JP5327817B2 - Internal pressure test device and internal pressure test method - Google Patents

Internal pressure test device and internal pressure test method Download PDF

Info

Publication number
JP5327817B2
JP5327817B2 JP2011108056A JP2011108056A JP5327817B2 JP 5327817 B2 JP5327817 B2 JP 5327817B2 JP 2011108056 A JP2011108056 A JP 2011108056A JP 2011108056 A JP2011108056 A JP 2011108056A JP 5327817 B2 JP5327817 B2 JP 5327817B2
Authority
JP
Japan
Prior art keywords
pressure
cylinder
tested
internal pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011108056A
Other languages
Japanese (ja)
Other versions
JP2012237701A (en
Inventor
良次 石垣
洋流 和田
貴一 安孫子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2011108056A priority Critical patent/JP5327817B2/en
Publication of JP2012237701A publication Critical patent/JP2012237701A/en
Application granted granted Critical
Publication of JP5327817B2 publication Critical patent/JP5327817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable characteristic evaluation due to internal pressure, in particular, pressure fluctuation of a body to be tested with high accuracy. <P>SOLUTION: An internal pressure testing device includes: a cylindrical body to be tested 10 formed in air tightness; a pressure adjusting cylindrical body 20 arranged inside the cylindrical body to be tested 10 and having one end side in a cylindrical direction opened so as to communicate with a space in the cylindrical body to be tested and the other end side enclosed; a pressure adjustment piston 22 capable of reciprocating along a cylindrical direction in the pressure adjusting cylindrical body 20; a gas injection part (hydrogen pipe 30, hydrogen path 31) provided in the cylindrical body to be tested 10 so as to communicate with the space in the cylindrical body to be tested 10; and a sound wave sensor (AE sensor 40-1 to 40-8) for detecting a propagation sound wave in the cylindrical body to be tested, can set or change internal pressure loaded to the cylindrical body to be tested by the reciprocation of the pressure adjustment piston, and can perform an internal pressure test with high accuracy by giving exact pressure or pressure fluctuation to the cylindrical body to be tested. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

この発明は、被試験筒体に内圧を与えて該被試験筒体の特性変化を伝播音波を用いて測定、評価する内圧試験装置および試験方法に関するものである。   The present invention relates to an internal pressure test apparatus and a test method for measuring and evaluating a change in characteristics of a cylinder under test using a propagation sound wave by applying an internal pressure to the cylinder under test.

材料の水素脆化を非破壊で検査する方法としては、染色浸透探傷(例えば特許文献1参照)などの種々の方法が知られている。また、内圧がかかる材料では、圧力の変動に伴って、水素脆化による亀裂が進展することを予測した使用運営が必要である。
このような観点から材料の内圧疲労を測定する試験装置の提案がなされている。該試験装置では、人工亀裂などを形成した被試験筒体をチャンバ内に配置し、前記被試験筒体内に水素ガスを封入するとともに、チャンバ内で被試験筒体外側に水圧を加え、この水圧の増減によって亀裂の進展を模擬している。
As a method for nondestructively inspecting hydrogen embrittlement of materials, various methods such as dyeing and penetrating flaw detection (see, for example, Patent Document 1) are known. In addition, in materials where internal pressure is applied, it is necessary to operate and predict that cracks due to hydrogen embrittlement will develop as the pressure fluctuates.
From such a viewpoint, a test apparatus for measuring internal pressure fatigue of a material has been proposed. In the test apparatus, a cylinder to be tested in which an artificial crack or the like is formed is placed in a chamber, hydrogen gas is sealed in the cylinder to be tested, and water pressure is applied to the outside of the cylinder to be tested in the chamber. The growth of cracks is simulated by the increase and decrease of.

特開2006−153550号公報JP 2006-153550 A

しかし、前記した試験装置では、亀裂進展量を直接測定することができない問題がある。また、被試験筒体に付与できる圧力変動範囲が水圧の増減範囲内に限られるため、実機での圧力変動を十分に再現することができず、疲労特性などの特性を的確に評価することが難しいという問題がある。
本発明は、上記事情を背景としてなされたものであり、被試験筒体に所望の内圧を付与し、また十分な圧力変動を加えて内圧試験を行うことができる内圧試験装置を提供することを目的とする。
However, the above test apparatus has a problem that the amount of crack propagation cannot be directly measured. In addition, since the pressure fluctuation range that can be applied to the cylinder under test is limited to the range of increase / decrease in water pressure, the pressure fluctuation in the actual machine cannot be reproduced sufficiently, and characteristics such as fatigue characteristics can be evaluated accurately. There is a problem that it is difficult.
The present invention has been made against the background of the above circumstances, and provides an internal pressure test apparatus capable of applying a desired internal pressure to a cylinder under test and performing an internal pressure test by applying sufficient pressure fluctuations. Objective.

すなわち、本発明の内圧試験装置のうち、第1の本発明は、被試験筒体の内部にガスを充填した状態で試験を行う内圧試験装置であって、前記被試験筒体の内部に配置され、筒方向一端側が前記被試験筒体内空間に連通するように開口し、他端側が圧力導入部を除いて封止された圧力調整用筒体と、前記封止の内側で前記圧力調整用筒体内で筒方向に沿って往復動可能な圧力調整ピストンと、前記圧力調整ピストンに圧力を導入して移動させる前記圧力導入部と、前記被試験筒体内空間にガスを注入するガス注入部と、前記圧力導入部と前記ガス注入部とを除いて前記被試験筒体内部を封止する蓋部と、前記被試験筒体における伝播音波を検出する音波センサと、を備えることを特徴とする。 That is, among the internal pressure test apparatuses of the present invention, the first aspect of the present invention is an internal pressure test apparatus that performs a test in a state in which a gas is filled in the cylinder under test, and is disposed inside the cylinder under test. A cylinder for pressure adjustment that is open so that one end side in the cylinder direction communicates with the space in the cylinder under test, and the other end side is sealed except for the pressure introducing portion, and for pressure adjustment inside the seal A pressure adjusting piston capable of reciprocating along the cylinder direction in the cylinder, the pressure introducing part for introducing and moving the pressure adjusting piston, and a gas injecting part for injecting gas into the in-cylinder space. A lid portion that seals the inside of the cylinder under test except for the pressure introducing section and the gas injection section, and a sound wave sensor that detects a propagation sound wave in the cylinder under test. .

