TWI758940B - Dye adsorption method of photoelectrode - Google Patents

Dye adsorption method of photoelectrode Download PDF

Info

Publication number
TWI758940B
TWI758940B TW109138948A TW109138948A TWI758940B TW I758940 B TWI758940 B TW I758940B TW 109138948 A TW109138948 A TW 109138948A TW 109138948 A TW109138948 A TW 109138948A TW I758940 B TWI758940 B TW I758940B
Authority
TW
Taiwan
Prior art keywords
photoelectrode
semiconductor layer
dye adsorption
adsorption method
dye
Prior art date
Application number
TW109138948A
Other languages
Chinese (zh)
Other versions
TW202220247A (en
Inventor
李玉郎
陳韻羽
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW109138948A priority Critical patent/TWI758940B/en
Application granted granted Critical
Publication of TWI758940B publication Critical patent/TWI758940B/en
Publication of TW202220247A publication Critical patent/TW202220247A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

A dye adsorption method of a photoelectrode is described, which comprises steps of: providing a conductive substrate; forming a photoelectrode on the conductive substrate; and immersing the photoelectrode in a dye solution, and providing voltage and/or current to the photoelectrode by using an electrochemical method for 30 minutes to 90 minutes.

Description

光電極的染料吸附方法Dye adsorption methods for photoelectrodes

本發明係關於染料電池領域,特別是關於一種光電極的染料吸附方法。The present invention relates to the field of dye batteries, in particular to a dye adsorption method for a photoelectrode.

一般的DSSC是將光電極浸泡於染料溶液中,利用自發性吸附程序,使染料分子吸附於二氧化鈦薄膜上。其原理是利用染料分子的羧基(-COOH)會與二氧化鈦薄膜上的羥基(-OH)進行反應,使帶有羧基的染料分子吸附與二氧化鈦薄膜上並形成化學鍵結。而,在一般的浸泡吸附法中,約需要24小時的長時間才能達到商用水準,因此需要花費許多製作時間。In general DSSC, the photoelectrode is immersed in a dye solution, and the dye molecules are adsorbed on the titanium dioxide film by the spontaneous adsorption process. The principle is that the carboxyl group (-COOH) of the dye molecule will react with the hydroxyl group (-OH) on the titanium dioxide film, so that the dye molecule with the carboxyl group is adsorbed on the titanium dioxide film and forms a chemical bond. However, in the general immersion adsorption method, it takes a long time of about 24 hours to reach a commercial level, and therefore it takes a lot of production time.

故,有必要提供一種光電極的染料吸附方法,以解決傳統(或一般)技術所存在的問題。Therefore, it is necessary to provide a dye adsorption method for photoelectrodes to solve the problems existing in the traditional (or general) technology.

本發明之一目的在於提供一種光電極的染料吸附方法,其是透過電化學方式提供電壓及/或電流予光電極持續30分至90分之間,以能夠短時間下完成染料的吸附效果。One object of the present invention is to provide a dye adsorption method for a photoelectrode, which is to provide voltage and/or current to the photoelectrode through electrochemical means for 30 to 90 minutes, so as to complete the dye adsorption effect in a short time.

為達上述之目的,本發明提供一種光電極的染料吸附方法,其包含步驟:提供一導電基板;形成一光電極於該導電基板上;浸泡該光電極於一染料溶液中;以及以一電化學方式提供電壓及/或電流予該光電極持續30分至90分之間。In order to achieve the above purpose, the present invention provides a dye adsorption method for a photoelectrode, which comprises the steps of: providing a conductive substrate; forming a photoelectrode on the conductive substrate; immersing the photoelectrode in a dye solution; A voltage and/or current is supplied to the photoelectrode for between 30 minutes and 90 minutes in a scientific manner.

在本發明之一實施例中,該導電基板的材質選自於氧化銦錫及摻雜有氟的氧化錫中的至少一種。In an embodiment of the present invention, the material of the conductive substrate is selected from at least one of indium tin oxide and fluorine-doped tin oxide.

在本發明之一實施例中,該光電極的材質包含:二氧化鈦、二氧化錫、氧化鎳及氧化鋅中的任一種。In an embodiment of the present invention, the material of the photoelectrode includes any one of titanium dioxide, tin dioxide, nickel oxide and zinc oxide.

在本發明之一實施例中,該電化學方式係定電壓法或定電流法。In one embodiment of the present invention, the electrochemical method is a constant voltage method or a constant current method.

