JP5262893B2 - Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus - Google Patents

Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus Download PDF

Info

Publication number
JP5262893B2
JP5262893B2 JP2009070851A JP2009070851A JP5262893B2 JP 5262893 B2 JP5262893 B2 JP 5262893B2 JP 2009070851 A JP2009070851 A JP 2009070851A JP 2009070851 A JP2009070851 A JP 2009070851A JP 5262893 B2 JP5262893 B2 JP 5262893B2
Authority
JP
Japan
Prior art keywords
membrane
electrolyte
electrode catalyst
catalyst particles
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070851A
Other languages
Japanese (ja)
Other versions
JP2009283448A (en
Inventor
拓男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009070851A priority Critical patent/JP5262893B2/en
Publication of JP2009283448A publication Critical patent/JP2009283448A/en
Application granted granted Critical
Publication of JP5262893B2 publication Critical patent/JP5262893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device of manufacturing a membrane electrode assembly with no physical interface between an electrolyte membrane and an electrode catalyst layer and no generation of an interface resistance and with an excellent proton conductivity. <P>SOLUTION: The electrode catalyst layer 4 having a three phase interface on a membrane surface portion 2 of an electrolyte membrane 1 includes a process to mount electrode catalyst particles 5 of a given volume on the electrolyte membrane 1, a process to press-in the electrolyte catalyst particles 5 into the electrolyte membrane 1 and embed them inside electrolyte resin of the membrane surface portion 2, and a process to elongate the electrolyte membrane 1 and peel partly between the electrolyte resin of the membrane surface portion 2 and the electrode catalyst particles 5. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電解質膜と電極触媒層とを有する固体高分子形燃料電池用の膜電極接合体の製造方法および膜電極接合体製造装置に関する。   The present invention relates to a method for producing a membrane electrode assembly and a membrane electrode assembly production apparatus for a polymer electrolyte fuel cell having an electrolyte membrane and an electrode catalyst layer.

燃料電池の一形態として固体高分子形燃料電池(PEFC)が知られている。固体高分子形燃料電池は他の形態の燃料電池と比較して作動温度が低く(80℃〜100℃程度)、低コスト、コンパクト化が可能なことから、自動車の動力源等として期待されている。   A polymer electrolyte fuel cell (PEFC) is known as one form of the fuel cell. Solid polymer fuel cells are expected to be used as power sources for automobiles because they have lower operating temperatures (about 80 ° C to 100 ° C) than other types of fuel cells, and can be made at low cost and compact. Yes.

固体高分子形燃料電池は、膜電極接合体(MEA)を主要な構成要素とし、それを燃料ガス流路および空気ガス流路を備えたセパレータで挟持して、単セルと呼ばれる1つの燃料電池を形成している。膜電極接合体は、電解質膜の一方の面にアノード側の電極触媒層が一体に形成され、他方の面にカソード側の電極触媒層が一体に形成された構造を有する。   A polymer electrolyte fuel cell has a membrane electrode assembly (MEA) as a main component, and is sandwiched by a separator having a fuel gas channel and an air gas channel, and is a single fuel cell called a single cell. Is forming. The membrane / electrode assembly has a structure in which an anode-side electrode catalyst layer is integrally formed on one surface of an electrolyte membrane, and a cathode-side electrode catalyst layer is integrally formed on the other surface.

電解質膜には、例えば電解質樹脂(イオン交換樹脂)であるパーフルオロスルホン酸ポリマーの薄膜(米国、デュポン社、ナフィオン膜)が用いられている。また、電解質樹脂単独の薄膜では十分な強度が得られない場合には、多孔性補強膜(例えば、PTFEやポリオレフィン樹脂等を延伸して作成した薄膜)に電解質樹脂溶液を含浸させて電解質含浸膜とすることも行われている(例えば特許文献1を参照)。そして、電極触媒層には、例えば白金担持カーボン等の電極触媒と電解質樹脂とからなる電極材料が用いられている。   As the electrolyte membrane, for example, a thin film of perfluorosulfonic acid polymer (US, DuPont, Nafion membrane) which is an electrolyte resin (ion exchange resin) is used. When sufficient strength cannot be obtained with a thin film of an electrolyte resin alone, an electrolyte impregnated film is obtained by impregnating a porous reinforcing film (for example, a thin film formed by stretching PTFE or polyolefin resin) with an electrolyte resin solution. (For example, refer to Patent Document 1). For the electrode catalyst layer, an electrode material made of an electrode catalyst such as platinum-supported carbon and an electrolyte resin is used.

このような電解質膜の表面に電極触媒層を一体に形成する手法として、インク状あるいはペースト状の触媒混合物を沈降法・印刷法・スプレー法などの方法で基体上に塗布して、均一な電極触媒層を形成した後、これと電解質膜とを加熱圧接して一体に接合する転写法が提案されている(例えば、特許文献2を参照)。この場合、ホットプレス(熱間プレス)あるいはホットロール(加熱加圧ロール)を用いて電解質膜と電極触媒層とが一体的に接合される。   As a method for integrally forming an electrode catalyst layer on the surface of such an electrolyte membrane, an ink-like or paste-like catalyst mixture is applied onto a substrate by a method such as a sedimentation method, a printing method, or a spray method, and a uniform electrode is obtained. There has been proposed a transfer method in which a catalyst layer is formed, and this and an electrolyte membrane are joined together by heating and pressing (see, for example, Patent Document 2). In this case, the electrolyte membrane and the electrode catalyst layer are integrally joined using a hot press (hot press) or a hot roll (heat-pressing roll).

特開平9−194609号JP-A-9-194609 特開2002−90944号JP 2002-90944 A

固体高分子形燃料電池の膜電極接合体は、高い発電効率を得るために、電解質膜と電極触媒層との間の界面抵抗が少ないことが望ましい。   In order to obtain high power generation efficiency, it is desirable that the membrane electrode assembly of the polymer electrolyte fuel cell has a low interface resistance between the electrolyte membrane and the electrode catalyst layer.

しかしながら、上記した従来の方法では、電解質膜と電極触媒層とを別々に形成し、その後、互いに接合することから、電解質膜と電極触媒層との間に常に物理的な界面が存在し、その界面の存在を完全になくすことはできない。従って、電解質膜と電極触媒層との界面抵抗を低くするには限度があった。   However, in the conventional method described above, since the electrolyte membrane and the electrode catalyst layer are separately formed and then joined together, there is always a physical interface between the electrolyte membrane and the electrode catalyst layer. The existence of the interface cannot be completely eliminated. Therefore, there is a limit to lowering the interface resistance between the electrolyte membrane and the electrode catalyst layer.

本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、電解質膜と電極触媒層との間に物理的な界面が存在せず、界面抵抗が発生しない、プロトン伝導性に優れた膜電極接合体の製造方法を提供することを課題とする。   The present invention has been made in view of the above points, and the object of the present invention is that there is no physical interface between the electrolyte membrane and the electrode catalyst layer, and no interfacial resistance is generated. It is an object of the present invention to provide a method for producing a membrane electrode assembly having excellent properties.

上記課題を解決する本発明の固体高分子形燃料電池の触媒層形成方法は、固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、電解質膜の上に所定量の電極触媒粒子を載せる工程と、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込む工程と、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させる工程とを含むことを特徴としている(請求項1)。   The method for forming a catalyst layer of a polymer electrolyte fuel cell according to the present invention that solves the above-described problem is a membrane in which an electrode catalyst layer containing electrode catalyst particles is formed on the membrane surface layer of an electrolyte membrane used in a polymer electrolyte fuel cell. In the method of manufacturing an electrode assembly, a step of placing a predetermined amount of electrode catalyst particles on the electrolyte membrane, a step of press-fitting the electrode catalyst particles into the electrolyte membrane and embedding it in the electrolyte resin of the membrane surface layer portion, and stretching the electrolyte membrane And a step of partially peeling between the electrolyte resin of the surface layer portion of the membrane and the electrode catalyst particles (claim 1).

本発明によれば、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込むので、膜表層部にて電極触媒粒子間に介在されている電解質樹脂と、電解質膜の膜表層部以外の部分の電解質樹脂は、元々同じ電解質膜の電解質樹脂であって一体に連続している。従って、膜表層部の電解質樹脂と、膜表層部以外の電解質樹脂との間に物理的な界面が存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。また、電解質膜と電極触媒層との間で水の受け渡しを円滑に行うことができ、電解質膜の水分管理を容易にできる。   According to the present invention, since the electrode catalyst particles are press-fitted into the electrolyte membrane and embedded in the electrolyte resin of the membrane surface layer portion, the electrolyte resin interposed between the electrode catalyst particles in the membrane surface layer portion, and the membrane surface layer of the electrolyte membrane The electrolyte resin in portions other than the portion is originally the electrolyte resin of the same electrolyte membrane and is integrally continuous. Therefore, there is no physical interface between the electrolyte resin in the membrane surface layer portion and the electrolyte resin other than the membrane surface layer portion, and no interface resistance is generated. Therefore, high proton conductivity can be obtained. Further, water can be smoothly transferred between the electrolyte membrane and the electrode catalyst layer, and moisture management of the electrolyte membrane can be facilitated.

そして、本発明では、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、電解質樹脂、電極触媒粒子、ガスの三相界面を有する電極触媒層を形成することができる。   In the present invention, the electrolyte membrane is stretched to partially separate the electrolyte resin on the membrane surface layer portion and the electrode catalyst particles, so that a gas phase capable of supplying gas is formed in the gap between the separated portions. And an electrode catalyst layer having a three-phase interface of electrolyte resin, electrode catalyst particles, and gas can be formed.

電極触媒層は、電極触媒粒子同士が電子的につながっており、且つ電極触媒粒子が電解質樹脂に接し、さらに、ガスを電極触媒粒子に直に供給可能な広い表面積を有しており、高い発電効率を有する膜電極接合体を得ることができる。また、上記した三相界面を有する電極触媒層を、埋め込みと延伸という2工程のみで迅速且つ容易に形成することができ、膜電極接合体の製造コストを低コスト化することができる。   The electrode catalyst layer has a large surface area in which the electrode catalyst particles are electronically connected to each other, the electrode catalyst particles are in contact with the electrolyte resin, and the gas can be directly supplied to the electrode catalyst particles. A membrane electrode assembly having efficiency can be obtained. In addition, the electrode catalyst layer having the above three-phase interface can be formed quickly and easily by only two steps of embedding and stretching, and the manufacturing cost of the membrane electrode assembly can be reduced.

本発明では、電解質膜を加熱した状態で電極触媒粒子を電解質膜に圧入してもよい(請求項2)。これによれば、電解質膜を加熱して電解質樹脂の流動性を促進させた状態とすることができ、電極触媒粒子を電解質膜に圧入する力をより小さくすることができる。従って、電極触媒粒子を膜表層部の電解質樹脂内に簡単に埋め込むことができ、膜表層部に電極触媒層を簡単に形成することができる。   In the present invention, the electrode catalyst particles may be pressed into the electrolyte membrane while the electrolyte membrane is heated (claim 2). According to this, the electrolyte membrane can be heated and the fluidity of the electrolyte resin can be promoted, and the force for pressing the electrode catalyst particles into the electrolyte membrane can be further reduced. Therefore, the electrode catalyst particles can be easily embedded in the electrolyte resin of the membrane surface layer portion, and the electrode catalyst layer can be easily formed on the membrane surface layer portion.

本発明において、電解質膜は、電解質樹脂のみからなるものでもよく、また、電解質樹脂溶液を多孔性補強膜に含浸させて形成した電解質含浸膜でもよい(請求項3)。電解質含浸膜の場合は、電極触媒粒子を電解質膜に圧入した際に、電極触媒粒子が電解質膜を貫通してしまうのを防止し、電解質膜の対向面に形成された電極触媒粒子と電子的に接続されるのを防ぐことができる。   In the present invention, the electrolyte membrane may be composed only of an electrolyte resin, or may be an electrolyte-impregnated membrane formed by impregnating a porous reinforcing membrane with an electrolyte resin solution (claim 3). In the case of an electrolyte-impregnated membrane, when the electrode catalyst particles are press-fitted into the electrolyte membrane, the electrode catalyst particles are prevented from penetrating the electrolyte membrane, and the electrode catalyst particles formed on the opposite surface of the electrolyte membrane are electronically Can be prevented from being connected to.

そして、電解質樹脂は、従来の固体高分子形燃料電池用の電解質膜で使用される電解質樹脂を適宜用いることができるが、電解質ポリマーの前駆体高分子で作られるフッ素系電解質樹脂は、熱的安定性を備えることから、本発明による電解質膜を製造するための材料として、特に好ましい。また、多孔性補強膜としては、従来の電解質含浸膜で用いられてきた多孔性補強膜を適宜用いることができるが、PTFE多孔性膜であることは特に好ましい。本発明において、電極触媒粒子は白金等の触媒成分をカーボン等の導電性担体に担持させたもの等、従来の膜電極接合体での電極触媒層で用いられている電極触媒粒子をそのまま用いることができる。   As the electrolyte resin, an electrolyte resin used in an electrolyte membrane for a conventional polymer electrolyte fuel cell can be appropriately used. However, a fluorine-based electrolyte resin made of a precursor polymer of an electrolyte polymer is thermally stable. In particular, it is preferable as a material for producing the electrolyte membrane according to the present invention. Moreover, as the porous reinforcing membrane, a porous reinforcing membrane that has been used in conventional electrolyte-impregnated membranes can be used as appropriate, but a PTFE porous membrane is particularly preferable. In the present invention, the electrode catalyst particles used in the electrode catalyst layer in the conventional membrane electrode assembly, such as those in which a catalyst component such as platinum is supported on a conductive carrier such as carbon, are used as they are. Can do.