第2の本発明の内圧試験装置は、前記第1の本発明において、前記圧力調整用筒体は、その外周面が前記被試験筒体の内周面と小隙間を形成するように前記被試験筒体と同軸に配置されていることを特徴とする   An internal pressure test apparatus according to a second aspect of the present invention is the internal pressure test apparatus according to the first aspect of the present invention, wherein the pressure adjusting cylinder is configured such that an outer peripheral surface thereof forms a small gap with an inner peripheral surface of the tested cylinder. It is arranged coaxially with the test cylinder

第3の本発明の内圧試験装置は、前記第1または第2の本発明において、前記圧力調整ピストンを所定の間隔で繰り返し往復動させる駆動制御部を備えることを特徴とする。   According to a third aspect of the present invention, there is provided the internal pressure test apparatus according to the first or second aspect of the present invention, further comprising a drive control unit that repeatedly reciprocates the pressure adjusting piston at a predetermined interval.

第4の本発明の内圧試験装置は、前記第1〜第3の本発明のいずれかにおいて、前記圧力調整ピストンは、前記圧力調整用筒体内への液圧導入によって前記開口側に向けて移動し、該液圧の減少によって前記開口側から離れるように移動するものであることを特徴とする。   The internal pressure test apparatus according to a fourth aspect of the present invention is the pressure sensor according to any one of the first to third aspects, wherein the pressure adjusting piston moves toward the opening side by introducing hydraulic pressure into the pressure adjusting cylinder. And it moves away from the said opening side by the reduction | decrease of this hydraulic pressure, It is characterized by the above-mentioned.

第5の本発明の内圧試験装置は、前記第1〜第4の本発明のいずれかにおいて、前記被試験体は、人工亀裂が形成されたものであることを特徴とする。   An internal pressure test apparatus according to a fifth aspect of the present invention is characterized in that, in any one of the first to fourth aspects of the present invention, the test object has an artificial crack formed therein.

第6の本発明の内圧試験装置は、前記第1〜第5本発明のいずれかにおいて、前記音波センサが、アコーステックエミッションセンサであることを特徴とする。   An internal pressure test apparatus according to a sixth aspect of the present invention is characterized in that, in any of the first to fifth aspects of the present invention, the acoustic wave sensor is an acoustic emission sensor.

第7の本発明の内圧試験装置は、前記第1〜第5の本発明のいずれかにおいて、前記音波センサが、超音波発信と超音波受信とを行なうTOFD法を行なう超音波センサであることを特徴とする。   An internal pressure test apparatus according to a seventh aspect of the present invention is the ultrasonic sensor according to any one of the first to fifth aspects, wherein the acoustic wave sensor is an ultrasonic sensor that performs a TOFD method of performing ultrasonic transmission and reception. It is characterized by.

第8の本発明の内圧試験装置は、前記第1〜第7の本発明のいずれかにおいて、前記ガス注入部で前記被試験体内に注入されるガスが水素であることを特徴とする。   The internal pressure test apparatus according to an eighth aspect of the present invention is characterized in that, in any one of the first to seventh aspects of the present invention, the gas injected into the body under test by the gas injection section is hydrogen.

第9の本発明の内圧試験装置は、前記第1〜第8の本発明のいずれかにおいて、前記被試験筒体は、不活性ガスが通気されるチャンバ内に配置されていることを特徴とする。   An internal pressure test apparatus according to a ninth aspect of the present invention is characterized in that, in any of the first to eighth aspects of the present invention, the cylinder under test is disposed in a chamber in which an inert gas is vented. To do.

第10の本発明の内圧試験方法は、被試験筒体内に、圧力調整用筒体を配置するとともに、該圧力調整用筒体の一部のみを筒方向一旦側で前記被試験筒体内空間に連通させ、前記被試験筒体内をガス注入と圧力導入を除いて封止し、前記空間に所定量のガスを注入した後、前記圧力調整用筒体の他端側で圧力導入を除いて封止された側の内側にある圧力調整ピストンに前記圧力を導入して往復動させることによって前記空間内の前記ガスの圧力を変動させ、該圧力が付与されている前記被試験筒体を伝播する音波を検出することによって前記被試験筒体における特性変化を測定することを特徴とする。 In the internal pressure test method of the tenth aspect of the present invention , a pressure adjusting cylinder is arranged in a cylinder under test , and only a part of the pressure adjusting cylinder is placed in the cylinder under test space once in the cylinder direction. After communication, the inside of the cylinder to be tested is sealed except for gas injection and pressure introduction, and after a predetermined amount of gas is injected into the space, sealing is performed on the other end side of the pressure adjustment cylinder by removing pressure introduction. The pressure of the gas in the space is changed by introducing and reciprocating the pressure into a pressure adjusting piston inside the stopped side, and propagates through the cylinder under test to which the pressure is applied. A characteristic change in the cylinder under test is measured by detecting a sound wave.

本発明によれば、ガスを注入した被試験筒体内の圧力調整用筒体内で圧力調整ピストンを移動させることで、被試験筒体内におけるガスの収容体積が変化し、これに伴ってガス圧力が変化する。このガス圧力は、被試験筒体内空間を通して被試験筒体内面に付加される。圧力調整用筒体を被試験筒体と同軸に配置して、圧力調整用筒体の外周面と被試験筒体の内周面とで隙間を形成することによって、該隙間を通して被試験筒体内面に効果的に内圧を負荷することができる。また、圧力調整ピストンを往復動させることで、被試験筒体に加わる内圧を所望の範囲で変動させることができる。
この被試験筒体内を伝播する音波を検出することで、被試験筒体の疲労、亀裂生成、亀裂進展などの特性変化を測定することができる。該音波の検出は、アコーステックエミッションによる検出や、超音波発信探触子で発信した超音波を超音波受信探触子で受信する方法により行うことができる。検出結果によって被試験筒体の特性変化を評価する方法は、既知の方法で行うことができる。
本発明で試験の対象となる被試験筒体の材質などは特に限定をされるものではなく、試験目的に沿って種々の材料を対象にすることができる。特に、圧入ガスとして水素を用い、該水素による脆化を測定する材料に好適に用いることができる。また、材料に人工の傷や亀裂を形成しておき、内圧に伴う亀裂の進展等を測定するものに好適に用いることができる。
According to the present invention, by moving the pressure adjusting piston in the pressure adjusting cylinder in the cylinder under test into which gas has been injected, the gas storage volume in the cylinder under test changes, and the gas pressure is reduced accordingly. Change. This gas pressure is applied to the inner surface of the cylinder under test through the space within the cylinder under test. The pressure adjusting cylinder is arranged coaxially with the cylinder to be tested, and a gap is formed between the outer peripheral surface of the pressure adjusting cylinder and the inner peripheral surface of the cylinder to be tested. The internal pressure can be effectively applied to the surface. Further, the internal pressure applied to the cylinder under test can be varied within a desired range by reciprocating the pressure adjusting piston.
By detecting the sound wave propagating through the cylinder under test, it is possible to measure changes in characteristics such as fatigue, crack generation, and crack propagation of the cylinder under test. The sound wave can be detected by acoustic emission or a method of receiving an ultrasonic wave transmitted by an ultrasonic transmission probe with an ultrasonic reception probe. The method for evaluating the characteristic change of the cylinder under test based on the detection result can be performed by a known method.
In the present invention, the material of the cylinder under test to be tested is not particularly limited, and various materials can be targeted according to the test purpose. In particular, hydrogen can be suitably used as a material for measuring embrittlement due to hydrogen by using hydrogen as the injection gas. Moreover, it can use suitably for what measures the progress of the crack etc. which accompany the internal pressure by forming the artificial damage | wound and a crack in material.