在本發明之一實施例中,該定電壓法係提供2V至5V的電壓予該光電極。In one embodiment of the present invention, the constant voltage method provides a voltage of 2V to 5V to the photoelectrode.

在本發明之一實施例中,該定電壓法係提供2.5V至3.5V的電壓予該光電極。In one embodiment of the present invention, the constant voltage method provides a voltage of 2.5V to 3.5V to the photoelectrode.

在本發明之一實施例中,該定電流法係提供2x10 -5A至7x10 -5A的電流予該光電極。 In one embodiment of the present invention, the constant current method provides a current of 2x10 -5 A to 7x10 -5 A to the photoelectrode.

在本發明之一實施例中,該定電流法係提供4x10 -5A至6x10 -5A的電流予該光電極。 In one embodiment of the present invention, the constant current method provides a current of 4x10 -5 A to 6x10 -5 A to the photoelectrode.

在本發明之一實施例中,形成該光電極於該導電基板上的步驟包含:形成一第一半導體層於該導電基板上,其中該第一半導體層包含多個第一半導體顆粒,以及該些第一半導體顆粒具有一第一平均粒徑;以及形成一第二半導體層於該第一半導體層上,其中該第二半導體層包含多個第二半導體顆粒,以及該些第二半導體顆粒具有一第二平均粒徑,其中該第二平均粒徑大於該第一平均粒徑。In one embodiment of the present invention, the step of forming the photoelectrode on the conductive substrate includes: forming a first semiconductor layer on the conductive substrate, wherein the first semiconductor layer includes a plurality of first semiconductor particles, and the some first semiconductor particles have a first average particle size; and a second semiconductor layer is formed on the first semiconductor layer, wherein the second semiconductor layer includes a plurality of second semiconductor particles, and the second semiconductor particles have a second average particle size, wherein the second average particle size is larger than the first average particle size.

在本發明之一實施例中,在形成該第二半導體層於該第一半導體層上的步驟後,更包含:進行一燒結步驟以增強該第一半導體層與該第二半導體層之間的鍵結。In one embodiment of the present invention, after the step of forming the second semiconductor layer on the first semiconductor layer, further comprising: performing a sintering step to enhance the bonding between the first semiconductor layer and the second semiconductor layer bond.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。In order to make the above-mentioned and other objects, features and advantages of the present invention more clearly understood, the preferred embodiments of the present invention will be exemplified below and described in detail in conjunction with the accompanying drawings. Furthermore, the directional terms mentioned in the present invention, such as up, down, top, bottom, front, rear, left, right, inner, outer, side, surrounding, center, horizontal, lateral, vertical, longitudinal, axial, Radial, uppermost or lowermost, etc., are only directions with reference to the attached drawings. Therefore, the directional terms used are for describing and understanding the present invention, not for limiting the present invention.

請參照第1圖所示,本發明一實施例之光電極的染料吸附方法10,主要包含下列步驟11至14:提供一導電基板(步驟11);形成一光電極於該導電基板上(步驟12);浸泡該光電極於一染料溶液中,以一電化學方式提供電壓及/或電流予該光電極持續30分至90分之間(步驟13)。本發明將於下文逐一詳細說明實施例之上述各步驟的實施細節及其原理。Referring to FIG. 1, a dye adsorption method 10 for a photoelectrode according to an embodiment of the present invention mainly includes the following steps 11 to 14: providing a conductive substrate (step 11); forming a photoelectrode on the conductive substrate (step 11) 12); soaking the photoelectrode in a dye solution, and providing voltage and/or current to the photoelectrode in an electrochemical manner for 30 to 90 minutes (step 13). The present invention will hereinafter describe in detail the implementation details and principles of the above steps in the embodiments.

本發明一實施例之光電極的染料吸附方法10首先係步驟11:提供一導電基板。在本步驟11中,該導電基板的材質例如可選自於氧化銦錫(ITO)及摻雜有氟的氧化錫(FTO)中的至少一種。The dye adsorption method 10 for a photoelectrode according to an embodiment of the present invention firstly includes step 11 : providing a conductive substrate. In this step 11, the material of the conductive substrate may be selected from at least one of indium tin oxide (ITO) and fluorine-doped tin oxide (FTO), for example.