また、上記課題を解決する本発明の他の膜電極接合体の製造方法は、固体高分子形燃料電池に用いられる電解質含浸膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、多孔性補強膜の上に電解質樹脂シートを載せる工程と、電解質樹脂シートの上に所定量の電極触媒粒子を載せる工程と、電解質樹脂シートを加熱溶融して電解質樹脂シートの電解質樹脂溶液を多孔性補強膜に含浸させて電解質含浸膜を形成するとともに、電極触媒粒子を電解質含浸膜に圧入して膜表層部の電解質樹脂内に埋め込む工程と、電解質含浸膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させる工程とを含むことを特徴としている(請求項4)。   Moreover, in another method for producing a membrane electrode assembly of the present invention that solves the above problems, an electrode catalyst layer containing electrode catalyst particles is formed on the membrane surface layer of an electrolyte-impregnated membrane used in a polymer electrolyte fuel cell. In the method for manufacturing a membrane electrode assembly, a step of placing an electrolyte resin sheet on the porous reinforcing membrane, a step of placing a predetermined amount of electrode catalyst particles on the electrolyte resin sheet, and heating and melting the electrolyte resin sheet A step of impregnating a porous reinforcing membrane with an electrolyte resin solution of a resin sheet to form an electrolyte-impregnated membrane, press-fitting electrode catalyst particles into the electrolyte-impregnated membrane, and embedding it in the electrolyte resin of the membrane surface layer portion; And a step of partially peeling between the electrolyte resin on the membrane surface layer portion and the electrode catalyst particles (claim 4).

本発明によれば、電解質樹脂シートを加熱溶融して電解質樹脂シートの電解質樹脂溶液を多孔性補強膜に含浸させて電解質含浸膜を形成するとともに、電極触媒粒子を電解質含浸膜に圧入して膜表層部の電解質樹脂内に埋め込むので、最初に電解質含浸膜を形成し、その後に電解質含浸膜を加熱して電極触媒粒子を圧入する場合と比較して、加熱工程を一回にまとめることができ、製造作業の効率化及び省エネルギー化を図ることができる。   According to the present invention, the electrolyte resin sheet is heated and melted to impregnate the porous reinforcing membrane with the electrolyte resin solution of the electrolyte resin sheet to form the electrolyte-impregnated membrane, and the electrode catalyst particles are press-fitted into the electrolyte-impregnated membrane. Since it is embedded in the electrolyte resin of the surface layer part, the heating process can be combined at one time compared with the case where the electrolyte impregnated film is formed first and then the electrolyte impregnated film is heated to press-fit the electrode catalyst particles. Thus, it is possible to improve the efficiency and energy saving of the manufacturing work.

そして、本発明によれば、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込むので、膜表層部にて電極触媒粒子間に介在されている電解質樹脂と、電解質膜の膜表層部以外の部分の電解質樹脂は、元々同じ電解質膜の電解質樹脂であって一体に連続している。従って、膜表層部の電解質樹脂と、膜表層部以外の電解質樹脂との間に物理的な界面が存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。また、電解質膜と電極触媒層との間で水の受け渡しを円滑に行うことができ、電解質膜の水分管理を容易にできる。   According to the present invention, since the electrode catalyst particles are press-fitted into the electrolyte membrane and embedded in the electrolyte resin of the membrane surface layer portion, the electrolyte resin interposed between the electrode catalyst particles in the membrane surface layer portion, and the electrolyte membrane The electrolyte resin in the portion other than the membrane surface layer portion is originally an electrolyte resin of the same electrolyte membrane and is integrally continuous. Therefore, there is no physical interface between the electrolyte resin in the membrane surface layer portion and the electrolyte resin other than the membrane surface layer portion, and no interface resistance is generated. Therefore, high proton conductivity can be obtained. Further, water can be smoothly transferred between the electrolyte membrane and the electrode catalyst layer, and moisture management of the electrolyte membrane can be facilitated.

そして、本発明では、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、電解質樹脂、電極触媒粒子、ガスの三相界面を有する電極触媒層を形成することができる。   In the present invention, the electrolyte membrane is stretched to partially separate the electrolyte resin on the membrane surface layer portion and the electrode catalyst particles, so that a gas phase capable of supplying gas is formed in the gap between the separated portions. And an electrode catalyst layer having a three-phase interface of electrolyte resin, electrode catalyst particles, and gas can be formed.

電極触媒層は、電極触媒粒子同士が電子的につながっており、且つ電極触媒粒子が電解質樹脂に接し、さらに、ガスを電極触媒粒子に直に供給可能な広い表面積を有しており、高い発電効率を有する膜電極接合体を得ることができる。また、上記した三相界面を有する電極触媒層を、迅速且つ容易に形成することができ、膜電極接合体の製造コストを低コスト化することができる。   The electrode catalyst layer has a large surface area in which the electrode catalyst particles are electronically connected to each other, the electrode catalyst particles are in contact with the electrolyte resin, and the gas can be directly supplied to the electrode catalyst particles. A membrane electrode assembly having efficiency can be obtained. Moreover, the electrode catalyst layer having the above three-phase interface can be formed quickly and easily, and the manufacturing cost of the membrane electrode assembly can be reduced.

また、本発明の固体高分子形燃料電池の触媒層形成方法は、固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、電解質膜の上に所定量の電極触媒粒子を載せる工程と、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込む工程と、溶媒を用いて膜表層部の電解質樹脂を膨潤させる工程と、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させる工程とを含むことを特徴としている(請求項5)。   The method for forming a catalyst layer for a polymer electrolyte fuel cell according to the present invention includes a membrane electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte membrane used in a polymer electrolyte fuel cell. In the manufacturing method, a step of placing a predetermined amount of electrode catalyst particles on the electrolyte membrane, a step of press-fitting the electrode catalyst particles into the electrolyte membrane and embedding it in the electrolyte resin of the membrane surface layer portion, and a membrane surface layer portion using a solvent And a step of stretching the electrolyte membrane and partially separating the electrolyte resin on the membrane surface layer portion from the electrode catalyst particles (claim 5).

本発明によれば、溶媒を用いて膜表層部の電解質樹脂を膨潤させてから、電解質膜を延伸しているので、膨潤させずに電解質膜を延伸した場合と比較して、より小さな延伸倍率で膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させることができ、電解質膜の膜表層部を容易に多孔化することができる。したがって、高延伸倍率による電解質膜の膜内部の多孔化を防止し、膜厚方向に貫通するクロスリークが発生するのを防ぐことができる。   According to the present invention, since the electrolyte membrane is stretched after the electrolyte resin in the membrane surface layer portion is swelled using a solvent, the draw ratio is smaller compared to the case where the electrolyte membrane is stretched without swelling. Thus, a part of the electrolyte resin on the membrane surface layer and the electrode catalyst particles can be separated, and the membrane surface layer portion of the electrolyte membrane can be easily made porous. Therefore, it is possible to prevent the electrolyte membrane from becoming porous due to a high draw ratio and to prevent cross leaks penetrating in the film thickness direction.

そして、本発明では、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、電解質樹脂、電極触媒粒子、ガスの三相界面を有する電極触媒層を形成することができる。   In the present invention, the electrolyte membrane is stretched to partially separate the electrolyte resin on the membrane surface layer portion and the electrode catalyst particles, so that a gas phase capable of supplying gas is formed in the gap between the separated portions. And an electrode catalyst layer having a three-phase interface of electrolyte resin, electrode catalyst particles, and gas can be formed.

電極触媒層は、電極触媒粒子同士が電子的につながっており、且つ電極触媒粒子が電解質樹脂に接し、さらに、ガスを電極触媒粒子に直に供給可能な広い表面積を有しており、高い発電効率を有する膜電極接合体を得ることができる。また、上記した三相界面を有する電極触媒層を、迅速且つ容易に形成することができ、膜電極接合体の製造コストを低コスト化することができる。   The electrode catalyst layer has a large surface area in which the electrode catalyst particles are electronically connected to each other, the electrode catalyst particles are in contact with the electrolyte resin, and the gas can be directly supplied to the electrode catalyst particles. A membrane electrode assembly having efficiency can be obtained. Moreover, the electrode catalyst layer having the above three-phase interface can be formed quickly and easily, and the manufacturing cost of the membrane electrode assembly can be reduced.

そして、本発明によれば、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込むので、膜表層部にて電極触媒粒子間に介在されている電解質樹脂と、電解質膜の膜表層部以外の部分の電解質樹脂は、元々同じ電解質膜の電解質樹脂であって一体に連続している。従って、膜表層部の電解質樹脂と、膜表層部以外の電解質樹脂との間に物理的な界面が存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。また、電解質膜と電極触媒層との間で水の受け渡しを円滑に行うことができ、電解質膜の水分管理を容易にできる。   According to the present invention, since the electrode catalyst particles are press-fitted into the electrolyte membrane and embedded in the electrolyte resin of the membrane surface layer portion, the electrolyte resin interposed between the electrode catalyst particles in the membrane surface layer portion, and the electrolyte membrane The electrolyte resin in the portion other than the membrane surface layer portion is originally an electrolyte resin of the same electrolyte membrane and is integrally continuous. Therefore, there is no physical interface between the electrolyte resin in the membrane surface layer portion and the electrolyte resin other than the membrane surface layer portion, and no interface resistance is generated. Therefore, high proton conductivity can be obtained. Further, water can be smoothly transferred between the electrolyte membrane and the electrode catalyst layer, and moisture management of the electrolyte membrane can be facilitated.

また、本発明の固体高分子形燃料電池の触媒層形成方法は、固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、溶媒を用いて膜表層部の電解質樹脂を膨潤させる工程と、電解質膜の上に所定量の電極触媒粒子を載せる工程と、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込む工程と、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させる工程とを含むことを特徴としている(請求項6)。   The method for forming a catalyst layer for a polymer electrolyte fuel cell according to the present invention includes a membrane electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte membrane used in a polymer electrolyte fuel cell. In the production method, a step of swelling the electrolyte resin of the membrane surface layer portion using a solvent, a step of placing a predetermined amount of electrode catalyst particles on the electrolyte membrane, and press fitting the electrode catalyst particles into the electrolyte membrane portion of the membrane surface layer portion The step of embedding in the electrolyte resin, and the step of extending the electrolyte membrane and partially separating the electrolyte resin on the membrane surface layer and the electrode catalyst particles (claim 6).

本発明によれば、溶媒を用いて膜表層部の電解質樹脂を膨潤させてから、電極触媒粒子を圧入しているので、膜表層部の電解質樹脂を膨潤させずに電極触媒粒子を圧入した場合と比較して、電極触媒粒子を電解質膜に圧入する力を小さくすることができ、省エネルギ化を図ることができる。そして、電極触媒粒子の圧入を容易化し、電極触媒粒子の埋め込みを確実に行わせることができる。   According to the present invention, since the electrode catalyst particles are pressed after the electrolyte resin in the membrane surface layer portion is swelled using a solvent, the electrode catalyst particles are pressed in without swelling the electrolyte resin in the membrane surface layer portion. In comparison with, the force for press-fitting the electrode catalyst particles into the electrolyte membrane can be reduced, and energy saving can be achieved. In addition, the press-fitting of the electrode catalyst particles can be facilitated, and the electrode catalyst particles can be reliably embedded.

そして、膜表層部の電解質樹脂を膨潤させずに電解質膜を延伸した場合と比較して、より小さな延伸倍率で膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させることができ、電解質膜の膜表層部を容易に多孔化することができる。したがって、高延伸倍率による電解質膜の膜内部の多孔化を防止し、膜厚方向に貫通するクロスリークの発生を防ぐことができる。   And, compared with the case where the electrolyte membrane is stretched without swelling the electrolyte resin on the membrane surface layer portion, the electrolyte resin on the membrane surface layer portion and the electrode catalyst particles can be partially separated at a smaller stretch ratio. The membrane surface layer portion of the electrolyte membrane can be easily made porous. Therefore, it is possible to prevent the electrolyte membrane from becoming porous due to a high draw ratio and to prevent the occurrence of cross leaks penetrating in the film thickness direction.

そして、本発明では、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、電解質樹脂、電極触媒粒子、ガスの三相界面を有する電極触媒層を形成することができる。   In the present invention, the electrolyte membrane is stretched to partially separate the electrolyte resin on the membrane surface layer portion and the electrode catalyst particles, so that a gas phase capable of supplying gas is formed in the gap between the separated portions. And an electrode catalyst layer having a three-phase interface of electrolyte resin, electrode catalyst particles, and gas can be formed.

電極触媒層は、電極触媒粒子同士が電子的につながっており、且つ電極触媒粒子が電解質樹脂に接し、さらに、ガスを電極触媒粒子に直に供給可能な広い表面積を有しており、高い発電効率を有する膜電極接合体を得ることができる。また、上記した三相界面を有する電極触媒層を、迅速且つ容易に形成することができ、膜電極接合体の製造コストを低コスト化することができる。   The electrode catalyst layer has a large surface area in which the electrode catalyst particles are electronically connected to each other, the electrode catalyst particles are in contact with the electrolyte resin, and the gas can be directly supplied to the electrode catalyst particles. A membrane electrode assembly having efficiency can be obtained. Moreover, the electrode catalyst layer having the above three-phase interface can be formed quickly and easily, and the manufacturing cost of the membrane electrode assembly can be reduced.