圧力調整ピストンは、駆動制御部のプログラムに基づいて往復動させることができ、内圧変動に伴う所望の試験などを行うことができる。
また、圧力調整ピストンの駆動は、ピストンロッドなどを用いて行うことも可能であるが、圧力調整用筒体の開口部が位置する空間に対し圧力調整ピストンを介して反対側となる筒体内空間に液圧を付加し、該液圧の増減によって圧力調整ピストンの往復動を行うことが望ましい。この場合、圧力調整ピストンは、液圧がガス圧よりも大きいことで、開口部側に移動してガスを圧縮する。また、液圧を減ずれば、圧縮されたガスが膨張し、ガス圧と液圧とがバランスするまでガス圧を低下させる。したがって、液圧の増減によってガス圧を設定することができ、所望の圧力変動を生じさせることもできる。
液圧によって圧力調整ピストンを駆動させる場合、機械的な振動が発生しにくく、したがって、被試験筒体を伝播する音波を測定する際に、機械的な振動に伴う雑音の発生を回避でき、正確な音波測定が可能になる。特にアコーステックエミッションを測定する際には、測定精度を高めることができる。
The pressure adjusting piston can be reciprocated based on the program of the drive control unit, and a desired test or the like accompanying internal pressure fluctuation can be performed.
In addition, the pressure adjustment piston can be driven using a piston rod or the like, but the space in the cylinder that is opposite to the space where the opening of the pressure adjustment cylinder is located via the pressure adjustment piston. It is desirable to apply a hydraulic pressure to the cylinder and to reciprocate the pressure adjusting piston by increasing or decreasing the hydraulic pressure. In this case, the pressure adjusting piston moves to the opening side and compresses the gas because the hydraulic pressure is larger than the gas pressure. Further, if the hydraulic pressure is reduced, the compressed gas expands, and the gas pressure is reduced until the gas pressure and the hydraulic pressure are balanced. Therefore, the gas pressure can be set by increasing or decreasing the liquid pressure, and a desired pressure fluctuation can be generated.
When the pressure adjustment piston is driven by hydraulic pressure, mechanical vibrations are unlikely to occur. Therefore, when measuring sound waves propagating through the cylinder under test, it is possible to avoid the generation of noise associated with mechanical vibrations and to accurately Sound measurement is possible. Especially when measuring acoustic emission, measurement accuracy can be increased.

以上説明したように、本発明によれば、被試験筒体の内部にガスを充填した状態で試験を行う内圧試験装置であって、前記被試験筒体の内部に配置され、筒方向一端側が前記被試験筒体内空間に連通するように開口し、他端側が圧力導入部を除いて封止された圧力調整用筒体と、前記封止の内側で前記圧力調整用筒体内で筒方向に沿って往復動可能な圧力調整ピストンと、前記圧力調整ピストンに圧力を導入して移動させる前記圧力導入部と、前記被試験筒体内空間にガスを注入するガス注入部と、前記圧力導入部と前記ガス注入部とを除いて前記被試験筒体内部を封止する蓋部と、前記被試験筒体における伝播音波を検出する音波センサと、を備えるので、圧力調整ピストンの往復動によって被試験筒体に負荷される内圧を設定、または変化させることができ、被試験筒体に的確な圧力または圧力変動を付与して内圧試験を精度よく行うことができる。 As described above, according to the present invention, an internal pressure test apparatus for performing a test in a state in which a gas to be tested is filled inside a cylinder to be tested, which is disposed inside the cylinder to be tested, and one end side in the cylinder direction is A pressure adjusting cylinder that is open so as to communicate with the space in the cylinder under test and whose other end is sealed except for the pressure introducing portion ; and in the cylinder direction within the pressure adjusting cylinder inside the seal A pressure adjusting piston capable of reciprocating along, the pressure introducing part for introducing and moving the pressure adjusting piston, a gas injecting part for injecting gas into the cylinder space to be tested, and the pressure introducing part, A lid part that seals the inside of the cylinder to be tested except for the gas injection part and a sound wave sensor that detects a propagation sound wave in the cylinder to be tested are provided. Set or change the internal pressure applied to the cylinder Is to be able, it can be accurately applied to the internal pressure test the correct pressure or pressure fluctuations to be tested cylinder.

本発明の一実施形態における試験装置の一部を断面した正面図である。It is the front view which sectioned a part of test device in one embodiment of the present invention. 同じく、圧力調整用筒体周辺の一部を断面した拡大正面図である。Similarly, it is an enlarged front view in which a part of the periphery of the pressure adjusting cylinder is sectioned. 同じく、圧力調整用筒体の受圧室周辺の一部を断面した拡大正面図である。Similarly, it is an enlarged front view in which a part around the pressure receiving chamber of the pressure adjusting cylinder is sectioned. 同じく、被試験筒体の動作を模式的に示す概略断面図である。Similarly, it is a schematic sectional view schematically showing the operation of the cylinder under test. 同じく、AE検出を模式的に示す図である。Similarly, it is a figure which shows AE detection typically. 図5のVI−VI線断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5.

以下に、本発明の一実施形態を添付図面に基づいて説明する。
試験装置1は、床部に設置されたフレーム2に、円筒形状の保護筒3が縦にして取り付けられている。保護筒3の下部に下部蓋部4が気密に取り付けられ、該保護筒3の上部に上部蓋部5が気密に取り付けられており、上部蓋部5がブラケット6によってフレーム2に固定されている。
上記下部蓋部4には保護筒3内に連通するように窒素ガス導入管7が接続されており、前記上部蓋部5には保護筒3内に連通するように排気管8が接続されている。これによって保護筒3内が窒素ガス導入管7から排気管8を通して通気が可能になっている。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
In the test apparatus 1, a cylindrical protective cylinder 3 is vertically attached to a frame 2 installed on a floor. A lower lid 4 is airtightly attached to the lower part of the protective cylinder 3, an upper lid 5 is airtightly attached to the upper part of the protective cylinder 3, and the upper lid 5 is fixed to the frame 2 by a bracket 6. .
A nitrogen gas introduction pipe 7 is connected to the lower lid part 4 so as to communicate with the inside of the protective cylinder 3, and an exhaust pipe 8 is connected to the upper lid part 5 so as to communicate with the inside of the protective cylinder 3. Yes. Thereby, the inside of the protective cylinder 3 can be ventilated from the nitrogen gas introduction pipe 7 through the exhaust pipe 8.