本發明一實施例之光電極的染料吸附方法10接著係步驟12:形成一光電極於該導電基板上。在本步驟中,光電極主要是做工作電極,例如可以是採用氧化物來吸收光能以轉變為電能。在一實施例中,該光電極的材質可包含:二氧化鈦、二氧化錫、氧化鎳及氧化鋅中的任一種。The dye adsorption method 10 for a photoelectrode according to an embodiment of the present invention is followed by step 12: forming a photoelectrode on the conductive substrate. In this step, the photoelectrode is mainly used as a working electrode, for example, an oxide can be used to absorb light energy to convert it into electrical energy. In one embodiment, the material of the photoelectrode may include any one of titanium dioxide, tin dioxide, nickel oxide and zinc oxide.

在一實施例中,形成該光電極於該導電基板上的步驟可包含:形成一第一半導體層於該導電基板上,其中該第一半導體層包含多個第一半導體顆粒,以及該些第一半導體顆粒具有一第一平均粒徑;以及形成一第二半導體層於該第一半導體層上,其中該第二半導體層包含多個第二半導體顆粒,以及該些第二半導體顆粒具有一第二平均粒徑,其中該第二平均粒徑大於該第一平均粒徑。In one embodiment, the step of forming the photoelectrode on the conductive substrate may include: forming a first semiconductor layer on the conductive substrate, wherein the first semiconductor layer includes a plurality of first semiconductor particles, and the first semiconductor particles. a semiconductor particle having a first average particle size; and forming a second semiconductor layer on the first semiconductor layer, wherein the second semiconductor layer includes a plurality of second semiconductor particles, and the second semiconductor particles have a first Two average particle sizes, wherein the second average particle size is larger than the first average particle size.

具體的,第一半導體層主要作為主動層(main layer)。在一實施例中,第一半導體層具有第一厚度,其介於6至10微米之間。在一範例中,該第一厚度例如是7、8或9微米。在另一實施例中,第一半導體層具有第一平均粒徑,其係介於15至25奈米之間。在一範例中,該第一平均粒徑例如是16、18、20、21、22、23或24奈米。在一實施例中,該第一半導體層是透過網版印刷方式形成於該光電極上,其中在進行該網版印刷方式的過程中可能使用各種輔助劑。在又一實施例中,該第一半導體層的材質包含二氧化鈦、二氧化錫、氧化鎳及氧化鋅中的任一種。Specifically, the first semiconductor layer is mainly used as an active layer (main layer). In one embodiment, the first semiconductor layer has a first thickness between 6 and 10 microns. In one example, the first thickness is, for example, 7, 8 or 9 microns. In another embodiment, the first semiconductor layer has a first average particle size, which is between 15 and 25 nm. In one example, the first average particle size is, for example, 16, 18, 20, 21, 22, 23 or 24 nm. In one embodiment, the first semiconductor layer is formed on the photoelectrode by screen printing, wherein various adjuvants may be used during the screen printing process. In yet another embodiment, the material of the first semiconductor layer includes any one of titanium dioxide, tin dioxide, nickel oxide and zinc oxide.

另外,該第二半導體層主要作為光線的散射層(scattering layer),以使未產生光電效應的光線可再散射返回該第一半導體層中,進而改善光電轉換效率。在一實施例中,第二半導體層具有第二厚度,其介於1至6微米之間。在一範例中,該第二厚度例如是2、3、4或5微米。在另一實施例中,第二半導體層具有第二平均粒徑,其介於350至450奈米之間。在一範例中,該第二平均粒徑例如是360、380、400、410、420、430或440奈米。在一實施例中,該第二半導體層是透過網版印刷方式形成於該第一半導體層上。在又一實施例中,該第二半導體層的材質包含二氧化鈦、二氧化錫、氧化鎳及氧化鋅中的任一種。In addition, the second semiconductor layer is mainly used as a scattering layer for light, so that light without photoelectric effect can be scattered back into the first semiconductor layer, thereby improving the photoelectric conversion efficiency. In one embodiment, the second semiconductor layer has a second thickness between 1 and 6 microns. In one example, the second thickness is, for example, 2, 3, 4 or 5 microns. In another embodiment, the second semiconductor layer has a second average particle size between 350 and 450 nm. In an example, the second average particle size is, for example, 360, 380, 400, 410, 420, 430 or 440 nm. In one embodiment, the second semiconductor layer is formed on the first semiconductor layer by screen printing. In yet another embodiment, the material of the second semiconductor layer includes any one of titanium dioxide, tin dioxide, nickel oxide and zinc oxide.

