JP5270512B2 - 食品用プロピレン系樹脂組成物およびその成形品 - Google Patents

食品用プロピレン系樹脂組成物およびその成形品 Download PDF

Info

Publication number
JP5270512B2
JP5270512B2 JP2009240937A JP2009240937A JP5270512B2 JP 5270512 B2 JP5270512 B2 JP 5270512B2 JP 2009240937 A JP2009240937 A JP 2009240937A JP 2009240937 A JP2009240937 A JP 2009240937A JP 5270512 B2 JP5270512 B2 JP 5270512B2
Authority
JP
Japan
Prior art keywords
propylene
group
nucleating agent
weight
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009240937A
Other languages
English (en)
Other versions
JP2010121120A (ja
Inventor
昌和 鈴木
真也 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2009240937A priority Critical patent/JP5270512B2/ja
Publication of JP2010121120A publication Critical patent/JP2010121120A/ja
Application granted granted Critical
Publication of JP5270512B2 publication Critical patent/JP5270512B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、食品用プロピレン系樹脂組成物およびその成形品に関するものである。詳しくはレトルト用途向け食品用成形品で、加圧加熱滅菌処理を行っても透明性が優れ、臭気、溶出性、風味、耐熱性、剛性、バリア性、耐衝撃性などのバランスに優れた食品用プロピレン系樹脂組成物およびその成形品に関する。
プロピレン系重合体は、その優れた安全衛生性や成形加工性、力学特性、ガスバリヤ性の特徴を生かし、各種の食品容器や蓋などに使用されている。近年、食への安全衛生性に関する要求が高まっており、レトルト食品は、安全衛生性に優れ、冷凍食品と異なり、常温で長期保存できる点から需要の多い食品分野である。一方、従来より、レトルト米飯、レトルトカレーなどのレトルト用食品(レトルト食品は一般に気密性及び遮光性を有する容器で密封し、加圧加熱殺菌した食品の事)があるが、レトルト殺菌後の臭気などの問題で、レトルト容器の主用途は香料の強いカレーなどが主製品であり、レトルト米飯など風味に敏感な用途への展開は問題があった。また、一般に品質保持の観点から遮光性を持たせるが、中身が確認できる透明性が求められる事もあり、その場合、レトルト処理後の失透が問題となっている。
一方、製品の割れ性は大きな問題で、これを改善するために耐衝撃性向上目的でゴム成分を添加すると透明性が悪くなる場合が多く、すべての要求性能を満足する事は難しいのが現状である。
本発明の目的は、上記問題点に鑑み、加圧加熱滅菌処理を行っても透明性が優れ、臭気、溶出性、風味、耐熱性、剛性、バリア性、耐衝撃性などのバランスに優れた食品用プロピレン系樹脂組成物およびその成形品を提供することにある。
本発明者らは、前記課題を解決すべく鋭意検討した結果、特定のメルトフローレートのプロピレン系重合体に対し、特定の造核剤を特定量用いることにより、加圧加熱滅菌処理を行っても透明性等が優れる食品用プロピレン系樹脂組成物を得ることができることを見出し、本発明を完成した。
すなわち、本発明の第1の特徴は、プロピレンと含有量が5重量%未満のα−オレフィンとからなるプロピレン系共重合体であり、JIS K7210(230℃、2.16kg荷重)に準拠したメルトフローレートが0.5〜100g/10分であるプロピレン系(共)重合体60〜99重量部、下記条件(A−i)〜(A−v)を満たすプロピレン−エチレンブロック共重合体1〜40重量部、および造核剤0.01〜0.6重量部とからなることを特徴とするプロピレン系樹脂組成物、にある。
(A−i)メタロセン系触媒を用いて、第1工程でプロピレン単独又はエチレン含量7wt%以下のプロピレン−エチレンランダム共重合体成分(A)を30〜95wt%、第2工程で成分(A)よりも3〜20wt%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(B)を70〜5wt%逐次重合することで得られたプロピレン−エチレンブロック共重合体であること
(A−ii)メルトフローレート(MFR:230℃ 2.16kg)が0.5〜100g/10minの範囲にあること
(A−iii)DSC法により測定された融解ピーク温度(Tm)が110〜150℃の範囲にあること
(A−iv)GPC法により測定された分子量分布(Mw/Mn)が1.5〜4の範囲にあること
(A−v)固体粘弾性測定により得られる温度−損失正接曲線において、tanδ曲線が0℃以下に単一のピークを有する。
本発明の第2の特徴は、造核剤が、下記一般式(1)で示される造核剤(A)0.01〜0.6重量部、下記一般式(2)で示される造核剤(B)0.005〜0.3重量部、下記一般式(3)で示される造核剤(C)0.005〜0.15重量部、下記一般式(4)で示される造核剤(D)0.005〜0.15重量部および下記一般式(5)で示される造核剤(E)0.005重量部以上で0.3重量部未満の範囲で成る、これら少なくとも1種の造核剤(A)〜(E)であることを特徴とする前記記載のプロピレン系樹脂組成物、にある。

[但し、nは、0〜2の整数であり、R〜Rは、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、Rは、炭素数が1〜20のアルキル基である。]
[式中、Rは、直接結合、硫黄又は炭素数1〜9のアルキレン基又はアルキリデン基であり、R及びRは、同一又は異なって、それぞれ水素原子又は炭素数1〜8のアルキル基であり、MはNaであり、nはMの価数である。]
[式中、Rは、水素原子又は炭素数1〜4のアルキル基を示し、R及びRは、同一又は異なって、それぞれ水素原子又は炭素数1〜12のアルキル基を示し、Mは、周期律表第III族または第IV族の金属原子を示し、Xは、Mが周期律表第III族の金属原子を示す場合には、HO−を示し、Mが周期律表第IV族の金属原子を示す場合には、O=又は(HO)−を示す。]
[式中、MおよびMは、同一または異なって、カルシウム、ストロンチウム、リチウムおよび一塩基性アルミニウムから選択される少なくとも1種の金属カチオンであり、R、R、R、R、R、R、R、R、RおよびR10は、同一または異なって、水素、C−Cアルキル(ここで、いずれか2つのビシナル(隣接炭素に結合)またはジェミナル(同一炭素に結合)アルキル基は、一緒になって6個までの炭素原子を有する炭化水素環を形成してもよい)、ヒドロキシ、C−Cアルコキシ、C−Cアルキレンオキシ、アミンおよびC−Cアルキルアミン、ハロゲン(フッ素、塩素、臭素および沃素)並びにフェニルからなる群からそれぞれ選択される。]
(CONHR …(5)
[式中、Rは、炭素数2〜30の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数4〜28の飽和若しくは不飽和の脂環族ポリカルボン酸残基、又は炭素数6〜18の芳香族ポリカルボン酸残基を表わす。Rは、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、又は炭素数3〜46のシクロアルキル基若しくはシクロアルケニル基を表わす。aは、2〜6の整数を表す。]
本発明の第3の特徴は、造核剤(A)が下記一般式(6)で示される造核剤であることを特徴とする前記記載のプロピレン系樹脂組成物、にある。