そして、本発明によれば、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込むので、膜表層部にて電極触媒粒子間に介在されている電解質樹脂と、電解質膜の膜表層部以外の部分の電解質樹脂は、元々同じ電解質膜の電解質樹脂であって一体に連続している。従って、膜表層部の電解質樹脂と、膜表層部以外の電解質樹脂との間に物理的な界面が存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。また、電解質膜と電極触媒層との間で水の受け渡しを円滑に行うことができ、電解質膜の水分管理を容易にできる。   According to the present invention, since the electrode catalyst particles are press-fitted into the electrolyte membrane and embedded in the electrolyte resin of the membrane surface layer portion, the electrolyte resin interposed between the electrode catalyst particles in the membrane surface layer portion, and the electrolyte membrane The electrolyte resin in the portion other than the membrane surface layer portion is originally an electrolyte resin of the same electrolyte membrane and is integrally continuous. Therefore, there is no physical interface between the electrolyte resin in the membrane surface layer portion and the electrolyte resin other than the membrane surface layer portion, and no interface resistance is generated. Therefore, high proton conductivity can be obtained. Further, water can be smoothly transferred between the electrolyte membrane and the electrode catalyst layer, and moisture management of the electrolyte membrane can be facilitated.

本発明によれば、電極触媒粒子を電解質膜に圧入して膜表層部の電解質樹脂内に埋め込むので、膜表層部の電解質樹脂と、膜表層部以外の電解質樹脂との間に物理的な界面が存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。   According to the present invention, the electrode catalyst particles are press-fitted into the electrolyte membrane and embedded in the electrolyte resin of the membrane surface layer portion, so that a physical interface is provided between the electrolyte resin of the membrane surface layer portion and the electrolyte resin other than the membrane surface layer portion. Does not exist, and no interfacial resistance occurs. Therefore, high proton conductivity can be obtained.

そして、電解質膜を延伸して膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、電解質樹脂、電極触媒粒子、ガスの三相界面を有する電極触媒層を形成することができる。   And, since the electrolyte membrane is stretched to partially peel between the electrolyte resin and the electrode catalyst particles in the membrane surface layer portion, a gas phase capable of supplying gas can be formed in the gap between the peeled portions, An electrode catalyst layer having a three-phase interface of electrolyte resin, electrode catalyst particles, and gas can be formed.

従って、電極触媒粒子同士が電子的につながっており、且つ電極触媒粒子が電解質樹脂に接し、さらに、ガスを電極触媒粒子に直に供給可能な広い表面積を有する電極触媒層を得ることができ、高い発電効率の膜電極接合体を得ることができる。また、電極触媒層を、埋め込みと延伸という2工程のみで迅速且つ容易に形成することができ、低コスト化を図ることができる。   Therefore, the electrode catalyst particles are electronically connected to each other, the electrode catalyst particles are in contact with the electrolyte resin, and an electrode catalyst layer having a large surface area capable of directly supplying gas to the electrode catalyst particles can be obtained. A membrane electrode assembly with high power generation efficiency can be obtained. In addition, the electrode catalyst layer can be formed quickly and easily by only two steps of embedding and stretching, and the cost can be reduced.

また、本発明によれば、溶媒を用いて膜表層部の電解質樹脂を膨潤させてから、電解質膜を延伸しているので、膜表層部の電解質樹脂を膨潤させずに電解質膜を延伸した場合と比較して、より小さな延伸倍率で膜表層部の電解質樹脂と電極触媒粒子との間を一部剥離させることができ、電解質膜の膜表層部を容易に多孔化することができる。したがって、高延伸倍率による電解質膜の膜内部の多孔化を防止し、膜厚方向に貫通するクロスリークの発生を防ぐことができる。   Also, according to the present invention, the electrolyte membrane is stretched after the electrolyte resin in the membrane surface layer portion is swelled using a solvent, and therefore the electrolyte membrane is stretched without swelling the electrolyte resin in the membrane surface layer portion. As compared with the above, the electrolyte resin and the electrode catalyst particles in the membrane surface layer portion can be partially separated at a smaller stretch ratio, and the membrane surface layer portion of the electrolyte membrane can be easily made porous. Therefore, it is possible to prevent the electrolyte membrane from becoming porous due to a high draw ratio and to prevent the occurrence of cross leaks penetrating in the film thickness direction.

第1実施の形態における膜電極接合体の製造方法を模式的に示す図。The figure which shows typically the manufacturing method of the membrane electrode assembly in 1st Embodiment. 第2実施の形態に係わる膜電極接合体の製造装置の構成を説明する図。The figure explaining the structure of the manufacturing apparatus of the membrane electrode assembly concerning 2nd Embodiment. 第3実施の形態に係わる膜電極接合体の製造装置の構成を説明する図。The figure explaining the structure of the manufacturing apparatus of the membrane electrode assembly concerning 3rd Embodiment. 本発明の製造方法により製造した膜電極接合体の電極触媒層の表面を撮影した写真。The photograph which image | photographed the surface of the electrode catalyst layer of the membrane electrode assembly manufactured by the manufacturing method of this invention. 第4実施の形態に係わる膜電極接合体の製造方法を模式的に示す図。The figure which shows typically the manufacturing method of the membrane electrode assembly concerning 4th Embodiment. 第5実施の形態に係わる膜電極接合体の製造装置の構成を説明する図。The figure explaining the structure of the manufacturing apparatus of the membrane electrode assembly concerning 5th Embodiment.

以下、図面を参照しながら、本発明を実施の形態に基づき説明する。
[第1実施の形態]
図1は、第1実施の形態における膜電極接合体の製造方法を模式的に示す図である。
電解質膜1は、固体高分子形燃料電池に用いられる高分子膜であれば特に限定されるものではない。具体的には、プロトン交換基として、スルホン酸基、カルボン酸基、リン酸基などを有するものが例示され、この中で、スルホン酸基が燃料電池性能を発現する上で好ましく用いられる。例えば、フルオロアルキルエーテル側鎖とパーフルオロアルキル主鎖を有するフルオロアルキル共重合体のパーフルオロ系プロトン交換樹脂が好ましく用いられ、デューポン社製ナフィオン(商標名)、旭化成製アシプレックス(商標名)、旭硝子製フレミオン(商標名)、ジャパンゴアテックス社製ゴア−セレクト(商標名)等が例示される。
Hereinafter, the present invention will be described based on embodiments with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram schematically showing a method for manufacturing a membrane electrode assembly in the first embodiment.
The electrolyte membrane 1 is not particularly limited as long as it is a polymer membrane used in a polymer electrolyte fuel cell. Specific examples of the proton exchange group include those having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and the like. Among these, a sulfonic acid group is preferably used in order to express fuel cell performance. For example, a perfluoro proton exchange resin of a fluoroalkyl copolymer having a fluoroalkyl ether side chain and a perfluoroalkyl main chain is preferably used, and Nafion (trade name) manufactured by DuPont, Aciplex (trade name) manufactured by Asahi Kasei. Examples include Asahi Glass Flemion (trade name), Japan Gore-Tex Gore-Select (trade name), and the like.

電極触媒粒子5は、触媒成分と該触媒成分を担持する導電性担体とからなり、従来の膜電極接合体で電極触媒層に用いられている電極触媒粒子をそのまま用いることができる。触媒成分は、公知のものを広く用いることができ、例えば、触媒反応における活性化過電圧が小さいことから、白金、金、パラジウム、ルテニウム、イリジウムなどの貴金属触媒が好ましい。また、これらの貴金属触媒の合金、混合物など、2種以上の元素が含まれていても構わない。導電性担体は、公知のものを広く用いることができ、例えば、オイルファーネスブラック、チャンネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが、電子伝導性と比表面積の大きさから好ましいものである。   The electrode catalyst particles 5 are composed of a catalyst component and a conductive carrier supporting the catalyst component, and the electrode catalyst particles used for the electrode catalyst layer in the conventional membrane electrode assembly can be used as they are. Known catalyst components can be widely used. For example, noble metal catalysts such as platinum, gold, palladium, ruthenium, and iridium are preferred because the activation overvoltage in the catalytic reaction is small. Two or more elements such as alloys and mixtures of these noble metal catalysts may be contained. As the conductive carrier, known ones can be widely used. For example, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black is preferable from the viewpoint of electron conductivity and specific surface area. It is.

本実施の形態では、膜電極接合体の製造方法として、図1に示すように、電解質膜1の上に所定量の電極触媒粒子5を載せる第1の工程と(同図(a)を参照)、電解質膜1の上に載せられた電極触媒粒子5を電解質膜1に圧入して、膜表層部2の電解質樹脂内に埋め込む第2の工程と(同図(b)を参照)、電解質膜1を延伸して膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させる第3の工程と(同図(c)を参照)を含む。   In the present embodiment, as a method for producing a membrane electrode assembly, as shown in FIG. 1, a first step of placing a predetermined amount of electrode catalyst particles 5 on an electrolyte membrane 1 (see FIG. 1A) ), A second step in which the electrode catalyst particles 5 placed on the electrolyte membrane 1 are press-fitted into the electrolyte membrane 1 and embedded in the electrolyte resin of the membrane surface layer portion 2 (see FIG. 5B), the electrolyte A third step (see FIG. 3C) is included which extends the membrane 1 and partially peels between the electrolyte resin of the membrane surface layer portion 2 and the electrode catalyst particles 5.

第1の工程では、図1(a)に示すように、電解質膜1の上に、予め設定された量の電極触媒粒子5が載せられる。電極触媒粒子5は、第2の工程で電極触媒粒子5を電解質膜1に圧入した際に、所定範囲に亘って均一な厚さで膜表層部2に埋没されるように電解質膜1の上に載せられる。   In the first step, as shown in FIG. 1A, a predetermined amount of electrode catalyst particles 5 is placed on the electrolyte membrane 1. When the electrode catalyst particles 5 are pressed into the electrolyte membrane 1 in the second step, the electrode catalyst particles 5 are placed on the electrolyte membrane 1 so as to be buried in the membrane surface layer 2 with a uniform thickness over a predetermined range. It is put on.

第2の工程では、図1(b)に示すように、例えば膜加圧機の加圧プレートP1、P2の間に介在させて加圧し、電極触媒粒子5を電解質膜1に圧入する。これにより、電解質膜1の膜表層部2に電極触媒粒子5が埋め込まれる。電極触媒粒子5は、膜表層部2に埋め込まれることによって、電極触媒粒子5同士の電子伝導性が確保され且つその周りが膜表層部2の電解質樹脂で覆われて電解質樹脂と密接した状態とされる。   In the second step, as shown in FIG. 1B, for example, the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1 by being interposed between the pressure plates P1 and P2 of the membrane pressurizer. Thereby, the electrode catalyst particles 5 are embedded in the membrane surface layer portion 2 of the electrolyte membrane 1. The electrode catalyst particles 5 are embedded in the membrane surface layer portion 2 so that the electron conductivity between the electrode catalyst particles 5 is ensured and the periphery thereof is covered with the electrolyte resin of the membrane surface layer portion 2 and is in close contact with the electrolyte resin. Is done.

第3の工程では、図1(c)に示すように、例えば膜延伸機(図示せず)により、積層体4を延伸し、図1(c)のI部拡大図である図1(d)に示すように、膜表層部2の電解質樹脂と電極触媒粒子5との密接部分を一部剥離させる。これにより、かかる剥離部分の隙間にガスを供給可能な気相を形成し、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成する。   In the third step, as shown in FIG. 1 (c), the laminate 4 is stretched by, for example, a film stretching machine (not shown), and FIG. As shown in FIG. 2, a part of the intimate contact between the electrolyte resin of the membrane surface layer portion 2 and the electrode catalyst particles 5 is partially peeled off. As a result, a gas phase capable of supplying gas is formed in the gap between the peeled portions, and the electrode resin layer 4 having the three-phase interface of the electrolyte resin, the electrode catalyst particles 5 and the gas of the membrane surface layer portion 2 is formed.

なお、電解質膜1を延伸する方向は、特に限定されるものではなく、電解質膜1に沿って一方向に延伸する1軸方向でも良く、また、電解質膜1に沿う方向で且つ互いに直交する二方向に延伸する2軸方向でもよい。   The direction in which the electrolyte membrane 1 is stretched is not particularly limited, and may be a uniaxial direction that stretches in one direction along the electrolyte membrane 1, or two directions that are perpendicular to each other in the direction along the electrolyte membrane 1. It may be a biaxial direction extending in the direction.

上記した製造方法によって製造された膜電極接合体は、膜表層部2にて各電極触媒粒子5の間に介在されている電解質樹脂と、電解質膜1の膜表層部2以外の部分(電極触媒粒子5が埋め込まれていない部分)である膜単層部3の電解質樹脂とが元々同じ電解質膜1の電解質樹脂であって互いに一体に連続している。従って、膜表層部2の電解質樹脂と、膜単層部3の電解質樹脂との間に物理的な界面は存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。また、上述のように膜表層部2の電解質樹脂と膜単層部3の電解質樹脂とが一体に連続しているので、膜表層部2の電解質樹脂と膜単層部3の電解質樹脂との間で水の受け渡しを円滑に行うことができ、電解質膜1の水分管理を容易にできる。   The membrane electrode assembly manufactured by the above-described manufacturing method includes an electrolyte resin interposed between the electrode catalyst particles 5 in the membrane surface layer portion 2 and a portion other than the membrane surface layer portion 2 of the electrolyte membrane 1 (electrode catalyst). The electrolyte resin of the membrane single-layer portion 3 that is the portion in which the particles 5 are not embedded is originally the electrolyte resin of the same electrolyte membrane 1 and is integrally continuous with each other. Therefore, there is no physical interface between the electrolyte resin of the membrane surface layer portion 2 and the electrolyte resin of the membrane single layer portion 3, and no interface resistance is generated. Therefore, high proton conductivity can be obtained. In addition, since the electrolyte resin of the membrane surface layer portion 2 and the electrolyte resin of the membrane single layer portion 3 are integrally continuous as described above, the electrolyte resin of the membrane surface layer portion 2 and the electrolyte resin of the membrane single layer portion 3 Water can be smoothly transferred between the two, and moisture management of the electrolyte membrane 1 can be facilitated.