保護タンク3内には、該保護タンク3と同軸に円筒形状の被試験筒体10が配置されている。保護タンク3は、被試験筒体10に対し、十分に大きな径を有している。
被試験筒体10の上端開口には、該開口の内周側に嵌め込む突部を有する上部プラグ11が取り付けられており、該上部プラグ11を覆うように被試験筒体10の上端外周に上部キャップ12が螺合によって取り付けられて上端開口が封止されている上部キャップ12は、前記上部蓋部5にブラケット13を介して取り付けられており、被試験筒体10は、該ブラケット13によって垂下された状態にある。なお、前記した排気管8は、前記ブラケット13の外周側に位置している。
上記上部プラグ11から上部キャップ12、ブラケット13、上部蓋部5に掛けて水素通路31が形成されており、該水素通路31には、保護筒3外部にある水素配管30の一端が接続されている。水素配管30の他端は、図示しない水素供給源に接続されている。上記水素配管30および水素通路31は、本発明のガス注入部に相当する。
In the protective tank 3, a cylindrical body 10 to be tested is disposed coaxially with the protective tank 3. The protective tank 3 has a sufficiently large diameter with respect to the cylinder under test 10.
An upper plug 11 having a protrusion that fits into the inner peripheral side of the opening is attached to the upper end opening of the cylinder under test 10, and is attached to the outer periphery of the upper end of the cylinder under test 10 so as to cover the upper plug 11. The upper cap 12 is attached by screwing to seal the upper end opening . The upper cap 12 is attached to the upper lid 5 via a bracket 13, and the cylinder under test 10 is suspended by the bracket 13. The exhaust pipe 8 is located on the outer peripheral side of the bracket 13.
A hydrogen passage 31 is formed from the upper plug 11 to the upper cap 12, the bracket 13, and the upper lid 5, and one end of a hydrogen pipe 30 outside the protective cylinder 3 is connected to the hydrogen passage 31. Yes. The other end of the hydrogen pipe 30 is connected to a hydrogen supply source (not shown). The hydrogen pipe 30 and the hydrogen passage 31 correspond to the gas injection part of the present invention.

また、被試験筒体10の下端開口には、該開口の内周側に嵌め込む凸部を有する下部プラグ15が取り付けられており、該下部プラグ15を覆うように被試験筒体10の下端に下部キャップ16が取り付けられており、下端開口が封止されている。   Further, a lower plug 15 having a convex portion that fits on the inner peripheral side of the opening is attached to the lower end opening of the cylinder under test 10, and the lower end of the cylinder under test 10 is covered so as to cover the lower plug 15. A lower cap 16 is attached to the lower end opening, and the lower end opening is sealed.

被試験筒体10の内部には、外周面が該被試験筒体10内周面と僅かな隙間を有するように、前記被試験筒体10よりもやや小径とした円筒形状の圧力調整用筒体20が同軸に配置されており、該圧力調整用筒体20の下端部は封止シート17を介して前記下部プラグ15上に位置しており、圧力調整用筒体20の下端開口の内周側には、円筒状のシリンダプラグ21が気密に嵌合されている。また、圧力調整用筒体20の上端は、前記上部プラグ11の下面と離隔しており、したがって、圧力調整用筒体20内部は、上端側の隙間を通して、該圧力調整用筒体20外周面と被試験筒体10の内周面で形成される小隙間G0と連通している。なお、小隙間G0の距離は本発明としては、特に限定されるものではないが、例えば、1〜3mmを好適なものとして示すことができる。   A cylindrical pressure adjusting cylinder having a slightly smaller diameter than the cylinder under test 10 so that the outer peripheral surface has a slight gap with the inner peripheral surface of the cylinder under test 10 inside the cylinder under test 10. The body 20 is arranged coaxially, and the lower end portion of the pressure adjusting cylinder 20 is located on the lower plug 15 via the sealing sheet 17, and the inside of the lower end opening of the pressure adjusting cylinder 20 is A cylindrical cylinder plug 21 is airtightly fitted on the circumferential side. Further, the upper end of the pressure adjusting cylinder 20 is separated from the lower surface of the upper plug 11, and therefore the inside of the pressure adjusting cylinder 20 passes through the gap on the upper end side and the outer peripheral surface of the pressure adjusting cylinder 20. And a small gap G0 formed on the inner peripheral surface of the cylinder 10 to be tested. In addition, although the distance of the small gap G0 is not specifically limited as this invention, For example, 1-3 mm can be shown as a suitable thing.

さらに上記圧力調整用筒体20内には、上下動可能な圧力調整ピストン22が配置されており、該圧力調整ピストン22の外周面には、圧力調整用筒体20の内周面と接するOリング22b、22cが設けられて圧漏れを防止する。
圧力調整ピストン22は、圧力調整ピストン22上方空間および圧力調整ピストン22下方空間の受圧圧力差によって上下動する。なお、圧力調整ピストン22の下面中央部には、丸穴形状の凹部22aが形成されている。
Further, a pressure adjusting piston 22 that can move up and down is disposed in the pressure adjusting cylinder 20, and the outer peripheral surface of the pressure adjusting piston 22 is in contact with the inner peripheral surface of the pressure adjusting cylinder 20. Rings 22b and 22c are provided to prevent pressure leakage.
The pressure adjustment piston 22 moves up and down by the pressure difference between the pressure adjustment piston 22 and the pressure adjustment piston 22. A round hole-shaped recess 22 a is formed at the center of the lower surface of the pressure adjustment piston 22.

