyte can easily penetrate into the porous film. This is probably because of this. In addition, when an organic titanium compound such as titanium alkoxide is added to the dispersion, the bottleneck between titania particles, which is said to be the electron-hole recombination center excited by light, is improved when it is sintered. Increases efficiency. In addition, doping with niobium increases the donor density, increases the conductivity of the thin film, and improves the conversion efficiency. Furthermore, the titanium dioxide dispersion produced on the basis of a solidified chip produced by applying high pressure with two rolls was able to produce a solar cell exhibiting high conversion efficiency compared to a dispersion of the same composition. .

(実施例1) テルピネオール65gに、チタニア微粒子P25(独 デグサ社)を25g、分子量約20000〜50000のエチルセルロースを10g添加し、15分間攪拌しチタニア分散体 を作製した。 この分散体 を65μmのスペーサーを用い流延し膜を作製し、この膜を500℃1時間焼成し、多孔質チタニア薄膜を作製した。作製したチタニア膜を0.3mmolのN3dye溶液に浸漬し25℃で24時間請置し色素を吸着させ光電変換素子を得た。対極に白金を用い、電解質としてアセトニトリルにヨウ化リチウム、ヨウ素、t‐ブチルピリジン、1.2-ジメチル-3-プロピルイミダゾリウムアイオダイドをそれぞれ0.1、0.05、0.5、0.6mol/lとなるように溶解、調整いたものを用い、セルを作製した。太陽電池 の評価はAM1.5、100mA/cm2の擬似太陽光を照射し行った。
短絡電流 Jscは 11.0 mA、開放電圧 Vocは703 mV、フィルファクターFFは、0.496、光電変換効率ηは3.84%となった。
(Example 1) To 65 g of terpineol, 25 g of titania fine particles P25 (Degussa, Germany) and 10 g of ethyl cellulose having a molecular weight of about 20000 to 50000 were added and stirred for 15 minutes to prepare a titania dispersion. This dispersion was cast using a 65 μm spacer to produce a membrane, and this membrane was fired at 500 ° C. for 1 hour to produce a porous titania thin film. The produced titania film was immersed in 0.3 mmol of N3dye solution and placed at 25 ° C. for 24 hours to adsorb the dye, thereby obtaining a photoelectric conversion element. Platinum is used for the counter electrode, and lithium iodide, iodine, t-butylpyridine, and 1.2-dimethyl-3-propylimidazolium iodide are dissolved in acetonitrile as an electrolyte so as to be 0.1, 0.05, 0.5, and 0.6 mol / l, respectively. A cell was prepared using the prepared one. The solar cell was evaluated by irradiating simulated sunlight with AM1.5 and 100 mA / cm2.
The short-circuit current Jsc was 11.0 mA, the open circuit voltage Voc was 703 mV, the fill factor FF was 0.496, and the photoelectric conversion efficiency η was 3.84%.

(実施例2)テルピネオール65gに、チタニア微粒子P25(独 デグサ社)を25g、分子量約20000〜50000のポリビニルブチラールを10g添加し、15分間攪拌しチタニア分散体 を作製した。 この分散体 を65μmのスペーサーを用い流延し膜を作製し、この膜を500℃1時間焼成し、多孔質チタニア薄膜を作製した。作製したチタニア膜を0.3mmolのN3dye溶液に浸漬し25℃で24時間請置し色素を吸着させ光電変換素子を得た。対極に白金を用い、電解質としてアセトニトリルにヨウ化リチウム、ヨウ素、t‐ブチルピリジン、1.2-ジメチル-3-プロピルイミダゾリウムアイオダイドをそれぞれ0.1、0.05、0.5、0.6mol/lとなるように溶解、調整いたものを用い、セルを作製した。太陽電池 の評価はAM1.5、100mA/cm2の擬似太陽光を照射し行った。
短絡電流 Jscは 11.1 mA、開放電圧 Vocは708 mV、フィルファクターFFは、0.495、光電変換効率ηは3.89%となった。
(Example 2) To 65 g of terpineol, 25 g of titania fine particles P25 (Degussa, Germany) and 10 g of polyvinyl butyral having a molecular weight of about 20000 to 50000 were added and stirred for 15 minutes to prepare a titania dispersion. This dispersion was cast using a 65 μm spacer to produce a membrane, and this membrane was fired at 500 ° C. for 1 hour to produce a porous titania thin film. The produced titania film was immersed in 0.3 mmol of N3dye solution and placed at 25 ° C. for 24 hours to adsorb the dye, thereby obtaining a photoelectric conversion element. Platinum is used for the counter electrode, and lithium iodide, iodine, t-butylpyridine, and 1.2-dimethyl-3-propylimidazolium iodide are dissolved in acetonitrile as an electrolyte so as to be 0.1, 0.05, 0.5, and 0.6 mol / l, respectively. A cell was prepared using the prepared one. The solar cell was evaluated by irradiating simulated sunlight with AM1.5 and 100 mA / cm2.
Short circuit current Jsc was 11.1 mA, open circuit voltage Voc was 708 mV, fill factor FF was 0.495, and photoelectric conversion efficiency η was 3.89%.