在一實施例中,在形成該第二半導體層於該第一半導體層上的步驟後,更包含:進行一燒結步驟以增強該第一半導體層與該第二半導體層之間的鍵結。在一範例中,該燒結步驟例如是在490至510℃(例如約500℃)下進行達10至20分鐘。在一具體範例中,該燒結步驟係以多個分段升溫條件來進行,其中該些分段升溫條件包含:以5至15分鐘從室溫升溫達140至160℃之間並持溫5至15分鐘;以5至15分鐘從140至160℃之間升溫達320至330℃並持溫5至15分鐘;以3至7分鐘從320至330℃之間升溫達370至380℃並持溫3至7分鐘;以5至10分鐘從370至380℃之間升溫達440至460℃並持溫20至40分鐘;以及以3至7分鐘從440至460℃之間升溫達490至510℃並持溫10至20分鐘。In one embodiment, after the step of forming the second semiconductor layer on the first semiconductor layer, the method further includes: performing a sintering step to enhance the bonding between the first semiconductor layer and the second semiconductor layer. In one example, the sintering step is performed, for example, at 490 to 510° C. (eg, about 500° C.) for 10 to 20 minutes. In a specific example, the sintering step is carried out under a plurality of staged heating conditions, wherein the staged heating conditions include: heating from room temperature to 140 to 160° C. in 5 to 15 minutes and holding the temperature for 5 to 15 minutes. 15 minutes; from 140 to 160°C to 320 to 330°C in 5 to 15 minutes and hold for 5 to 15 minutes; from 320 to 330°C to 370 to 380°C in 3 to 7 minutes and hold 3 to 7 minutes; 5 to 10 minutes from 370 to 380°C to 440 to 460°C and hold for 20 to 40 minutes; and 3 to 7 minutes from 440 to 460°C to 490 to 510°C And keep warm for 10 to 20 minutes.

本發明一實施例之光電極的染料吸附方法10接著係步驟13:浸泡該光電極於一染料溶液中,以一電化學方式提供電壓及/或電流予該光電極持續30分至90分之間。在本步驟13中,主要是透過電化學方式來加速染料被光電極吸附的效果,其原理為染料分子的羧基(-COOH)會與二氧化鈦薄膜上的羥基(-OH)進行反應,使帶有COO-的染料分子與薄膜形成鍵結,在一實施例中,染料溶液可採用已知的染料材質,例如N719染料,但不以此為限。The dye adsorption method 10 for a photoelectrode of an embodiment of the present invention is followed by step 13: soaking the photoelectrode in a dye solution, and electrochemically supplying voltage and/or current to the photoelectrode for 30 to 90 minutes between. In this step 13, the effect of the dye being adsorbed by the photoelectrode is accelerated mainly through electrochemical means. The principle is that the carboxyl group (-COOH) of the dye molecule will react with the hydroxyl group (-OH) on the titanium dioxide film to make the The dye molecules of COO- form bonds with the thin film. In one embodiment, the dye solution may use a known dye material, such as N719 dye, but not limited thereto.

在一實施例中,該電化學方式例如係定電壓法或定電流法。在一範例中,該定電壓法係提供2至5V的電壓予該光電極,例如,提供2.5V、3V、3.5V、4V、4.5V或5V的固定電壓。在一具體範例中,該定電壓法係提供2.5至3.5V的電壓予該光電極。在一範例中,該定電流法係提供2x10 -5A至7x10 -5A的電流予該光電極,例如,提供3x10 -5A、4x10 -5A、5x10 -5A或6x10 -5A的固定電流。在一具體範例中,該定電流法係提供4x10 -5A至6x10 -5A的電流予該光電極。 In one embodiment, the electrochemical method is, for example, a constant voltage method or a constant current method. In one example, the constant voltage method provides a voltage of 2 to 5V to the photoelectrode, eg, a fixed voltage of 2.5V, 3V, 3.5V, 4V, 4.5V, or 5V. In a specific example, the constant voltage method provides a voltage of 2.5 to 3.5V to the photoelectrode. In one example, the constant current method provides a current of 2x10 -5 A to 7x10 -5 A to the photoelectrode, eg, 3x10 -5 A, 4x10 -5 A, 5x10 -5 A or 6x10 -5 A fixed current. In a specific example, the constant current method provides a current of 4x10 -5 A to 6x10 -5 A to the photoelectrode.