該圧力調整ピストン22下面とシリンダプラグ21の上面およびこれらを囲む圧力調整用筒体20の内面との間で受圧室23が構成されており、該受圧室23に連通するように給水管25が圧力調整用筒体20に接続されている。すなわち、給水管25は、前記シリンダプラグ21、封止シート17、下部プラグ15を貫通して保護筒3の外部下方に伸長している。給水管25の上端は、受圧室23に突出しており、外周に形成されたネジ部にナット25bが螺合されて取り付け固定されている。給水管25は、保護筒3の外部で図示しない水源に接続されて圧力水の供給が可能になっている。給水管25には、給水の圧力を検知する圧力変換器26が介設されており、また、給水管25の中途には開閉可能な排水管27が接続されており、必要に応じて給水管25および受圧室23の水を排水することができる。これら給水管25および排水管27には、図4に示すように電磁開閉弁25a、27aが介設されており、これら電磁開閉弁25a、27aは図4に示す制御部28に制御可能に接続されている。制御部28、給水管25、開閉弁25a、排水管27、開閉弁27aは、本発明の駆動制御部として機能する。制御部28は、CPUとこれを動作させるプログラムなどによって構成することができる。   A pressure receiving chamber 23 is formed between the lower surface of the pressure adjusting piston 22, the upper surface of the cylinder plug 21, and the inner surface of the pressure adjusting cylinder 20 surrounding them, and a water supply pipe 25 is connected to the pressure receiving chamber 23. It is connected to the pressure adjusting cylinder 20. That is, the water supply pipe 25 extends through the cylinder plug 21, the sealing sheet 17, and the lower plug 15 to the lower outside of the protective cylinder 3. The upper end of the water supply pipe 25 protrudes into the pressure receiving chamber 23, and a nut 25 b is screwed to a screw part formed on the outer periphery and fixed. The water supply pipe 25 is connected to a water source (not shown) outside the protective cylinder 3 so that pressure water can be supplied. The water supply pipe 25 is provided with a pressure converter 26 for detecting the pressure of the water supply, and a drainage pipe 27 that can be opened and closed is connected in the middle of the water supply pipe 25. 25 and the pressure receiving chamber 23 can be drained. The water supply pipe 25 and the drain pipe 27 are provided with electromagnetic on-off valves 25a and 27a as shown in FIG. 4, and these electromagnetic on-off valves 25a and 27a are controllably connected to the control unit 28 shown in FIG. Has been. The control unit 28, the water supply pipe 25, the on-off valve 25a, the drain pipe 27, and the on-off valve 27a function as a drive control unit of the present invention. The control unit 28 can be configured by a CPU and a program for operating the CPU.

前記被試験筒体10の外周面には、図1〜図5に示すようにAE(アコースティックエミッション)センサ40−1〜8を複数取り付け、前記上部蓋部5に設けた接続端子9に電気的に接続する。該接続端子9には、図4に示す制御部28を接続する。
なお、AEセンサの個数、設置箇所は任意であり、本発明としては特に限定されない。この実施形態では、被試験筒体10の上方側外周面に、図5に示すように円周方向に90度間隔で4個のAEセンサ40−1〜40−4と、下方側外周面に周方向に90度間隔で4個のAEセンサ40−5〜40−8を設けている。さらに、中央高さの位置に内周面の亀裂をはさむように、TOFD探触子40−9、10の2個を設けている。なお、ここではTOFD探触子40−9が超音波発信探触子、TOFD探触子40−10が超音波受信探触子の機能を図している。
As shown in FIGS. 1 to 5, a plurality of AE (Acoustic Emission) sensors 40-1 to 40-8 are attached to the outer peripheral surface of the cylinder 10 to be tested, and the connection terminals 9 provided on the upper lid 5 are electrically connected. Connect to. A control unit 28 shown in FIG. 4 is connected to the connection terminal 9.
In addition, the number of AE sensors and an installation location are arbitrary and are not specifically limited as this invention. In this embodiment, on the upper outer peripheral surface of the cylinder 10 to be tested, as shown in FIG. 5, four AE sensors 40-1 to 40-4 are disposed at intervals of 90 degrees in the circumferential direction, and on the lower outer peripheral surface. Four AE sensors 40-5 to 40-8 are provided at intervals of 90 degrees in the circumferential direction. Further, two TOFD probes 40-9 and 10 are provided so as to sandwich a crack on the inner peripheral surface at the position of the center height. Here, the TOFD probe 40-9 functions as an ultrasonic transmission probe, and the TOFD probe 40-10 functions as an ultrasonic reception probe.

次に、上記試験装置1の作用について説明する。
この実施形態では、図5に示すように試験に先立って被試験筒体10に人工亀裂Aを形成し、圧力変動による亀裂の進展を測定する
先ず、窒素ガス導入管7に図示しない窒素供給源から窒素を導入し、一方、排気管8を排気可能にすることで、試験中、保護筒3内のチャンバG1で窒素ガスを継続して通気する。
水素配管30には、図示しない水素供給源から水素を供給し、水素通路31を通して被試験筒体10内に所定量の水素を供給する。所定量または所定圧で水素を供給した後、水素配管30を図示しないバルブで閉じる。この水素供給によって、被試験筒体10内では、所定の水素圧力が得られており(例えば22.5MPa)、圧力調整用筒体20内の圧力調整ピストン22は上記水素圧力によって下方位置にまで下降している。なお、水素供給源からの水素配管への水素供給を前記制御部28によって制御することもできる。
Next, the operation of the test apparatus 1 will be described.
In this embodiment, as shown in FIG. 5, prior to the test, an artificial crack A is formed in the cylinder 10 to be tested, and the progress of the crack due to pressure fluctuation is measured. First, a nitrogen supply source (not shown) is installed in the nitrogen gas introduction pipe 7. Nitrogen is introduced from the exhaust gas, while the exhaust pipe 8 can be exhausted, so that nitrogen gas is continuously ventilated in the chamber G1 in the protective cylinder 3 during the test.
Hydrogen is supplied to the hydrogen pipe 30 from a hydrogen supply source (not shown), and a predetermined amount of hydrogen is supplied into the cylinder under test 10 through the hydrogen passage 31. After supplying hydrogen with a predetermined amount or pressure, the hydrogen pipe 30 is closed with a valve (not shown). By this hydrogen supply, a predetermined hydrogen pressure is obtained in the cylinder 10 to be tested (for example, 22.5 MPa), and the pressure adjusting piston 22 in the pressure adjusting cylinder 20 is lowered to the lower position by the hydrogen pressure. It is descending. The control unit 28 can also control the hydrogen supply from the hydrogen supply source to the hydrogen pipe.