(実施例3)テルピネオール65gに、チタニア微粒子P25(独 デグサ社)を25g、分子量約20000〜50000のエチルセルロースを10g添加し、15分間攪拌しチタニア分散体 を作製した。この分散体にチタンイソプロポキシドを3g加え、さらに15分間攪拌しチタニア分散体 を作製した。この分散体 を65μmのスペーサーを用い流延し膜を作製し、この膜を500℃1時間焼成し、多孔質チタニア薄膜を作製した。作製したチタニア膜を0.3mmolのN3dye溶液に浸漬し25℃で24時間請置し色素を吸着させ光電変換素子を得た。対極に白金を用い、電解質としてアセトニトリルにヨウ化リチウム、ヨウ素、t‐ブチルピリジン、1.2-ジメチル-3-プロピルイミダゾリウムアイオダイドをそれぞれ0.1、0.05、0.5、0.6mol/lとなるように溶解、調整いたものを用い、セルを作製した。太陽電池 の評価はAM1.5、100mA/cm2の擬似太陽光を照射し行った。
短絡電流 Jscは 11.8mA、開放電圧 Vocは711 mV、フィルファクターFFは、0.502、光電変換効率ηは4.21%となった。
(Example 3) 25 g of titania fine particles P25 (Degussa, Germany) and 10 g of ethyl cellulose having a molecular weight of about 20000 to 50000 were added to 65 g of terpineol and stirred for 15 minutes to prepare a titania dispersion. To this dispersion, 3 g of titanium isopropoxide was added and stirred for 15 minutes to prepare a titania dispersion. This dispersion was cast using a 65 μm spacer to produce a membrane, and this membrane was fired at 500 ° C. for 1 hour to produce a porous titania thin film. The produced titania film was immersed in 0.3 mmol of N3dye solution and placed at 25 ° C. for 24 hours to adsorb the dye, thereby obtaining a photoelectric conversion element. Platinum is used for the counter electrode, and lithium iodide, iodine, t-butylpyridine, and 1.2-dimethyl-3-propylimidazolium iodide are dissolved in acetonitrile as an electrolyte so as to be 0.1, 0.05, 0.5, and 0.6 mol / l, respectively. A cell was prepared using the prepared one. The solar cell was evaluated by irradiating simulated sunlight with AM1.5 and 100 mA / cm2.
Short-circuit current Jsc was 11.8 mA, open-circuit voltage Voc was 711 mV, fill factor FF was 0.502, and photoelectric conversion efficiency η was 4.21%.