そして、電解質膜1を延伸して膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成することができる。   And, since the electrolyte membrane 1 is stretched and the electrolyte resin in the membrane surface layer portion 2 and the electrode catalyst particles 5 are partially separated, a gas phase capable of supplying gas is formed in the gap between the separated portions. The electrode catalyst layer 4 having a three-phase interface of the electrolyte resin of the membrane surface layer portion 2, the electrode catalyst particles 5, and the gas can be formed.

従って、電極触媒粒子5同士が電子的につながっており、且つ電極触媒粒子5が膜表層部2の電解質樹脂に接し、さらに、ガスを電極触媒粒子5に直に供給可能な広い表面積を有する電極触媒層4を得ることができ、高い発電効率の膜電極接合体を得ることができる。また、上記した三相界面を有する電極触媒層4を、埋め込みと延伸という2工程のみで迅速且つ容易に形成することができ、低コスト化を図ることができる。   Accordingly, the electrode catalyst particles 5 are electronically connected to each other, the electrode catalyst particles 5 are in contact with the electrolyte resin of the membrane surface layer portion 2, and the electrode has a large surface area that can supply gas directly to the electrode catalyst particles 5. The catalyst layer 4 can be obtained, and a membrane electrode assembly with high power generation efficiency can be obtained. Moreover, the electrode catalyst layer 4 having the above three-phase interface can be formed quickly and easily by only two steps of embedding and stretching, and the cost can be reduced.

また、第2の工程において、電解質膜1を加熱した状態で電極触媒粒子5を圧入してもよい。これによれば、電解質膜1を加熱して膜表層部2の電解質樹脂の流動性を促進させた状態とすることができ、電極触媒粒子5を電解質膜1に圧入する力をより小さくすることができる。従って、電極触媒粒子5を膜表層部2の電解質樹脂内に簡単且つ確実に埋め込むことができる。   In the second step, the electrode catalyst particles 5 may be press-fitted while the electrolyte membrane 1 is heated. According to this, the electrolyte membrane 1 can be heated to promote the fluidity of the electrolyte resin in the membrane surface layer portion 2, and the force for press-fitting the electrode catalyst particles 5 into the electrolyte membrane 1 can be further reduced. Can do. Accordingly, the electrode catalyst particles 5 can be easily and reliably embedded in the electrolyte resin of the membrane surface layer portion 2.

電解質膜1は、膜単層部3が電解質樹脂のみで作られたものでもよく、また、電解質樹脂溶液を多孔性補強膜に含浸させて形成した電解質含浸膜でもよい。電解質含浸膜の場合は、電極触媒粒子5を電解質膜1に圧入した際に電極触媒粒子5が電解質膜1を貫通するのを多孔性補強膜で防ぐことができる。従って、例えば電解質膜1の両面に電極触媒層4が形成されている場合に、両方の電極触媒層4が電極触媒粒子5によって電子的に接続されるのを防止できる。   The electrolyte membrane 1 may be one in which the membrane single layer portion 3 is made of only an electrolyte resin, or may be an electrolyte impregnated membrane formed by impregnating a porous reinforcing membrane with an electrolyte resin solution. In the case of an electrolyte-impregnated membrane, the porous reinforcing membrane can prevent the electrode catalyst particles 5 from penetrating the electrolyte membrane 1 when the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1. Therefore, for example, when the electrode catalyst layers 4 are formed on both surfaces of the electrolyte membrane 1, both electrode catalyst layers 4 can be prevented from being electronically connected by the electrode catalyst particles 5.

[第2実施の形態]
次に、本発明の第2実施の形態について図2を用いて説明する。なお、第1実施の形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2は、本実施の形態に係わる膜電極接合体製造装置10の構成を説明する図である。膜電極接合体製造装置10は、電解質膜1の両面にアノード側とカソード側の電極触媒層4を同時に形成する構成を有する。   FIG. 2 is a diagram illustrating the configuration of the membrane electrode assembly manufacturing apparatus 10 according to the present embodiment. The membrane electrode assembly manufacturing apparatus 10 has a configuration in which the anode-side and cathode-side electrode catalyst layers 4 are simultaneously formed on both surfaces of the electrolyte membrane 1.

電解質膜1は、例えばPTFE多孔性膜等の多孔性補強膜に電解質樹脂溶液を含浸させて形成された電解質含浸膜であり、電解質樹脂には、加熱溶融しても分解しない熱的安定性を備える電解質ポリマーの前駆体高分子からなるフッ素系電解質樹脂で且つ末端SO2F型が用いられている。   The electrolyte membrane 1 is an electrolyte-impregnated membrane formed by impregnating a porous reinforcing membrane such as a PTFE porous membrane with an electrolyte resin solution. The electrolyte resin has thermal stability that does not decompose even when heated and melted. A fluorine-based electrolyte resin made of a precursor polymer of an electrolyte polymer provided and a terminal SO2F type is used.

製造装置10は、全体構成図である図2(a)に示すように、所定の室内空間を有するブース11と、ブース11内を通過する電解質膜1に対して、電解質膜1の表面に電極触媒粒子5を転着する転着部12と、電極触媒粒子5を電解質膜1内に圧入する圧入部13と、電解質膜1を延伸する延伸部14とを有する。   As shown in FIG. 2A, the manufacturing apparatus 10 has electrodes on the surface of the electrolyte membrane 1 with respect to the booth 11 having a predetermined indoor space and the electrolyte membrane 1 passing through the booth 11. A transfer portion 12 for transferring the catalyst particles 5, a press-fit portion 13 for press-fitting the electrode catalyst particles 5 into the electrolyte membrane 1, and an extending portion 14 for extending the electrolyte membrane 1 are provided.

ブース11には、電解質膜1が導入される導入口11aと、導出される導出口11bが形成されている。そして、ブース11の内部は、触媒引火を防ぐために低活性ガス雰囲気に維持されている。   The booth 11 is formed with an inlet 11a through which the electrolyte membrane 1 is introduced and an outlet 11b through which the electrolyte membrane 1 is led out. The inside of the booth 11 is maintained in a low active gas atmosphere in order to prevent catalyst ignition.

転着部12には、電解質膜1の表面に所定量の電極触媒粒子5を層状に載せて転着させる一対の帯電ドラム21が設けられている。これら一対の帯電ドラム21は、電解質膜1を間に介在して対向する位置に配置されている。一方の帯電ドラム21Aはアノード用であり、他方の帯電ドラム21Bはカソード用であり、電解質膜1を両側から挟み込み、互いに同期して電解質膜1の移動に応じて回転し、電解質膜1の表面に接面する構成を有する。   The transfer portion 12 is provided with a pair of charging drums 21 on which a predetermined amount of the electrode catalyst particles 5 is placed on the surface of the electrolyte membrane 1 and transferred. The pair of charging drums 21 are disposed at positions facing each other with the electrolyte membrane 1 interposed therebetween. One charging drum 21A is for the anode, and the other charging drum 21B is for the cathode. The electrolyte membrane 1 is sandwiched from both sides, and rotates according to the movement of the electrolyte membrane 1 in synchronization with each other. It has the structure which touches.

帯電ドラム21の外周面には、図2(b)に示すように、導電部21aと帯電部21bとが周方向に交互に並ぶように形成されており、帯電ローラ22(図2(a)を参照)によって帯電部21bを帯電させることができる。帯電ドラム21は、図2(a)に示すように、貯留タンク23内の電極触媒粒子5を供給する供給ローラ24から帯電部21bに、所定量の電極触媒粒子5を受け取り、帯電部21bが電解質膜1の表面と接面した際に電解質膜1の表面に層状に載せて転着させる。   As shown in FIG. 2B, conductive portions 21a and charging portions 21b are formed on the outer peripheral surface of the charging drum 21 so as to be alternately arranged in the circumferential direction, and the charging roller 22 (FIG. 2A). The charging unit 21b can be charged. As shown in FIG. 2A, the charging drum 21 receives a predetermined amount of the electrode catalyst particles 5 from the supply roller 24 for supplying the electrode catalyst particles 5 in the storage tank 23 to the charging unit 21b, and the charging unit 21b When contacting the surface of the electrolyte membrane 1, it is placed on the surface of the electrolyte membrane 1 in layers and transferred.

圧入部13は、電極触媒粒子5を電解質膜1に圧入して膜表層部2(図1(b)を参照)の電解質樹脂内に埋め込む。圧入部13には、電解質膜1を加熱する第1ヒータ31と、電解質膜1内に電極触媒粒子5を圧入する一対の圧入ローラ32が設けられている。第1ヒータ31は、電解質膜1を200〜300℃に加熱して、電解質膜1の表面を溶融して電解質の流動性を促進させた状態とし、電極触媒粒子5の圧入を容易化し、電極触媒粒子5の埋め込みを確実に行わせるものとする。   The press-fitting portion 13 press-fits the electrode catalyst particles 5 into the electrolyte membrane 1 and embeds it in the electrolyte resin of the membrane surface layer portion 2 (see FIG. 1B). The press-fitting portion 13 is provided with a first heater 31 that heats the electrolyte membrane 1 and a pair of press-fitting rollers 32 that press-fit the electrode catalyst particles 5 into the electrolyte membrane 1. The first heater 31 heats the electrolyte membrane 1 to 200 to 300 ° C., melts the surface of the electrolyte membrane 1 to promote the fluidity of the electrolyte, facilitates the press-fitting of the electrode catalyst particles 5, It is assumed that the catalyst particles 5 are reliably embedded.

一対の圧入ローラ32は、電解質膜1を間に介して対向する位置に配置されており、電解質膜1を両側から挟み込み、互いに同期して電解質膜1の移動に応じて回転し、電極触媒粒子5を電解質膜1内に圧入する。従って、電解質膜1の両面にアノード側とカソード側の電極触媒層4が同時に形成される。   The pair of press-fitting rollers 32 are arranged at positions facing each other with the electrolyte membrane 1 interposed therebetween, sandwich the electrolyte membrane 1 from both sides, rotate in synchronization with each other, and move according to the movement of the electrolyte membrane 1, and electrode catalyst particles 5 is pressed into the electrolyte membrane 1. Accordingly, the anode-side and cathode-side electrode catalyst layers 4 are simultaneously formed on both surfaces of the electrolyte membrane 1.

なお、本実施の形態では、第1ヒータ31と圧入ローラ32とを別個に設けた構成の場合を例に説明したが、圧入ローラ32が第1ヒータ31を内蔵する構成としてもよい。かかる構成によれば、電解質膜1を効果的に加熱でき、同時に電極触媒粒子5を電解質膜1に圧入することができる。従って、圧入部13の部品点数を少なくすることができ、装置の簡素化、及び低コスト化を図ることができる。   In this embodiment, the case where the first heater 31 and the press-fitting roller 32 are separately provided has been described as an example. However, the press-fitting roller 32 may be configured to incorporate the first heater 31. According to such a configuration, the electrolyte membrane 1 can be effectively heated, and at the same time, the electrode catalyst particles 5 can be press-fitted into the electrolyte membrane 1. Therefore, the number of parts of the press-fitting portion 13 can be reduced, and the apparatus can be simplified and the cost can be reduced.

延伸部14は、電解質膜1を延伸して膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させる。延伸部14には、電解質膜1を加熱する第2ヒータ41と、電解質膜1をその移動方向に延伸するMD延伸装置42が設けられている。第2ヒータ41は、電解質膜1を100〜200℃に加熱して軟化させ、延伸が容易な状態とする。   The extending portion 14 extends the electrolyte membrane 1 and partially separates the electrolyte resin of the membrane surface layer portion 2 from the electrode catalyst particles 5. The stretching unit 14 is provided with a second heater 41 that heats the electrolyte membrane 1 and an MD stretching device 42 that stretches the electrolyte membrane 1 in its moving direction. The 2nd heater 41 heats the electrolyte membrane 1 to 100-200 degreeC, and makes it the state which is easy to extend | stretch.

MD延伸装置42は、電解質膜1の移動方向上流側と下流側に離間して配置された延伸ローラ43、44を有する。延伸ローラ43、44は、それぞれ電解質膜1を間に介して対向する位置に対をなして設けられており、電解質膜1を両側から挟み込み、下流側に向かって移動させるように回転駆動される。   The MD stretching device 42 includes stretching rollers 43 and 44 that are spaced apart on the upstream side and the downstream side in the movement direction of the electrolyte membrane 1. The stretching rollers 43 and 44 are provided in pairs at positions facing each other with the electrolyte membrane 1 interposed therebetween, and are driven to rotate so as to sandwich the electrolyte membrane 1 from both sides and move toward the downstream side. .

そして、上流側の延伸ローラ43よりも下流側の延伸ローラ44の回転数が高く設定され、上流側の延伸ローラ43と下流側の延伸ローラ44との回転差によって、電解質膜1を延伸し、膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させるようになっている。なお、延伸部14に、電解質膜1を移動方向に直交する方向である幅方向に延伸するTD延伸装置(図示せず)を追加してもよい。   Then, the rotational speed of the downstream stretching roller 44 is set higher than the upstream stretching roller 43, and the electrolyte membrane 1 is stretched by the rotational difference between the upstream stretching roller 43 and the downstream stretching roller 44, A part of the electrolyte resin of the membrane surface layer portion 2 and the electrode catalyst particles 5 are peeled off. Note that a TD stretching device (not shown) for stretching the electrolyte membrane 1 in the width direction, which is a direction orthogonal to the moving direction, may be added to the stretching portion 14.