次いで、制御部28によって、排水管27の開閉弁27aを閉じた状態で、開閉弁25aを開いて図示しない水源から給水管25に圧力水を供給する。この際の水圧は、圧力変換器26で検知されており、所定の圧力で給水管25に圧力水が供給される。
給水管25に供給された圧力水は、圧力調整用筒体20内の受圧室23に導入される。圧力調整ピストン22では、上部側の水素圧力と受圧室23に加わる水圧とが付加されており、その差圧によって圧力調整ピストン22が上下動する。水圧供給初期では、水素圧力によって圧力調整ピストン22は下方位置にあるが、その後、水が受圧室23に満たされることで、圧力調整ピストン22が差圧によって上方に移動し、水素の収容体積が小さくなることで水素を圧縮する。圧力調整ピストン22が所定位置にまで上昇して水素圧が所定圧力に達すると、開閉弁25aを閉じて給水を停止する。このとき、給水圧力は圧縮された水素圧力と同じか、水素圧力よりも高いことが必要である。給水の停止は、水素圧力を検出して所定圧力に達したことで行ってもよく、また、圧力水の供給量を検出して所定の供給量に達したことで行ってもよい。
Next, the control unit 28 opens the open / close valve 25a with the open / close valve 27a of the drain pipe 27 closed, and supplies pressure water to the water supply pipe 25 from a water source (not shown). The water pressure at this time is detected by the pressure converter 26, and the pressure water is supplied to the water supply pipe 25 at a predetermined pressure.
The pressure water supplied to the water supply pipe 25 is introduced into the pressure receiving chamber 23 in the pressure adjusting cylinder 20. In the pressure adjusting piston 22, an upper hydrogen pressure and a water pressure applied to the pressure receiving chamber 23 are added, and the pressure adjusting piston 22 moves up and down by the differential pressure. At the initial stage of water pressure supply, the pressure adjustment piston 22 is in the lower position due to the hydrogen pressure, but after that, when the water is filled in the pressure receiving chamber 23, the pressure adjustment piston 22 moves upward due to the differential pressure, and the hydrogen storage volume is increased. Compresses hydrogen by becoming smaller. When the pressure adjustment piston 22 rises to a predetermined position and the hydrogen pressure reaches a predetermined pressure, the on-off valve 25a is closed to stop water supply. At this time, the feed water pressure needs to be the same as or higher than the compressed hydrogen pressure. Stopping water supply may be performed by detecting a hydrogen pressure and reaching a predetermined pressure, or may be performed by detecting a supply amount of pressure water and reaching a predetermined supply amount.

上記によって被試験筒体10内では、所定の水素圧力が得られており(例えば45.0MPa)、該水素圧力が小隙間G0において内圧として被試験筒体10の内周面に与えられている。この状態で、開閉弁27aを開いて排水管27を通して受圧室23から所定量の水を排水すれば、圧力調整ピストン22は、圧縮水素の圧力によって下降し、水素の収容容積が大きくなり水素の圧力が低下する。水排水後、開閉弁27aを閉じることで、圧力調整ピストン22が所定位置に停止し、水素は所定の圧力にまで低下している。圧力調整ピストン22の下降量は上記排水量によって調整可能であり、最大下降位置にまで下降させることもできる。上記給水と排水とを制御部28の制御によって繰り返すことで、水素の圧力を繰り返し増減させることができる。該水素圧力の増減は、所望のサイクルで行うことができ、例えば4回/分のサイクルで増減を繰り返すことができる。水素圧力の増減を伴う継続試験時間も適宜設定することができる。   As described above, a predetermined hydrogen pressure is obtained in the cylinder under test 10 (for example, 45.0 MPa), and the hydrogen pressure is applied to the inner peripheral surface of the cylinder under test 10 as an internal pressure in the small gap G0. . In this state, if a predetermined amount of water is drained from the pressure receiving chamber 23 through the drain pipe 27 by opening the on-off valve 27a, the pressure adjusting piston 22 descends due to the pressure of the compressed hydrogen, and the hydrogen storage volume increases, The pressure drops. By closing the on-off valve 27a after draining water, the pressure adjusting piston 22 stops at a predetermined position, and the hydrogen is reduced to a predetermined pressure. The descending amount of the pressure adjusting piston 22 can be adjusted by the amount of drainage, and can be lowered to the maximum descending position. By repeating the water supply and drainage under the control of the control unit 28, the hydrogen pressure can be repeatedly increased or decreased. The increase / decrease of the hydrogen pressure can be performed in a desired cycle. For example, the increase / decrease can be repeated at a cycle of 4 times / minute. The duration test time accompanying the increase or decrease of the hydrogen pressure can also be set as appropriate.

上記水素圧力の増減を繰り返すことで、被試験筒体10に所望に圧力を加えることができ、さらには、十分な範囲で圧力変動を与えることができる。被試験筒体10では、AEセンサ40−1〜8によって、人工亀裂Aが進展した時に発生し、被試験筒体10を伝播する音波が測定されており、被試験筒体10における特性変化を前記音波を介して測定することができる。被試験筒体10で、人工亀裂Aが進展すると、TOFD法による発信探触子(TOFD探触子40−9)から送信し、亀裂先端で回折した音波が受信探触子(TOFD探触子4−10)で受信されるまでの時間が、亀裂深さにともなって変化する。この現象を捉らえ、亀裂深さを精度良く測定することができる。すなわち、TOFD法によって亀裂進展の定量化を図ることができる。また、AEセンサを複数設置して、測定結果において位置評定を行うことで、AE発生源の位置を特定することも可能になる。しかも、この実施形態では、圧力調整ピストン22が液圧によって上下動される浮動型で機械的な駆動部を有しないため、機械的な振動が殆ど発生せず、前記AEセンサによる検知精度を損なうことなく精度の高い音波検知をおこなうことができる。   By repeating the increase / decrease of the hydrogen pressure, a desired pressure can be applied to the cylinder 10 to be tested, and furthermore, a pressure fluctuation can be given within a sufficient range. In the cylinder under test 10, sound waves that are generated by the AE sensors 40-1 to 8 when the artificial crack A propagates and propagate through the cylinder under test 10 are measured. It can be measured via the sound wave. When the artificial crack A develops in the cylinder 10 to be tested, the sound wave transmitted from the transmitting probe (TOFD probe 40-9) by the TOFD method and diffracted at the crack tip is received by the receiving probe (TOFD probe). The time until reception in 4-10) varies with the crack depth. By capturing this phenomenon, it is possible to accurately measure the crack depth. That is, the crack progress can be quantified by the TOFD method. In addition, it is possible to specify the position of the AE generation source by installing a plurality of AE sensors and performing position evaluation on the measurement result. Moreover, in this embodiment, since the pressure adjusting piston 22 does not have a floating and mechanical drive unit that is moved up and down by the hydraulic pressure, mechanical vibration hardly occurs and the detection accuracy by the AE sensor is impaired. High-accuracy sound wave detection can be performed without any problem.