(実施例4)テルピネオール65gに、チタニア微粒子P25(独 デグサ社)を25g、分子量約20000〜50000のエチルセルロースを10g添加し、15分間攪拌しチタニア分散体 を作製した。この分散体にニオビウムエトキシドを3g加え、さらに15分間攪拌しチタニア分散体 を作製した。この分散体 を65μmのスペーサーを用い流延し膜を作製し、この膜を500℃1時間焼成し、多孔質チタニア薄膜を作製した。作製したチタニア膜を0.3mmolのN3dye溶液に浸漬し25℃で24時間請置し色素を吸着させ光電変換素子を得た。対極に白金を用い、電解質としてアセトニトリルにヨウ化リチウム、ヨウ素、t‐ブチルピリジン、1.2-ジメチル-3-プロピルイミダゾリウムアイオダイドをそれぞれ0.1、0.05、0.5、0.6mol/lとなるように溶解、調整いたものを用い、セルを作製した。太陽電池 の評価はAM1.5、100mA/cm2の擬似太陽光を照射し行った。
短絡電流 Jscは 12.0mA、開放電圧 Vocは724 mV、フィルファクターFFは、0.517、光電変換効率ηは4.49%となった。
Example 4 To 65 g of terpineol, 25 g of titania fine particles P25 (Degussa, Germany) and 10 g of ethyl cellulose having a molecular weight of about 20000 to 50000 were added and stirred for 15 minutes to prepare a titania dispersion. To this dispersion was added 3 g of niobium ethoxide, and the mixture was further stirred for 15 minutes to prepare a titania dispersion. This dispersion was cast using a 65 μm spacer to produce a membrane, and this membrane was fired at 500 ° C. for 1 hour to produce a porous titania thin film. The produced titania film was immersed in 0.3 mmol of N3dye solution and placed at 25 ° C. for 24 hours to adsorb the dye, thereby obtaining a photoelectric conversion element. Platinum is used for the counter electrode, and lithium iodide, iodine, t-butylpyridine, and 1.2-dimethyl-3-propylimidazolium iodide are dissolved in acetonitrile as an electrolyte so as to be 0.1, 0.05, 0.5, and 0.6 mol / l, respectively. A cell was prepared using the prepared one. The solar cell was evaluated by irradiating simulated sunlight with AM1.5 and 100 mA / cm2.
Short-circuit current Jsc was 12.0 mA, open-circuit voltage Voc was 724 mV, fill factor FF was 0.517, and photoelectric conversion efficiency η was 4.49%.

(比較例1) 実施例1〜4の組成において、テルピネオールを水に、チタニア微粒子P25(独 デグサ社)を25g、分子量約20000〜50000のエチルセルロースの変わりに分子量約20000〜50000のポリエチレングリコールを用いて、同組成で15分間攪拌しチタニア分散体 を作製し、実施例1〜4と同様に太陽電池特性測定実験を行った。
短絡電流 Jscは 7.7 mA、開放電圧 Vocは668.3 mV、フィルファクターFFは、0.504、光電変換効率ηは2.61%となった。
(Comparative Example 1) In the compositions of Examples 1 to 4, terpineol was used in water, titania fine particles P25 (Degussa, Germany) was 25 g, and polyethylene glycol having a molecular weight of about 20000 to 50000 was used instead of ethylcellulose having a molecular weight of about 20000 to 50000. Then, the mixture was stirred for 15 minutes to prepare a titania dispersion, and a solar cell characteristic measurement experiment was conducted in the same manner as in Examples 1 to 4.
The short-circuit current Jsc was 7.7 mA, the open circuit voltage Voc was 668.3 mV, the fill factor FF was 0.504, and the photoelectric conversion efficiency η was 2.61%.

(実施例5) 二酸化チタンとポリビニルブチラールとテルピネオールを二本ロールを用いて混合することにより固形チップとした。このチップを溶媒で溶解し、25wt%二酸化チタン分散体に調整した。そして、同様に太陽電池特性測定実験を行った。
短絡電流 Jscは 11.5 mA、開放電圧 Vocは715.7mV、フィルファクターFFは、0.492、光電変換効率ηは4.04%となった。
Example 5 A solid chip was prepared by mixing titanium dioxide, polyvinyl butyral, and terpineol using two rolls. This chip was dissolved in a solvent to prepare a 25 wt% titanium dioxide dispersion. And the solar cell characteristic measurement experiment was done similarly.
The short circuit current Jsc was 11.5 mA, the open circuit voltage Voc was 715.7 mV, the fill factor FF was 0.492, and the photoelectric conversion efficiency η was 4.04%.