[但し、nは、0〜2の整数であり、R、R、R、Rは、水素原子であり、Rは、水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、Rは、炭素数が1〜20のアルキル基である。]
本発明の第4の特徴は、滑剤が0.001〜0.5重量部の範囲で配合されたものであることを特徴とする前記のプロピレン系樹脂組成物、にある。
本発明の第5の特徴は、前記各記載のプロピレン系樹脂組成物を食品用途に用いることを特徴とする食品用プロピレン系樹脂組成物、にある。
本発明の第6の特徴は、前記第5の特徴に示す食品用プロピレン系樹脂組成物から得られることを特徴とする食品用成形品、にある。
本発明の第7の特徴は、前記第6の特徴に示す食品用成形品がレトルト用途であることを特徴とするレトルト用成形品、にある。
本発明のプロピレン系樹脂組成物は、加圧加熱滅菌処理を行っても透明性が優れ、臭気、溶出性、風味、耐熱性、剛性、バリア性、耐衝撃性などのバランスに優れたものである。
プロピレン−エチレンブロック共重合体のTREFによる溶出量及び溶出量積算を示す図である。
本発明は、(ア)JIS K7210(230℃、2.16kg荷重)に準拠したメルトフローレートが0.5〜100g/10分であり、プロピレンと含有量が5重量%未満のα−オレフィンとからなるプロピレン系共重合体60〜99重量部に対し、(イ)下記条件(A−i)〜(A−v)を満たすプロピレン−エチレンブロック共重合体1〜40重量部、(ウ)造核剤を0.01重量部以上で0.6重量部以下の範囲で配合されていることを特徴とする食品用プロピレン系樹脂組成物であり、これより得られる成形品、特にレトルト食品用途に有用である。以下、構成成分、組成物の製造方法、成形体等について詳細に説明する。
(A−i)メタロセン系触媒を用いて、第1工程でプロピレン単独又はエチレン含量7wt%以下のプロピレン−エチレンランダム共重合体成分(A)を30〜95wt%、第2工程で成分(A)よりも3〜20wt%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(B)を70〜5wt%逐次重合することで得られたプロピレン−エチレンブロック共重合体であること
(A−ii)メルトフローレート(MFR:230℃ 2.16kg)が0.5〜100g/10minの範囲にあること
(A−iii)DSC法により測定された融解ピーク温度(Tm)が110〜150℃の範囲にあること
(A−iv)GPC法により測定された分子量分布(Mw/Mn)が1.5〜4の範囲にあること
(A−v)固体粘弾性測定により得られる温度−損失正接曲線において、tanδ曲線が0℃以下に単一のピークを有する。
食品用プロピレン系樹脂組成物を構成する前記のプロピレンと含有量が5重量%未満のα−オレフィンとからなるプロピレン系共重合体(プロピレン系(共)重合体)の配合量は、ブレンドによりこの樹脂の特性を失うことの無い、50重量部以上、通常は60〜99重量部、具体的には、65重量部、70重量部、80重量部、90重量部、95重量部等の実施態様が例示できる。これに対して、該組成物を構成する、前記プロピレン−エチレンブロック共重合体は、50重量部以下、通常は1〜40重量部、具体的には、5重量部、10重量部、20重量部、30重量部、35重量部等の実施態様が例示でき、これらの二成分系樹脂をそれぞれ配合して組成物100重量部になるように調合する。
プロピレン−エチレンブロック共重合体のブレンド量を0.08重量部、0.05重量部、0.01重量部、0,005重量部と少なくすれば、耐衝撃性、耐熱性などの効果が単調に減少して、本発明の効果が期待できない。一方、そのブレンド量を45重量部、50重量部、60重量部と単調に増加させると、プロピレン系共重合体の剛性、耐熱性、ガスバリヤー性が喪失する傾向にあり、若干のべたつき性が発生する傾向にあり、本来のプロピレン系共重合体の優れた性質を消失する恐れがある。
このように、プロピレン系共重合体の特性を、特定のプロピレン−エチレンブロック共重合体を特定量ブレンドにより改質するということは本発明者等の知見に基づくものであります。このプロピレン系重合体60〜99重量部と、特定の(A−i)〜(A−v)の条件を満たすプロピレン−エチレンブロック共重合体1〜40重量部を含むプロピレン系樹脂組成物は、重合体に組み合わせ、およびそのブレンド量に技術的に臨界的な意義のある材料である。
さらに、このようなプロピレン系樹脂組成物は、各種用途に供することができるが、特に、レトルト食品の用途のように、過酷な高温環境に曝す、加圧加熱、マイクロ波加熱などの過酷な加熱処理に適応可能な物理的な特性を備えた材料であることも知見したものである。しかし、食品用成形品の場合に、店頭などで内容物が良く見えることが商品価値を非常に高めることになる。一方で、食品や医療材料として、例えば、パック、容器、ボトル、トレーのような場合に安全で、衛生的な材料が求められることが非常に重要である。
以上の点に留意して、各種汎用の造核剤を含む各種の造核剤を検討した結果、単に透明性を解決すると言う点では、その条件を満たすものが多い。
しかし、プロピレン系共重合体60〜99重量部と、特定の(A−i)〜(A−v)の条件を満たすプロピレン−エチレンブロック共重合体1〜40重量部を含むプロピレン系樹脂組成物という、ミクロ構造として、融点が異なる少なくとも二種類の重合体混合物であること、場合によっては相分離構造も有り得る特異なプロピレン系樹脂組成物に対しても、最大限に安定した造核剤機能を発現し、溶出、接触による衛生性、安全性の特性は勿論のこと、悪臭、加工性などの成形時に支障とならない造核剤となれば制約される場合がある。
さらに、食品容器の場合には、予め成形をしたフイルム、シートを真空成形、加圧成形、熱シールなどの二次加工に付する場合があり、このような加工条件においても悪臭、造核剤揮発、ブリードアウトなどの影響が無く、しかも透明性が消失することのない安定した造核剤が求められる。さらに、レトルト成形品、医療成形品のような実際に使用する際に、殺菌、調理の為に加圧加熱した場合に、その成形品の透明性が低下したり、造核剤のブリードアウト、内容物に対する風味などの影響が無いというような特性が求められる。このように、本発明は、プロピレン系樹脂組成物という複合材料の透明性を高くする為に適正な造核剤を選定するという添加剤の面からの対策、加工、二次加工という成形加工の面からの対策、および成形品の食品などに利用した際の成形品の加圧加熱処理というか過酷な取り扱いにおける対策という、多面的な対策から、鋭意検討した結果、本発明者らは、各種造核剤のうちから、一般式(1)〜(5)で示されるものが、その透明性、剛性の向上、曲げ弾性率の向上、均一性、安全性、衛生性、内容物への影響が無いと言うすべての要件を満たすことを知見したものである。また、本発明は、特定の重合体混合物であるから、一般式(1)〜(5)で示される造核剤を複数任意に組み合わせた場合においても、プロピレン系樹脂組成物を構成する各重合体に適正に機能して、安定に、均一に、しかも高機能的に造核剤機能を発現することも知見したものである。
[1]組成物の構成成分
1.プロピレン系(共)重合体
(ア)プロピレン系(共)重合体
本発明の食品用プロピレン系樹脂組成物に用いられる(ア)プロピレン系(共)重合体は、プロピレンと含有量が5重量%未満のα−オレフィンとからなるプロピレン系共重合体で、プロピレン単独重合体などを加えた混合物であってもよい。
(ア)プロピレン系(共)重合体は、加熱加圧処理などの耐熱性の観点では単独重合体が望ましく、透明性の観点ではプロピレンとα−オレフィンとからなるランダム共重合体が望ましい。共重合に用いられるα−オレフィンは、プロピレンを除く炭素数2〜20のα−オレフィンがあげられ、例えばエチレン、ブテン−1、ヘキセン−1、オクテン−1等を例示できる。プロピレンと共重合されるα−オレフィンは一種類でも二種類以上用いてもよい。このうちエチレン、ブテン−1が好適である。より好ましくはエチレンが好適である。また、これらプロピレン系重合体は、二種以上混合して使用してもよい。また、α−オレフィンの含有量が5重量%以上であると耐熱性の観点から、使用が困難になる。
プロピレン系共重合体の具体的な例としては、プロピレン−エチレン共重合体、プロピレン−ブテン−1共重合体、プロピレン−ヘキセン−1共重合体、プロピレン−オクテン−1共重合体、プロピレン−エチレン−ブテン−1共重合体、プロピレン−エチレン−ヘキセン−1共重合体、プロピレン−ブテン−1−オクテン−1共重合体などのような、共単量体を任意に若干量組み合わせた二元または三元共重合体が例示できる。
レトルト用途では、121℃で3分程度で加圧加熱殺菌処理されることが一般的で、場合によっては130℃で30分ほど加圧加熱処理される事もある。加圧加熱処理される場合は、プロピレン単独重合体やプロピレンと含有量が5重量%未満のα−オレフィンとからなるプロピレン系共重合体が好ましい。エチレン含有量の多いランダム共重合体を用いると加圧加熱滅菌処理で変形してしまう不具合が発生する。また、加圧加熱滅菌処理される場合は、滅菌前に比べ透明性が悪化しやすく、悪化しにくいものが良好である。
(ア)プロピレン系(共)重合体に用いられるα−オレフィン含量は、5重量%未満であり、3重量%未満が好ましい。α−オレフィンの含量が5重量%以上であると、融点を加圧加熱処理温度が上回り、加圧加熱滅菌処理の際に変形を起こす恐れがある。
ここで、プロピレン及びα−オレフィンは、下記の条件の13C−NMR法によって計測される値である。
装置:日本電子社製 JEOL−GSX270
濃度:300mg/2mL
溶媒:オルソジクロロベンゼン
また、本発明で用いられる(ア)プロピレン系(共)重合体がプロピレン単独重合体の場合は、アイソタクチックペンタッド分率が0.90以上が好ましく、より好ましくは0.94〜0.98である。アイソタクチックペンタッド分率が0.90未満であると、剛性やバリアー性が満足できないおそれがある。
ここで、アイソタクチックペンタッド分率は、13C−NMRを用いたプロトンデカップリング法で測定する値である。
本発明で用いられる(ア)プロピレン系(共)重合体は、JIS K7120(230℃、2.16kg荷重)に準拠したメルトフローレート(MFR)が0.5〜100g/10分の範囲のものであり、1〜50g/10分が好ましく、2〜30g/10分がさらに好ましい。メルトフローレート(MFR)が0.5g/10分未満では、成形加工性の低下をきたし製品として満足できるものが得られ難くなるおそれがある。また、100g/10分を超えると、機械的強度の低下が懸念される。
(ア)プロピレン系(共)重合体の製造方法としては、特に限定されないが、立体規則性触媒を使用する重合法が好ましい。立体規則性触媒としては、チーグラー触媒やメタロセン触媒などが挙げられる。好ましくは、(イ)プロピレン−エチレンブロック共重合体と相溶性の良いメタロセン触媒を用いた方がより良い。
チーグラー触媒としては、三塩化チタン、四塩化チタン、トリクロロエトキシチタン等のハロゲン化チタン化合物、前記ハロゲン化チタン化合物とハロゲン化マグネシウムに代表されるマグネシウム化合物との接触物等の遷移金属成分とアルキルアルミニウム化合物又はそれらのハロゲン化物、水素化物、アルコキシド等の有機金属成分との2成分系触媒、更にそれらの成分に窒素、炭素、リン、硫黄、酸素、ケイ素等を含む電子供与性化合物を加えた3成分系触媒が挙げられる。
メタロセン触媒としては、(i)シクロペンタジエニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(いわゆるメタロセン化合物)と、(ii)メタロセン化合物と反応して安定なイオン状態に活性化しうる助触媒と、必要により、(iii)有機アルミニウム化合物とからなる触媒であり、公知の触媒はいずれも使用できる。メタロセン化合物は、好ましくはプロピレンの立体規則性重合が可能な架橋型のメタロセン化合物であり、より好ましくはプロピレンのアイソ規則性重合が可能な架橋型のメタロセン化合物である。
(i)メタロセン化合物としては、例えば、特開昭60−35007号、特開昭61−130314号、特開昭63−295607号、特開平1−275609号、特開平2−41303号、特開平2−131488号、特開平2−76887号、特開平3−163088号、特開平4−300887号、特開平4−211694号、特開平5−43616号、特開平5−209013号、特開平6−239914号、特表平7−504934号、特開平8−85708号の各公報に開示されている。
更に、具体的には、メチレンビス(2−メチルインデニル)ジルコニウムジクロリド、エチレンビス(2−メチルインデニル)ジルコニウムジクロリド、エチレン1,2−(4−フェニルインデニル)(2−メチル−4−フェニル−4H−アズレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、イソプロピリデン(4−メチルシクロペンタジエニル)(3−t−ブチルインデニル)ジルコニウムジクロリド、ジメチルシリレン(2−メチル−4−t−ブチル−シクロペンタジエニル)(3’−t−ブチル−5’−メチル−シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス(インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[4−(1−フェニル−3−メチルインデニル)]ジルコニウムジクロリド、ジメチルシリレン(フルオレニル)t−ブチルアミドジルコニウムジクロリド、メチルフェニルシリレンビス[1−(2−メチル−4,(1−ナフチル)−インデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4,5−ベンゾインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4−フェニル−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−ナフチル−4H−アズレニル)]ジルコニウムジクロリド、ジフェニルシリレンビス[1−(2−メチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−(3−フルオロビフェニリル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルゲルミレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルゲルミレンビス[1−(2−エチル−4−フェニルインデニル)]ジルコニウムジクロリドなどのジルコニウム化合物が例示できる。上記において、ジルコニウムをチタニウム、ハフニウムに置き換えた化合物も同様に使用できる。場合によっては、ジルコニウム化合物とハフニウム化合物等の混合物を使用することもできる。また、クロリドは他のハロゲン化合物、メチル、イソブチル、ベンジル等の炭化水素基、ジメチルアミド、ジエチルアミド等のアミド基、メトキシ基、フェノキシ基等のアルコキシド基、ヒドリド基等に置き換えることが出来る。
これらの内、インデニル基あるいはアズレニル基を珪素あるいはゲルミル基で架橋したメタロセン化合物が好ましい。
また、メタロセン化合物は、無機または有機化合物の担体に担持して使用してもよい。該担体としては、無機または有機化合物の多孔質化合物が好ましく、具体的には、イオン交換性層状珪酸塩、ゼオライト、SiO、Al、シリカアルミナ、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO、等の無機化合物、多孔質のポリオレフィン、スチレン・ジビニルベンゼン共重合体、オレフィン・アクリル酸共重合体等からなる有機化合物、またはこれらの混合物が挙げられる。
(ii)メタロセン化合物と反応して安定なイオン状態に活性化しうる助触媒としては、有機アルミニウムオキシ化合物(たとえば、アルミノキサン化合物)、イオン交換性層状珪酸塩、ルイス酸、ホウ素含有化合物、イオン性化合物、フッ素含有有機化合物等が挙げられる。
(iii)有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムセスキハライド、アルキルアルミニウムジハライド、アルキルアルミニウムハイドライド、有機アルミニウムアルコキサイド等が挙げられる。
プロピレン系(共)重合体の製造方法としては、上記触媒の存在下に、不活性溶媒を用いたスラリー法、溶液法、実質的に溶媒を用いない気相法や、あるいは重合モノマーを溶媒とするバルク重合法等が挙げられる。
例えば、スラリー重合法の場合には、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の不活性炭化水素又は液状モノマー中で行うことができる。重合温度は、通常−80〜150℃であり、好ましくは40〜120℃である。重合圧力は、1〜60気圧が好ましく、また得られるプロピレン系(共)重合体の分子量の調節は、水素もしくは他の公知の分子量調整剤で行うことができる。重合は連続式又はバッチ式反応で行い、その条件は通常用いられている条件でよい。さらに重合反応は一段で行ってもよく、多段で行ってもよい。
(イ)プロピレン−エチレンブロック共重合体