なお、試験中に被試験筒体10の人工亀裂が進展し、該亀裂が被試験筒体10の外周面にまで達する際にも、被試験筒体10はチャンバG1内に納められており、しかも該チャンバG1では、常時窒素ガスがブローされているので、漏れた水素を希釈化して排気管8から保護筒体3外に排出して水素ガス漏洩を安全に処理することができる。
制御部28では、AEセンサ40−1〜8によって、人工亀裂の進展によるアコースティックエミッションが測定される。制御部28では、AEセンサおよびTOFD法の測定結果に基づいて被試験筒体10における亀裂の進展状況について判定することができ、水素脆性に伴う亀裂の検出精度を向上させることができる。
In addition, when the artificial crack of the cylinder 10 to be tested progresses during the test and the crack reaches the outer peripheral surface of the cylinder 10 to be tested, the cylinder 10 to be tested is housed in the chamber G1, Moreover, since nitrogen gas is constantly blown in the chamber G1, the leaked hydrogen can be diluted and discharged from the exhaust pipe 8 to the outside of the protective cylinder 3 to safely handle the hydrogen gas leakage.
In the control unit 28, acoustic emission due to the progress of the artificial crack is measured by the AE sensors 40-1 to 40-8. The control unit 28 can determine the progress of cracks in the cylinder under test 10 based on the measurement results of the AE sensor and the TOFD method, and can improve the detection accuracy of cracks associated with hydrogen embrittlement.

上記実施形態では、アコースティックエミッション検出によって被試験筒体10の特性変化を測定するものとしたが、被試験筒体10に超音波を伝播させ、これを受信することで被試験筒体10内での亀裂進展を測定することができる。
また、上記実施形態では、圧力変動に伴う材料の特性評価を行うものとしたが、所望の調整可能な圧力を付加して特性評価を行う試験装置として利用することも可能である。
In the above embodiment, the characteristic change of the cylinder under test 10 is measured by acoustic emission detection. However, by transmitting ultrasonic waves to the cylinder under test 10 and receiving them, the inside of the cylinder under test 10 is received. The crack growth of can be measured.
Moreover, in the said embodiment, although the characteristic evaluation of the material accompanying a pressure fluctuation | variation was performed, it can also be utilized as a test apparatus which adds a desired adjustable pressure and performs characteristic evaluation.

以上、本発明について、上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the content of the said embodiment, A suitable change is possible unless it deviates from the scope of the present invention. .

1 試験装置
3 保護筒
7 窒素ガス導入管
8 排気管
10 被試験筒体
20 圧力調整用筒体
22 圧力調整ピストン
23 受圧部
25 給水管
25a 開閉弁
27 排水管
27a 開閉弁
28 制御部
40−1〜8 AEセンサ
40−9、10 TOFD探触子
DESCRIPTION OF SYMBOLS 1 Test apparatus 3 Protection cylinder 7 Nitrogen gas introduction pipe 8 Exhaust pipe 10 Test cylinder 20 Pressure adjustment cylinder 22 Pressure adjustment piston 23 Pressure receiving part 25 Water supply pipe 25a On-off valve 27 Drain pipe 27a On-off valve 28 Control part 40-1 -8 AE sensor 40-9, 10 TOFD probe

Claims (10)

被試験筒体の内部にガスを充填した状態で試験を行う内圧試験装置であって、
前記被試験筒体の内部に配置され、筒方向一端側が前記被試験筒体内空間に連通するように開口し、他端側が圧力導入部を除いて封止された圧力調整用筒体と、前記封止の内側で前記圧力調整用筒体内で筒方向に沿って往復動可能な圧力調整ピストンと、前記圧力調整ピストンに圧力を導入して移動させる前記圧力導入部と、前記被試験筒体内空間にガスを注入するガス注入部と、前記圧力導入部と前記ガス注入部とを除いて前記被試験筒体内部を封止する蓋部と、前記被試験筒体における伝播音波を検出する音波センサと、を備えることを特徴とする内圧試験装置。
An internal pressure test apparatus for performing a test in a state in which a gas is filled inside a cylinder to be tested,
Wherein disposed inside of the test cylinder, and opened to the cylinder direction one end side communicating with the tested cylinder body space, and sealed pressure regulating cylindrical member other end except for the pressure introducing portion, the A pressure adjusting piston capable of reciprocating in the cylinder direction inside the pressure adjusting cylinder inside the seal, the pressure introducing portion for introducing and moving the pressure adjusting piston, and the in- cylinder space A gas injection part for injecting gas into the gas, a lid part for sealing the inside of the cylinder under test except for the pressure introduction part and the gas injection part, and a sound wave sensor for detecting a propagation sound wave in the cylinder under test And an internal pressure test device.
前記圧力調整筒体は、その外周面が前記被試験筒体の内周面と小隙間を形成するように前記被試験筒体と同軸に配置されていることを特徴とする請求項1記載の内圧試験装置。   2. The pressure adjusting cylinder according to claim 1, wherein the pressure adjusting cylinder is arranged coaxially with the cylinder to be tested so that an outer circumferential surface thereof forms a small gap with an inner circumferential surface of the cylinder to be tested. Internal pressure test device. 前記圧力調整ピストンを所定の間隔で繰り返し往復動させる駆動制御部を備えることを特徴とする請求項1または2に記載の内圧試験装置。   The internal pressure test apparatus according to claim 1, further comprising a drive control unit that repeatedly reciprocates the pressure adjusting piston at a predetermined interval. 前記圧力調整ピストンは、前記圧力調整用筒体内への液圧導入によって前記開口側に向けて移動し、該液圧の減少によって前記開口側から離れるように移動するものであることを特徴とする請求項1〜3のいずれかに記載の内圧試験装置。   The pressure adjusting piston moves toward the opening side by introducing hydraulic pressure into the pressure adjusting cylinder, and moves away from the opening side by decreasing the hydraulic pressure. The internal pressure test apparatus according to claim 1. 前記被試験体は、人工亀裂が形成されたものであることを特徴とする請求項1〜4のいずれかに記載の内圧試験装置。   The internal pressure test apparatus according to any one of claims 1 to 4, wherein the object to be tested has an artificial crack formed therein. 前記音波センサが、アコーステックエミッションセンサであることを特徴とする請求項1〜5のいずれかに記載の内圧試験装置。   The internal pressure test apparatus according to claim 1, wherein the acoustic wave sensor is an acoustic emission sensor. 前記音波センサが、超音波発信部と超音波受信部とを有する超音波センサであることを特徴とする請求項1〜6のいずれかに記載の内圧試験装置。   The internal pressure test apparatus according to claim 1, wherein the acoustic wave sensor is an ultrasonic sensor having an ultrasonic wave transmission unit and an ultrasonic wave reception unit. 前記ガス注入部で前記被試験体内に注入されるガスが水素であることを特徴とする請求項1〜7のいずれかに記載の内圧試験装置。   The internal pressure test apparatus according to any one of claims 1 to 7, wherein the gas injected into the body under test by the gas injection section is hydrogen. 前記被試験筒体は、不活性ガスが通気されるチャンバ内に配置されていることを特徴とする請求項1〜8のいずれかに記載の内圧試験装置。   The internal pressure test apparatus according to claim 1, wherein the cylinder under test is disposed in a chamber through which an inert gas is vented. 被試験筒体内に、圧力調整用筒体を配置するとともに、該圧力調整用筒体の一部のみを筒方向一旦側で前記被試験筒体内空間に連通させ、前記被試験筒体内をガス注入と圧力導入を除いて封止し、前記空間に所定量のガスを注入した後、前記圧力調整用筒体の他端側で圧力導入を除いて封止された側の内側にある圧力調整ピストンに前記圧力を導入して往復動させることによって前記空間内の前記ガスの圧力を変動させ、該圧力が付与されている前記被試験筒体を伝播する音波を検出することによって前記被試験筒体における特性変化を測定することを特徴とする内圧試験方法。 A pressure adjusting cylinder is arranged in the cylinder under test , and only a part of the pressure adjusting cylinder is communicated with the space in the cylinder under test once in the cylinder direction , and gas is injected into the cylinder under test. And a pressure adjusting piston located inside the sealed side excluding pressure introduction at the other end of the pressure adjusting cylinder after injecting a predetermined amount of gas into the space. The pressure of the gas in the space is changed by introducing and reciprocating the pressure to the cylinder, and the cylinder under test is detected by detecting a sound wave propagating through the cylinder under test to which the pressure is applied. An internal pressure test method characterized by measuring a characteristic change in
JP2011108056A 2011-05-13 2011-05-13 Internal pressure test device and internal pressure test method Expired - Fee Related JP5327817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108056A JP5327817B2 (en) 2011-05-13 2011-05-13 Internal pressure test device and internal pressure test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108056A JP5327817B2 (en) 2011-05-13 2011-05-13 Internal pressure test device and internal pressure test method