(比較例2)実施例5の組成と同組成の二酸化チタン分散体を攪拌により混合するだけで作製し、同様に太陽電池特性測定実験を行った。
短絡電流 Jscは 8.3mA、開放電圧 Vocは716.9mV、フィルファクターFFは、0.563、光電変換効率ηは3.37%となった。
(Comparative Example 2) A titanium dioxide dispersion having the same composition as that of Example 5 was prepared simply by mixing, and a solar cell characteristic measurement experiment was conducted in the same manner.
The short-circuit current Jsc was 8.3 mA, the open circuit voltage Voc was 716.9 mV, the fill factor FF was 0.563, and the photoelectric conversion efficiency η was 3.37%.

実施例1〜5、比較例1、2、の太陽電池としての評価を下表にまとめた。
表中、Jscは、短絡電流を示す。Vocは、開放電圧を示す。FFは、フィルファクターを示す。ηは、光電変換効率を示す。
実施例1、2とも比較例1より、高い光―エネルギー変換効率を示した。溶媒にテルピネオール、添加剤としてエチルセルロース、もしくはポリビニルブチラールを用いることにより、従来から用いられている水とポリエチレングリコールをベースとする二酸化チタン分散体と比較して、適度な二酸化チタン粒子径と電解質浸透のための細孔径、そして光に対する批表面積を有する二酸化チタン薄膜を作製することができ、高い光―エネルギー変換効率を得ることができた。
実施例3は比較例1より、高い光―エネルギー変換効率を示した。チタンアルコキシド等の有機チタン化合物が分散体に添加されると焼結した時に、光によって励起された電子―ホールの再結合中心と言われているチタニア粒子間のボトルネックが改善され、変換効率が上昇する結果となった。
実施例4は比較例1よりニオビウム化合物を分散体に混合することで、焼結時に二酸化チタン薄膜にニオビウムがドープされ、二酸化チタンのドナー密度が増加し、薄膜の導電性が増加し変換効率の向上を可能にした。
実施例5は比較例2より、高い光―エネルギー変換効率を示した。二本ロールで分散することで、より粒子径が最適化され、またアナターゼの結晶相が変化した(X線回折法で確認済み)ことに起因すると思われる。

Evaluations of Examples 1 to 5 and Comparative Examples 1 and 2 as solar cells are summarized in the following table.
In the table, Jsc indicates a short circuit current. Voc indicates an open circuit voltage. FF indicates a fill factor. η indicates the photoelectric conversion efficiency.
Both Examples 1 and 2 showed higher light-energy conversion efficiency than Comparative Example 1. By using terpineol as a solvent and ethyl cellulose or polyvinyl butyral as an additive, compared to conventional titanium dioxide dispersions based on water and polyethylene glycol, it has an appropriate titanium dioxide particle size and electrolyte penetration. Therefore, a titanium dioxide thin film having a pore diameter and a critical surface area for light could be produced, and high light-energy conversion efficiency could be obtained.
Example 3 showed higher light-energy conversion efficiency than Comparative Example 1. When an organic titanium compound such as titanium alkoxide is added to the dispersion, the bottleneck between titania particles, which is said to be the electron-hole recombination center excited by light, is improved when sintered, and the conversion efficiency is improved. The result was an increase.
In Example 4, by mixing the niobium compound into the dispersion from Comparative Example 1, the titanium dioxide thin film is doped with niobium during sintering, the donor density of titanium dioxide is increased, the conductivity of the thin film is increased, and the conversion efficiency is increased. Made improvements possible.
Example 5 showed higher light-energy conversion efficiency than Comparative Example 2. Dispersion with two rolls seems to be due to the optimization of the particle size and the change of the anatase crystal phase (confirmed by X-ray diffraction method).