要提到的是,本發明實施例的光電極的染料吸附方法10主要是透過採用電化學方式來減少光電極浸泡在染料溶液的時間(僅需30至90分)。具體的,傳統的浸泡法(單純將光電極浸泡在染料溶液中)大約需要24小時或以上才能達到一定的商用需求。因此,本發明實施例的光電極的染料吸附方法10可大量縮減製作時間。It should be mentioned that the dye adsorption method 10 of the photoelectrode of the embodiment of the present invention mainly reduces the time for the photoelectrode to be immersed in the dye solution (only 30 to 90 minutes) by adopting an electrochemical method. Specifically, the traditional immersion method (simply immersing the photoelectrode in the dye solution) takes about 24 hours or more to achieve a certain commercial demand. Therefore, the dye adsorption method 10 of the photoelectrode according to the embodiment of the present invention can greatly reduce the fabrication time.

值得一提的是,本發明實施例的光電極的染料吸附方法所製得的光電極可應用在現有的染料電池的料件或製作過程中,相關的料件(例如對電極、電解質等等)或製作過程不再贅述。It is worth mentioning that the photoelectrode prepared by the dye adsorption method of the photoelectrode according to the embodiment of the present invention can be applied to the existing dye battery materials or manufacturing process, and related materials (such as counter electrodes, electrolytes, etc. ) or the production process will not be repeated.

以下提出數個實施例及數個比較例以說明本發明實施例的光電極的染料吸附方法所製得的光電極確實具有上述效果。Several embodiments and several comparative examples are provided below to illustrate that the photoelectrodes prepared by the dye adsorption method of the photoelectrodes of the embodiments of the present invention indeed have the above-mentioned effects.

實施例1至10Examples 1 to 10

首先,提供導電基板(例如ITO或FTO,此處以FTO為例),接著例如以網版印刷法將光電極(例如二氧化鈦、二氧化錫、氧化鎳及氧化鋅中的任一種,此處以二氧化鈦為例)形成在導電基板上。接著,浸泡該光電極於一染料溶液(例如市售的染料溶液,例如以N719為例)中,以一電化學方式提供電壓及/或電流予該光電極持續30分至90分之間。First, a conductive substrate (such as ITO or FTO, here FTO is taken as an example) is provided, and then a photoelectrode (such as any one of titanium dioxide, tin dioxide, nickel oxide and zinc oxide, where titanium dioxide is used as the screen printing method) is provided. Example) formed on a conductive substrate. Next, soak the photoelectrode in a dye solution (such as a commercially available dye solution, such as N719), and electrochemically supply voltage and/or current to the photoelectrode for 30 to 90 minutes.

如第2圖所示,上述的電化學方式例如是以位在導電基板21上的光電極22做為工作電極來架設三級式電化學槽,經由循環伏安儀可得知氧化反應之電位區間,並利用相同設備於工作電極施予固定電位(定電位法)或固定電流(定電流法),以使光電極22吸附染料分子23。As shown in FIG. 2, the above electrochemical method, for example, uses the photoelectrode 22 on the conductive substrate 21 as the working electrode to set up a three-stage electrochemical cell, and the potential of the oxidation reaction can be obtained through a cyclic voltammeter The same equipment is used to apply a fixed potential (constant potential method) or a fixed current (constant current method) to the working electrode, so that the photoelectrode 22 can adsorb the dye molecules 23 .

之後,以市售儀器對實施例1至10進行光伏特性分析(標準太陽光AM 1.5G下),實施例1至10的參數設定與分析結果如表1所示。After that, the photovoltaic characteristics of Examples 1 to 10 were analyzed with commercially available instruments (under standard sunlight AM 1.5G). The parameter settings and analysis results of Examples 1 to 10 are shown in Table 1.