Publications (2)

Publication Number Publication Date
JP2012237701A JP2012237701A (en) 2012-12-06
JP5327817B2 true JP5327817B2 (en) 2013-10-30

Family

ID=47460706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108056A Expired - Fee Related JP5327817B2 (en) 2011-05-13 2011-05-13 Internal pressure test device and internal pressure test method

Country Status (1)

Country Link
JP (1) JP5327817B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499003B1 (en) * 2013-11-19 2015-03-05 한국해양과학기술원 Auxiliary chamber equipment for testing resisting pressure of test piece and operation method of same
KR101477577B1 (en) * 2014-08-20 2014-12-30 이윤중 The water pressure cap for pressure testing a pipe
CN104502453B (en) * 2014-12-17 2017-02-22 河南理工大学 Longitudinal wave test device of gas-containing coal rock test sample
CN107991164B (en) * 2017-10-30 2019-08-20 大连理工大学 A kind of sea bed gas hydrate rock core sound wave type plane strain instrument device
KR102195138B1 (en) * 2019-12-31 2020-12-24 호진산업기연(주) Thermal fatigue crack generator for large pipe
CN111912714A (en) * 2020-07-10 2020-11-10 天津爱思达新材料科技有限公司 Universal barrel hydraulic load experimental device and installation experimental method thereof
CN114659821B (en) * 2022-05-25 2022-10-25 河南氢枫能源技术有限公司 System and method for detecting performance of hydrogenation equipment
KR102655356B1 (en) * 2023-12-06 2024-04-05 한국가스안전공사 Accelerated life tester for hydrogen metal pipes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133486U (en) * 1974-09-02 1976-03-11
JPS59145959A (en) * 1983-02-08 1984-08-21 Mitsubishi Heavy Ind Ltd Defect detecting method of pipe weld zone
JPS6357558U (en) * 1986-09-30 1988-04-16
JPH02154135A (en) * 1988-12-06 1990-06-13 Ishikawajima Harima Heavy Ind Co Ltd Water pressure testing method for container
JPH08122221A (en) * 1994-10-24 1996-05-17 Osaka Gas Co Ltd Integrity evaluating method and device for underground buried pipe
JP2000298088A (en) * 1999-04-13 2000-10-24 Asahi Glass Co Ltd Strength evaluating method of tubular fragile member
JP2004286586A (en) * 2003-03-20 2004-10-14 Sumitomo Metal Ind Ltd High-pressure gas fatigue testing method and apparatus

Also Published As

Publication number Publication date
JP2012237701A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5327817B2 (en) Internal pressure test device and internal pressure test method
US6112599A (en) Method and apparatus for measuring a cement sample using a single transducer assembly
US8240209B2 (en) Method and apparatus for detecting damage to high-pressure tank
CN104198593B (en) A kind of high hydrostatic pressure low-frequency calibration cavity and method of testing
US20210325318A1 (en) Methods and systems of testing formation samples using a rock hydrostatic compression chamber
WO2007118822A3 (en) Method and device for determining the quality of seal of a test object
MX2007008686A (en) Non-destructive testing of the lining of a process vessel.
TWI494554B (en) Method and device for differential pressure measurement
JP2016524670A (en) Method for installing foundation components in the ground and pile driver
CN110857906A (en) Rock hydraulic fracture dynamic monitoring system and determination method thereof
CN105823582B (en) A kind of short sound path ultrasonic non-destructive probe of deep camber component surface residual stress
FI20215006A1 (en) Apparatus and method for measuring underwater radiated noise of vessel in particular dockyard
KR20160038493A (en) Acoustic resonance non-destructive testing system
US11604127B2 (en) Methods for detecting pipeline weakening
KR101566691B1 (en) Apparatus for testing leakage
GB2473310A (en) Measurement of rapid variation in pressure or volume in a reservoir
CN109100105A (en) A kind of vibrationfatigue test device and method under high pressure hydrogen environment
KR101268937B1 (en) Method for Measuring Maximum Elastic Modulus in Triaxial Compression Test
CN112943371A (en) Coal seam permeability increasing evaluation system with controllable shock waves
Leinov et al. Investigation of guided waves propagation in pipe buried in sand
CN105973996A (en) Ultrasonic detection method for in-service fan main shaft cracks and detection test block
CN207232095U (en) A kind of ultrasonic probe scanning equipment of pressure adjustable
JP4978870B2 (en) Leakage pipe inspection method and inspection apparatus
CN110761785A (en) Pressure maintaining cabin structure with glass window
Falcon-Suarez et al. Experimental rig to improve the geophysical and geomechanical understanding of CO2 reservoirs

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees