JP4674304B2 - Method and apparatus for producing carbon nanotube - Google Patents

Method and apparatus for producing carbon nanotube Download PDF

Info

Publication number
JP4674304B2
JP4674304B2 JP2005514423A JP2005514423A JP4674304B2 JP 4674304 B2 JP4674304 B2 JP 4674304B2 JP 2005514423 A JP2005514423 A JP 2005514423A JP 2005514423 A JP2005514423 A JP 2005514423A JP 4674304 B2 JP4674304 B2 JP 4674304B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
carbon nanotubes
mixed solution
organic solvent
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005514423A
Other languages
Japanese (ja)
Other versions
JPWO2005033007A1 (en
Inventor
信福 野村
洋通 豊田
浩 山下
誠 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Publication of JPWO2005033007A1 publication Critical patent/JPWO2005033007A1/en
Application granted granted Critical
Publication of JP4674304B2 publication Critical patent/JP4674304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron

Description

この発明は、有機物を分解および再結合させてカーボンナノチューブを形成させる装置および方法に関するものである。The present invention relates to an apparatus and method for decomposing and recombining organic substances to form carbon nanotubes.

カーボンナノチューブは燃料電池の電極材料として、あるい次世代のナノデバイス材料等としての用途を有する物質である。単相や多層、太さやねじれ具合など、その構造によって金属にも半導体にもなり、応用範囲が広い。また、炭素原子のみから構成される物質であり、環境にも優しい材料である。カーボンナノチューブの従来の製造方法としては、ゼオライトに担持したFe系金属触媒を用い、真空容器中に炭素化合物ガスを適切な量だけ流しながら熱分解しながら合成する技術がある(CCVD法)。また、カーボンナノチューブの量産技術として、加圧流動床プロセス、気相流動法、CO2レーザー法など気体を使用する方法が提案されている(非特許文献1)。
Carbon nanotubes as electrode materials of fuel cells, there have is a substance having utility as nanodevices materials of the next generation. It can be either a metal or a semiconductor depending on its structure, such as single phase, multiple layers, thickness and twist, and has a wide range of applications. In addition, it is a substance composed only of carbon atoms and is an environmentally friendly material. As a conventional method for producing carbon nanotubes, there is a technique of using a Fe-based metal catalyst supported on zeolite and synthesizing while thermally decomposing while flowing an appropriate amount of carbon compound gas in a vacuum vessel (CCVD method). Further, as a mass production technique for carbon nanotubes, a method using a gas such as a pressurized fluidized bed process, a gas phase fluidization method, and a CO2 laser method has been proposed (Non-Patent Document 1).

また、液中でプラズマを発生させる技術として、国際公開第02/038827号パンフレットに、間隔を隔てられた一対の電極が入れられた電解液内に堆積すべき材料のソースを含む泡の流れを生成し、泡領域にプラズマグロー放電を形成して電極上に材料をプラズマ堆積させる発明が記載されている。しかし、これは電気鍍金に関する発明であり、カーボンナノチューブの製造に適用するものではない。その原理は直流グロー放電によるものであり、反応速度は低いものである。同文献には、マイクロ波や電磁波を照射してグロー放電の発生を補助する旨の記載が一部見られるが、その具体的な内容は何ら記載されておらず、また技術的な観点から不明な点が多く、やはり同文献に記載された技術は純然たる直流グロー放電と考えられる。したがって、電解液しか使用できず、非電解液である多くの有機溶媒には適用できず、カーボンナノチューブの製造には適さない。
国際公開第02/038827号パンフレット ニューダイヤモンド第13巻第3号、2頁、ニューダイヤモンドフォーラム編集、平成15年7月25日発行
In addition, as a technique for generating plasma in liquid, WO 02/038827 pamphlet describes a flow of bubbles including a source of material to be deposited in an electrolyte solution with a pair of spaced electrodes. An invention is described that produces and plasma deposits material on an electrode by forming a plasma glow discharge in the bubble region. However, this is an invention related to electroplating and is not applied to the production of carbon nanotubes. The principle is based on direct current glow discharge, and the reaction rate is low. In this document, there is a part of the description that the glow discharge is assisted by irradiating microwaves and electromagnetic waves, but the specific content is not described at all, and it is unknown from the technical point of view. The technique described in this document is considered to be pure DC glow discharge. Therefore, only an electrolytic solution can be used, and it cannot be applied to many organic solvents that are non-electrolytic solutions, and is not suitable for the production of carbon nanotubes.
International Publication No. 02/038827 Pamphlet New Diamond Vol. 13, No. 3, page 2, edited by New Diamond Forum, published on July 25, 2003