次に、上記製造装置10を用いた膜電極接合体の製造方法について以下に説明する。
まず、電解質膜1を導入口11aからブース11内に導入し、転着部12で一対の帯電ドラム21の間に通過させて、帯電ドラム21によって所定量の電極触媒粒子5を電解質膜1のアノード側の表面とカソード側の表面に載せて転着させる(第1の工程)。これにより、層状の電極触媒粒子5が、電解質膜1の移動方向に所定の間隔を空けて、アノード側とカソード側の表面で且つ互いに対向する位置に転着される。
Next, the manufacturing method of the membrane electrode assembly using the said manufacturing apparatus 10 is demonstrated below.
First, the electrolyte membrane 1 is introduced into the booth 11 from the introduction port 11 a and is passed between the pair of charging drums 21 by the transfer portion 12, and a predetermined amount of the electrode catalyst particles 5 is transferred to the electrolyte membrane 1 by the charging drum 21. It is placed on the surface on the anode side and the surface on the cathode side and is transferred (first step). As a result, the layered electrode catalyst particles 5 are transferred to positions on the anode side and cathode side surfaces facing each other with a predetermined interval in the moving direction of the electrolyte membrane 1.

そして、圧入部13で圧入ローラ32によって電極触媒粒子5を電解質膜1に圧入して膜表層部2の電解質樹脂内に埋め込む(第2の工程)。これにより、電極触媒粒子5は、膜表層部2に所定範囲に亘って均一な厚さで埋没されて、電極触媒粒子5同士の電子伝導性が確保され且つその周りが膜表層部2の電解質樹脂で覆われて電解質樹脂と密接した状態とされる。   Then, the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1 by the press-fitting roller 32 at the press-fitting portion 13 and embedded in the electrolyte resin of the membrane surface layer portion 2 (second step). As a result, the electrode catalyst particles 5 are buried in the membrane surface layer portion 2 with a uniform thickness over a predetermined range, the electron conductivity between the electrode catalyst particles 5 is ensured, and the periphery of the electrode catalyst particles 5 is the electrolyte of the membrane surface layer portion 2. It is covered with resin and brought into close contact with the electrolyte resin.

それから、延伸部14でMD延伸装置42により積層体を延伸して、膜表層部2の電解質樹脂と電極触媒粒子5との密接部分を一部剥離させる(第3の工程)。これにより、かかる剥離部分の隙間にガスを供給可能な気相を形成し、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成する。この電極触媒層4は、電極触媒粒子5同士が電子的につながっており、且つ電極触媒粒子5が膜表層部2の電解質樹脂に接し、さらに、剥離部分の隙間からガスを電極触媒粒子5に直に供給可能な広い表面積を有している。   Then, the laminate is stretched by the MD stretching device 42 in the stretching portion 14 to partially peel the intimate portion between the electrolyte resin and the electrode catalyst particles 5 in the membrane surface layer portion 2 (third step). As a result, a gas phase capable of supplying gas is formed in the gap between the peeled portions, and the electrode resin layer 4 having the three-phase interface of the electrolyte resin, the electrode catalyst particles 5 and the gas of the membrane surface layer portion 2 is formed. In this electrode catalyst layer 4, the electrode catalyst particles 5 are electronically connected to each other, the electrode catalyst particles 5 are in contact with the electrolyte resin of the membrane surface layer portion 2, and further gas is passed to the electrode catalyst particles 5 from the gaps in the peeled portion. It has a large surface area that can be supplied directly.

電解質膜1は、延伸部14で延伸されると、ブース11の導出口11bから外部に導出されて、巻き取り工程もしくは加水分解工程に送られる。加水分解工程では、従来知られた手法により、電解質ポリマーにイオン交換性を付与する加水分解処理が行われる。   When the electrolyte membrane 1 is stretched by the stretching portion 14, the electrolyte membrane 1 is led out from the outlet 11 b of the booth 11 and sent to the winding process or the hydrolysis process. In the hydrolysis step, a hydrolysis treatment that imparts ion exchange properties to the electrolyte polymer is performed by a conventionally known technique.

上記製造装置10を用いた膜電極接合体の製造方法によれば、上記した三相界面を有する電極触媒層4を、埋め込みと延伸という2工程のみで迅速且つ容易に形成することができ、低コスト化を図ることができる。また、圧入部13で電極触媒粒子5を電解質膜1に圧入する際に、電解質膜1を第1ヒータ31によって加熱して表面を溶融させ、電解質樹脂の流動性を促進させた状態としているので、電極触媒粒子5を圧入する力を小さくすることができる。従って、電極触媒粒子5を膜表層部2の電解質樹脂内に簡単且つ確実に埋め込むことができる。   According to the method of manufacturing a membrane electrode assembly using the manufacturing apparatus 10, the electrode catalyst layer 4 having the three-phase interface can be formed quickly and easily by only two steps of embedding and stretching. Cost can be reduced. Further, when the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1 by the press-fitting portion 13, the electrolyte membrane 1 is heated by the first heater 31 to melt the surface, thereby promoting the fluidity of the electrolyte resin. The force for press-fitting the electrode catalyst particles 5 can be reduced. Accordingly, the electrode catalyst particles 5 can be easily and reliably embedded in the electrolyte resin of the membrane surface layer portion 2.

それから、延伸部14でMD延伸装置42により積層体を延伸する際に、電解質膜1を第2ヒータ41によって加熱して軟化させ、延伸が容易な状態としているので、より小さな力で電解質膜1を延伸することができ、膜表層部2の電解質と電極触媒粒子5との間の一部剥離をより簡単に行うことができる。   Then, when the laminated body is stretched by the MD stretching device 42 in the stretching section 14, the electrolyte membrane 1 is heated and softened by the second heater 41 so as to be easily stretched. Thus, partial peeling between the electrolyte of the membrane surface layer portion 2 and the electrode catalyst particles 5 can be more easily performed.

[第3実施の形態]
次に、本発明の第3実施の形態について図3を用いて説明する。なお、上記した各実施の形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the above-described embodiments are given the same reference numerals, and detailed description thereof is omitted.

図3は、本実施の形態に係わる膜電極接合体の製造装置50の構成を説明する図である。本実施の形態において特徴的なことは、電解質樹脂シート7を加熱溶融して多孔性補強膜6に含浸させて補強型の電解質膜である電解質膜1を形成すると同時に、電解質膜1の膜表層部2に電極触媒粒子5を圧入し、その後に延伸する構成としたことである。   FIG. 3 is a view for explaining the configuration of the membrane electrode assembly manufacturing apparatus 50 according to the present embodiment. What is characteristic in the present embodiment is that the electrolyte resin sheet 7 is heated and melted to impregnate the porous reinforcing membrane 6 to form the electrolyte membrane 1 that is a reinforced electrolyte membrane, and at the same time, the membrane surface layer of the electrolyte membrane 1 That is, the electrode catalyst particles 5 are press-fitted into the portion 2 and then stretched.

本実施の形態では、多孔性補強膜6は、PTFE多孔性膜が用いられ、電解質樹脂シート7は、加熱溶融しても分解しない熱的安定性を備える電解質ポリマーの前駆体高分子からなるフッ素系電解質樹脂で且つ末端SO2F型が用いられている。   In this embodiment, the porous reinforcing membrane 6 is a PTFE porous membrane, and the electrolyte resin sheet 7 is a fluorine-based polymer composed of a precursor polymer of an electrolyte polymer having thermal stability that does not decompose even when heated and melted. An electrolyte resin and a terminal SO2F type are used.

製造装置50は、図3に示すように、膜基体形成部15と、ブース11と、含浸圧入部16と、延伸部14を有する。膜基体形成部15は、多孔性補強膜6の両面に電解質樹脂シート7を貼り合わせて膜基体8を形成する。   As shown in FIG. 3, the manufacturing apparatus 50 includes a membrane substrate forming part 15, a booth 11, an impregnation press-fitting part 16, and an extending part 14. The membrane substrate forming unit 15 forms the membrane substrate 8 by attaching the electrolyte resin sheet 7 to both surfaces of the porous reinforcing membrane 6.

膜基体形成部15には、アノード側とカソード側のTダイ52からそれぞれ押し出されて形成された2枚の電解質樹脂シート7を各々冷却して案内する冷却案内ローラ53と、冷却案内ローラ53によって冷却案内された2枚の電解質樹脂シート7を、多孔性補強膜6の両面に貼り合わせる一対の貼り合わせローラ54とが設けられている。   The membrane substrate forming unit 15 is provided with a cooling guide roller 53 for cooling and guiding the two electrolyte resin sheets 7 formed by being respectively extruded from the T-die 52 on the anode side and the cathode side, and a cooling guide roller 53. A pair of laminating rollers 54 for laminating the two electrolyte resin sheets 7 guided by cooling to both surfaces of the porous reinforcing film 6 are provided.

一対の貼り合わせローラ54は、多孔性補強膜6を間に介在して互いに対向する位置に配置されている。そして、冷却案内ローラ53によって案内された2枚の電解質樹脂シート7のうち、一方の電解質樹脂シート7を多孔性補強膜6のアノード側の表面に載せるとともに、他方の電解質樹脂シート7を多孔性補強膜6のカソード側の表面に載せて、一体に挟み込み、多孔性補強膜6の両面に電解質樹脂シート7を貼り合わせた膜基体8を形成する。膜基体8は、導入口11aからブース11内に導入される。   The pair of laminating rollers 54 are disposed at positions facing each other with the porous reinforcing film 6 interposed therebetween. Of the two electrolyte resin sheets 7 guided by the cooling guide roller 53, one electrolyte resin sheet 7 is placed on the anode-side surface of the porous reinforcing film 6 and the other electrolyte resin sheet 7 is made porous. A membrane substrate 8 is formed by placing the reinforcing membrane 6 on the cathode side surface and sandwiching them together to attach the electrolyte resin sheet 7 to both surfaces of the porous reinforcing membrane 6. The film substrate 8 is introduced into the booth 11 from the introduction port 11a.

含浸圧入部16は、ブース11内に設けられており、膜基体8を加熱して膜基体8の電解質樹脂シート7を溶融し、電解質樹脂シート7の電解質樹脂溶液を多孔性補強膜6に含浸させて電解質膜1を形成するとともに、電解質膜1の膜表層部2に電極触媒粒子5を圧入する構成を有する。   The impregnation press-fit portion 16 is provided in the booth 11 and heats the membrane substrate 8 to melt the electrolyte resin sheet 7 of the membrane substrate 8 and impregnates the porous reinforcing membrane 6 with the electrolyte resin solution of the electrolyte resin sheet 7. Thus, the electrolyte membrane 1 is formed, and the electrode catalyst particles 5 are pressed into the membrane surface layer portion 2 of the electrolyte membrane 1.

含浸圧入部16には、膜基体8を両側から挟み込み、下流側に搬送する一対のベルト搬送装置61と、電極触媒粒子5を貯留する貯留タンク65とが設けられている。ベルト搬送装置61は、膜基体8を下流側に搬送する間に含浸と圧入を行うものであり、膜基体8を間に介在して対向する位置に対をなして設けられた複数個のローラ62a〜62dと、これら複数のローラ62a〜62dの間に掛け渡された一対の帯電ベルト63とを有する。   The impregnation press-fit portion 16 is provided with a pair of belt transport devices 61 that sandwich the membrane substrate 8 from both sides and transport it downstream, and a storage tank 65 that stores the electrode catalyst particles 5. The belt conveying device 61 performs impregnation and press-fitting while conveying the membrane substrate 8 to the downstream side, and a plurality of rollers provided in pairs at opposing positions with the membrane substrate 8 interposed therebetween. 62a to 62d and a pair of charging belts 63 stretched between the plurality of rollers 62a to 62d.

これら複数個のローラ62a〜62dのうち、膜基体8の移動方向上流側と下流側に離間した位置に配置されたローラ62a、62bには、電熱ヒータ(図示せず)が内蔵されており、一対の帯電ベルト63の間に挟み込んだ膜基体を200〜300℃に加熱することができる。そして、ローラ62cには、図示していない回転モータ等の駆動手段が連結されており、駆動手段によって回転駆動されて帯電ベルト63を図示の矢印方向に転動させる。   Among the plurality of rollers 62a to 62d, rollers 62a and 62b arranged at positions separated on the upstream side and the downstream side in the movement direction of the film substrate 8 incorporate an electric heater (not shown). The film substrate sandwiched between the pair of charging belts 63 can be heated to 200 to 300 ° C. The roller 62c is connected to driving means such as a rotary motor (not shown), and is rotated by the driving means to roll the charging belt 63 in the direction of the arrow shown.

一対の帯電ベルト63は、膜基体8を間に挟み込んで下流側に搬送する。帯電ベルト63には、導電部と帯電部とが周方向に交互に形成されており、帯電ローラ64によって帯電部を帯電させることができる。そして、貯留タンク65内の電極触媒粒子5を供給する供給ローラ66から帯電部に、所定量の電極触媒粒子5を受け取り、帯電部から電解質樹脂シート7の表面に層状に載せることができる。   The pair of charging belts 63 is conveyed downstream with the membrane substrate 8 interposed therebetween. In the charging belt 63, conductive portions and charging portions are alternately formed in the circumferential direction, and the charging portion can be charged by the charging roller 64. Then, a predetermined amount of the electrode catalyst particles 5 can be received from the supply roller 66 that supplies the electrode catalyst particles 5 in the storage tank 65 to the charging unit, and can be placed in layers on the surface of the electrolyte resin sheet 7 from the charging unit.

帯電ベルト63は、ローラ62a、62bの熱を伝達して膜基体8の電解質樹脂シート7を加熱溶融するとともに、電解質樹脂シート7の表面に載せた電極触媒粒子5を、膜基体8の電解質膜1に圧入する。そして、電解質樹脂シート7の電解質樹脂溶液を多孔性補強膜6に含浸させて電解質膜1を形成するとともに、電極触媒粒子5を電解質膜1の膜表層部2に埋め込む。   The charging belt 63 transmits heat of the rollers 62 a and 62 b to heat and melt the electrolyte resin sheet 7 of the membrane substrate 8, and the electrode catalyst particles 5 placed on the surface of the electrolyte resin sheet 7 are transferred to the electrolyte membrane of the membrane substrate 8. Press fit into 1. Then, the porous reinforcing membrane 6 is impregnated with the electrolyte resin solution of the electrolyte resin sheet 7 to form the electrolyte membrane 1, and the electrode catalyst particles 5 are embedded in the membrane surface layer portion 2 of the electrolyte membrane 1.