本発明で用いられる(イ)プロピレン−エチレンブロック共重合体とは、第1工程で、プロピレン単独又はエチレン含量7wt%以下のプロピレン−エチレンランダム共重合体成分(A)を30〜95wt%重合した後、第2工程で、第1工程よりも3〜20wt%多いエチレン量を含むプロピレン−エチレンランダム共重合体成分(B)を70〜5wt%逐次重合することで得られる。
なお、ここでいうプロピレン−エチレンブロック共重合体とは、プロピレン−エチレンランダム共重合体成分(A)(以下、成分(A)という。)と、プロピレン−エチレンランダム共重合体成分(B)(以下、成分(B)という。)を逐次重合することより得られる、通称でのブロック共重合体であり、必ずしも成分(A)と成分(B)とが完全にブロック状に結合されたものでなくても良い。
(1−1)成分(A)中のエチレン含量:[E]A
第1工程で製造される成分(A)は、製品(ペレット)のべたつきを抑制し、耐熱性を発現するために、融点が比較的高く、結晶性を有するプロピレン単独重合体、もしくはエチレン含量が7wt%以下のプロピレン−エチレンランダム共重合体である必要がある。エチレン含量が7wt%を超えると融点が低くなりすぎ、製品の耐熱性を悪化させる恐れがある。エチレン含量は5wt%以下が好ましく、3wt%以下が更に好ましい。尚、ペレットがべたつくと、ペレット袋の保管時にペレット同士がくっついたりし、好ましくない。
(1−2)成分(B)中のエチレン含量:[E]B
第2工程で製造される成分(B)は、プロピレン−エチレンブロック共重合体中でゴム弾性成分の役割を有し、耐衝撃性を付与するために必要な成分である。
成分(B)のエチレン含量の範囲は、上記効果を十分に発揮するために、成分(A)のエチレン含量との差[E]B−[E]A([E]gap)によって規定される。[E]B−[E]Aは3〜20wt%の範囲であることが必要であり、好ましくは6〜18wt%、更に好ましくは8〜16wt%である。
[E]gapが、3wt%以下の場合、耐衝撃性が充分でなく好ましくない。また、20wt%を超えると第1工程で製造される成分(A)との相溶性が悪くなるため、透明性が悪化し好ましくない。
(1−3)成分(A)の割合:W(A)および成分(B)の割合:W(B)
プロピレン−エチレンブロック共重合体を構成する成分(A)の割合であるW(A)および成分(B)の割合であるW(B)の含有量比は、W(A)が30〜95wt%でありW(B)が70〜5wt%の範囲にある必要がある。
W(A)の割合が30wt%未満であると、製品のべたつき発生、かつ耐熱性が低下する恐れがある。他方、W(A)の割合が95wt%を越えるとゴム弾性が不十分となり耐衝撃性が不十分となる恐れがある。好ましくは、W(A)の割合が40〜90wt%、更に好ましくは50〜80wt%の範囲であると良い。
(1−4)tanδ曲線のピークによる規定
本発明においては、相溶性を良好に保ち、透明性に維持するために、使用するプロピレン−エチレンブロック共重合体を構成する成分(A)と成分(B)とが相分離していないことが必要である。相分離の条件は、エチレン含量のみならず、分子量や組成によっても影響を受けるため、上記のエチレン含量に関する規定に加えて、固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、tanδ曲線のピークに関する規定が必要となる。
プロピレン−エチレンブロック共重合体が相分離構造を取る場合には、成分(A)に含まれる非晶部のガラス転移温度と成分(B)に含まれる非晶部のガラス転移温度が各々異なるため、ピークは複数となる。逆に相溶性である場合には、両成分は分子のオーダーで混合しており、両成分のガラス転移温度の中間的な温度に単一のピークを有する。すなわち、相分離構造を取っているかどうかは、固体粘弾性測定における温度−tanδ曲線において判別可能であり、透明性を維持するためには、tanδ曲線が0℃以下に単一のピークを有することが必要である。
固体粘弾性測定とは、具体的には、短冊状の試料片に特定周波数の正弦歪みを与え、発生する応力を検知することで行う。ここでは、周波数は1Hzを用い測定温度は−60℃から段階状に昇温し、サンプルが融解して測定不能になるまで行う。また、歪みの大きさは0.1〜0.5%程度が推奨される。得られた応力から、公知の方法によって貯蔵弾性率G’と損失弾性率G”を求め、これの比で定義される損失正接(=損失弾性率/貯蔵弾性率)を温度に対してプロットすると0℃以下の温度領域で鋭いピークを示す。一般に0℃以下でのtanδ曲線のピークは非晶部のガラス転移を観測するものであり、ここでは本ピーク温度をガラス転移温度Tg(℃)として定義する。
(1−5)[E]Aと[E]B及び各成分量W(A)とW(B)の特定
成分(A)、(B)の各エチレン含量及び量は、製造時の物質収支(マテリアルバランス)によって特定することも可能であるが、より正確にこれらを特定するためには、以下の分析を用いることが望ましい。
(1−5−1)温度昇温溶離分別(TREF)による各成分量W(A)とW(B)の特定
プロピレン−エチレンランダム共重合体の結晶性分布をTREFにより評価する手法は、当該業者によく知られるものであり、例えば、次の文献などで詳細な測定法が示されている。
G.Glockner,J.Appl.Polym.Sci.:Appl.Polym.Symp.;45,1−24(1990)
L.Wild,Adv.Polym.Sci.;98,1−47(1990)
J.B.P.Soares,A.E.Hamielec,Polymer;36,8,1639−1654(1995)
本発明におけるプロピレン−エチレンブロック共重合体は、成分(A)と(B)各々の結晶性に大きな違いがあり、また、メタロセン触媒を用いて製造されることで各々の結晶性分布が狭くなっていることから双方の中間的な成分は極めて少なく、双方をTREFにより精度良く判別することが可能である。
具体的な方法を図1のTREFによる溶出量及び溶出量積算を示す図を用いて説明する。TREF溶出曲線(温度に対する溶出量のプロット)において、成分(A)と(B)は結晶性の違いにより各々T(A)とT(B)にその溶出ピークを示し、その差は十分大きいため、中間の温度T(C)(={T(A)+T(B)}/2)においてほぼ分離が可能である。
また、TREF測定温度の下限は、本測定に用いた装置では−15℃であるが、成分(B)の結晶性が非常に低いあるいは非晶性成分の場合には本測定方法において、測定温度範囲内にピークを示さない場合がある。(この場合には、測定温度下限(すなわち−15℃)において溶媒に溶解した成分(B)の濃度は検出される。)
このとき、T(B)は測定温度下限以下に存在するものと考えられるが、その値を測定することが出来ないため、このような場合にはT(B)を測定温度下限である−15℃と定義する。
ここで、T(C)までに溶出する成分の積算量をW(B)wt%、T(C)以上で溶出する部分の積算量をW(A)wt%と定義すると、W(B)は結晶性が低いあるいは非晶性の成分(B)の量とほとんど対応しており、T(C)以上で溶出する成分の積算量W(A)は結晶性が比較的高い成分(A)の量とほぼ対応している。TREFによって得られる溶出量曲線と、そこから求められる上記の各種の温度や量の算出の方法は図1に例示するように行う。
(1−5−2)TREF測定方法
本願発明においては、TREFの測定は具体的には以下のように測定を行う。
試料を140℃でo−ジクロロベンゼン(0.5mg/mLBHT入り)に溶解し溶液とする。これを140℃のTREFカラムに導入した後8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で−15℃まで冷却し、60分間保持する。その後、溶媒であるo−ジクロロベンゼン(0.5mg/mLBHT入り)を1mL/分の流速でカラムに流し、TREFカラム中で−15℃のo−ジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
(1−5−3)各成分中のエチレン含量[E]Aと[E]Bの特定
(イ)成分(A)と成分(B)の分離
先のTREF測定により求めたT(C)を基に、分取型分別装置を用い昇温カラム分別法により、T(C)にける可溶成分(B)とT(C)における不溶成分(A)とに分別し、NMRにより各成分のエチレン含量を求める。
昇温カラム分別法とは、例えば、Macromolecules、21 314〜319(1988)に開示されたような測定方法をいう。具体的には、本願発明において以下の方法を用いた。
(ロ)分別条件
直径50mm、高さ500mmの円筒状カラムにガラスビーズ担体(80〜100メッシュ)を充填し、140℃に保持する。次に、140℃で溶解したサンプルのo−ジクロロベンゼン溶液(10mg/mL)200mLを前記カラムに導入する。その後、該カラムの温度を0℃まで10℃/時間の降温速度で冷却する。0℃で1時間保持後、10℃/時間の昇温速度でカラム温度をT(C)まで加熱し、1時間保持する。なお、一連の操作を通じてのカラムの温度制御精度は±1℃とする。
次いで、カラム温度をT(C)に保持したまま、T(C)のo−ジクロロベンゼンを20mL/分の流速で800mL流すことにより、カラム内に存在するT(C)で可溶な成分を溶出させ回収する。
次いで10℃/分の昇温速度で当該カラム温度を140℃まで上げ、140℃で1時間静置後、140℃の溶媒(o−ジクロロベンゼン)を20mL/分の流速で800mL流すことにより、T(C)で不溶な成分を溶出させ回収する。
分別によって得られたポリマーを含む溶液は、エバポレーターを用いて20mLまで濃縮された後、5倍量のメタノール中に析出される。析出ポリマーをろ過して回収後、真空乾燥器により一晩乾燥する。
(ハ)13C−NMRによるエチレン含量の測定
上記分別により得られた成分(A)と(B)それぞれについてのエチレン含有量はプロトン完全デカップリング法により以下の条件に従って測定した13C−NMRスペクトルを解析することにより求める。
機種:日本電子(株)製 GSX−400または、同等の装置
(炭素核共鳴周波数100MHz以上)
溶媒:o−ジクロロベンゼン/重ベンゼン=4/1(体積比)
濃度:100mg/mL
温度:130℃
パルス角: 90°
パルス間隔:15秒
積算回数: 5,000回以上
スペクトルの帰属は、例えばMacromolecules,17 1950 (1984)等を参考に行えばよい。上記条件により測定されたスペクトルの帰属は下表の通りである。表中Sαα等の記号はCarmanら(Macromolecules,10 536(1977))の表記法に従い、Pはメチル炭素、Sはメチレン炭素、Tはメチン炭素をそれぞれ表わす。
以下、「P」を共重合体連鎖中のプロピレン単位、「E」をエチレン単位とすると、連鎖中にはPPP、PPE、EPE、PEP、PEE、およびEEEの6種類のトリアッドが存在し得る。Macromolecules,15 1150 (1982)などに記されているように、これらトリアッドの濃度と、スペクトルのピーク強度とは、以下の(1)〜(6)の関係式で結び付けられる。
[PPP]=k×I(Tββ) (1)
[PPE]=k×I(Tβδ) (2)
[EPE]=k×I(Tδδ) (3)
[PEP]=k×I(Sββ) (4)
[PEE]=k×I(Sβδ) (5)
[EEE]=k×[I(Sδδ)/2+I(Sγδ)/4} (6)
ここで[ ]はトリアッドの分率を示し、例えば[PPP]は全トリアッド中のPPPトリアッドの分率である。従って、
[PPP]+[PPE]+[EPE]+[PEP]+[PEE]+[EEE]=1
(7)
である。また、k は定数であり、Iはスペクトル強度を示し、例えばI(Tββ)はTββに帰属される28.7ppmのピークの強度を意味する。
上記(1)〜(7)の関係式を用いることにより、各トリアッドの分率が求まり、さらに下式によりエチレン含有量が求まる。
エチレン含有量(モル%)=([PEP]+[PEE]+[EEE])×100
なお、本願発明のプロピレンランダム共重合体には少量のプロピレン異種結合(2,1−結合及び/または1,3−結合)が含まれ、それにより、以下の微小なピークを生じる。
正確なエチレン含有量を求めるにはこれら異種結合に由来するピークも考慮して計算に含める必要があるが、異種結合由来のピークの完全な分離・同定が困難であり、また異種結合量が少量であることから、本願発明のエチレン含有量は実質的に異種結合を含まないチーグラー触媒で製造された共重合体の解析と同じく(1)〜(7)の関係式を用いて求めることとする。
エチレン含有量のモル%から重量%への換算は以下の式を用いて行う
エチレン含有量(重量%)=(28×X/100)/{28×X/100+42×(1−X/100)}×100
ここでXはモル%表示でのエチレン含有量である
また、プロピレン−エチレンブロック共重合体全体のエチレン含量[E]Wは、上記より測定された成分(A)と(B)それぞれのエチレン含量[E]Aと[E]B及びTREFより算出される各成分の重量比率W(A)とW(B)wt%から以下の式により算出される。
[E]W={[E]A×W(A)+[E]B×W(B)/100 (wt%)
(1−6)メルトフローレート(MFR)
本発明で使用される(イ)プロピレン−エチレンブロック共重合のメルトフローレート(MFR)は、0.5〜100g/10minであり、好ましくは1〜50g/10min、更に好ましくは2〜35g/10minである。MFRが0.5g/10min未満では成形が困難になり、100g/10minを超えると耐衝撃性が期待できなくなる。
メルトフローレート(MFR)は、(イ)プロピレン−エチレンブロック共重合の重合条件である温度や圧力を調節したり、水素等の連鎖移動剤を重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
ここで、MFRは、JIS K7210に準拠し、加熱温度230℃、荷重21.2Nで測定する値である。
(1−7)融解ピーク温度(Tm)
本発明で使用される(イ)プロピレン−エチレンブロック共重合の示差走査熱量計(DSC)により測定された融解ピーク温度(Tm)は、110〜150℃の範囲である必要があり、120〜140℃であるのが好ましい。Tmが110℃未満のものは溶融されたプロピレン系樹脂の冷却固化速度が遅く、成形性を悪化させる恐れがあるため好ましくなく、150℃を超えると耐衝撃性が悪くなる恐れがあるため好ましくない。Tmを調整するには重合反応系へ供給するα−オレフィンの量を制御することにより容易に調整することができる。
ここで、Tmの具体的測定は、示差走査熱量計(DSC)を用い、サンプル量5mgを採り、200℃で5分間保持した後、40℃まで10℃/分の降温速度で結晶化させ、更に10℃/分の昇温速度で融解させたときに描かれる曲線のピーク位置を、融解ピーク温度Tm(℃)とする。
(1−8)分子量分布(Mw/Mn)
本発明で使用される(イ)プロピレン−エチレンブロック共重合のゲルパーミエーション(GPC)法により測定された分子量分布(Mw/Mn)は、1.5〜4の範囲である必要があり、1.8以上3未満であるのが好ましい。Mw/Mnが1.5未満のものは現在の重合技術では得難く、4を超えると製品(ペレット)がべたつく恐れがあるため好ましくない。プロピレン−エチレンブロック共重合の分子量分布を調整する方法は、狭くする場合は、後述のメタロセン系触媒を用いたり、プロピレン−エチレンブロック共重合を重合後、有機過酸化物を使用し溶融混練することにより調整することができる。広くする場合は、2種以上のメタロセン触媒成分を併用させた触媒系や2種以上のメタロセン錯体を併用した触媒系を用いて重合することにより調整することができる。
ここで、分子量分布は、重量平均分子量(Mw)及び数平均分子量(Mn)の比率(Mw/Mn)で求められ、ゲルパーミエーションクロマトグラフィー(GPC)法で測定して得られるものとする。
保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。
使用する標準ポリスチレンは、何れも東ソー(株)製の以下の銘柄である。 F380,F288,F128,F80,F40,F20,F10,F4,F1,A5000,A2500,A1000
各々が0.5mg/mlとなるようにo−ジクロロベンゼン(0.5mg/mlのBHTを含む)に溶解した溶液を0.2ml注入して較正曲線を作成する。
較正曲線は、最小二乗法で近似して得られる三次式を用いる。分子量への換算に使用する、粘度式の[η]=K×Mα は以下の数値を用いる。
PS : K=1.38×10−4 α=0.7
PP : K=1.03×10−4 α=0.78
なお、GPCの測定条件は、以下の通りである。
装置:WATERS社製 GPC(ALC/GPC 150C)
検出器:FOXBORO社製 MIRAN 1A IR検出器(測定波長 :3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:o−ジクロロベンゼン
測定温度:140℃
流速:1.0ml/min
注入量:0.2ml
試料の調製:試料はo−ジクロロベンゼン(0.5mg/mlのBHTを含む)を用いて1mg/mlの溶液を調製し、140℃で約1時間を要して溶解させる。
(2)プロピレン−エチレンブロック共重合体の製造方法