表1 定電位法 電位(V) 吸附時間(分) 短路電流Jsc (mA/cm 2) 開路電壓Voc (V) 填充因子FF 光電轉換效率 實施例1 2 30 12.17 0.727 0.721 6.38 實施例2 3 30 14.44 0.761 0.718 7.90 實施例3 4 30 14.55 0.750 0.720 7.86 實施例4 5 30 14.19 0.708 0.705 7.08 實施例5 3 60 15.14 0.744 0.735 8.27 實施例6 4 60 13.48 0.691 0.718 6.69 實施例7 3 90 12.62 0.690 0.717 6.24 定電流法 電流 (10 -5A) 吸附時間(分) 短路電流Jsc (mA/cm 2) 開路電壓Voc (V) 填充因子FF 光電轉換效率 實施例8 2 30 11.51 0.704 0.741 6.00 實施例9 5 30 15.17 0.748 0.716 8.13 實施例10 7 30 13.30 0.688 0.709 6.49 傳統浸泡法 單純浸泡 吸附時間(分) 短路電流Jsc (mA/cm 2) 開路電壓Voc (V) 填充因子FF 光電轉換效率 比較例1 N/A 30 9.38 0.726 0.692 4.72 比較例2 N/A 60 10.8 0.700 0.691 5.24 比較例3 N/A 1440 15.85 0.725 0.717 8.24 Table 1 constant potential method Potential (V) Adsorption time (min) Short circuit current Jsc (mA/cm 2 ) Open circuit voltage Voc (V) Fill factor FF Photoelectric conversion efficiency Example 1 2 30 12.17 0.727 0.721 6.38 Example 2 3 30 14.44 0.761 0.718 7.90 Example 3 4 30 14.55 0.750 0.720 7.86 Example 4 5 30 14.19 0.708 0.705 7.08 Example 5 3 60 15.14 0.744 0.735 8.27 Example 6 4 60 13.48 0.691 0.718 6.69 Example 7 3 90 12.62 0.690 0.717 6.24 Constant current method Current (10 -5 A) Adsorption time (min) Short circuit current Jsc (mA/cm 2 ) Open circuit voltage Voc (V) Fill factor FF Photoelectric conversion efficiency Example 8 2 30 11.51 0.704 0.741 6.00 Example 9 5 30 15.17 0.748 0.716 8.13 Example 10 7 30 13.30 0.688 0.709 6.49 traditional soaking method simple immersion Adsorption time (min) Short circuit current Jsc (mA/cm 2 ) Open circuit voltage Voc (V) Fill factor FF Photoelectric conversion efficiency Comparative Example 1 N/A 30 9.38 0.726 0.692 4.72 Comparative Example 2 N/A 60 10.8 0.700 0.691 5.24 Comparative Example 3 N/A 1440 15.85 0.725 0.717 8.24

比較例1至3Comparative Examples 1 to 3

比較例1至3的製作方式可參考實施例1至10,其不同之處在於浸泡步驟中並未提供固定電壓或固定電流予光電極。詳細的參數設定與分析結果如上表1所示。For the fabrication methods of Comparative Examples 1 to 3, reference may be made to Examples 1 to 10. The difference is that no fixed voltage or fixed current is provided to the photoelectrode in the soaking step. The detailed parameter settings and analysis results are shown in Table 1 above.

從上表1可知,實施例1至4及8至10的光電轉換效率皆優於比較例1。實施例5與6的光電轉換效率皆優於比較例2。此外,實施例1至10的光電轉換效率已符合商用標準(例如光電轉換效率大於等於6),相反的如比較例3(即傳統的製作方式)所示,傳統的製作方式需要進行長達1440分的吸附時間(即24小時)才能符合商用標準。因此,本發明實施例的光電極的染料吸附方法所製得的光電極確實具有上述效果。It can be seen from Table 1 above that the photoelectric conversion efficiencies of Examples 1 to 4 and 8 to 10 are all better than those of Comparative Example 1. The photoelectric conversion efficiencies of Examples 5 and 6 are both better than those of Comparative Example 2. In addition, the photoelectric conversion efficiencies of Examples 1 to 10 have met commercial standards (for example, the photoelectric conversion efficiencies are greater than or equal to 6). On the contrary, as shown in Comparative Example 3 (ie, the traditional manufacturing method), the traditional manufacturing method needs to perform up to 1440 A fraction of the adsorption time (ie, 24 hours) is required to meet commercial standards. Therefore, the photoelectrode prepared by the dye adsorption method of the photoelectrode according to the embodiment of the present invention does have the above-mentioned effects.

另外要提到的是,當固定電壓或固定電流在特定範圍時,可製得光電轉換效率優良的光電極,例如固定電壓在2.5V至3.5V之間(如實施例2、5、7所示),或固定電流在4x10 -5A至6x10 -5A之間(如實施例9所示)。在一實施例中,固定電壓在2.5V至3.5V之間,持續時間在45至75分之間,可得到最佳的光電轉換效率(如實施例5所示)。 In addition, it should be mentioned that when the fixed voltage or fixed current is in a certain range, a photoelectrode with excellent photoelectric conversion efficiency can be obtained, for example, the fixed voltage is between 2.5V and 3.5V (as shown in Examples 2, 5, and 7). shown), or a fixed current between 4x10 -5 A and 6x10 -5 A (as shown in Example 9). In one embodiment, when the fixed voltage is between 2.5V and 3.5V and the duration is between 45 and 75 minutes, the best photoelectric conversion efficiency can be obtained (as shown in Example 5).