含浸圧入部16で形成された電解質膜1は、延伸部14で延伸される。延伸部14の構成については、上記した第2実施の形態と同様であるので、同一の符号を付することでその詳細な説明を省略する。   The electrolyte membrane 1 formed by the impregnation press-fit portion 16 is stretched by the stretching portion 14. About the structure of the extending | stretching part 14, since it is the same as that of above-described 2nd Embodiment, the detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol.

次に、上記製造装置50を用いた膜電極接合体の製造方法について以下に説明する。
まず、一対の貼り合わせローラ54によって多孔性補強膜6の両面に電解質樹脂シート7を貼り合わせて、膜基体8を形成する。膜基体8は、導入口11aからブース11内に導入されて、含浸圧入部16のベルト搬送装置61に供給される。
Next, the manufacturing method of the membrane electrode assembly using the manufacturing apparatus 50 will be described below.
First, the electrolyte resin sheet 7 is bonded to both surfaces of the porous reinforcing film 6 by a pair of bonding rollers 54 to form the film substrate 8. The membrane substrate 8 is introduced into the booth 11 from the introduction port 11 a and supplied to the belt conveyance device 61 of the impregnation press-fitting portion 16.

ベルト搬送装置61では、層状の電極触媒粒子5が膜基体8の移動方向に所定の間隔を空けて、アノード側とカソード側の電解質樹脂シート7の表面で且つ互いに対向する位置に載せられる。   In the belt conveyance device 61, the layered electrode catalyst particles 5 are placed on the surfaces of the electrolyte resin sheet 7 on the anode side and the cathode side and facing each other with a predetermined interval in the moving direction of the membrane substrate 8.

そして、電解質樹脂シート7を加熱溶融して、電解質樹脂シート7の電解質樹脂溶液を多孔性補強膜6に含浸させて電解質膜1を形成するとともに、電極触媒粒子5を電解質膜1に圧入して膜表層部2の電解質樹脂内に埋め込む。これにより、電極触媒粒子5は、膜表層部2に所定範囲に亘って均一な厚さで埋没されて、電極触媒粒子5同士の電子伝導性が確保され且つその周りが電解質樹脂で覆われて電解質樹脂と密接した状態とされる。   Then, the electrolyte resin sheet 7 is heated and melted to impregnate the porous reinforcing membrane 6 with the electrolyte resin solution of the electrolyte resin sheet 7 to form the electrolyte membrane 1, and the electrode catalyst particles 5 are pressed into the electrolyte membrane 1. It is embedded in the electrolyte resin of the membrane surface layer 2. As a result, the electrode catalyst particles 5 are buried in the membrane surface layer portion 2 with a uniform thickness over a predetermined range, the electron conductivity between the electrode catalyst particles 5 is ensured, and the periphery thereof is covered with the electrolyte resin. It is in close contact with the electrolyte resin.

それから、延伸部14でMD延伸装置42により積層体を延伸して、膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させる。これにより、かかる剥離部分の隙間にガスを供給可能な気相を形成し、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成することができる。電極触媒層4は、電極触媒粒子5同士が電子的につながっており、且つ電極触媒粒子5が膜表層部2の電解質樹脂に接し、さらに、剥離部分の隙間からガスを電極触媒粒子5に直に供給可能な広い表面積を有している。   Then, the laminate is stretched by the MD stretching device 42 in the stretching portion 14, and a part of the electrolyte resin and the electrode catalyst particles 5 in the membrane surface layer portion 2 is peeled off. As a result, a gas phase capable of supplying gas is formed in the gap between the peeled portions, and the electrode resin layer 4 having the three-phase interface between the electrolyte resin of the membrane surface layer portion 2, the electrode catalyst particles 5, and the gas can be formed. . In the electrode catalyst layer 4, the electrode catalyst particles 5 are electronically connected to each other, the electrode catalyst particles 5 are in contact with the electrolyte resin of the membrane surface layer portion 2, and gas is directly supplied to the electrode catalyst particles 5 from the gaps in the peeled portion. Has a large surface area that can be supplied to

電解質膜1は、延伸部14で延伸されると、ブース11の導出口11bから外部に導出されて、巻き取り工程もしくは加水分解工程に送られる。加水分解工程では、従来知られた手法により、電解質ポリマーにイオン交換性を付与する加水分解処理が行われる。   When the electrolyte membrane 1 is stretched by the stretching portion 14, the electrolyte membrane 1 is led out from the outlet 11 b of the booth 11 and sent to the winding process or the hydrolysis process. In the hydrolysis step, a hydrolysis treatment that imparts ion exchange properties to the electrolyte polymer is performed by a conventionally known technique.

上記製造装置50によれば、含浸圧入部16で電解質樹脂シート7を加熱溶融して電解質樹脂シート7の電解質樹脂溶液を多孔性補強膜6に含浸させて電解質膜1を形成するとともに、電極触媒粒子5を電解質膜1に圧入して膜表層部2の電解質樹脂内に埋め込むので、最初に電解質膜1を形成し、その後に電解質膜1を加熱して電極触媒粒子5を圧入する場合と比較して、加熱工程を一回にまとめることができ、製造作業の効率化及び省エネルギー化を図ることができる。   According to the manufacturing apparatus 50, the electrolyte resin sheet 7 is heated and melted by the impregnation press-fitting portion 16 to impregnate the porous reinforcing membrane 6 with the electrolyte resin solution of the electrolyte resin sheet 7 to form the electrolyte membrane 1, and the electrode catalyst Since the particles 5 are press-fitted into the electrolyte membrane 1 and embedded in the electrolyte resin of the membrane surface layer portion 2, the electrolyte membrane 1 is formed first, and then the electrolyte membrane 1 is heated to press-fit the electrode catalyst particles 5 Thus, the heating process can be combined at one time, and the efficiency and energy saving of the manufacturing work can be achieved.

そして、電解質膜1をベルト搬送装置61の一対の帯電ベルト63の間に挟み込んで搬送するので、加熱溶融により電解質樹脂シート7が軟化して単体では自己の形状を維持できない状態となった場合でも、一定の厚さ形状に保つことができ、下流側に確実に搬送することができる。   Since the electrolyte membrane 1 is sandwiched and conveyed between the pair of charging belts 63 of the belt conveying device 61, even when the electrolyte resin sheet 7 is softened by heating and melted and cannot maintain its own shape alone. It can be maintained in a constant thickness shape and can be reliably conveyed downstream.

また、電解質膜1を第1ヒータ31によって加熱して表面を溶融させ、電解質樹脂の流動性を促進させた状態としているので、電極触媒粒子5を圧入する力を小さくすることができ、電極触媒粒子5を膜表層部2の電解質樹脂内に簡単且つ確実に埋め込むことができる。そして、上記した三相界面を有する電極触媒層4を、埋め込みと延伸という2工程のみで迅速且つ容易に形成することができ、低コスト化を図ることができる。   In addition, since the electrolyte membrane 1 is heated by the first heater 31 to melt the surface and promote the fluidity of the electrolyte resin, the force for press-fitting the electrode catalyst particles 5 can be reduced, and the electrode catalyst can be reduced. The particles 5 can be easily and reliably embedded in the electrolyte resin of the membrane surface layer portion 2. The electrode catalyst layer 4 having the above three-phase interface can be formed quickly and easily by only two steps of embedding and stretching, and the cost can be reduced.

図4は、本発明の製造方法により製造した膜電極接合体の電解質膜1の表面を撮影した写真である。電解質膜1の膜表層部2には、図4に示すように、膜表層部2の電解質樹脂と電極触媒粒子5との密接部分が一部剥離して形成された隙間部分2aと、その隙間部分に囲まれた複数の島状部分2bが形成されており、三相界面を有する電極触媒層4が形成されていることが確認できる。   FIG. 4 is a photograph of the surface of the electrolyte membrane 1 of the membrane / electrode assembly produced by the production method of the present invention. In the membrane surface layer portion 2 of the electrolyte membrane 1, as shown in FIG. 4, a gap portion 2 a formed by partially peeling the intimate portion between the electrolyte resin of the membrane surface layer portion 2 and the electrode catalyst particles 5, and the gap A plurality of island-shaped portions 2b surrounded by the portions are formed, and it can be confirmed that the electrode catalyst layer 4 having a three-phase interface is formed.

[第4実施の形態]
図5は、第4実施の形態における膜電極接合体の製造方法を模式的に示す図である。なお、上述の各実施の形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
[Fourth embodiment]
FIG. 5 is a diagram schematically showing a method for manufacturing a membrane electrode assembly in the fourth embodiment. Note that the same components as those in the above-described embodiments are given the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、膜電極接合体の製造方法として、図5に示すように、電解質膜1の両面に所定量の電極触媒粒子5を載せる第1の工程と(同図(a)を参照)、電極触媒粒子5を電解質膜1に圧入して、膜表層部2の電解質樹脂内に埋め込む第2の工程と(同図(b)を参照)、溶媒を用いて膜表層部2の電解質樹脂を膨潤させる第3の工程と(同図(c)、(d)を参照)、電解質膜1を延伸して膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させる第4の工程と(同図(e)を参照)を含む。   In the present embodiment, as a method of manufacturing a membrane electrode assembly, as shown in FIG. 5, a first step of placing a predetermined amount of electrode catalyst particles 5 on both surfaces of the electrolyte membrane 1 (see FIG. 5A) ), The second step of press-fitting the electrode catalyst particles 5 into the electrolyte membrane 1 and embedding it in the electrolyte resin of the membrane surface layer portion 2 (see FIG. 5B), and the electrolyte of the membrane surface layer portion 2 using a solvent In the third step of swelling the resin (see (c) and (d) in the figure), the electrolyte membrane 1 is stretched to partly separate the electrolyte resin in the membrane surface layer portion 2 from the electrode catalyst particles 5. 4th process (refer the figure (e)) is included.

第1の工程では、図5(a)に示すように、電解質膜1の両面に、予め設定された量の電極触媒粒子5が敷き詰められる。電極触媒粒子5は、第2の工程で電極触媒粒子5を電解質膜1に圧入した際に、所定範囲に亘って均一な厚さで膜表層部2に埋没されるように電解質膜1の上に載せられる。なお、本実施の形態では、電解質膜1の両面に電極触媒粒子5を載せる場合を例に説明したが、すくなくとも一方の面に載せてもよい。   In the first step, as shown in FIG. 5A, a predetermined amount of electrode catalyst particles 5 is spread on both surfaces of the electrolyte membrane 1. When the electrode catalyst particles 5 are pressed into the electrolyte membrane 1 in the second step, the electrode catalyst particles 5 are placed on the electrolyte membrane 1 so as to be buried in the membrane surface layer 2 with a uniform thickness over a predetermined range. It is put on. In the present embodiment, the case where the electrode catalyst particles 5 are placed on both surfaces of the electrolyte membrane 1 has been described as an example, but may be placed on at least one surface.

第2の工程では、図5(b)に示すように、例えば膜加圧機の加圧プレートP1、P2の間に介在させて加圧し、電極触媒粒子5を電解質膜1に圧入する。これにより、電解質膜1の膜表層部2に電極触媒粒子5が埋め込まれる。電極触媒粒子5は、膜表層部2に埋め込まれることによって、電極触媒粒子5同士の電子伝導性が確保され且つその周りが膜表層部2の電解質樹脂で覆われて電解質樹脂と密接した状態とされる。   In the second step, as shown in FIG. 5 (b), for example, the electrode catalyst particles 5 are pressed into the electrolyte membrane 1 by being interposed between the pressure plates P 1 and P 2 of the membrane pressurizer. Thereby, the electrode catalyst particles 5 are embedded in the membrane surface layer portion 2 of the electrolyte membrane 1. The electrode catalyst particles 5 are embedded in the membrane surface layer portion 2 so that the electron conductivity between the electrode catalyst particles 5 is ensured and the periphery thereof is covered with the electrolyte resin of the membrane surface layer portion 2 and is in close contact with the electrolyte resin. Is done.

第2の工程において、電解質膜1を加熱した状態で電極触媒粒子5を圧入してもよい。これによれば、電解質膜1を加熱して膜表層部2の電解質樹脂の流動性を促進させた状態とすることができ、電極触媒粒子5を電解質膜1に圧入する力をより小さくすることができる。従って、電極触媒粒子5を膜表層部2の電解質樹脂内に簡単且つ確実に埋め込むことができる。   In the second step, the electrode catalyst particles 5 may be press-fitted while the electrolyte membrane 1 is heated. According to this, the electrolyte membrane 1 can be heated to promote the fluidity of the electrolyte resin in the membrane surface layer portion 2, and the force for press-fitting the electrode catalyst particles 5 into the electrolyte membrane 1 can be further reduced. Can do. Accordingly, the electrode catalyst particles 5 can be easily and reliably embedded in the electrolyte resin of the membrane surface layer portion 2.

第3の工程では、例えば図5(c)に示すように溶媒槽74に貯留された溶媒F内に電解質膜1を浸漬して、膜表層部2の電解質樹脂を膨潤させる。電解質膜1の浸漬時間は、溶媒内に浸漬してから図5(d)に示すように膜表層部2の電極触媒粒子5の存在する部分が膨潤するまでの時間とされる。   In the third step, for example, as shown in FIG. 5C, the electrolyte membrane 1 is immersed in the solvent F stored in the solvent tank 74 to swell the electrolyte resin of the membrane surface layer portion 2. The immersion time of the electrolyte membrane 1 is the time from when it is immersed in the solvent until the portion where the electrode catalyst particles 5 of the membrane surface layer portion 2 are swollen as shown in FIG. 5 (d).