(2−1)メタロセン系触媒
本願発明に用いられる(イ)プロピレン−エチレンブロック共重合体を製造する方法は、メタロセン系触媒の使用を必須とするものである。
プロピレン−エチレンランダム共重合体において分子量及び結晶性分布が広いとベタツキやブリードアウトが悪化することは当該業者に広く知られるところであるが、本願発明に用いられるプロピレン−エチレンブロック共重合体においても、ベタツキ及びブリードアウトを抑制するために、分子量及び結晶性分布が狭くなるメタロセン系触媒を用いて重合されることが必要である。
メタロセン系触媒の種類は、本願発明の性能を有する共重合体を生成できる限りは、特に限定はされるものではないが、本願発明の要件を満たすために、例えば、下記に示すような成分(a)、(b)、及び必要に応じて使用する成分(c)からなるメタロセン系触媒を用いることが好ましい。
成分(a):下記の一般式で表される遷移金属化合物から選ばれる少なくとも1種のメタロセン遷移金属化合物
成分(b):下記(b−1)〜(b−4)から選ばれる少なくとも1種の固体成分
(b−1)有機アルミオキシ化合物が担持された微粒子状担体、
(b−2)成分(a)と反応して成分(a)をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された微粒子状担体
(b−3)固体酸微粒子
(b−4)イオン交換性層状珪酸塩、
成分(c):有機アルミニウム化合物。
(2−2)成分(a)
成分(a)としては、下記一般式で表される遷移金属化合物から選ばれる少なくとも1種のメタロセン遷移金属化合物を使用することができる。
Q(C−aR)(C−bR)MeXY
[ここで、Qは2つの共役五員環配位子を架橋する2価の結合性基を示し、Meはチタン、ジルコニウム、ハフニウムから選ばれる金属原子を示し、XおよびYは水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、窒素含有炭化水素基、リン含有炭化水素基またはケイ素含有炭化水素基を示し、XおよびYは、それぞれ独立に、すなわち同一でも異なっていてもよい。R、Rは水素、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基、又は、リン含有炭化水素基を示す。a 及びb は置換基の数である。]
詳しくは、Qは2つの共役五員環配位子を架橋する2価の結合性基を表し、例えば、2価の炭化水素基、シリレン基ないしオリゴシリレン基、炭化水素基を置換基として有するシリレン基あるいはオリゴシリレン基、又は炭化水素基を置換基として有するゲルミレン基などが例示される。この中でも好ましいものは2価の炭化水素基と炭化水素基を置換基として有するシリレン基である。
X及びYは、水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、窒素含有炭化水素基、リン含有炭化水素基又はケイ素含有炭化水素基を示し、このうちで好ましいものとしては、水素、塩素、メチル、イソブチル、フェニル、ジメチルアミド、ジエチルアミド基などを例示することができる。X及びYは、それぞれ独立に、すなわち同一でも異なっていてもよい。
とRは、水素、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基、又は、リン含有炭化水素基を表す。炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、フェニル基、ナフチル基、ブテニル基、ブタジエニル基などが例示される。また、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基、又は、リン含有炭化水素基としては、メトキシ基、エトキシ基、フェノキシ基、トリメチルシリル基、ジエチルアミノ基、ジフェニルアミノ基、ピラゾリル基、インドリル基、ジメチルフォスフィノ基、ジフェニルフォスフィノ基、ジフェニルホウ素基、ジメトキシホウ素基などを典型的な例として例示できる。これらの中で、炭素数1〜20の炭化水素基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることが特に好ましい。ところで、隣接したRとRは、結合して環を形成してもよく、この環上に炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基、又は、リン含有炭化水素基からなる置換基を有していてもよい。
Meは、チタン、ジルコニウム、ハフニウムの中から選ばれる金属原子であり、好ましくはジルコニウム、ハフニウムである。
以上において記載した成分(a)の中で、本願発明に用いられる(イ)プロピレン−エチレンランダムブロック共重合体の製造に好ましいものは、炭化水素置換基を有するシリレン基、ゲルミレン基あるいはアルキレン基で架橋された置換シクロペンタジエニル基、置換インデニル基、置換フルオレニル基、置換アズレニル基を有する配位子からなる遷移金属化合物であり、特に好ましくは、炭化水素置換基を有するシリレン基、あるいはゲルミレン基で架橋された2,4−位置換インデニル基、2,4−位置換アズレニル基を有する配位子からなる遷移金属化合物である。
非限定的な具体例としては、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)ジルコニウムジクロリド、ジフェニルシリレンビス(2−メチル−4−フェニルインデニル)ジルコニウムジクロリド、ジメチルシリレンビス(2−メチルベンゾインデニル)ジルコニウムジクロリド、ジメチルシリレンビス{2−イソプロピル−4−(3,5−ジイソプロピルフェニル)インデニル}ジルコニウムジクロリド、ジメチルシリレンビス(2−プロピル−4−フェナントリルインデニル)ジルコニウムジクロリド、ジメチルシリレンビス(2−メチル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)アズレニル}ジルコニウムジクロリド、ジメチルシリレンビス(2−エチル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス(2−イソプロピル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス{2−エチル−4−(2−フルオロビフェニル)アズレニル}ジルコニウムジクロリド、ジメチルシリレンビス{2−エチル−4−(4−t−ブチル−3−クロロフェニル)アズレニル}ジルコニウムジクロリドなどがあげられる。これらの具体例の化合物のシリレン基をゲルミレン基に、ジルコニウムをハフニウムに置き換えた化合物も好適な化合物として例示される。なお、触媒成分は本願発明の重要要素ではないので、煩雑な列記を避け、代表的な例示に限定しているが、これにより本願発明の有効範囲が制限されることが無いのは自明のことである。
(2−3)成分(b)
成分(b)としては、上述した成分(b−1)〜成分(b−4)から選ばれる少なくとも1種の固体成分を使用する。これらの各成分は公知のものであり、公知技術の中から適宜選択して使用することができる。その具体的な例示や製造方法については、特開2002−284808公報、特開2002−53609号公報、特開2002−69116号公報、特開2003−105015号公報などに詳細な例示がある。
ここで、成分(b−1)、成分(b−2)に用いられる微粒子状担体としては、シリカ、アルミナ、マグネシア、シリカアルミナ、シリカマグネシアなどの無機酸化物、塩化マグネシウム、オキシ塩化マグネシウム、塩化アルミニウム、塩化ランタンなどの無機ハロゲン化物、さらには、ポリプロピレン、ポリエチレン、ポリスチレン、スチレンジビニルベンセン共重合体、アクリル酸系共重合体などの多孔質の有機担体を挙げることができる。
また、成分(B)の非限定的な具体例としては、成分(b−1)として、メチルアルモキサン、イソブチルアルモキサン、メチルイソブチルアルモキサン、ブチルボロン酸アルミニウムテトライソブチルなどが担持された微粒子状担体を、成分(b−2)として、トリフェニルボラン、トリス(3,5−ジフルオロフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどが担持された微粒子状担体を、成分(b−3)として、アルミナ、シリカアルミナ、塩化マグネシウムなどを、成分(b−4)として、モンモリロナイト、ザコウナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライトなどのスメクタイト族、バーミキュライト族、雲母族などが挙げられる。これらは、混合層を形成しているものでもよい。
上記成分(b)の中で特に好ましいものは、成分(b−4)のイオン交換性層状珪酸塩であり、さらに好ましい物は、酸処理、アルカリ処理、塩処理、有機物処理などの化学処理が施されたイオン交換性層状珪酸塩である。
(2−4)成分(c)
必要に応じて成分(c)として用いられる有機アルミニウム化合物の例は、
一般式 AlR3−a
(式中、Rは、炭素数1から20の炭化水素基、Pは水素、ハロゲン、アルコキシ基、aは0<a≦3の数)で示されるトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム又はジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲンもしくはアルコキシ含有アルキルアルミニウムである。またこの他に、メチルアルミノキサンなどのアルミノキサン類なども使用できる。これらのうち特にトリアルキルアルミニウムが好ましい。
(2−5)触媒の形成
成分(a)と成分(b)および必要に応じて成分(c)を接触させて触媒とする。その接触方法は特に限定されないが、以下のような順序で接触させることができる。また、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
1)成分(a)と成分(b)を接触させる
2)成分(a)と成分(b)を接触させた後に成分(c)を添加する
3)成分(a)と成分(c)を接触させた後に成分(b)を添加する
4)成分(b)と成分(c)を接触させた後に成分(a)を添加する
その他、三成分を同時に接触させてもよい。
本願発明で使用する成分(a)と(b)及び(c)の使用量は任意である。例えば、成分(b)に対する成分(a)の使用量は、成分(b)1gに対して、好ましくは0.1μmol〜1,000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。成分(b)に対する成分(c)の使用量は、成分(b)1gに対し、好ましくは遷移金属の量が0.001〜100μmol、特に好ましくは0.005〜50μmolの範囲である。したがって、成分(a)に対する成分(c)の量は、遷移金属のモル比で、好ましくは10−5〜50、特に好ましくは10−4〜5の範囲内である。
本願発明の(イ)プロピレン−エチレンブロック共重合体で使用される触媒は、予めオレフィンを接触させて少量重合されることからなる予備重合処理に付すことが好ましい。使用するオレフィンは、特に限定はないが、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレンなどを使用することが可能であり、特にプロピレンを使用することが好ましい。オレフィンの供給方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持する供給方法やその組み合わせ、段階的な変化をさせるなど、任意の方法が可能である。予備重合温度と時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、予備重合ポリマー量が成分(b)に対し、好ましくは0.01〜100、さらに好ましくは0.1〜50である。予備重合を終了した後に、触媒の使用形態に応じ、そのまま使用することが可能であるが、必要ならば乾燥を行うことも可能である。
さらに、上記各成分の接触の際、もしくは接触の後に、ポリエチレン、ポリプロピレン、ポリスチレンなどの重合体やシリカ、チタニアなどの無機酸化物固体を共存させることも可能である。
(2−6)重合方法
(2−6−1)逐次重合
本発明に用いられる(イ)プロピレン−エチレンブロック共重合体を製造実施するに際しては、成分(A)と成分(B)を逐次重合することが必要である。
(イ)プロピレン−エチレン共重合体が単にプロピレンにエチレンを共重合させたランダム共重合体のときには、エチレン含量が少ない場合には柔軟性・耐衝撃性と透明性が十分でなく、柔軟性・耐衝撃性と透明性を向上させるためにエチレン含量を増加させると耐熱性が悪化し、これらの全てを満たすことは困難である。
そこで、本発明において(イ)プロピレン−エチレンブロック共重合体は、第1工程と第2工程でエチレン含量が異なる成分を逐次重合したブロック共重合体であることが透明性と柔軟性・耐衝撃性、耐熱性全てをバランスさせるために必要である。
また、本発明では、成分(B)として分子量が低く単独ではべたつきやすい共重合体を用いる場合があるので、反応器への付着等の問題を防止するために、成分(A)を重合した後で成分(B)を重合する方法を用いることが必要である。
逐次重合を行う際には、バッチ法と連続法のいずれを用いることも可能であるが、一般的には生産性の観点から連続法を用いることが望ましい。
バッチ法の場合には時間と共に重合条件を変化させることにより単一の反応器を用いて成分(A)と成分(B)を個別に重合することが可能である。本願発明の効果を阻害しない限り、複数の反応器を並列に接続して用いても良い。
連続法の場合には成分(A)と成分(B)を個別に重合する必要から2個以上の反応器を直列に接続した製造設備を用いる必要があるが、本願発明の効果を阻害しない限り成分(A)と成分(B)のそれぞれについて複数の反応器を直列及び/又は並列に接続して用いても良い。
(2−6−2)重合プロセス
重合プロセスは、スラリー法、バルク法、気相法など任意の重合方法を用いることができる。バルク法と気相法の中間的な条件として超臨界条件を用いることも可能であるが、実質的には気相法と同等であるため、特に区別することなく気相法に含める。
成分(B)は炭化水素等の有機溶媒や液化プロピレンに溶けやすいため、成分(B)の製造に際しては気相法を用いることが望ましい。
成分(A)の製造に対してはどのプロセスを用いても特に問題はないが、比較的結晶性の低い成分(A)を製造する場合には、付着等の問題を避けるために気相法を用いることが望ましい。
従って、連続法を用いて、まず成分(A)をバルク法もしくは気相法にて重合し、引き続き成分(B)を気相法にて重合することが最も望ましい。
(2−6−3)その他の重合条件
重合温度は通常用いられている温度範囲であれば特に問題なく用いることができる。具体的には、0℃〜200℃、より好ましくは40℃〜100℃の範囲を用いることができる。
重合圧力は選択するプロセスによって差異が生じるが、通常用いられている圧力範囲であれば特に問題なく用いることができる。具体的には、0より大きく200MPaまで、より好ましくは0.1MPa〜50MPaの範囲を用いることができる。この際窒素などの不活性ガスを共存させてもよい。
第1工程で成分(A)、第二工程で成分(B)の逐次重合を行う場合、第二工程にて系中に重合抑制剤を添加することが望ましい。プロピレン−エチレンブロック共重合体を製造する場合には、第二工程のエチレン−プロピレンランダム共重合を行う反応器に重合抑制剤を添加すると、得られるパウダーの粒子性状(流動性など)やゲルなどの製品品質を改良することができる。この手法については各種技術検討がなされており、一例として特公昭63−54296号、特開平7−25960号、特開2003−2939号などを例示することができる。本発明にも当該手法を適用することが望ましい。
(3) (イ)プロピレン−エチレンブロック共重合体の構成要素の制御方法
本願発明に用いられるプロピレン−エチレンブロック共重合体の各要素は以下のように制御され、本願発明の共重合体に必要とされる構成要件を満たすよう製造することができる。
(3−1)成分(A)
成分(A)については、エチレン含量[E]AとT(A)を制御する必要がある。
本発明では、[E]Aを所定の範囲に制御するためには、第1工程における重合槽に供給するプロピレンとエチレンの量比を、適宜調整すればよい。供給比率と得られるプロピレン−エチレンランダム共重合体中のエチレン含量の関係は、用いるメタロセン触媒の種類によって異なるが、供給比率の調整により必要とするエチレン含量[E]Aを有する成分(A)を製造することができる。
例えば、[E]Aを7wt%未満に制御する場合には、プロピレンに対するエチレンの供給重量比を0.3以下の範囲、好ましくは0.2以下の範囲とすればよい。
このとき、成分(A)は結晶性分布が狭く、T(A)は[E]Aの増加に伴い低下する。
そこで、T(A)が本発明の範囲を満たすようにするためには、[E]Aとこれらの関係を把握し、目標とする範囲を取るよう調整する。
(3−2) 成分(B)
成分(B)については、エチレン含量[E]BとT(B)と[η]cxsを制御する必要がある。
本願発明では、[E]Bを所定の範囲に制御するためには、[E]Aと同様に、第二工程におけるプロピレンに対するエチレンの供給量比を制御すればよい。例えば、[E]Bを3〜27wt%に制御する場合には、プロピレンに対するエチレンの供給重量比を0.005〜6の範囲、好ましくは0.01〜3の範囲とすればよい。
このとき、成分(B)もエチレン含量の増加に伴い若干結晶性分布の増加が見られるものの、成分(A)と同様に、T(B)は[E]Bの増加に伴い低下する。
そこで、T(B)が本願発明の範囲を満たすようにするためには、[E]BとT(B)との関係を把握し、[E]Bを所定の範囲になるように制御すればよい。
(3−3) W(A)とW(B)
成分(A)の量W(A)と成分(B)の量W(B)は、成分(A)を製造する第1工程の製造量と成分(B)の製造量の比を変化させることにより制御することができる。例えば、W(A)を増やしてW(B)を減らすためには、第1工程の製造量を維持したまま第二工程の製造量を減らせばよく、それは、第二工程の滞留時間を短くしたり、重合温度を下げたり、重合抑制剤の量を増やしたりすることにより容易に制御することができる。その逆も又同様である。
実際に条件を設定する際には、活性減衰を考慮する必要がある。すなわち、本願発明にて実施するエチレン含有量[E]A及び[E]Bの範囲においては、一般にエチレン含有量を高くするためにプロピレンに対するエチレン供給量比を高くすると重合活性が高くなり、同時に活性減衰が大きくなる傾向にある。したがって、第二工程の活性を維持するために第1工程の重合活性を抑制する必要があり、具体的には、 第1工程にてエチレン含有量[E]Aを下げ、生産量W(A)を下げ、必要に応じて、重合温度を下げる及び/又は重合時間(滞留時間)を短くする、あるいは第二工程にてエチレン含有量[E]Bを上げ、生産量W(B)を上げ、必要に応じて、重合温度を上げる及び/又は重合時間(滞留時間)を長くするような方法で条件を設定すればよい。
(3−4) ガラス転移温度Tg
本発明で用いられる(イ)プロピレン−エチレンブロック共重合体は、固体粘弾性測定により得られる温度−損失正接曲線において求められるtanδ曲線がピークを示す温度であるガラス転移温度Tgが、0℃以下で単一のピークを持つ必要がある。Tgが単一のピークを持つためには、成分(A)中のエチレン含有量[E]Aと成分(B)中のエチレン含有量[E]Bの差の[E]gap(=[E]B−[E]A)を20wt%以下、好ましくは16wt%以下にし、実際の測定においてTgが単一のピークとなる範囲まで[E]gapを小さくすればよい。
成分(A)中のエチレン含有量[E]Aに応じて、成分(B)中のエチレン含量[E]Bを適正範囲に入るよう、成分(B)の重合時のプロピレンに対するエチレンの供給重量比を設定することで、所定の[E]gapを有するプロピレン−エチレンブロック共重合体を得ることができる。
また、本発明に用いられるような相分離構造を取らない(イ)プロピレン−エチレンブロック共重合体のTgは、成分(A)中のエチレン含有量[E]Aと成分(B)中のエチレン含有量[E]B、及び両成分の量比の影響を受ける。本発明においては、成分(B)の量は5〜70wt%であるが、この範囲においてTgは成分(B)中のエチレン含有量[E]Bの影響をより強く受ける。
すなわち、Tgは非晶部のガラス転移を反映するものであるが、本願発明に用いられる(イ)プロピレン−エチレンブロック共重合体において、成分(A)は結晶性を持ち比較的非晶部が少ないのに対し、成分(B)は低結晶性あるいは非晶性であり、そのほとんどが非晶部であるためである。したがって、Tgの値は、ほぼ[E]Bによって制御され、[E]Bの制御法は前述したとおりである。
2.造核剤
本発明の食品用プロピレン系樹脂組成物に用いられる造核剤の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.01〜0.6重量部の範囲で用いられる。0.01重量部未満では透明性が発現されない可能性があり、0.6重量部を超えると、臭気や風味に悪影響を与える危険性があるだけでなく添加量見合いの性能向上が期待できず経済的にも好ましくない。
この様な造核剤としては、以下に示す造核剤(A)〜(E)であることが望ましい。この造核剤(A)〜(E)以外のものでは、風味が著しく悪くなる可能性が高い。
造核剤(A)は、一般式(1)で示される化合物であり、中でも、一般式(6)で示される化合物が好ましく、化学構造式(7)で示される化合物がより好ましい。
[但し、nは、0〜2の整数であり、R〜Rは、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、Rは、炭素数が1〜20のアルキル基である。]
[但し、nは、0〜2の整数であり、R、R、R、Rは水素原子であり、Rは、水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、Rは、炭素数が1〜20のアルキル基である。]
この様な造核剤としては、市販のものを用いることができる。具体的には、ミリケン(株)社製NX8000を挙げることができる。
本発明に用いられる造核剤(A)は、得られる成形品に優れた透明性を与え、臭気や溶出性が極めて少ないという特性を有する数少ない造核剤である。
本発明の食品用プロピレン系樹脂組成物に用いられる造核剤(A)の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.01〜0.6重量部の範囲で用いられる。0.01重量部未満では十分な効果が得られ難く、0.6重量部を超えて用いると、さらなる性能の向上が期待できず不経済であるばかりか成形品の表面に析出するなど不具合が発生する危険性がある。0.1〜0.4重量部が好ましく、0.2〜0.35重量部がさらに好ましい。
また、本発明の(ウ)造核剤は、一般式(2)〜(5)で示される造核剤(B)〜(E)でも良く、それぞれ造核剤(A)〜(E)を単独、または複数併用させることにより透明性や剛性、成形性(結晶化温度の上昇)などをさらに向上させることができる。
本発明の食品用プロピレン系樹脂組成物において、選択的に用いられる造核剤(B)は、一般式(2)で示される有機リン酸金属塩化合物である。
[式(2)中、Rは、直接結合、硫黄又は炭素数1〜9のアルキレン基又はアルキリデン基であり、R及びRは、水素原子又は炭素数1〜8のアルキル基であり、MはNaであり、nはMの価数である。]
一般式(2)で表される有機リン酸金属塩化合物の具体例としては、ナトリウム−2,2’−メチレン−ビス−(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス−(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス−(4−i−プロピル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−ブチリデン−ビス−(4,6−ジメチルフェニル)フォスフェート、ナトリウム−2,2’−ブチリデン−ビス−(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−t−オクチルメチレン−ビス−(4,6−メチルフェニル)フォスフェート、ナトリウム−2,2’−t−オクチルメチレン−ビス−(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェニル)フォスフェート、ナトリウム(4,4’−ジメチル−6,6’−ジ−t−ブチル−2,2’−ビフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス−(4−s−ブチル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス−(4,6−ジ−メチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス−(4,6−ジ−エチルフェニル)フォスフェート、およびこれらの2種以上の混合物を例示することができる。これらのうち特に、ナトリウム−2,2’−メチレン−ビス−(4,6−ジ−t−ブチルフェニル)フォスフェートが好ましい。
この様な造核剤としては、市販のものを用いることができる。具体的には、(株)ADEKA製NA−11を挙げることができる。
本発明の食品用プロピレン系樹脂組成物に選択的に用いられる造核剤(B)の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.005〜0.3重量部の範囲が好ましく、0.01〜0.2重量部の範囲がより好ましい。0.005重量部未満では効果が得られず、0.3重量部を超える範囲は、更なる効果が得られないばかりか経済的にも好ましくない。
本発明の食品用プロピレン系樹脂組成物において、選択的に用いられる造核剤(C)は、一般式(3)で示される芳香族燐酸エステル類である。
[式(3)中、Rは、水素原子又は炭素数1〜4のアルキル基を示し、R及びRは、水素原子又は炭素数1〜12のアルキル基を示し、Mは、周期律表第III族または第IV族の金属原子を示し、Xは、Mが周期律表第III族の金属原子を示す場合には、HO−を示し、Mが周期律表第IV族の金属原子を示す場合には、O=又は(HO)−を示す。]
一般式(3)で表される芳香族燐酸エステル類の具体例としては、例えば、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4,6−ジメチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4,6−ジメチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4,6−ジエチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4,6−ジエチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、およびヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4−メチル−6−t−ブチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4−エチル−6−t−ブチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4−i−プロピル−6−t−ブチルフェニル)フォスフェート]、ヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4−i−プロピル−6−t−ブチルフェニル)フォスフェート]等が挙げられ、好ましくは、ヒドロキシアルミニウム−ビス[2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、およびヒドロキシアルミニウム−ビス[2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、およびこれらの2種以上の混合物を例示することができる。
一般式(3)で表される芳香族燐酸エステル類は、有機アルカリ金属塩と併用させることが効果的である。
該有機アルカリ金属塩とは、アルカリ金属カルボン酸塩、アルカリ金属β−ジケトナート及びアルカリ金属β−ケト酢酸エステル塩からなる群より選択される少なくとも一種の有機アルカリ金属塩を示すことができる。
該有機アルカリ金属塩を構成するアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。
上記アルカリ金属カルボン酸塩を構成するカルボン酸としては、例えば酢酸、プロピオン酸、アクリル酸、オクチル酸、イソオクチル酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リシノール酸、12−ヒドロキシステアリン酸、ベヘン酸、モンタン酸、メリシン酸、β−ドデシルメルカプト酢酸、β−ドデシルメルカプトプロピオン酸、β−N−ラウリルアミノプロピオン酸、β−N−メチル−ラウロイルアミノプロピオン酸等の脂肪族モノカルボン酸、マロン酸、コハク酸、アジピン酸、マレイン酸、アゼライン酸、セバシン酸、ドデカンジ酸、クエン酸、ブタントリカルボン酸、ブタンテトラカルボン酸等の脂肪族多価カルボン酸、ナフテン酸、シクロペンタンカルボン酸、1−メチルシクロペンタンカルボン酸、2−メチルシクロペンタンカルボン酸、シクロペンテンカルボン酸、シクロヘキサンカルボン酸、1−メチルシクロヘキサンカルボン酸、4−メチルシクロヘキサンカルボン酸、3,5−ジメチルシクロヘキサンカルボン酸、4−ブチルシクロヘキサンカルボン酸、4−オクチルシクロヘキサンカルボン酸、シクロヘキセンカルボン酸、4−シクロヘキセン−1,2−ジカルボン酸等の脂環式モノ又はポリカルボン酸、安息香酸、トルイル酸、キシリル酸、エチル安息香酸、4−t−ブチル安息香酸、サリチル酸、フタル酸、トリメリット酸、ピロメリット酸等の芳香族モノ又はポリカルボン酸等が挙げられる。
上記アルカリ金属β−ジケトナートを構成するβ−ジケトン化合物としては、例えば、アセチルアセトン、ピバロイルアセトン、パルミトイルアセトン、ベンゾイルアセトン、ピバロイルベンゾイルアセトン、ジベンゾイルメタン等が挙げられる。
また、上記アルカリ金属β−ケト酢酸エステル塩を構成するβ−ケト酢酸エステルとしては、例えば、アセト酢酸エチル、アセト酢酸オクチル、アセト酢酸ラウリル、アセト酢酸ステアリル、ベンゾイル酢酸エチル、ベンゾイル酢酸ラウリル等が挙げられる。
該有機アルカリ金属塩の成分であるアルカリ金属カルボン酸塩、アルカリ金属β−ジケトナート又はアルカリ金属β−ケト酢酸エステル塩は、各々上記アルカリ金属とカルボン酸、β−ジケトン化合物又はβ−ケト酢酸エステルとの塩であり、従来周知の方法で製造することができる。また、これら各アルカリ金属塩化合物の中でも、アルカリ金属の脂肪族モノカルボン酸塩、特に、リチウムの脂肪族カルボン酸塩が好ましく、とりわけ炭素数8〜20の脂肪族モノカルボン酸塩が好ましい。
この様な造核剤としては、市販のものを用いることができる。具体的には、(株)ADEKA製NA−21を挙げることができる。
本発明の食品用プロピレン系樹脂組成物に選択的に用いられる造核剤(C)の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.005〜0.15重量部の範囲が好ましく、0.01〜0.1重量部の範囲がより好ましい。0.005重量部未満では効果が得られず、0.15重量部を超える範囲は、更なる効果が得られないばかりか経済的にも好ましくない。
本発明の食品用プロピレン系樹脂組成物において、選択的に用いられる造核剤(D)は、一般式(4)で示される造核剤である。
[式(4)中、MおよびMは、同一または異なって、カルシウム、ストロンチウム、リチウムおよび一塩基性アルミニウムから選択される少なくとも1種の金属カチオンであり、R、R、R、R、R、R、R、R、RおよびR10は、同一または異なって、水素、C−Cアルキル(ここで、いずれか2つのビシナル(隣接炭素に結合)またはジェミナル(同一炭素に結合)アルキル基は、一緒になって6個までの炭素原子を有する炭化水素環を形成してもよい)、ヒドロキシ、C−Cアルコキシ、C−Cアルキレンオキシ、アミンおよびC−Cアルキルアミン、ハロゲン(フッ素、塩素、臭素および沃素)並びにフェニルからなる群からそれぞれ選択される。]
ここで、「一塩基性アルミニウム」なる用語は周知であり、2つのカルボン酸基が結合した単一カチオンとしてアルミニウムヒドロキシド基を含むことを意図している。さらに、これら可能な塩のそれぞれにおいて、非対称炭素原子の立体配置は、シスまたはトランスのいずれでもよいが、シスが好ましい。
一般式(4)で表される造核剤は、凝集等を防止する目的で、他の化合物を混合して用いても差し支えない。
この様な造核剤としては、市販のものを用いることができる。具体的には、メリケン(株)社製ハイパフォームHPN68Lを挙げることができる。ハイパフォームHPN68Lの造核剤成分の構造を下記に示す。
本発明の食品用プロピレン系樹脂組成物に選択的に用いられる造核剤(D)の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.005〜0.15重量部の範囲が好ましく、0.01〜0.1重量部の範囲がより好ましい。0.005重量部未満では効果が得られず、0.15重量部を超える範囲は、経済的ではない。
本発明の食品用プロピレン系樹脂組成物において、選択的に用いられる造核剤(E)は、一般式(5)で示される造核剤である。好ましくは、一般式(8)で示される造核剤であり、より好ましくは、一般式(9)で示される造核剤である。
(CONHR …(5)
[式中、Rは、炭素数2〜30の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数4〜28の飽和若しくは不飽和の脂環族ポリカルボン酸残基、又は炭素数6〜18の芳香族ポリカルボン酸残基を表わす。Rは、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、又は炭素数3〜46のシクロアルキル基若しくはシクロアルケニル基を表わす。aは、2〜6の整数を表す。]

[式(8)中、Rは、炭素数3〜10の3価の飽和脂肪族炭化水素基、炭素数4〜10の4価の飽和脂肪族炭化水素基、炭素数5〜15の3価もしくは4価の飽和脂環族炭化水素基、又は炭素数6〜15の3価もしくは4価の芳香族炭化水素基を表す。Rは、同一又は異なって、それぞれ水素原子又は炭素数1〜10の直鎖状若しくは分岐鎖状のアルキル基を表す。aは、3又は4の整数を表す。]


[式(9)中、Rは、1,2,3−プロパントリカルボン酸又は1,2,3,4−ブタンテトラカルボン酸から全てのカルボンキシル基を除いて得られる残基を表す。3個又4個のRは、互いに同一又は異なって、それぞれ水素原子又は炭素数1〜10の直鎖状若しくは分岐鎖状のアルキル基を表す。aは、3又は4の整数を表す。]
具体的には、1,2,3−プロパントリカルボン酸トリシクロヘキシルアミド、1,2,3−プロパントリカルボン酸トリ(2−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−エチルシクロヘキシルアミド)1,2,3−プロパントリカルボン酸トリ(3−エチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−エチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−n−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−n−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−iso−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−iso−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−iso−プロピルシクロヘキシルアミド)、
1,2,3−プロパントリカルボン酸トリ(2−n−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−n−ブチルシクロヘキシルアミド)1,2,3−プロパントリカルボン酸トリ(4−n−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−iso−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−iso−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−iso−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−sec−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−sec−ブチルシクロヘキシルアミド)1,2,3−プロパントリカルボン酸トリ(4−sec−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−tert−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−tert−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−tert−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−ペンチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−ヘキシルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−ヘプチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−オクチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ[4−(2−エチルヘキシル)シクロヘキシルアミド]、1,2,3−プロパントリカルボン酸トリ(4−n−ノニルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−デシルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸[(シクロヘキシルアミド)ジ(2−メチルシクロヘキシルアミド)]、1,2,3−プロパントリカルボン酸[ジ(シクロヘキシルアミド)(2−メチルシクロヘキシルアミド)]、
1,2,3,4−ブタンテトラカルボン酸テトラシクロヘキシルアミド、1,2,3,4−ブタンテトラカルボン酸テトラ(2−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−エチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(3−エチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−エチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−n−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−n−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−iso−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−iso−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−iso−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−n−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−n−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−iso−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−iso−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−iso−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−sec−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−sec−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−sec−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−tert−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−tert−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−tert−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−ペンチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−ヘキシルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−ヘプチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−オクチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ[4−(2−エチルヘキシル)シクロヘキシルアミド]、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−ノニルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−デシルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸[ジ(シクロヘキシルアミド)ジ(2−メチルシクロヘキシルアミド)]等が挙げられる。
上記アミド系化合物の中でも、特に造核作用(核剤効果)の観点から、一般式(8)もしくは(9)におけるRが水素原子又は炭素数1〜4の直鎖状若しくは分岐鎖状のアルキル基であるアミド系化合物が好ましい。
具体的には、1,2,3−プロパントリカルボン酸トリシクロヘキシルアミド、1,2,3−プロパントリカルボン酸トリ(2−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−エチルシクロヘキシルアミド)1,2,3−プロパントリカルボン酸トリ(3−エチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−エチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−n−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−n−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−n−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−iso−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−iso−プロピルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−iso−プロピルシクロヘキシルアミド)、
1,2,3−プロパントリカルボン酸トリ(2−n−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−n−ブチルシクロヘキシルアミド)1,2,3−プロパントリカルボン酸トリ(4−n−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−iso−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−iso−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−iso−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−sec−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−sec−ブチルシクロヘキシルアミド)1,2,3−プロパントリカルボン酸トリ(4−sec−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(2−tert−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−tert−ブチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−tert−ブチルシクロヘキシルアミド)、
1,2,3,4−ブタンテトラカルボン酸テトラ(シクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−エチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(3−エチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−エチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−n−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−n−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−iso−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−iso−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−iso−プロピルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−n−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−n−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−n−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−iso−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−iso−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−iso−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−sec−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−sec−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−sec−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(2−tert−ブチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−tert−ブチルシクロヘキシルアミド)1,2,3,4−ブタンテトラカルボン酸テトラ(4−tert−ブチルシクロヘキシルアミド)等が挙げられる。
これら好ましいアミド系化合物の中でも、特に透明性・剛性のバランス及び原料入手の容易性の観点から、一般式(8)もしくは(9)におけるRが水素原子又はメチル基であるアミド系化合物が特に好ましい。具体的には、1,2,3−プロパントリカルボン酸トリシクロヘキシルアミド、1,2,3−プロパントリカルボン酸トリ(2−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラシクロヘキシルアミド、1,2,3,4−ブタンテトラカルボン酸テトラ(2−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(3−メチルシクロヘキシルアミド)、1,2,3,4−ブタンテトラカルボン酸テトラ(4−メチルシクロヘキシルアミド)などが例示される。
又、透明性の改良効果を重視する場合には、一般式(5)、(8)もしくは(9)におけるRが1,2,3−プロパントリカルボン酸から全てのカルボンキシル基を除いて得られる残基であるアミド系化合物が特に好ましい。具体的には、1,2,3−プロパントリカルボン酸トリシクロヘキシルアミド、1,2,3−プロパントリカルボン酸トリ(2−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(3−メチルシクロヘキシルアミド)、1,2,3−プロパントリカルボン酸トリ(4−メチルシクロヘキシルアミド)などが挙げられる。
上記のアミド系化合物は、単独で又は2種以上を適宜組み合わせて用いることができる。
本発明に選択的に用いられる造核剤(E)の結晶形態は、本発明の効果が得られる限り特に限定されず、六方晶、単斜晶、立方晶等の任意の結晶形態が使用できる。これらの結晶も公知であるか又は公知の方法に従い製造できる。
本発明に選択的に用いられる造核剤(E)は、実質的に純度100%のものが好ましいが、若干不純物を含むものであってもよい。不純物を含有する場合であっても、当該造核剤(E)の純度は、好ましくは90重量%以上、より好ましくは95重量%以上、特に97重量%以上が推奨される。不純物としては、反応中間体又は未反応体由来のモノアミドジカルボン酸若しくはそのエステル化合物、ジアミドモノカルボン酸若しくはそのエステル化合物、副反応体由来のイミド化合物などが例示される。
本発明に選択的に用いられる造核剤(E)の製造方法は、特に限定はなく目的の造核剤(E)が得られればよい。例えば、特定の脂肪族ポリカルボン酸成分と特定の脂環式モノアミン成分とから従来公知の方法(例えば、特開2006−298881号、特開2007−291029号、PCT/JP2006/307246号、特開平7−242610号の各公報など)に従って製造することができる。
上記脂肪族ポリカルボン酸成分としては、1,2,3−プロパントリカルボン酸、1,2,3,4−ブタンテトラカルボン酸、該ポリカルボン酸の酸塩化物や無水物、該ポリカルボン酸と炭素数1〜4の低級アルコールとのエステル等の誘導体等が例示される。これら脂肪族ポリカルボン酸成分は、単独で又は2種を混合してアミド化に供することができる。
上記脂環式モノアミン成分は、シクロヘキシルアミン及び炭素数1〜10(好ましくは炭素数1〜4)の直鎖状若しくは分岐鎖状のアルキル基で置換されたシクロヘキシルアミンからなる群より選ばれる少なくとも一種であり、単独で又は2種以上を混合してアミド化に供することができる。
具体的には、シクロヘキシルアミン、2−メチルシクロヘキシルアミン、3−メチルシクロヘキシルアミン、4−メチルシクロヘキシルアミンのメチルシクロヘキシルアミン、2−エチルシクロヘキシルアミン、2−n−プロピルシクロヘキシルアミン、2−iso−プロピルシクロヘキシルアミン、2−n−ブチルシクロヘキシルアミン、2−iso−ブチルシクロヘキシルアミン、2−sec−ブチルシクロヘキシルアミン、2−tert−ブチルシクロヘキシルアミンなどが挙げられる。
上記のアルキル基で置換されたシクロヘキシルアミンは、シス体、トランス体及びこれら立体異性体の混合物のいずれであってもよい。好ましいシス体:トランス体の比率としては、50:50〜0:100の範囲が好ましく、特に35:65〜0:100の範囲が好ましい。
本発明に選択的に用いられる造核剤(E)の粒径は、本発明の効果が得られる限り特に限定されないが、溶融プロピレン系重合体に対する溶解速度(又は溶解時間)の観点から、できる限り粒径の小さいものが好ましい。レーザー回折光散乱法で得られる粒径の測定値を採用した場合、造核剤(E)の粒径としては、その最大粒径が200μm以下、好ましくは100μm以下、さらに好ましくは50μm、特に10μm以下が推奨される。
最大粒径を上記範囲内に調製する方法としては、この分野で公知の粉砕装置を用いる方法が一般的であり、必要に応じて公知の分級装置を用いることもできる。具体的には、粉砕装置として流動層式カウンタージェットミル100AFG(商品名、ホソカワミクロン社製)、超音速ジェットミルPJM−200(商品名、日本ニューマチック社製)、ピンミル等、分級装置として振動篩、乾式分級機(サイクロン、ミクロンセパレーターなど)等が例示される。
本発明の食品用プロピレン系樹脂組成物に選択的に用いられる造核剤(E)の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.005〜0.3重量部の範囲が好ましく、0.05〜0.2重量部の範囲がより好ましい。0.005重量部未満では効果が得られず、0.3重量部を超える範囲は、経済的ではない。
本発明の食品用プロピレン系樹脂組成物には、造核剤(A)〜(E)以外に、他の造核剤として、ソルビトール系造核剤、有機リン酸塩系造核剤および芳香族燐酸エステル類、タルクなど既知の造核剤を本発明の効果を大きく阻害しない範囲で添加することができる。
(ア)プロピレン系(共)重合体および(イ)プロピレン−エチレンブロック共重合体からなる二成分系樹脂混合物(樹脂混合物)に併用する造核剤(A)〜(E)を、任意に添加して標準的に実施する実施態様を示すと以下のようになる。
1)造核剤(A)〜(E)を所定量単独使用の実施態様
(1)樹脂混合物+造核剤(A)
(2)樹脂混合物+造核剤(B)
(3)樹脂混合物+造核剤(C)
(4)樹脂混合物+造核剤(D)
(5)樹脂混合物+造核剤(E)
2)ニ種類の造核剤を所定量併用する実施態様
(1)樹脂混合物+造核剤(A)+造核剤(B)又は造核剤(C)
(2)樹脂混合物+造核剤(A)+造核剤(D)又は造核剤(E)
(3)樹脂混合物+造核剤(B)+造核剤(C)又は造核剤(D)
(4)樹脂混合物+造核剤(C)+造核剤(D)又は造核剤(E)
(5)樹脂混合物+造核剤(D)+造核剤(E)
の様な造核剤(A)〜(E)の各化合物を任意に二種類併用した実施態様である。
3)三種類の造核剤を所定量併用する実施態様
(1)樹脂混合物+造核剤(A)+造核剤(B)+造核剤(C)
(2)樹脂混合物+造核剤(A)+造核剤(D)+造核剤(E)
(3)樹脂混合物+造核剤(B)+造核剤(C)+造核剤(D)
(4)樹脂混合物+造核剤(C)+造核剤(D)+造核剤(E)
(5)樹脂混合物+造核剤(D)+造核剤(E)+造核剤(B)
の様な造核剤(A)〜(E)の各化合物を任意に三種類併用した実施態様である。
4)四種類の造核剤を所定量併用する実施態様
(1)樹脂混合物+造核剤(A)+造核剤(B)+造核剤(C)+造核剤(D)
(2)樹脂混合物+造核剤(B)+造核剤(C)+造核剤(D)+造核剤(E)
(3)樹脂混合物+造核剤(C)+造核剤(D)+造核剤(E)+造核剤(A)
(4)樹脂混合物+造核剤(D)+造核剤(E)+造核剤(A)+造核剤(B)
の様な造核剤(A)〜(E)の各化合物を任意に四種類併用した実施態様である。
5)五種類の造核剤を所定量併用した実施態様
(1)二成分系樹脂混合物+造核剤(A)+造核剤(B)又は造核剤(C)
+造核剤(D)+造核剤(E)
このように、(ア)プロピレン系(共)重合体および(イ)プロピレン−エチレンブロック共重合体からなる二成分系樹脂混合物の仕様の違いにより、若干の造核剤の機能に違いが生ずることも予測され、一方で、医療用プロピレン系樹脂組成物の医療用の具体的な器具を含む用途に適合する性質を発現する為に、1)〜5)の仕様からなる実施態様のどれが適合するかを決めることができる。いずれにせよ、(ア)プロピレン系(共)重合体および(イ)プロピレン−エチレンブロック共重合体からなる二成分系樹脂混合物において、本発明の特定の造核剤(A)〜(E)に示される、1)〜5)の特定の仕様が、医療用に適合する所定の造核剤機能を発現されることができるということは本発明者らの知見に基づくものである。
3.中和剤
本発明の医療用プロピレン系樹脂組成物においては、中和剤を配合することが望ましい。中和剤の具体例としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムなどの金属脂肪酸塩、ハイドロタルサイト(商品名:協和化学工業(株)の下記一般式(10)で表されるマグネシウムアルミニウム複合水酸化物塩)、ミズカラック(下記一般式(11)で表されるリチウムアルミニウム複合水酸化物塩)などが挙げられる。特に、プレフィルドシリンジ、キット製剤、輸液バッグなど長期接液する部材として用いる場合には、接触する液体に溶出しないハイドロタルサイトやミズカラックが有利である。
Mg1−xAl(OH)(COx/2・mHO …(10)
[式中、xは、0<x≦0.5であり、mは3以下の数である。]
[AlLi(OH)X・mHO …(11)
[式中、Xは、無機または有機のアニオンであり、nはアニオン(X)の価数であり、mは3以下である。]
本発明の食品用プロピレン系樹脂組成物に選択的に用いられる中和剤の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.005〜0.2重量部の範囲が好ましく、0.01〜0.05重量部の範囲がより好ましい。
4.滑剤
本発明の食品用プロピレン系樹脂組成物においては、滑剤を配合することが望ましい。滑剤としては、既知の滑剤が挙げられるが、オレイン酸アミドやエルカ酸アミドをはじめ、ステアリン酸ブチル、シリコーンオイル、通常は中和剤として使用するステアリン酸カルシウムを滑剤成分として使用したり、通用は帯電防止剤として使用するステアリン酸モノグリセリドを滑剤成分として、使用する事ができる。
これら成分は安全性に優れ、成形性の向上(離型性や傷防止など)や成形品の滑り性を向上する事ができる滑剤である。
また、ジメチルポリシロキサンなどのシリコーンを添加した場合、成形時に発生する傷を防止するだけでなく、シリンダー内やホットランナー内で発生する焼けを防止することができる。
本発明の食品用プロピレン系樹脂組成物に選択的に用いられる滑剤の配合量は、(ア)+(イ)のプロピレン系重合体100重量部に対し、0.001〜0.5重量部が好ましく、0.01〜0.15重量部がより好ましく、0.03〜0.1重量部が特に好ましい。0.001重量部未満では効果が期待できず、0.5重量部を超えると更なる効果が期待できないばかりか経済的に好ましくない。
5.その他の添加剤
本発明の食品用プロピレン系樹脂組成物においては、上述した成分に加えて、プロピレン系重合体の安定剤などとして使用されている各種酸化防止剤等の添加剤を配合することができる。
具体的には、酸化防止剤としては、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−フォスファイト、ジ−ステアリル−ペンタエリスリトール−ジ−フォスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−フォスファイト、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレン−ジ−フォスフォナイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4’−ビフェニレン−ジ−フォスフォナイト等のリン系酸化防止剤、2,6−ジ−t−ブチル−p−クレゾール、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)]メタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ハイドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ハイドロキシベンジル)イソシアヌレート等のフェノール系酸化防止剤、ジ−ステアリル−ββ’−チオ−ジ−プロピオネート、ジ−ミリスチル−ββ’−チオ−ジ−プロピオネート、ジ−ラウリル−ββ’−チオ−ジ−プロピオネート等のチオ系酸化防止剤等が挙げられる。
さらに、耐NOxガス変色性が良好な下記一般式(12)や下記一般式(13)で表されるアミン系酸化防止剤、5,7−ジ−t−ブチル−3−(3,4−ジ−メチル−フェニル)−3H−ベンゾフラン−2−ワン等のラクトン系酸化防止剤、下記一般式(14)等のビタミンE系酸化防止剤を挙げることができる。
さらに、その他に、帯電防止剤、スリップ剤、脂肪酸金属塩等の分散剤、染料、顔料、ポリエチレン、オレフィン系エラストマー等を本発明の目的を損なわない範囲で配合することができる。
本発明の食品用プロピレン系樹脂組成物の性質、機能、透明性などの特性を損なわない範囲で、他の重合体、ポリエチレン、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリレート共重合体、アクリレート重合体、のような一元、二元、三元共重合体を、1〜30重量部を任意に添加することができる。同様に、天然ゴム、ブチルゴム、ジエン系ゴム、EPR、EPDMのような、エラストマーも1〜30重量部をブレンドすることも可能である。さらに、タルク、炭酸カルシウム、シリカ、アルミナ、石膏、マイカ、のような汎用の無機フィラーを併用することも可能である。
[2]食品用プロピレン系樹脂組成物の製造方法
本発明の食品用プロピレン系樹脂組成物は、(ア)+(イ)のプロピレン系重合体、選択的に用いられる造核剤(A)〜(E)の少なくとも1種の混合物、および、必要に応じて他の添加剤とを、ヘンシェルミキサー、スーパーミキサー、リボンブレンダー等に投入して混合した後、通常の単軸押出機、二軸押出機、バンバリーミキサー、プラベンダー、ロール等で190〜260℃の温度範囲で溶融混練することにより得ることができる。
[3]食品用成形品
本発明の食品用成形品は、上記の食品用プロピレン系樹脂組成物を、公知の方法である射出成形法、押出成形法、ブロー成形法など各種成形法によって成形することにより得られるが、寸法精度が高く複雑な形状を作りやすい射出成形法が望ましい。
また、本発明の食品用成形品は、レトルト用途に有用であり、特に透明性が求められ、耐衝撃性が必要なレトルト用途に適している。
以下、実施例により、本発明をさらに詳細に説明するが、本発明は、これらの記載により何ら限定されるものではない。なお、各実施例及び比較例において、用いた物性測定は以下の方法で行い、プロピレン系重合体、造核剤及び他の添加剤(中和剤、滑剤)としては以下のものを使用した。
1.測定法
(1)TREF
TREF測定方法は前述した通りである。
[装置]
(TREF部)
TREFカラム:4.3mmφ × 150mmステンレスカラム
カラム充填材:100μm 表面不活性処理ガラスビーズ
加熱方式:アルミヒートブロック
冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷)
温度分布:±0.5℃
温調器:(株)チノー デジタルプログラム調節計KP1000(バルブオーブン)
加熱方式:空気浴式オーブン
測定時温度:140℃
温度分布:±1℃
バルブ:6方バルブ 4方バルブ
(試料注入部)
注入方式:ループ注入方式
注入量:ループサイズ 0.1ml
注入口加熱方式:アルミヒートブロック
測定時温度:140℃
(検出部)
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
検出波長:3.42μm
高温フローセル:LC−IR用ミクロフローセル 光路長1.5mm 窓形状2φ×4mm長丸 合成サファイア窓板
測定時温度:140℃
(ポンプ部)
送液ポンプ:センシュウ科学社製 SSC−3461ポンプ
[測定条件]
溶媒:o−ジクロロベンゼン(0.5mg/mLのBHTを含む)
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速 :1mL/分
(2)固体粘弾性測定
試料は下記条件により射出成形した厚さ2mmのシートから、10mm幅×18mm長×2mm厚の短冊状に切り出したものを用いた。装置はレオメトリック・サイエンティフィック社製のARESを用いた。周波数は1Hzである。測定温度は−60℃から段階状に昇温し、試料が融解して測定不能になるまで測定を行った。歪みは0.1〜0.5%の範囲で行った。
(試験片の作成)
規格番号:JIS−7152(ISO294−1)
成形機:東洋機械金属社製TU−15射出成形機
成形機設定温度:ホッパ下から 80,80,160,200,200,200℃
金型温度:40℃
射出速度:200mm/s(金型キャビティー内の速度)
射出圧力:800kgf/cm
保持圧力:800kgf/cm
保圧時間:40秒
金型形状:平板(厚さ2mm 幅30mm 長さ90mm)
(3)各成分量の算出
TREFを用いて、前述した方法によって算出した。
(4)エチレン含有量の算出
13C−NMRにより組成を検定したエチレン・プロピレンランダムコポリマーを基準物質として733cm−1の特性吸収体を用いる赤外分光法により、ランダムコポリマー中のエチレン含量を測定した。ペレットをプレス成形により約500ミクロンの厚さのフィルムとしたものを用いた。
(5)tanδ曲線のピーク
固有粘弾性測定により測定した。
(6)MFR:JIS K7210に準じて加熱温度230℃、荷重21.2Nにて測定した。
(7)融解ピーク温度:セイコー社製DSCを用い、サンプル5.0mgを採り、200℃で5分間保持後、40℃まで10℃/分の降温スピードで結晶化させ、さらに10℃/分の昇温スピードで融解させたときの融解ピーク温度を測定した。
(8)分子量分布:前述の方法で測定した。
(9)ヘイズ値:厚さ1mmのシート片を用いて、JIS K7105に準拠して滅菌前の値を測定した。また、オートクレーブ滅菌(加圧加熱滅菌)をアルプ(株)製レトルト高圧蒸気殺菌・冷却装置RKZ−30L型を用い、121℃で3分間の滅菌処理を行い、滅菌処理の1週間後にJIS K7105に準拠して測定した値を滅菌後の値とした。
(10)臭気:厚さ1mmのシート片を臭気試験用袋に入れ、24時間後に臭気を確認した。
○:嫌気な臭気が殆どなく良好
×:嫌気な臭気がする
(11)曲げ弾性率:JIS K7203の「硬質プラスチックの曲げ試験方法」に準拠して23℃で測定した。
(12)アイゾット(IZOD)衝撃値:ノッチ付き試験片を用い、JIS K7110:1999に準拠して23℃で測定した。
(13)成形性:各ペレットを射出成形機により、樹脂温度240℃、射出圧力900kg/cm及び金型温度40℃で射出成形し、成形性評価用の成形品(12cm×12cm×2.5mm板上に、厚み1mmの25mm×20mm×20mmの箱型が3×4並んでいる形状)を作成し、この射出成形によって得られた成形品を目視で観察し、造核剤やその他添加剤、および反応物質などが成形時金型に析出・付着した為に発生する傷の有無を確認し、次の2段階で評価した。
:多数成形しても、細かい傷がほとんど発生しない。
:多数成形すると成形品に細かい傷が発生する。
2.使用材料
(1) (ア)プロピレン系重合体

(i)プロピレン単独重合体(HPP1):ノバテックMA3Q(日本ポリプロ(株)製)、触媒:チーグラー触媒、MFR:10g/10分、アイソタクチックペンタッド分率0.96(13C−NMRによる測定)。
(ii)プロピレン単独重合体(HPP2):ノバテックMA5Q(日本ポリプロ(株)製)、触媒:チーグラー触媒、MFR:5g/10分、アイソタクチックペンタッド分率0.96(13C−NMRによる測定)。
(iii)エチレン・プロピレンランダム共重合体(RPP1):ノバテックMG3FQ(日本ポリプロ(株)製)、触媒:チーグラー触媒。エチレン濃度 2.5重量%、MFR:8g/10分
(2)(イ)プロピレン−エチレンブロック共重合体
下記の製造例1〜3により、本発明で用いられるプロピレン−エチレンブロック共重合体(PP−1)〜(PP−3)を、下記の製造例4により、本発明で用いられるものとは異なるプロピレン−エチレンブロック共重合体(PP−4)を得た。
〔製造例PP−1〕
予備重合触媒の調製(イオン交換性層状珪酸塩の化学処理)
10リットルの撹拌翼の付いたガラス製セパラブルフラスコに、蒸留水3.75リットル、続いて濃硫酸(96%)2.5kgをゆっくりと添加した。50℃で、さらにモンモリロナイト(水澤化学社製ベンクレイSL;平均粒径=25μm 粒度分布=10〜60μm)を1kg分散させ、90℃に昇温し、6.5時間その温度を維持した。50℃まで冷却後、このスラリーを減圧濾過し、ケーキを回収した。このケーキに蒸留水を7リットル加え再スラリー化後、濾過した。この洗浄操作を、洗浄液(濾液)のpHが、3.5を越えるまで実施した。回収したケーキを窒素雰囲気下110℃で終夜乾燥した。乾燥後の重量は707gであった。
(イオン交換性層状珪酸塩の乾燥)先に化学処理した珪酸塩は、キルン乾燥機により乾燥を実施した。仕様、乾燥条件は以下の通りである。回転筒:円筒状 内径50mm 加温帯550mm(電気炉) かき上げ翼付き回転数:2rpm 傾斜角:20/520 珪酸塩の供給速度:2.5g/分 ガス流速:窒素 96リットル/時間 向流乾燥温度:200℃(粉体温度)
(触媒の調製)撹拌及び温度制御装置を有する内容積16リットルのオートクレーブを窒素で充分置換した。ここに、該珪酸塩200gを導入し、混合ヘプタン1,160ml、さらにトリエチルアルミニウムのヘプタン溶液(0.60M)840mlを加え、室温で攪拌した。1時間後、混合ヘプタンにて洗浄し、珪酸塩スラリーを2,000mlに調製した。次に、先に調製した珪酸塩スラリーにトリイソブチルアルミニウムのヘプタン溶液(0.71ML)9.6mlを添加し、25℃で1時間反応させた。平行して、(r)−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}]ジルコニウム2,180mg(0.3mM)と混合ヘプタン870mlに、トリイソブチルアルミニウムのヘプタン溶液(0.71M)33.1mlを加えて、室温にて1時間反応させた混合物を、珪酸塩スラリーに加え、1時間攪拌後、混合ヘプタンを追加して5,000mlに調製した。
(予備重合/洗浄)続いて、槽内温度を40℃昇温し、温度が安定したところでプロピレンを100g/時間の速度で供給し、温度を維持した。4時間後プロピレンの供給を停止し、さらに2時間維持した。 予備重合終了後、残モノマーをパージし、撹拌を停止させ約10分間静置後、上澄みを2,400mlデカントした。続いてトリイソブチルアルミニウム(0.71ML)のヘプタン溶液9.5ml、さらに混合ヘプタンを5600ml添加し、40℃で30分間撹拌し、10分間静置した後に、上澄みを5600ml除いた。さらにこの操作を3回繰り返した。最後の上澄み液の成分分析を実施したところ有機アルミニウム成分の濃度は、1.23mモル/リットル、Zr濃度は8.6×10−6g/Lであり、仕込み量に対する上澄み液中の存在量は0.016%であった。続いて、トリイソブチルアルミニウム(0.71ML)のヘプタン溶液を170ml添加した後に、45℃で減圧乾燥を実施した。触媒1g当たりポリプロピレンを2.0g含む予備重合触媒が得られた。この予備重合触媒を用いて、以下の手順に従ってプロピレン−エチレンブロック共重合体の製造を行った。
第一工程
第一工程では、内容積0.4mの攪拌装置付き液相重合層を用いてプロピレン−エチレンランダム共重合を実施した。液化プロピレンと液化エチレン、トリイソブチルアルミニウムをそれぞれ90kg/時、4.2kg/時、21.2g/時で連続的に供給した。水素供給量は第一工程のMFRが目標の値となるように調節した。さらに、上記の予備重合触媒を、触媒として(予備重合ポリマーの重量は除く)、7.9g/時となるように供給した。また、重合温度が45℃となるように重合槽を冷却した。
第一工程で得られたプロピレン−エチレンランダム共重合を分析したところ、BD(嵩密度)は0.46g/cc、MFRは2.0g/10分、エチレン含有量は3.7wt%であった。
第二工程
第二工程では、内容積0.5mの攪拌式気相重合槽を用いてプロピレン−エチレンランダム共重合を実施した。第一工程の液相重合槽より重合体粒子を含んだスラリーを連続的に抜き出し、液化プロピレンをフラッシングした後、窒素で昇圧して気相重合槽へ連続的に供給した。重合槽は温度が80℃、プロピレンとエチレンと水素の分圧の合計が1.5MPaとなるように制御した。その際にプロピレンとエチレンと水素の分圧の合計に占めるプロピレンとエチレン及び水素の濃度は、それぞれ66.99vol%、32.99vol%、150volppmとなるように制御した。さらに、活性抑制剤としてエタノールを気相重合槽に供給した。エタノールの供給量は、気相重合槽に供給される重合体粒子に随伴して供給されるTIBA中のアルミニウムに対して、0.3mol/molとなるようにした。
こうして得られたプロピレン−エチレンブロック共重合体を分析したところ、活性は7.6kg/g−触媒、BDは0.41g/cc、MFRは2.0g/10分、エチレン含有量は8.7wt%のPP−1を得た。
また、該PP−1は、成分(A)のエチレン含量3.7wt%、組成比50wt%、成分(B)のエチレン含量13.7wt%、組成比50wt%、tanδ曲線が−16.4℃に単一のピークを有するものであった。製造条件を表3に示す。
〔製造例PP−2〕
表3記載の条件で行った以外は、製造例PP−1に準拠して、第一工程でBD(嵩密度)は0.46g/cc、MFRは7.0g/10分、エチレン含有量は1.5wt%のプロピレン−エチレンランダム共重合を得、第二工程でBDは0.41g/cc、MFRは2.0g/10分、エチレン含有量は6.5wt%のPP−2を得た。
また、該PP−2は、成分(A)のエチレン含量1.5wt%、組成比50wt%、成分(B)のエチレン含量11.5wt%、組成比50wt%、tanδ曲線が−12.3℃に単一のピークを有するものであった。
〔製造例PP−3〕
表3記載の条件で行った以外は、製造例PP−1に準拠して、第一工程でBD(嵩密度)は0.46g/cc、MFRは2.0g/10分、エチレン含有量は2.2wt%のプロピレン−エチレンランダム共重合を得、第二工程でBDは0.41g/cc、MFRは2.0g/10分、エチレン含有量は7.9wt%のPP−3を得た。
また、該PP−3は、成分(A)のエチレン含量2.2wt%、組成比50wt%、成分(B)のエチレン含量12.2wt%、組成比50wt%、tanδ曲線が−13.8℃に単一のピークを有するものであった。
〔製造例PP−4〕
表3記載の条件で行った以外は、製造例PP−1に準拠して、第一工程でBD(嵩密度)は0.46g/cc、MFRは2.0g/10分、エチレン含有量は3.7wt%のプロピレン−エチレンランダム共重合を得、第二工程でBDは0.41g/cc、MFRは2.0g/10分、エチレン含有量は11.7wt%のPP−4を得た。
また、該PP−4は、成分(A)のエチレン含量3.7wt%、組成比50wt%、成分(B)のエチレン含量19.7wt%、組成比50wt%、tanδ曲線が−12.4℃と−33℃の2つのピークを有するものであった。
(3)ポリエチレン
メタロセン系低密度ポリエチレン(b):密度(JIS K7112)0.898g/cm、MFR(JIS K7210、230℃、2.16kg荷重)4.0g/10分、(Mw/Mn)2.2。(日本ポリエチ(株)社製カーネルKF262)
(4)造核剤
(i)ミラッドNX8000(NX8000;ミリケン・アンド・カンパニー社製):造核剤(A)相当品:下記化学構造式(7)
(ii)有機リン酸金属塩化合物系造核剤 アデカスタブNA−11(NA−11;(株)ADEKA製):造核剤(B)に相当
(iii)有機リン酸金属塩化合物系造核剤 アデカスタブNA21(NA−21;(株)ADEKA社製):造核剤(C)に相当
(iv)ハイパフォームHPN68L(HPN68L;ミリケン・アンド・カンパニー社製):造核剤(D)に相当
(v)1,2,3−プロパントリカルボン酸トリス(2−メチルシクロヘキシルアミド):造核剤(E)に相当
(vi)ソルビトール系造核剤 ゲルオールMD(新日本理化(株)製):造核剤(A)〜(E)のいずれにも相当しない造核剤
(vii)チバ社製 IRGACLEAR XT386:造核剤
(5)中和剤
(i)DHT−4C:ハイドロタルサイト(協和化学工業(株)製)
(ii)CAST:ステアリン酸カルシウム
(6)滑剤
(i)シリコーンオイル:SH200−100csFG 東レ・ダウコーニング(株)製
(ii)エルカ酸アミド:ニュートロンS 日本精化製
(iii)ステアリン酸モノグリセリド:エレクトロストリッパーTS−5 花王製
(7)過酸化物
(i)PHA25B:パーヘキサ25B 日本油脂製
(8)酸化防止剤
(i)ヒンダードフェノール系酸化防止剤:イルガノックス1010(IR1010;チバ社製)、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシルフェニル)プロピオネート]メタン
(ii)リン系酸化防止剤:イルガフォス168(IF168;チバ社製)、トリス(2,4−ジ−tert−ブチルフェノール)フォスファイト
(実施例1〜14、比較例1〜4、参考例1)
プロピレン系重合体、造核剤及び他の添加剤(酸化防止剤、中和剤など)を表4に記載の配合割合(重量部)で準備し、スーパーミキサーでドライブレンドした後、35ミリ径の2軸押出機を用いて溶融混練した。ダイ出口部温度230℃でダイから押し出しペレット化した。得られたペレットを射出成形機により、樹脂温度230℃、射出圧力600kg/cm及び金型温度40℃で射出成形し、試験片を作成した。得られた試験片を用い、物性を測定した。その結果を表4に示す。
表4より明らかなように、実施例1〜3は、プロピレン単独重合体に、本発明の(イ)プロピレン−エチレンブロック共重合体を各10重量部配合し、本発明の当該造核剤を使用したもので、耐衝撃性が得られ、オートクレーブ滅菌後も透明性をある程度、維持している事が判る。また、シリコーンオイルを添加する事で成形性が向上している事も判る。実施例4〜8は、当該造核剤をそれぞれ使用したもので、耐衝撃性があり、オートクレーブ滅菌後もある程度の透明性を保持している事が判る。実施例9は(イ)プロピレン−エチレンブロック共重合体を30重量部配合したもので、耐衝撃性が良好で、滅菌後の透明性も良好であり、また、実施例10は、(イ)プロピレン−エチレンブロック共重合体を5重量部配合したもので、高剛性で耐衝撃性を向上させ、滅菌後の透明性が良好である事が判る。また、実施例1〜14のすべてにおいて、臭気が良好で、滅菌後の透明性に優れている事が判る。
比較例1と2は、(イ)プロピレン−エチレンブロック共重合体を配合していないもので、耐衝撃性が低く、成形品が割れやすい事が判る。また、比較例3は本発明の(イ)プロピレン−エチレンブロック共重合体の代わりに、ポリエチレンを耐衝撃性改質材として使用したもので、オートクレーブ滅菌前は、すぐれた物性バランスを保持しているが、オートクレーブ滅菌後に透明性が著しく悪化している事が判る。比較例4と比較例5は、(イ)プロピレン−エチレンブロック共重合体の代わりに、本発明範囲外のプロピレン−エチレン共重合体を耐衝撃性改質材として使用したもので、比較例4では耐衝撃性の向上が殆ど認められず、また、比較例5では、透明性がない事が判る。
参考例1は、当該造核剤(A)〜(E)とは異なる透明性に効果のある造核剤であるゲルオールMDを添加したもので、この造核剤を用いると、臭気が悪く、風味の影響を受けやすい和風食品用途に使用できないものもある。
但し、香料の強いカレーや洋風デザート用途などには使用できる可能性がある。
(実施例15)
実施例2によって得られたペレットを用いて、射出成形機により、樹脂温度240℃及び金型温度35℃で射出成形し、底直径6cm、口直径8cm、高さ5.5cm、側面部肉厚0.7mmの円型カップを成形した。該カップに121℃で3分の処理をし、肉厚0.7mmのヘイズを測定したところ、その値は19%であり、また、この成形品の臭気は殆どせず、食品用途に使用できる事を確認した。本発明により得られるレトルト食品用部材は、透明性に優れ、また、低臭気、物性バランスに優れたものであることがわかる。
本発明の食品用プロピレン系樹脂組成物は、レトルト処理しても透明性に優れ、耐衝撃性があり、また、臭気や物性バランスに優れたものであり、レトルト食品容器や蓋材として好適である。
特開平7−300160号公報