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the appended patent application.

10:方法 11~13:步驟 21:導電基板 22:光電極 23:染料分子 10: Methods 11~13: Steps 21: Conductive substrate 22: Photoelectrode 23: Dye Molecules

第1圖是本發明一實施例之光電極的染料吸附方法的流程示意圖。 第2圖是電化學方法吸附染料的示意圖。 FIG. 1 is a schematic flow chart of a dye adsorption method for a photoelectrode according to an embodiment of the present invention. Figure 2 is a schematic diagram of electrochemical adsorption of dyes.

10:方法 10: Methods

11~13:步驟 11~13: Steps

Claims (9)

一種光電極的染料吸附方法,包含步驟:提供一導電基板;形成一光電極於該導電基板上,其中形成該光電極於該導電基板上的步驟包含:形成一第一半導體層於該導電基板上,其中該第一半導體層包含多個第一半導體顆粒,以及該些第一半導體顆粒具有一第一平均粒徑;以及形成一第二半導體層於該第一半導體層上,其中該第二半導體層包含多個第二半導體顆粒,以及該些第二半導體顆粒具有一第二平均粒徑,其中該第二平均粒徑大於該第一平均粒徑;以及浸泡該光電極於一染料溶液中,以一電化學方式提供電壓及/或電流予該光電極持續30分至90分之間。 A dye adsorption method for a photoelectrode, comprising the steps of: providing a conductive substrate; forming a photoelectrode on the conductive substrate, wherein the step of forming the photoelectrode on the conductive substrate comprises: forming a first semiconductor layer on the conductive substrate , wherein the first semiconductor layer includes a plurality of first semiconductor particles, and the first semiconductor particles have a first average particle size; and a second semiconductor layer is formed on the first semiconductor layer, wherein the second semiconductor layer The semiconductor layer includes a plurality of second semiconductor particles, and the second semiconductor particles have a second average particle size, wherein the second average particle size is larger than the first average particle size; and the photoelectrode is immersed in a dye solution , providing voltage and/or current to the photoelectrode in an electrochemical manner for between 30 and 90 minutes. 如請求項1所述的光電極的染料吸附方法,其中該導電基板的材質選自於氧化銦錫及摻雜有氟的氧化錫中的至少一種。 The dye adsorption method for a photoelectrode according to claim 1, wherein the material of the conductive substrate is selected from at least one of indium tin oxide and fluorine-doped tin oxide. 如請求項1所述的光電極的染料吸附方法,其中該光電極的材質包含:二氧化鈦、二氧化錫、氧化鎳及氧化鋅中的任一種。 The dye adsorption method for a photoelectrode according to claim 1, wherein the photoelectrode is made of any one of titanium dioxide, tin dioxide, nickel oxide and zinc oxide. 如請求項1所述的光電極的染料吸附方法,其中該電化學方式係定電壓法或定電流法。 The dye adsorption method for a photoelectrode according to claim 1, wherein the electrochemical method is a constant voltage method or a constant current method. 如請求項4所述的光電極的染料吸附方法,其中該定電壓法係提供2V至5V的電壓予該光電極。 The dye adsorption method for a photoelectrode as claimed in claim 4, wherein the constant voltage method provides a voltage of 2V to 5V to the photoelectrode. 如請求項5所述的光電極的染料吸附方法,其中該定電壓法係提供2.5V至3.5V的電壓予該光電極。 The dye adsorption method for a photoelectrode as claimed in claim 5, wherein the constant voltage method provides a voltage of 2.5V to 3.5V to the photoelectrode. 如請求項4所述的光電極的染料吸附方法,其中該定電流法係提供2x10-5A至7x10-5A的電流予該光電極。 The dye adsorption method for a photoelectrode as claimed in claim 4, wherein the constant current method provides a current of 2×10 −5 A to 7×10 −5 A to the photoelectrode. 如請求項7所述的光電極的染料吸附方法,其中該定電流法係提供4x10-5A至6x10-5A的電流予該光電極。 The dye adsorption method for a photoelectrode as claimed in claim 7, wherein the constant current method provides a current of 4×10 −5 A to 6×10 −5 A to the photoelectrode. 如請求項1所述的光電極的染料吸附方法,其中在形成該第二半導體層於該第一半導體層上的步驟後,更包含:進行一燒結步驟以增強該第一半導體層與該第二半導體層之間的鍵結。 The dye adsorption method for a photoelectrode as claimed in claim 1, wherein after the step of forming the second semiconductor layer on the first semiconductor layer, further comprising: performing a sintering step to strengthen the first semiconductor layer and the first semiconductor layer. The bond between the two semiconductor layers.
TW109138948A 2020-11-06 2020-11-06 Dye adsorption method of photoelectrode TWI758940B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109138948A TWI758940B (en) 2020-11-06 2020-11-06 Dye adsorption method of photoelectrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109138948A TWI758940B (en) 2020-11-06 2020-11-06 Dye adsorption method of photoelectrode