上述の通り、カーボンナノチューブは非常に有用な物質であるがその生産量は限られており大量に使用できる状況ではなく、また非常に高価である。非特許文献1に記載された製造方法も原材料として気体を用い、気相にて合成を行っているために生産効率は限定される。この発明は、高速で安価にカーボンナノチューブを製造するための製造方法および製造装置を提供することを目的とする。As described above, the carbon nanotube is a very useful substance, but its production amount is limited, and it is not in a situation where it can be used in large quantities, and is very expensive. Since the manufacturing method described in Non-Patent Document 1 also uses gas as a raw material and performs synthesis in the gas phase, production efficiency is limited. An object of this invention is to provide the manufacturing method and manufacturing apparatus for manufacturing a carbon nanotube at high speed and cheaply.

上述の課題を解決するため、この発明のカーボンナノチューブの製造方法は、有機溶媒と有機金属錯体を含む混合液に気泡を発生させるとともに電磁波を照射して混合液中でプラズマを発生させてカーボンナノチューブを製造するものである。前記混合液に金属を担持したゼオライトを加えてもよく、特に鉄を担持したものであってもよい。前記有機溶媒をベンゼンを含むものとしてもよい。有機金属錯体がフェロセン又はメタセンのうち少なくとも一方を含むものであってもよい。また、混合液中に電磁波と併せて超音波を照射してもよい。In order to solve the above-described problems, the carbon nanotube manufacturing method of the present invention generates bubbles in a mixed solution containing an organic solvent and an organometallic complex, and generates plasma in the mixed solution by irradiating electromagnetic waves. Is to be manufactured. A metal-supported zeolite may be added to the mixed solution, and in particular, iron may be supported. The organic solvent may contain benzene. The organometallic complex may contain at least one of ferrocene and metacene. Moreover, you may irradiate an ultrasonic wave with electromagnetic waves in a liquid mixture.

さらに、この発明のカーボンナノチューブ製造装置は、有機溶媒と有機金属錯体を含む混合液を入れる容器と、混合液内で気泡を発生させる気泡発生手段と、気泡へ電磁波を照射してプラズマを発生させるための電磁波照射手段と、合成されたカーボンナノチューブを回収する回収手段を有するものである。Furthermore, the carbon nanotube production apparatus of the present invention generates a plasma by irradiating electromagnetic waves to a bubble, a container for containing a mixed solution containing an organic solvent and an organometallic complex, a bubble generating means for generating bubbles in the mixed solution, and An electromagnetic wave irradiating means for recovering the carbon nanotube and a recovering means for recovering the synthesized carbon nanotubes.

この発明のカーボンナノチューブの製造方法および製造装置は、有機溶媒中で高エネルギーのプラズマを発生させて高速反応を起こすことにより、高速度でカーボンナノチューブを製造できるという効果を有する。The carbon nanotube production method and production apparatus of the present invention have the effect that carbon nanotubes can be produced at a high speed by generating a high-energy plasma in an organic solvent to cause a high-speed reaction.

カーボンナノチューブ製造装置の一例を示す説明図である。It is explanatory drawing which shows an example of a carbon nanotube manufacturing apparatus. カーボンナノチューブ製造装置の別の例を示す説明図である。It is explanatory drawing which shows another example of a carbon nanotube manufacturing apparatus. 合成されたカーボンナノチューブの透過電子顕微鏡写真である。It is a transmission electron micrograph of the synthesized carbon nanotube. ラマンスペクトルを示すグラフである。It is a graph which shows a Raman spectrum.

符号の説明Explanation of symbols

1.カーボンナノチューブ製造装置
2.容器
3.混合液
4.超音波照射手段
5.電磁波照射手段
6.気泡
7.配管
8.ポンプ
9.カーボンナノチューブ分離回収槽
1. 1. Carbon nanotube production apparatus Container 3. 3. Liquid mixture 4. Ultrasonic irradiation means 5. Electromagnetic wave irradiation means Bubble 7 Piping 8. Pump 9. Carbon nanotube separation and recovery tank

この発明を実施するための最良の形態について、図面に基づいて説明する。図1はこの発明に係るカーボンナノチューブ製造装置の一例を示す説明図である。カーボンナノチューブ製造装置1の容器2は有機溶媒と有機金属錯体を含む混合液3を入れるものである。ここで、容器2の大きさは必要とされる処理能力に応じて適宜選択でき、ビーカー程度の小型のものであっても、大型プラントとして実施するための大型の処理槽であってもよい。The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing an example of a carbon nanotube production apparatus according to the present invention. A container 2 of the carbon nanotube production apparatus 1 is for containing a mixed solution 3 containing an organic solvent and an organometallic complex. Here, the size of the container 2 can be appropriately selected according to the required processing capacity, and it may be a small beaker or a large processing tank for carrying out as a large plant.

カーボンナノチューブ製造装置1はさらに気泡発生手段を有するが、本例では超音波照射手段4が気泡発生手段である。気泡発生手段として、容器2を別の容器で覆い、真空ポンプ等で減圧することによって気泡を発生させることもでき、また、混合液3の中に加熱手段を設けたり、あるいは外部より気体を導入するようにしてもよく、さらにはこれらの組み合わせであってもよい。The carbon nanotube production apparatus 1 further has a bubble generating means. In this example, the ultrasonic wave irradiating means 4 is the bubble generating means. Bubbles can be generated by covering the container 2 with another container and depressurizing with a vacuum pump or the like as the bubble generating means. In addition, a heating means is provided in the mixed liquid 3 or a gas is introduced from the outside. You may make it carry out, Furthermore, these combinations may be sufficient.

また、カーボンナノチューブ製造装置1は、混合液3へ電磁波を照射するための電磁波照射手段5を有する。電磁波照射手段5の先端部が容器2内に設けられており、この液体中において先端部から電磁波が気泡に向けて集中的に照射できるようになっている。The carbon nanotube production apparatus 1 also has an electromagnetic wave irradiation means 5 for irradiating the mixed liquid 3 with an electromagnetic wave. A tip portion of the electromagnetic wave irradiation means 5 is provided in the container 2, and electromagnetic waves can be concentratedly irradiated from the tip portion toward the bubbles in this liquid.

ついで、カーボンナノチューブ製造装置1を使用したカーボンナノチューブの製造方法について説明する。容器2へ有機溶媒と有機金属錯体を含む混合液3を入れるが、有機溶媒としては、例えばベンゼンやドデカン等の炭化水素が使用できる。有機金属錯体としては、例えばフェロセン(C1010Fe)やフェロセンのFeを他の金属で置換したメタセン等が使用できる。混合液3にはさらにゼオライトの粉末を加えてもよい。Next, a method for producing carbon nanotubes using the carbon nanotube production apparatus 1 will be described. Although the liquid mixture 3 containing an organic solvent and an organometallic complex is put into the container 2, hydrocarbons, such as benzene and dodecane, can be used as an organic solvent, for example. As the organometallic complex, for example, ferrocene (C 10 H 10 Fe), metacene obtained by substituting Fe of ferrocene with another metal, or the like can be used. A zeolite powder may be further added to the mixed solution 3.

混合液3中に設けられた超音波照射手段4の先端部から混合液3中に超音波を照射することによって混合液3中に気泡が発生する。また、超音波を照射することにより混合液3に加えられたフェロセンとゼオライトの粉末を分散および撹拌することもできる。このようにして、超音波照射手段4の先端付近に気泡6が発生する。混合液3中に設けられた電磁波照射手段5の先端部から気泡6へ電磁波を集中させて照射することにより気泡6中にプラズマを発生させることができる。このプラズマは局所的には高温・高エネルギーであるが、巨視的には液中にあって低温で取り扱いやすいものである。超音波および電磁波は継続的に照射できるので、この照射を継続させている間、プラズマは発生し続ける。このプラズマによって気泡6の内部に入っている気相の有機溶媒等が分解され、カーボンナノチューブが合成される。原材料は有機溶媒を含む液体であるために気相に比べて物質密度は著しく高く、カーボンナノチューブの合成速度は極めて大きい。フェロセン等の有機金属錯体はこの反応を促進する触媒として作用する。ゼオライトを加えている場合には、ゼオライト上にカーボンナノチューブが形成される。Bubbles are generated in the liquid mixture 3 by irradiating the liquid mixture 3 with ultrasonic waves from the tip of the ultrasonic wave irradiation means 4 provided in the liquid mixture 3. Further, the ferrocene and zeolite powders added to the mixed solution 3 by irradiating with ultrasonic waves can be dispersed and stirred. In this way, bubbles 6 are generated near the tip of the ultrasonic wave irradiation means 4. Plasma can be generated in the bubble 6 by concentrating and irradiating the electromagnetic wave to the bubble 6 from the tip of the electromagnetic wave irradiation means 5 provided in the mixed liquid 3. Although this plasma is locally high temperature and high energy, it is macroscopically in a liquid and easy to handle at a low temperature. Since ultrasonic waves and electromagnetic waves can be continuously irradiated, plasma continues to be generated while the irradiation is continued. This plasma decomposes the gas phase organic solvent and the like contained in the bubbles 6 to synthesize carbon nanotubes. Since the raw material is a liquid containing an organic solvent, the material density is significantly higher than in the gas phase, and the synthesis rate of carbon nanotubes is extremely high. Organometallic complexes such as ferrocene act as a catalyst to promote this reaction. When zeolite is added, carbon nanotubes are formed on the zeolite.

この例のカーボンナノチューブ製造装置はバッチ処理式のものである。所定量のカーボンナノチューブを合成したら反応を終了させ、混合液3中に含まれたカーボンナノチューブを分離・回収する。The carbon nanotube manufacturing apparatus in this example is of a batch processing type. When a predetermined amount of carbon nanotubes is synthesized, the reaction is terminated, and the carbon nanotubes contained in the mixed solution 3 are separated and recovered.

つぎに、カーボンナノチューブ製造装置の別の例について説明する。図2は、カーボンナノチューブ製造装置の別の例を示す説明図である。図1に示す例と共通する事項については説明を省略する。この例は連続処理のための製造装置である。Next, another example of the carbon nanotube production apparatus will be described. FIG. 2 is an explanatory view showing another example of the carbon nanotube production apparatus. Description of matters common to the example shown in FIG. 1 is omitted. This example is a manufacturing device for continuous processing.

カーボンナノチューブ製造装置1は、混合液3を容器2の外部へ流出し再度容器2へ流入させるための配管7とポンプ8を有する。さらに、配管7の途中にはカーボンナノチューブを分離回収するための回収手段として、カーボンナノチューブ分離回収槽9が設けられている。The carbon nanotube manufacturing apparatus 1 has a pipe 7 and a pump 8 for flowing the mixed liquid 3 out of the container 2 and flowing it again into the container 2. Further, a carbon nanotube separation and recovery tank 9 is provided in the middle of the pipe 7 as a recovery means for separating and recovering the carbon nanotubes.

ポンプ8を作動させることにより、所定量の混合液が常時循環する。混合液を循環させないと合成されたカーボンナノチューブが電磁波発生手段5の電極付近に浮遊してプラズマの持続を阻害しようとするが、この例のように混合液を循環させ、合成されたカーボンナノチューブを迅速に外部に出すことによりプラズマの持続が容易になり、大量のカーボンナノチューブを連続的に製造することができる。図2においては、混合液3は配管7を時計回りに循環する。合成されたカーボンナノチューブを含む混合液は容器2の右側から排出され、カーボンナノチューブ分離回収槽9へ運ばれる。カーボンナノチューブ分離回収槽9においてカーボンナノチューブは混合液から分離され、回収される。カーボンナノチューブを取り除かれた混合液は配管7を通って、容器2の左側から流入する。By operating the pump 8, a predetermined amount of the mixed liquid is circulated constantly. If the mixed liquid is not circulated, the synthesized carbon nanotubes will float near the electrode of the electromagnetic wave generating means 5 and try to inhibit the sustaining of the plasma. Prompt out to the outside facilitates the sustain of the plasma, and a large number of carbon nanotubes can be produced continuously. In FIG. 2, the mixed solution 3 circulates in the pipe 7 in the clockwise direction. The mixed liquid containing the synthesized carbon nanotubes is discharged from the right side of the container 2 and carried to the carbon nanotube separation and recovery tank 9. In the carbon nanotube separation and recovery tank 9, the carbon nanotubes are separated from the mixed solution and recovered. The mixed liquid from which the carbon nanotubes have been removed flows from the left side of the container 2 through the pipe 7.

この発明のカーボンナノチューブ製造方法の実施例について説明する。この実施例においては、図1に示すカーボンナノチューブ製造装置を使用する。有機溶媒としてはベンゼンを使用した。ベンゼン100mlにFeを担持したゼオライトの粉末1gとフェロセン0.088gを加え、混合液を調製した。Examples of the carbon nanotube production method of the present invention will be described. In this embodiment, the carbon nanotube production apparatus shown in FIG. 1 is used. Benzene was used as the organic solvent. 1 g of zeolite powder supporting Fe and 0.088 g of ferrocene were added to 100 ml of benzene to prepare a mixed solution.

ここで用いたゼオライトについて詳細に説明する。このゼオライトは平均孔径0.5nmのゼオライト(Mn/2/O・Al・xSiO・yHO、nは陽イオンMの価数、xは2以上の整数、yは0以上の整数、通称名モレキュラーシーブス5A)にFeイオンを含浸させたものである。まず、塩化第1鉄(FeCl)2gと、塩酸ヒドロキシルアミン(HONHCl)2gを,99.5%エタノール(COH)100mlに混合することにより、Fe2+イオンをエタノール中に多量に発生させる。適当な容器にこの溶液とモレキュラーシーブス5Aを入れて良く攪拌させ、ついで容器内を真空にしてFe2+をモレキュラーシーブス中に含浸させる。この例では、真空中で5時間攪拌を行った。攪拌後の溶液をろ過し,ろ紙に残った固形物を70℃で5時間窒素雰囲気中で乾燥させる。乾燥後の固形物を乳鉢で良く磨りつぶしたものをFe担持ゼオライトとした。このFe担持ゼオライトを混合したベンゼンは電気伝導性を示すが、プラズマ発生には支障をきたさない。The zeolite used here will be described in detail. The zeolite average pore size 0.5nm zeolites (M n / 2 / O n · Al 2 O 3 · xSiO 2 · yH 2 O, n is the valence of the cation M, x is an integer of 2 or more, y is 0 The above integer, commonly known as molecular sieves 5A) is impregnated with Fe ions. First, 2 g of ferrous chloride (FeCl 2 ) and 2 g of hydroxylamine hydrochloride (HONH 3 Cl) are mixed with 100 ml of 99.5% ethanol (C 2 H 5 OH), thereby bringing Fe 2+ ions into ethanol. Generate a large amount. Put this solution and molecular sieve 5A in a suitable container and stir well, and then evacuate the container to impregnate Fe 2+ in the molecular sieve. In this example, stirring was performed in vacuum for 5 hours. The solution after stirring is filtered, and the solid matter remaining on the filter paper is dried at 70 ° C. for 5 hours in a nitrogen atmosphere. The solid material after drying was thoroughly ground in a mortar to obtain an Fe-supported zeolite. Benzene mixed with this Fe-supported zeolite exhibits electrical conductivity but does not hinder plasma generation.

このようにして調製された混合液を容器2に入れ、30Wの出力で超音波を照射してゼオライトとフェロセンを分散および拡散させなから、2.45GHzの電磁波を300Wの出力で混合液に10秒間照射した。白色のプラズマが発生し、瞬時に混合液中に黒色の粉体が形成された。The mixed liquid thus prepared is put in the container 2 and irradiated with ultrasonic waves at an output of 30 W to disperse and diffuse zeolite and ferrocene. Therefore, an electromagnetic wave of 2.45 GHz is applied to the mixed liquid at an output of 300 W. Irradiated for 2 seconds. White plasma was generated, and a black powder was instantaneously formed in the mixed solution.

図3は、形成された黒色の粉体の透過電子顕微鏡写真である。ゼオライト粒子表面から0.5μm程度のカーボンナノチューブが形成されていることが確認できる。図4は、黒色の粉体のラマンスペクトルを示すグラフである。200〜300cm−1にいわゆるカーボンナノチューブのラジアルブリージングモードが観察されており、やはりカーボンナノチューブが形成されていることが確認できる。FIG. 3 is a transmission electron micrograph of the formed black powder. It can be confirmed that carbon nanotubes of about 0.5 μm are formed from the surface of the zeolite particles. FIG. 4 is a graph showing the Raman spectrum of black powder. A so-called radial breathing mode of carbon nanotubes is observed at 200 to 300 cm −1, and it can be confirmed that carbon nanotubes are also formed.

この発明のカーボンナノチューブ製造方法および製造装置は、有機溶媒を含む液体を材料として高速度で大量にカーボンナノチューブを合成するものであり、カーボンナノチューブの工業的生産手段として適用できる。また、装置の構造は簡易であり、小型に作ることもでき、試験用機器としても適用できる。The carbon nanotube production method and production apparatus of the present invention synthesize carbon nanotubes in large quantities at a high speed using a liquid containing an organic solvent as a material, and can be applied as an industrial production means for carbon nanotubes. Moreover, the structure of the apparatus is simple, can be made small, and can also be applied as a test device.

Claims (6)

有機溶媒と有機金属錯体を含む混合液に金属を担持したゼオライトを加え、その混合液に気泡を発生させるとともに電磁波を照射して混合液中でプラズマを発生させてカーボンナノチューブを製造する方法。A method of producing carbon nanotubes by adding a metal-supported zeolite to a mixed solution containing an organic solvent and an organometallic complex, generating bubbles in the mixed solution and irradiating electromagnetic waves to generate plasma in the mixed solution. 前記ゼオライトが鉄を担持したものであることを特徴とする請求項1に記載のカーボンナノチューブを製造する方法。The method for producing carbon nanotubes according to claim 1, wherein the zeolite carries iron. 前記有機溶媒がベンゼンを含むものであることを特徴とする請求項1または請求項2に記載のカーボンナノチューブを製造する方法。The method for producing a carbon nanotube according to claim 1 or 2, wherein the organic solvent contains benzene. 有機金属錯体がフェロセン又はメタセンのうち少なくとも一方を含むものであることを特徴とする請求項1ないし請求項3のいずれかに記載のカーボンナノチューブを製造する方法。The method for producing a carbon nanotube according to any one of claims 1 to 3, wherein the organometallic complex contains at least one of ferrocene and metacene. 混合液中に電磁波と併せて超音波を照射することを特徴とする請求項1ないし請求項4のいずれかに記載のカーボンナノチューブを製造する方法。The method for producing carbon nanotubes according to any one of claims 1 to 4, wherein the mixed solution is irradiated with ultrasonic waves together with electromagnetic waves. 有機溶媒と有機金属錯体と金属を担持したゼオライトを含む混合液を入れる容器と、混合液内で気泡を発生させる気泡発生手段と、気泡へ電磁波を照射してプラズマを発生させるための電磁波照射手段と、合成されたカーボンナノチューブを回収する回収手段を有することを特徴とするカーボンナノチューブ製造装置。A container containing a mixed liquid containing an organic solvent, an organometallic complex, and a metal-supported zeolite, a bubble generating means for generating bubbles in the mixed liquid, and an electromagnetic wave irradiating means for generating plasma by irradiating the bubbles with electromagnetic waves And a carbon nanotube manufacturing apparatus comprising a recovery means for recovering the synthesized carbon nanotubes.
JP2005514423A 2003-09-30 2004-09-27 Method and apparatus for producing carbon nanotube Active JP4674304B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003339642 2003-09-30
JP2003339642 2003-09-30
PCT/JP2004/014094 WO2005033007A1 (en) 2003-09-30 2004-09-27 Method and apparatus for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JPWO2005033007A1 JPWO2005033007A1 (en) 2007-11-15
JP4674304B2 true JP4674304B2 (en) 2011-04-20

Family

ID=34419158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514423A Active JP4674304B2 (en) 2003-09-30 2004-09-27 Method and apparatus for producing carbon nanotube

Country Status (2)

Country Link
JP (1) JP4674304B2 (en)
WO (1) WO2005033007A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306029A (en) * 2003-03-27 2004-11-04 Techno Network Shikoku Co Ltd Chemical reactor and decomposing method of toxic substance
JP2008247627A (en) * 2007-03-29 2008-10-16 Nippon Steel Chem Co Ltd Method for manufacturing carbon material, carbon material and electric double layer capacitor
JP5272136B2 (en) * 2007-04-09 2013-08-28 富山県 Method for producing nanocarbon material
JP5463282B2 (en) * 2008-03-26 2014-04-09 勝 堀 Method for producing graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143316A (en) * 1997-07-23 1999-02-16 Agency Of Ind Science & Technol Production of carbon nanotube
JP2004244283A (en) * 2003-02-14 2004-09-02 Kanegafuchi Chem Ind Co Ltd Manufacturing method of carbon nanotube
JP2004299987A (en) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology Method for producing carbon nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143316A (en) * 1997-07-23 1999-02-16 Agency Of Ind Science & Technol Production of carbon nanotube
JP2004244283A (en) * 2003-02-14 2004-09-02 Kanegafuchi Chem Ind Co Ltd Manufacturing method of carbon nanotube
JP2004299987A (en) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology Method for producing carbon nanotube

Also Published As

Publication number Publication date
WO2005033007A1 (en) 2005-04-14
JPWO2005033007A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
Ali et al. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction
Xiang et al. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods
Wang et al. Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts
Zhou et al. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction
Kuo et al. The effect of lattice strain on the catalytic properties of Pd nanocrystals
Fang et al. Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts
Wu et al. An electrocatalytic route for transformation of biomass-derived furfural into 5-hydroxy-2 (5 H)-furanone
EP1219567A1 (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
Fu et al. Dual-defect enhanced piezocatalytic performance of C3N5 for multifunctional applications
Li et al. Highly selective two-electron oxygen reduction to generate hydrogen peroxide using graphite felt modified with N-doped graphene in an electro-Fenton system
Wang et al. Modulation of carbon induced persulfate activation by nitrogen dopants: recent advances and perspectives
Yao et al. Bifunctional catalysts for heterogeneous electro-Fenton processes: a review
Cherepanov et al. Ultrasound assisted formation of Al–Ni electrocatalyst for hydrogen evolution
Zakaria et al. Synthesis of Nanoporous Ni‐Co Mixed Oxides by Thermal Decomposition of Metal‐Cyanide Coordination Polymers
Wang et al. In situ growth of ceria on cerium–nitrogen–carbon as promoter for oxygen evolution reaction
Madi et al. 2D/2D V2C mediated porous g-C3N4 heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO2 reduction to fuels
Balakrishnan et al. BCN–Co 3 O 4 hybrid–a highly efficient catalyst for the oxygen evolution reaction and dye degradation
Liu et al. Cryogenic ball milling synthesis of Ag3PO4/h-BN nanoparticles with increased performance for photocatalytic oxygen evolution reaction
Zhang et al. Enhancing deep mineralization of refractory benzotriazole via carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets activated peroxymonosulfate process: Mechanism, degradation pathway and toxicity
Dylan et al. Synthesis and Electrochemical Study of CuAu Nanodendrites for CO 2 Reduction
Du et al. CNT modified by mesoporous carbon anchored by Ni nanoparticles for CO2 electrochemical reduction
Aftab et al. An advanced PdNPs@ MoS 2 nanocomposite for efficient oxygen evolution reaction in alkaline media
JP4674304B2 (en) Method and apparatus for producing carbon nanotube
Chen et al. Microwave-assisted shock synthesis of diverse ultrathin graphene-derived materials
Qin et al. Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150