なお、膜表層部2の電解質樹脂を膨潤させる方法は、溶媒槽74に浸漬する方法に限定されるものではなく、他の方法であってもよい。例えば、電解質膜1の表面に電解質膨潤溶媒Fを塗布して、膜表層部2の電解質樹脂を膨潤させてもよい。   In addition, the method of swelling the electrolyte resin of the membrane surface layer 2 is not limited to the method of immersing in the solvent tank 74, and may be another method. For example, the electrolyte swelling solvent F may be applied to the surface of the electrolyte membrane 1 to swell the electrolyte resin of the membrane surface layer portion 2.

第4の工程では、例えば膜延伸機(図示せず)により、図5(e)に示すように、積層体4を延伸し、膜表層部2の電解質樹脂と電極触媒粒子5との密接部分を一部剥離させる(例えば、図1(d)を参照)。これにより、かかる剥離部分の隙間にガスを供給可能な気相を形成し、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成する。   In the fourth step, for example, as shown in FIG. 5 (e), the laminate 4 is stretched by a membrane stretching machine (not shown), and the intimate portion between the electrolyte resin and the electrode catalyst particles 5 in the membrane surface layer portion 2. Is partially peeled off (see, for example, FIG. 1D). As a result, a gas phase capable of supplying gas is formed in the gap between the peeled portions, and the electrode resin layer 4 having the three-phase interface of the electrolyte resin, the electrode catalyst particles 5 and the gas of the membrane surface layer portion 2 is formed.

膜表層部2を膨潤させた状態で電解質膜1を延伸すると、膜表層部2における電解質樹脂の分子同士あるいは電解質樹脂と電極触媒粒子5との界面の結合力が弱まっているので、より小さな延伸倍率で膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させることができ、電解質膜1の膜表層部2を容易に多孔化することができる。他方、電解質膜1の膜内部に位置する膜単層部3は、膨潤していないので、膜表層部2と比較して、多孔化しにくく、膜表層部2のみを多孔化させることができる。   If the electrolyte membrane 1 is stretched in a state where the membrane surface layer portion 2 is swollen, the bonding force at the interface between the electrolyte resin molecules or the electrolyte resin and the electrode catalyst particles 5 in the membrane surface layer portion 2 is weakened. Part of the electrolyte resin in the membrane surface layer portion 2 and the electrode catalyst particles 5 can be separated at a magnification, and the membrane surface layer portion 2 of the electrolyte membrane 1 can be easily made porous. On the other hand, since the membrane single layer portion 3 located inside the membrane of the electrolyte membrane 1 is not swollen, it is less likely to be porous than the membrane surface layer portion 2, and only the membrane surface layer portion 2 can be made porous.

したがって、電解質膜1の膜表層部2を容易に多孔化することができ、高延伸倍率による電解質膜1の膜内部である膜単層部3の多孔化を防止し、膜厚方向に貫通するクロスリークが発生するのを防ぐことができる。   Therefore, the membrane surface layer portion 2 of the electrolyte membrane 1 can be easily made porous, and the membrane single layer portion 3 inside the membrane of the electrolyte membrane 1 due to a high draw ratio can be prevented from becoming porous and penetrated in the film thickness direction. It is possible to prevent the occurrence of cross leak.

電解質膜1を延伸する方向は、特に限定されるものではなく、電解質膜1に沿って一方向に延伸する1軸方向でも良く、また、電解質膜1に沿う方向で且つ互いに直交する二方向に延伸する2軸方向でもよい。   The direction in which the electrolyte membrane 1 is stretched is not particularly limited, and may be a uniaxial direction that stretches in one direction along the electrolyte membrane 1, or in two directions that are perpendicular to each other along the electrolyte membrane 1. The biaxial direction to extend may be sufficient.

上記した製造方法によって製造された膜電極接合体は、膜表層部2にて各電極触媒粒子5の間に介在されている電解質樹脂と、電解質膜1の膜表層部2以外の部分(電極触媒粒子5が埋め込まれていない部分)である膜単層部3の電解質樹脂とが元々同じ電解質膜1の電解質樹脂であって互いに一体に連続している。従って、膜表層部2の電解質樹脂と、膜単層部3の電解質樹脂との間に物理的な界面は存在せず、界面抵抗は発生しない。従って、高度なプロトン伝導性を得ることができる。また、上述のように膜表層部2の電解質樹脂と膜単層部3の電解質樹脂とが一体に連続しているので、膜表層部2の電解質樹脂と膜単層部3の電解質樹脂との間で水の受け渡しを円滑に行うことができ、電解質膜1の水分管理を容易にできる。   The membrane electrode assembly manufactured by the above-described manufacturing method includes an electrolyte resin interposed between the electrode catalyst particles 5 in the membrane surface layer portion 2 and a portion other than the membrane surface layer portion 2 of the electrolyte membrane 1 (electrode catalyst). The electrolyte resin of the membrane single-layer portion 3 that is the portion in which the particles 5 are not embedded is originally the electrolyte resin of the same electrolyte membrane 1 and is integrally continuous with each other. Therefore, there is no physical interface between the electrolyte resin of the membrane surface layer portion 2 and the electrolyte resin of the membrane single layer portion 3, and no interface resistance is generated. Therefore, high proton conductivity can be obtained. In addition, since the electrolyte resin of the membrane surface layer portion 2 and the electrolyte resin of the membrane single layer portion 3 are integrally continuous as described above, the electrolyte resin of the membrane surface layer portion 2 and the electrolyte resin of the membrane single layer portion 3 Water can be smoothly transferred between the two, and moisture management of the electrolyte membrane 1 can be facilitated.

そして、電解質膜1を延伸して膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させているので、かかる剥離部分の隙間にガスを供給可能な気相を形成することができ、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成することができる。   And, since the electrolyte membrane 1 is stretched and the electrolyte resin in the membrane surface layer portion 2 and the electrode catalyst particles 5 are partially separated, a gas phase capable of supplying gas is formed in the gap between the separated portions. The electrode catalyst layer 4 having a three-phase interface of the electrolyte resin of the membrane surface layer portion 2, the electrode catalyst particles 5, and the gas can be formed.

従って、電極触媒粒子5同士が電子的につながっており、且つ電極触媒粒子5が膜表層部2の電解質樹脂に接し、さらに、ガスを電極触媒粒子5に直に供給可能な広い表面積を有する電極触媒層4を得ることができ、高い発電効率の膜電極接合体を得ることができる。また、上記した三相界面を有する電極触媒層4を、埋め込み、延伸という2工程で形成することができ、低コスト化を図ることができる。   Accordingly, the electrode catalyst particles 5 are electronically connected to each other, the electrode catalyst particles 5 are in contact with the electrolyte resin of the membrane surface layer portion 2, and the electrode has a large surface area that can supply gas directly to the electrode catalyst particles 5. The catalyst layer 4 can be obtained, and a membrane electrode assembly with high power generation efficiency can be obtained. In addition, the electrode catalyst layer 4 having the above three-phase interface can be formed by two steps of embedding and stretching, and the cost can be reduced.

電解質膜1は、膜単層部3が電解質樹脂のみで作られたものでもよく、また、電解質樹脂溶液を多孔性補強膜に含浸させて形成した電解質含浸膜でもよい。電解質含浸膜の場合は、電極触媒粒子5を電解質膜1に圧入した際に電極触媒粒子5が電解質膜1を貫通するのを多孔性補強膜で防ぐことができる。従って、例えば電解質膜1の両面に電極触媒層4が形成されている場合に、両方の電極触媒層4が電極触媒粒子5によって電子的に接続されるのを防止できる。   The electrolyte membrane 1 may be one in which the membrane single layer portion 3 is made of only an electrolyte resin, or may be an electrolyte impregnated membrane formed by impregnating a porous reinforcing membrane with an electrolyte resin solution. In the case of an electrolyte-impregnated membrane, the porous reinforcing membrane can prevent the electrode catalyst particles 5 from penetrating the electrolyte membrane 1 when the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1. Therefore, for example, when the electrode catalyst layers 4 are formed on both surfaces of the electrolyte membrane 1, both electrode catalyst layers 4 can be prevented from being electronically connected by the electrode catalyst particles 5.

また、本実施の形態では、電極触媒粒子5を電解質膜1に圧入した後に、膜表層部2の電解質樹脂を膨潤させる場合を例に説明したが、膜表層部2の電解質樹脂を膨潤させてから電極触媒粒子5を電解質膜1に圧入してもよい。かかる構成によれば、電極触媒粒子5を電解質膜1に圧入する力を小さくすることができ、省エネルギ化を図ることができる。   In the present embodiment, the case where the electrolyte resin of the membrane surface layer portion 2 is swollen after the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1 has been described as an example, but the electrolyte resin of the membrane surface layer portion 2 is swollen. The electrode catalyst particles 5 may be pressed into the electrolyte membrane 1. According to this configuration, the force for press-fitting the electrode catalyst particles 5 into the electrolyte membrane 1 can be reduced, and energy saving can be achieved.

[第5実施の形態]
次に、本発明の第5実施の形態について図6を用いて説明する。なお、上述の各実施の形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the above-described embodiments are given the same reference numerals, and detailed description thereof is omitted.

図6は、本実施の形態に係わる膜電極接合体の製造装置70の構成を説明する図である。製造装置70は、電解質膜1の両面にアノード側とカソード側の電極触媒層4を同時に形成する構成を有する。   FIG. 6 is a view for explaining the configuration of a membrane electrode assembly manufacturing apparatus 70 according to the present embodiment. The manufacturing apparatus 70 has a configuration in which the anode-side and cathode-side electrode catalyst layers 4 are simultaneously formed on both surfaces of the electrolyte membrane 1.

電解質膜1は、例えばPTFE多孔性膜等の多孔性補強膜に電解質樹脂溶液を含浸させて形成された電解質含浸膜であり、電解質樹脂には、加熱溶融しても分解しない熱的安定性を備える電解質ポリマーの前駆体高分子からなるフッ素系電解質樹脂で且つ末端SOF型が用いられている。 The electrolyte membrane 1 is an electrolyte-impregnated membrane formed by impregnating a porous reinforcing membrane such as a PTFE porous membrane with an electrolyte resin solution. The electrolyte resin has thermal stability that does not decompose even when heated and melted. A fluorine-based electrolyte resin composed of a precursor polymer of an electrolyte polymer provided and a terminal SO 2 F type is used.

製造装置70は、所定の室内空間を有するブース71を有している。ブース71の内部は、触媒引火を防ぐために低活性ガス雰囲気に維持されている。ブース71には、電解質膜1が導入される導入口71aと、導出される導出口71bが形成されている。   The manufacturing apparatus 70 has a booth 71 having a predetermined indoor space. The interior of the booth 71 is maintained in a low active gas atmosphere to prevent catalyst ignition. The booth 71 is formed with an introduction port 71a through which the electrolyte membrane 1 is introduced and a lead-out port 71b through which the electrolyte membrane 1 is led out.

ブース71内には、電解質膜1に対して、電解質膜1の表面に電極触媒粒子5を転着する転着部12と、電極触媒粒子5を電解質膜1内に圧入する圧入部13と、電解質膜1の膜表層部2を膨潤させる膨潤部18と、電解質膜1を延伸する延伸部17が設けられている。転着部12と圧入部13の構成については、第2実施の形態における製造装置10と同様であるので、その詳細な説明は省略する。   In the booth 71, a transfer portion 12 for transferring the electrode catalyst particles 5 to the surface of the electrolyte membrane 1 with respect to the electrolyte membrane 1, a press-fit portion 13 for press-fitting the electrode catalyst particles 5 into the electrolyte membrane 1, and A swelling portion 18 for swelling the membrane surface layer portion 2 of the electrolyte membrane 1 and a stretching portion 17 for stretching the electrolyte membrane 1 are provided. About the structure of the transfer part 12 and the press-fit part 13, since it is the same as that of the manufacturing apparatus 10 in 2nd Embodiment, the detailed description is abbreviate | omitted.

膨潤部18は、溶媒Fを貯留する溶媒槽74を有している。溶媒槽74内には、電解質膜1の電解質樹脂を膨潤させる溶媒Fとして、例えばハイドロフルオロエーテル(HFE:CFCF(CF)CF(CFCF)OCH)が貯留されている。溶媒槽74内には、第3ヒータ75が設けられており、溶媒の温度を100℃から200℃に加温するようになっている。 The swelling part 18 has a solvent tank 74 for storing the solvent F. In the solvent tank 74, for example, hydrofluoroether (HFE: CF 3 CF (CF 3 ) CF (CF 2 CF 3 ) OCH 3 ) is stored as the solvent F that swells the electrolyte resin of the electrolyte membrane 1. A third heater 75 is provided in the solvent tank 74 so as to heat the temperature of the solvent from 100 ° C. to 200 ° C.

電解質膜1は、圧入部13を通過した後に、膨潤部18の溶媒槽74内に導かれ、溶媒槽74内の溶媒Fに浸漬され、そして、延伸部17に供給される。   After passing through the press-fitting part 13, the electrolyte membrane 1 is guided into the solvent tank 74 of the swelling part 18, immersed in the solvent F in the solvent tank 74, and supplied to the stretching part 17.

延伸部17は、本実施の形態では溶媒槽74内に設けられているが、溶媒槽74よりも下流位置に別個に設けてもよい。その場合には、溶媒層74で溶媒Fに浸漬された電解質膜1の膜表層部2が乾かないうちに延伸する位置に配置される。   The extending portion 17 is provided in the solvent tank 74 in the present embodiment, but may be provided separately at a position downstream of the solvent tank 74. In that case, it arrange | positions in the position extended | stretched before the film | membrane surface layer part 2 of the electrolyte membrane 1 immersed in the solvent F with the solvent layer 74 does not dry.