Publications (2)

Publication Number Publication Date
TWI758940B true TWI758940B (en) 2022-03-21
TW202220247A TW202220247A (en) 2022-05-16

Family

ID=81710789

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138948A TWI758940B (en) 2020-11-06 2020-11-06 Dye adsorption method of photoelectrode

Country Status (1)

Country Link
TW (1) TWI758940B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033915A (en) * 2008-07-29 2010-02-12 Gunze Ltd Dye-sensitized solar cell and manufacturing method thereof
WO2010022689A1 (en) * 2008-08-29 2010-03-04 Institute Of Physics As Cr, V. V. I. Method of doping diamond using charge transfer from organic dyes
TW201405842A (en) * 2012-07-16 2014-02-01 Nat Univ Chung Hsing Method for manufacturing photoelectrode with high photoelectric conversion efficiency and dye sensitized solar cell using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033915A (en) * 2008-07-29 2010-02-12 Gunze Ltd Dye-sensitized solar cell and manufacturing method thereof
WO2010022689A1 (en) * 2008-08-29 2010-03-04 Institute Of Physics As Cr, V. V. I. Method of doping diamond using charge transfer from organic dyes
TW201405842A (en) * 2012-07-16 2014-02-01 Nat Univ Chung Hsing Method for manufacturing photoelectrode with high photoelectric conversion efficiency and dye sensitized solar cell using the same

Also Published As

Publication number Publication date
TW202220247A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
Chen et al. Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell
KR100838158B1 (en) Photo-electrodes equipped meso porous metal oxide layer for dye-sensitized photovoltaic cell and method for preparing the same
TWI443892B (en) Method for manufacturing an electrode
KR20090010632A (en) Photo electrodes equipped hollow sphere metal oxide nanoparticle for dye-sensitized photovoltaic cell and method for preparing the same
Khalili et al. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells
EP2479766A2 (en) Dye sensitized solar cell, and method of manufacturing the same
TWI396778B (en) Zinc ferrite thin film, method for manufacturing the same and application thereof
Choudhury et al. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells
Raj et al. Electrochemical properties of TiO2 encapsulated ZnO nanorod aggregates dye sensitized solar cells
KR20160113545A (en) Dye-sensitized solar cell equipped with beam-condensing unit
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
TWI758940B (en) Dye adsorption method of photoelectrode
US20100288340A1 (en) Photoelectode of dye-sensitized solar cell containing glass powder
KR101190002B1 (en) Semiconductor electrode for dye-sensitized solar cell, preparation method thereof and dye-sensitized solar cell using the same
US20120052616A1 (en) Method of improving power conversion efficiencies in dye-sensitized solar cells by facile surface treatment
JP2010238395A (en) Photoelectric conversion device, and manufacturing method of the same
Kim et al. Enhanced interconnection of TiO 2 nanoparticles using atomic layer deposition for flexible dye-sensitized solar cells with plastic substrates
US20140083494A1 (en) Method of forming metal oxide nanotube and dye-sensitized solar cell formed thereby
Lim et al. Reversely fabricated dye-sensitized solar cells
US8470150B2 (en) Method of fabricating electrode structures on substrate
KR101515820B1 (en) a Method for Manufacturing Flexible Dye-Sensitized Solar Cell with Spray type which use a pre-dye-adsorbed Nanoparticle Metal Oxides and a Manufacturing Device using the Same
Moudam et al. High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes
KR101629799B1 (en) Method for preparing photo electrodes for high efficient dye-sensitized solar cells
JP4608897B2 (en) Method for producing negative electrode in dye-sensitized solar cell
Raj et al. Photo-electrochemical properties of variously-sized titanium dioxide nanoparticle-based dye-sensitized solar cells