Claims (10)

(a)少なくともテルピネオール、アルコール類、グリコールエーテル類、グリコールエーテルアセテート類より選ばれるいずれか1種類以上の溶媒と、(b)二酸化チタンと、(c)セルロース系物質あるいはブチラール系物質より選ばれる1種類以上の添加剤を含む色素増感型太陽電池用二酸化チタン分散体 。   (a) at least one solvent selected from terpineol, alcohols, glycol ethers and glycol ether acetates; (b) titanium dioxide; and (c) a cellulosic material or a butyral material. A titanium dioxide dispersion for a dye-sensitized solar cell containing at least one type of additive. (c)の該セルロース系添加剤がエチルセルロース、該ブチラール系添加剤がポリビニルブチラールであることを特徴とする請求項1に記載の色素増感型太陽電池用二酸化チタン分散体。   The titanium dioxide dispersion for a dye-sensitized solar cell according to claim 1, wherein the cellulose-based additive in (c) is ethyl cellulose and the butyral-based additive is polyvinyl butyral. (a)単独もしくは混合溶媒として30〜90重量部、(b)二酸化チタン5〜60重量部、(c)添加剤が1〜30重量部である請求項1〜2に記載の色素増感型太陽電池用二酸化チタン分散体。   The dye-sensitized dye according to claim 1 or 2, wherein (a) alone or as a mixed solvent is 30 to 90 parts by weight, (b) titanium dioxide is 5 to 60 parts by weight, and (c) the additive is 1 to 30 parts by weight. Titanium dioxide dispersion for solar cells. (c)の添加剤の分子量が、1万から20万の単独もしくは2種以上の混合物である請求項1〜3に記載の色素増感型太陽電池用二酸化チタン分散体。   The titanium dioxide dispersion for a dye-sensitized solar cell according to claim 1, wherein the additive (c) has a molecular weight of 10,000 to 200,000 alone or a mixture of two or more. チタンアルコキシド等の有機チタン化合物を0.1〜30重量部添加した請求項1〜4
に記載の色素増感型太陽電池用二酸化チタン分散体。
5. An organic titanium compound such as titanium alkoxide is added in an amount of 0.1 to 30 parts by weight.
2. Titanium dioxide dispersion for dye-sensitized solar cell according to 1.
ニオビウムエトキシドなどのニオビウム化合物を0.1〜30重量部添加した請求項1〜4に記載の色素増感型太陽電池用二酸化分散体。   The dye-sensitized solar cell dioxide dispersion according to claim 1, wherein 0.1 to 30 parts by weight of a niobium compound such as niobium ethoxide is added. 二酸化チタンとポリビニルブチラール樹脂を二本ロールで高圧処理することにより固形化チップとし、そのチップを溶解して作製した請求項1〜6に記載の色素増感型太陽電池用二酸化チタン分散体。   The titanium dioxide dispersion for dye-sensitized solar cells according to claim 1, which is produced by subjecting titanium dioxide and polyvinyl butyral resin to a solidified chip by high-pressure treatment with two rolls and dissolving the chip. 請求項1〜7に記載の色素増感型太陽電池用二酸化チタン分散体を用いて作製されたことを特徴とする色素増感型太陽電池用多孔質二酸化チタン薄膜。   A porous titanium dioxide thin film for a dye-sensitized solar cell, produced using the titanium dioxide dispersion for a dye-sensitized solar cell according to claim 1. 請求項8に記載の色素増感型太陽電池用多孔質二酸化チタン薄膜に色素を吸着させたことを特徴とする光電変換素子。   A photoelectric conversion element, wherein a dye is adsorbed on the porous titanium dioxide thin film for a dye-sensitized solar cell according to claim 8. 請求項9に記載の光電変換素子を用いて作製したことを特徴とする色素増感型太陽電池。
A dye-sensitized solar cell produced using the photoelectric conversion device according to claim 9.
JP2005307747A 2005-10-21 2005-10-21 Titanium dioxide dispersing element for dye sensitized solar battery Pending JP2007115602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307747A JP2007115602A (en) 2005-10-21 2005-10-21 Titanium dioxide dispersing element for dye sensitized solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307747A JP2007115602A (en) 2005-10-21 2005-10-21 Titanium dioxide dispersing element for dye sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2007115602A true JP2007115602A (en) 2007-05-10

Family

ID=38097589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307747A Pending JP2007115602A (en) 2005-10-21 2005-10-21 Titanium dioxide dispersing element for dye sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2007115602A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019983A1 (en) * 2007-08-06 2009-02-12 Toyo Seikan Kaisha, Ltd. Dye-sensitized solar cell
JP2009059687A (en) * 2007-08-06 2009-03-19 Toyo Seikan Kaisha Ltd Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2009057544A (en) * 2007-08-06 2009-03-19 Toyo Seikan Kaisha Ltd Paste for forming semiconductor porous layer
WO2010117062A1 (en) * 2009-04-09 2010-10-14 東洋製罐株式会社 Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode
JP2010262919A (en) * 2009-04-09 2010-11-18 Toyo Seikan Kaisha Ltd Coating composition for forming porous photoelectric conversion layer, and forming method for porous photoelectric conversion layer
JP2011008956A (en) * 2009-06-23 2011-01-13 Sumitomo Osaka Cement Co Ltd Paste composition for forming optical semiconductor porous film, optical semiconductor porous film for dye-sensitized solar cell, and dye-sensitized solar cell
CN103489652A (en) * 2013-09-25 2014-01-01 奇瑞汽车股份有限公司 Method for preparing titanium dioxide slurry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019983A1 (en) * 2007-08-06 2009-02-12 Toyo Seikan Kaisha, Ltd. Dye-sensitized solar cell
JP2009059687A (en) * 2007-08-06 2009-03-19 Toyo Seikan Kaisha Ltd Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2009057544A (en) * 2007-08-06 2009-03-19 Toyo Seikan Kaisha Ltd Paste for forming semiconductor porous layer
CN101772858B (en) * 2007-08-06 2013-10-09 东洋制罐株式会社 Dye-sensitized solar cell
KR101470680B1 (en) * 2007-08-06 2014-12-09 도요세이칸 그룹 홀딩스 가부시키가이샤 Dye-sensitized solar cell and electrode substrate therefor, method of producing an electrode substrate, and paste for forming a semiconductor porous layer
WO2010117062A1 (en) * 2009-04-09 2010-10-14 東洋製罐株式会社 Electrode used in dye-sensitized solar cell, and coating composition used for producing the electrode
JP2010262919A (en) * 2009-04-09 2010-11-18 Toyo Seikan Kaisha Ltd Coating composition for forming porous photoelectric conversion layer, and forming method for porous photoelectric conversion layer
JP2011008956A (en) * 2009-06-23 2011-01-13 Sumitomo Osaka Cement Co Ltd Paste composition for forming optical semiconductor porous film, optical semiconductor porous film for dye-sensitized solar cell, and dye-sensitized solar cell
CN103489652A (en) * 2013-09-25 2014-01-01 奇瑞汽车股份有限公司 Method for preparing titanium dioxide slurry

Similar Documents

Publication Publication Date Title
KR101172374B1 (en) Dye-sensitized solar cell based on perovskite sensitizer and manufacturing method thereof
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
TWI401811B (en) Dye-sensitized solar cells and manufacturing method for thereof
KR20080006735A (en) Photovoltaic cell using catalyst supporting carbon nanotube and method for producing the same
JP2005235725A (en) Dye-sensitized solar cell module
JP2010262760A (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar-cell module
JP4448478B2 (en) Dye-sensitized solar cell module
US20140096813A1 (en) Photoelectric conversion element and photoelectric conversion element module
JP2007115602A (en) Titanium dioxide dispersing element for dye sensitized solar battery
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
US20100300537A1 (en) Dye-sensitized solar cell and organic solvent-free electrolyte for dye-sensitized solar cell
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP5536015B2 (en) Photoelectric conversion element and photoelectric conversion element module
KR101166515B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP2008198482A (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized sensitized solar cell
JP2014238969A (en) Solar battery
JP2003297445A (en) Coating composition for photoelectric conversion element
JP2013161775A (en) Method of manufacturing dye-sensitized photoelectric conversion element and method of manufacturing dye-sensitized solar battery using the same
WO2017150120A1 (en) Photoelectric conversion element and photoelectric conversion module
JP5313278B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2011076935A (en) Dye-sensitized solar cell, liquid for electrolyte layer formation, and solar cell module
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
KR101461095B1 (en) Electrolyte for light-sensitized solar cells and the light-sensitized solar cells comprising the same