Claims (7)

  1. プロピレンと含有量が重量%未満のα−オレフィンとからなるプロピレン系重合体であり、JIS K7210(230℃、2.16kg荷重)に準拠したメルトフローレートが0.5〜100g/10分であるプロピレン系(共)重合体60〜99重量部、下記条件(A−i)〜(A−v)を満たすプロピレン−エチレンブロック共重合体1〜40重量部、および造核剤0.01〜0.6重量部とからなることを特徴とするプロピレン系樹脂組成物。

    (A−i)メタロセン系触媒を用いて、第1工程でプロピレン単独又はエチレン含量7wt%以下のプロピレン−エチレンランダム共重合体成分(A)を30〜95wt%、第2工程で成分(A)よりも3〜20wt%多くのエチレンを含有するプロピレン−エチレンランダム共重合体成分(B)を70〜5wt%逐次重合することで得られたプロピレン−エチレンブロック共重合体であること
    (A−ii)メルトフローレート(MFR:230℃ 2.16kg)が0.5〜100g/10minの範囲にあること
    (A−iii)DSC法により測定された融解ピーク温度(Tm)が110〜150℃の範囲にあること
    (A−iv)GPC法により測定された分子量分布(Mw/Mn)が1.5〜4の範囲にあること
    (A−v)固体粘弾性測定により得られる温度−損失正接曲線において、tanδ曲線が0℃以下に単一のピークを有する。
  2. 造核剤が、下記一般式(1)で示される造核剤(A)0.01〜0.6重量部、下記一般式(2)で示される造核剤(B)0.005〜0.3重量部、下記一般式(3)で示される造核剤(C)0.005〜0.15重量部、下記一般式(4)で示される造核剤(D)0.005〜0.15重量部および下記一般式(5)で示される造核剤(E)0.005重量部以上で0.3重量部未満の範囲で成る、これら少なくとも1種の造核剤(A)〜(E)であることを特徴とする請求項1に記載のプロピレン系樹脂組成物。

    [但し、nは、0〜2の整数であり、R〜Rは、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、Rは、炭素数が1〜20のアルキル基である。]

    [式中、Rは、直接結合、硫黄又は炭素数1〜9のアルキレン基又はアルキリデン基であり、R及びRは、同一又は異なって、それぞれ水素原子又は炭素数1〜8のアルキル基であり、MはNaであり、nはMの価数である。]
    [式中、Rは、水素原子又は炭素数1〜4のアルキル基を示し、R及びRは、同一又は異なって、それぞれ水素原子又は炭素数1〜12のアルキル基を示し、Mは、周期律表第III族または第IV族の金属原子を示し、Xは、Mが周期律表第III族の金属原子を示す場合には、HO−を示し、Mが周期律表第IV族の金属原子を示す場合には、O=又は(HO)−を示す。]
    [式中、MおよびMは、同一または異なって、カルシウム、ストロンチウム、リチウムおよび一塩基性アルミニウムから選択される少なくとも1種の金属カチオンであり、R、R、R、R、R、R、R、R、RおよびR10は、同一または異なって、水素、C−Cアルキル(ここで、いずれか2つのビシナル(隣接炭素に結合)またはジェミナル(同一炭素に結合)アルキル基は、一緒になって6個までの炭素原子を有する炭化水素環を形成してもよい)、ヒドロキシ、C−Cアルコキシ、C−Cアルキレンオキシ、アミンおよびC−Cアルキルアミン、ハロゲン(フッ素、塩素、臭素および沃素)並びにフェニルからなる群からそれぞれ選択される。]
    (CONHR …(5)
    [式中、Rは、炭素数2〜30の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数4〜28の飽和若しくは不飽和の脂環族ポリカルボン酸残基、又は炭素数6〜18の芳香族ポリカルボン酸残基を表わす。Rは、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、又は炭素数3〜46のシクロアルキル基若しくはシクロアルケニル基を表わす。aは、2〜6の整数を表す。]
  3. 造核剤(A)が下記一般式(6)で示される造核剤であることを特徴とする請求項1又は2に記載のプロピレン系樹脂組成物。

    [但し、nは、0〜2の整数であり、R、R、R、Rは、水素原子であり、Rは、水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、Rは、炭素数が1〜20のアルキル基である。]
  4. 滑剤が0.001〜0.5重量部の範囲で配合されたものであることを特徴とする請求項1〜3のいずれか1項に記載のプロピレン系樹脂組成物。
  5. 請求項1〜4のいずれか1項に記載のプロピレン系樹脂組成物を食品用途に用いることを特徴とする食品用プロピレン系樹脂組成物。
  6. 請求項5に記載の食品用プロピレン系樹脂組成物から得られることを特徴とする食品用成形品。
  7. 請求項6に記載の食品用成形品がレトルト用途であることを特徴とするレトルト用成形品。
JP2009240937A 2008-10-22 2009-10-19 食品用プロピレン系樹脂組成物およびその成形品 Active JP5270512B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240937A JP5270512B2 (ja) 2008-10-22 2009-10-19 食品用プロピレン系樹脂組成物およびその成形品

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008271549 2008-10-22
JP2008271549 2008-10-22
JP2009240937A JP5270512B2 (ja) 2008-10-22 2009-10-19 食品用プロピレン系樹脂組成物およびその成形品

Publications (2)

Publication Number Publication Date
JP2010121120A JP2010121120A (ja) 2010-06-03
JP5270512B2 true JP5270512B2 (ja) 2013-08-21

Family

ID=42322720

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009240915A Active JP5270511B2 (ja) 2008-10-22 2009-10-19 プロピレン系樹脂組成物およびその成形品
JP2009240937A Active JP5270512B2 (ja) 2008-10-22 2009-10-19 食品用プロピレン系樹脂組成物およびその成形品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009240915A Active JP5270511B2 (ja) 2008-10-22 2009-10-19 プロピレン系樹脂組成物およびその成形品

Country Status (1)

Country Link
JP (2) JP5270511B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191469B2 (ja) * 2008-10-24 2013-05-08 日本ポリプロ株式会社 医療用プロピレン系樹脂組成物およびその成形品
JP2011063781A (ja) * 2009-09-18 2011-03-31 Japan Polypropylene Corp 押出しシートおよびそれを用いた成形体
JP5487024B2 (ja) * 2010-06-24 2014-05-07 日本ポリプロ株式会社 プロピレン系樹脂多層シートおよびそれを用いた加熱処理用包装体
JP5509008B2 (ja) * 2010-09-14 2014-06-04 日本ポリプロ株式会社 プロピレン系樹脂組成物およびその成形品
JP5572502B2 (ja) * 2010-09-27 2014-08-13 日本ポリプロ株式会社 プロピレン系樹脂組成物を用いた成形品
JP5509030B2 (ja) * 2010-10-22 2014-06-04 日本ポリプロ株式会社 プロピレン系樹脂組成物を用いた成形品
JP5722002B2 (ja) * 2010-11-10 2015-05-20 株式会社Adeka ポリプロピレン系樹脂組成物
JP5604336B2 (ja) * 2011-03-07 2014-10-08 日本ポリプロ株式会社 シール材
EP2754691B1 (en) * 2011-09-08 2016-02-10 Japan Polypropylene Corporation Fiber-reinforced polypropylene resin composition and molded article thereof
JP5974927B2 (ja) * 2012-02-24 2016-08-23 日本ポリプロ株式会社 プロピレン系重合体樹脂組成物並びにフィルム及びシート
EP2818510B1 (en) 2012-02-24 2015-09-30 Japan Polypropylene Corporation Propylene-ethylene copolymer resin composition, and molded product, film and sheet thereof
JP6036492B2 (ja) * 2012-04-25 2016-11-30 日本ポリプロ株式会社 プロピレン系積層延伸フィルム
JP6020312B2 (ja) * 2012-11-27 2016-11-02 日本ポリプロ株式会社 プロピレン−エチレン共重合体樹脂組成物並びにフィルム及びシート
US20150315365A1 (en) * 2012-12-07 2015-11-05 Japan Polypropylene Corporation Fiber-reinforced polypropylene resin composition and molded article of same
JP6236897B2 (ja) * 2013-06-11 2017-11-29 日本ポリプロ株式会社 プロピレン系樹脂組成物およびその成形品
JP6409561B2 (ja) * 2014-12-24 2018-10-24 日本ポリプロ株式会社 医療用プロピレン系樹脂組成物およびその成形品
JP6409563B2 (ja) * 2014-12-24 2018-10-24 日本ポリプロ株式会社 医療用プロピレン系樹脂組成物及びその射出成形品
JP2016183280A (ja) * 2015-03-26 2016-10-20 日本ポリプロ株式会社 自動車部品用ポリプロピレン系樹脂組成物及びその成形体
JP6810566B2 (ja) * 2016-09-21 2021-01-06 株式会社Adeka オレフィン系樹脂組成物の製造方法、オレフィン系樹脂組成物およびその成形品
US10954368B2 (en) 2018-04-10 2021-03-23 Regents Of The University Of Minnesota Block copolymer-toughened isotactic polypropylene
TWI801644B (zh) * 2018-09-12 2023-05-11 美商芬娜工業技術股份有限公司 提供最佳性能之澄清劑摻合物
CN109632725B (zh) * 2018-12-13 2021-04-27 中铝东南材料院(福建)科技有限公司 一种铝轧制润滑油助滤剂配比快速确定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688247B2 (ja) * 1998-08-25 2011-05-25 株式会社プライムポリマー プロピレン系樹脂組成物、その製造方法および用途
JP2001114954A (ja) * 1999-10-18 2001-04-24 Sumitomo Chem Co Ltd プロピレン系樹脂組成物、延伸ブロー成形用プロピレン系樹脂組成物、延伸ブロー成形容器および延伸ブロー成形容器の製造方法
JP4156492B2 (ja) * 2003-10-31 2008-09-24 日本ポリプロ株式会社 プロピレン−エチレンランダムブロック共重合体及びその製造方法
JP4585274B2 (ja) * 2004-02-06 2010-11-24 日本ポリプロ株式会社 プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを成形してなる各種の成形品
JP4359517B2 (ja) * 2004-02-06 2009-11-04 日本ポリプロ株式会社 プロピレン−エチレンランダムブロック共重合体樹脂組成物
JP4928742B2 (ja) * 2005-04-29 2012-05-09 日本ポリプロ株式会社 ポリプロピレン系二軸延伸ブロー成形体

Also Published As

Publication number Publication date
JP5270511B2 (ja) 2013-08-21
JP2010121119A (ja) 2010-06-03
JP2010121120A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5270512B2 (ja) 食品用プロピレン系樹脂組成物およびその成形品
JP5191469B2 (ja) 医療用プロピレン系樹脂組成物およびその成形品
JP4156491B2 (ja) プロピレン−エチレンランダムブロック共重合体
US7390575B2 (en) Propylene-ethylene random block copolymer and biaxially oriented multi-layer film using the same as a surface layer
JP2011098762A (ja) 保存用嵌合容器部材
JP4585274B2 (ja) プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを成形してなる各種の成形品
EP1871832B1 (en) Biaxially oriented propylene polymer films
JP2009209348A (ja) ポリプロピレン系包装用フィルム
JP5509030B2 (ja) プロピレン系樹脂組成物を用いた成形品
JP4512411B2 (ja) 新規なプロピレン−エチレンランダムブロック共重合体
JP4705703B2 (ja) ポリプロピレン系医療用ブロー容器
JP5509008B2 (ja) プロピレン系樹脂組成物およびその成形品
JP2006188562A (ja) プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを用いた積層材料
JP2011219519A (ja) プロピレン系樹脂シート
JP6488916B2 (ja) 二軸延伸ブロー成形用プロピレン系樹脂組成物及びその成形体
JP5572502B2 (ja) プロピレン系樹脂組成物を用いた成形品
JP5764825B2 (ja) 成形体
JP5796539B2 (ja) 熱成形体
JP2012046692A (ja) プロピレン系樹脂組成物およびその成形品
JP2012087270A (ja) プロピレン系熱可塑性エラストマー組成物およびその成形品
JP2023122417A (ja) プロピレン系重合体組成物及び成形品
JP5942760B2 (ja) 熱可塑性樹脂組成物およびその成形品
JPH10204232A (ja) ポリプロピレン樹脂組成物
JP5604336B2 (ja) シール材
JP2023122574A (ja) プロピレン系重合体組成物及び成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Ref document number: 5270512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250