延伸部17は、電解質膜1をその移動方向に延伸するMD延伸装置81を有している。MD延伸装置81は、電解質膜1の移動方向上流側と下流側に離間して配置された延伸ローラ82、83を有する。延伸ローラ82、83は、それぞれ電解質膜1を間に介して対向する位置に対をなして設けられており、電解質膜1を両側から挟み込み、下流側に向かって移動させるように回転駆動される。   The stretching unit 17 includes an MD stretching device 81 that stretches the electrolyte membrane 1 in the moving direction. The MD stretching apparatus 81 includes stretching rollers 82 and 83 that are disposed separately on the upstream side and the downstream side in the moving direction of the electrolyte membrane 1. The stretching rollers 82 and 83 are provided in pairs at positions facing each other with the electrolyte membrane 1 interposed therebetween, and are driven to rotate so as to sandwich the electrolyte membrane 1 from both sides and move toward the downstream side. .

そして、上流側の延伸ローラ82よりも下流側の延伸ローラ83の回転数が高く設定され、上流側の延伸ローラ82と下流側の延伸ローラ83との回転差によって、電解質膜1を延伸し、膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させるようになっている。   Then, the number of rotations of the downstream stretching roller 83 is set higher than that of the upstream stretching roller 82, and the electrolyte membrane 1 is stretched by the rotational difference between the upstream stretching roller 82 and the downstream stretching roller 83, A part of the electrolyte resin of the membrane surface layer portion 2 and the electrode catalyst particles 5 are peeled off.

電解質膜1は、溶媒槽74内で溶媒Fに浸漬された状態で、MD延伸装置81によって延伸される。電解質膜1は、溶媒Fによって100℃から200℃に加温されて、軟化しているので、延伸部17は、電解質膜1を容易に延伸することができる。なお、延伸部17に、電解質膜1を移動方向に直交する方向である幅方向に延伸するTD延伸装置(図示せず)を追加してもよい。   The electrolyte membrane 1 is stretched by the MD stretching device 81 while being immersed in the solvent F in the solvent tank 74. Since the electrolyte membrane 1 is heated from 100 ° C. to 200 ° C. by the solvent F and softened, the stretching portion 17 can easily stretch the electrolyte membrane 1. Note that a TD stretching device (not shown) for stretching the electrolyte membrane 1 in the width direction, which is a direction orthogonal to the moving direction, may be added to the stretching portion 17.

次に、上記製造装置70を用いた膜電極接合体の製造方法について以下に説明する。
まず、電解質膜1を導入口71aからブース71内に導入し、転着部12で一対の帯電ドラム21の間に通過させて、帯電ドラム21によって所定量の電極触媒粒子5を電解質膜1のアノード側の表面とカソード側の表面に載せて転着させる(第1の工程)。これにより、層状の電極触媒粒子5が、電解質膜1の移動方向に所定の間隔を空けて、アノード側とカソード側の表面で且つ互いに対向する位置に転着される。
Next, the manufacturing method of the membrane electrode assembly using the manufacturing apparatus 70 will be described below.
First, the electrolyte membrane 1 is introduced into the booth 71 from the introduction port 71 a and is passed between the pair of charging drums 21 by the transfer portion 12, and a predetermined amount of the electrode catalyst particles 5 is transferred to the electrolyte membrane 1 by the charging drum 21. It is placed on the surface on the anode side and the surface on the cathode side and is transferred (first step). As a result, the layered electrode catalyst particles 5 are transferred to positions on the anode side and cathode side surfaces facing each other with a predetermined interval in the moving direction of the electrolyte membrane 1.

そして、圧入部13で圧入ローラ32によって電極触媒粒子5を電解質膜1に圧入して膜表層部2の電解質樹脂内に埋め込む(第2の工程)。これにより、電極触媒粒子5は、膜表層部2に所定範囲に亘って均一な厚さで埋没されて、電極触媒粒子5同士の電子伝導性が確保され且つその周りが膜表層部2の電解質樹脂で覆われて電解質樹脂と密接した状態とされる。   Then, the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1 by the press-fitting roller 32 at the press-fitting portion 13 and embedded in the electrolyte resin of the membrane surface layer portion 2 (second step). As a result, the electrode catalyst particles 5 are buried in the membrane surface layer portion 2 with a uniform thickness over a predetermined range, the electron conductivity between the electrode catalyst particles 5 is ensured, and the periphery of the electrode catalyst particles 5 is the electrolyte of the membrane surface layer portion 2. It is covered with resin and brought into close contact with the electrolyte resin.

それから、膨潤部18で電解質膜1を溶媒槽74内に導き、溶媒Fに浸漬する(第3の工程)。膨潤部18では、膜表層部2の電解質樹脂のみが膨潤するように、予め設定された時間等の各種条件に基づいて、電解質膜1の浸漬が調節される。これにより、膜表層部2の電解質樹脂を膨潤させる。膨潤させる前における電極触媒粒子5と電解質樹脂との結合力は、電解質分子どうしの結合力に近いが、膨潤させることによって電極触媒粒子5と電解質樹脂との結合力を電解質分子どうしの結合力よりも弱めることができる。   Then, the electrolyte membrane 1 is guided into the solvent tank 74 by the swelling portion 18 and immersed in the solvent F (third step). In the swelling portion 18, the immersion of the electrolyte membrane 1 is adjusted based on various conditions such as a preset time so that only the electrolyte resin in the membrane surface layer portion 2 swells. Thereby, the electrolyte resin of the membrane surface layer part 2 is swollen. The binding force between the electrode catalyst particles 5 and the electrolyte resin before the swelling is close to the binding force between the electrolyte molecules, but the swelling force causes the binding force between the electrode catalyst particles 5 and the electrolyte resin to be higher than the binding force between the electrolyte molecules. Can also be weakened.

それから、延伸部17でMD延伸装置81により電解質膜1を延伸して、膜表層部2の電解質樹脂と電極触媒粒子5との密接部分を一部剥離させる(第3の工程)。これにより、かかる剥離部分の隙間にガスを供給可能な気相を形成し、膜表層部2の電解質樹脂、電極触媒粒子5、ガスの三相界面を有する電極触媒層4を形成する。この電極触媒層4は、電極触媒粒子5同士が電子的につながっており、且つ電極触媒粒子5が膜表層部2の電解質樹脂に接し、さらに、剥離部分の隙間からガスを電極触媒粒子5に直に供給可能な広い表面積を有している。   Then, the electrolyte membrane 1 is stretched by the MD stretching device 81 at the stretching portion 17, and a part of the intimate contact between the electrolyte resin and the electrode catalyst particles 5 on the membrane surface layer portion 2 is partially peeled off (third step). Thus, a gas phase capable of supplying a gas is formed in the gap between the peeled portions, and the electrode resin layer 4 having the three-phase interface of the electrolyte resin, the electrode catalyst particles 5 and the gas of the membrane surface layer portion 2 is formed. In this electrode catalyst layer 4, the electrode catalyst particles 5 are electronically connected to each other, the electrode catalyst particles 5 are in contact with the electrolyte resin of the membrane surface layer portion 2, and further gas is passed to the electrode catalyst particles 5 from the gaps in the peeled portion. It has a large surface area that can be supplied directly.

ここで、電解質膜1は、溶媒Fによって膜表層部2の電解質樹脂が膨潤されているので、たとえば上記した第2実施の形態のように膨潤させずに電解質膜1を延伸した場合と比較して、電極触媒粒子5と電解質樹脂との結合力が弱く、より小さな延伸倍率で膜表層部2の電解質樹脂と電極触媒粒子5との間を一部剥離させることができる。   Here, in the electrolyte membrane 1, since the electrolyte resin of the membrane surface layer portion 2 is swollen by the solvent F, for example, as compared with the case where the electrolyte membrane 1 is stretched without being swelled as in the second embodiment described above. Thus, the bonding force between the electrode catalyst particles 5 and the electrolyte resin is weak, and the electrolyte resin in the membrane surface layer portion 2 and the electrode catalyst particles 5 can be partially peeled at a smaller stretch ratio.

したがって、電解質膜1の膜表層部2を容易に多孔化することができ、高延伸倍率による電解質膜1の膜内部である膜単層部3の多孔化を防止し、膜厚方向に貫通するクロスリークが発生するのを防ぐことができる。   Therefore, the membrane surface layer portion 2 of the electrolyte membrane 1 can be easily made porous, and the membrane single layer portion 3 inside the membrane of the electrolyte membrane 1 due to a high draw ratio can be prevented from becoming porous and penetrated in the film thickness direction. It is possible to prevent the occurrence of cross leak.

電解質膜1は、延伸部17で延伸されると、ブース71の導出口71bから外部に導出されて、巻き取り工程もしくは加水分解工程に送られる。加水分解工程では、従来知られた手法により、電解質ポリマーにイオン交換性を付与する加水分解処理が行われる。   When the electrolyte membrane 1 is stretched by the stretching portion 17, the electrolyte membrane 1 is led out from the outlet 71 b of the booth 71 to the winding process or hydrolysis process. In the hydrolysis step, a hydrolysis treatment that imparts ion exchange properties to the electrolyte polymer is performed by a conventionally known technique.

上記製造装置70を用いた膜電極接合体の製造方法によれば、上記した三相界面を有する電極触媒層4を、埋め込み、延伸という2工程で迅速且つ容易に形成することができ、低コスト化を図ることができる。   According to the method for manufacturing a membrane electrode assembly using the manufacturing apparatus 70, the electrode catalyst layer 4 having the three-phase interface can be formed quickly and easily in two steps of embedding and stretching. Can be achieved.

また、圧入部13で電極触媒粒子5を電解質膜1に圧入する際に、電解質膜1を第1ヒータ31によって加熱して表面を溶融させ、電解質樹脂の流動性を促進させた状態としているので、電極触媒粒子5を圧入する力を小さくすることができる。従って、電極触媒粒子5を膜表層部2の電解質樹脂内に簡単且つ確実に埋め込むことができる。   Further, when the electrode catalyst particles 5 are press-fitted into the electrolyte membrane 1 by the press-fitting portion 13, the electrolyte membrane 1 is heated by the first heater 31 to melt the surface, thereby promoting the fluidity of the electrolyte resin. The force for press-fitting the electrode catalyst particles 5 can be reduced. Accordingly, the electrode catalyst particles 5 can be easily and reliably embedded in the electrolyte resin of the membrane surface layer portion 2.

それから、延伸部17でMD延伸装置81により電解質膜1を延伸する際に、溶媒Fによって電解質膜1を加温し、軟化させて、延伸が容易な状態としているので、より小さな力で電解質膜1を延伸することができ、膜表層部2の電解質と電極触媒粒子5との間の一部剥離をより簡単に行うことができる。   Then, when the electrolyte membrane 1 is stretched by the MD stretching device 81 in the stretching portion 17, the electrolyte membrane 1 is heated and softened by the solvent F so as to be easily stretched. 1 can be stretched, and partial peeling between the electrolyte of the membrane surface layer portion 2 and the electrode catalyst particles 5 can be performed more easily.

なお、上記した第5実施の形態では、圧入部13で電極触媒粒子5を電解質膜1に圧入した後に、膨潤部18で膨潤する構成の場合を例に説明したが、膨潤部18で膜表層部2を膨潤させてから、転着部12で電解質膜1に電極触媒粒子5を転着し、圧入部13で圧入する構成としてもよい。   In the fifth embodiment described above, the case where the electrode catalyst particles 5 are pressed into the electrolyte membrane 1 by the press-fitting portion 13 and then swelled by the swelling portion 18 has been described as an example. After the portion 2 is swollen, the electrode catalyst particles 5 may be transferred to the electrolyte membrane 1 by the transfer portion 12 and press-fitted by the press-fitting portion 13.

これによれば、上記した第2実施の形態のように、膜表層部1の電解質樹脂を膨潤させずに電極触媒粒子5を圧入した場合と比較して、電極触媒粒子5を電解質膜1に圧入する力を小さくすることができ、省エネルギ化を図ることができる。そして、電極触媒粒子5の圧入を容易化し、電極触媒粒子5の埋め込みを確実に行わせることができる。   According to this, compared with the case where the electrode catalyst particles 5 are press-fitted without swelling the electrolyte resin of the membrane surface layer portion 1 as in the second embodiment described above, the electrode catalyst particles 5 are applied to the electrolyte membrane 1. The press-fitting force can be reduced, and energy saving can be achieved. Then, the press-fitting of the electrode catalyst particles 5 can be facilitated, and the electrode catalyst particles 5 can be reliably embedded.

以上、本発明の第1〜第5実施の形態について図を用いて詳述したが、具体的な構成は上述の各実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The first to fifth embodiments of the present invention have been described in detail with reference to the drawings. However, specific configurations are not limited to the above-described embodiments, and do not depart from the spirit of the present invention. Even if there is a design change, etc., these are included in the present invention.

1 電解質膜(電解質含浸膜)
2 膜表層部
2a 隙間部分
2b 島部分
3 膜単層部(膜内部)
4 電極触媒層
5 電極触媒粒子
6 多孔性補強膜
7 電解質樹脂シート
8 膜基体
10、50、70 膜電極接合体製造装置
11、71 ブース
12 転着部
13 圧入部
14、17 延伸部
15 膜基体形成部
16 含浸圧入部
18 膨潤部
61 ベルト搬送装置
63 帯電ベルト
74 溶媒槽
F 溶媒
1 Electrolyte membrane (electrolyte impregnated membrane)
2 Membrane surface layer portion 2a Gap portion 2b Island portion 3 Membrane single layer portion (inside the membrane)
4 Electrode catalyst layer 5 Electrode catalyst particle 6 Porous reinforcing membrane 7 Electrolyte resin sheet 8 Membrane substrate 10, 50, 70 Membrane electrode assembly manufacturing apparatus 11, 71 Booth 12 Transfer portion 13 Press-in portion 14, 17 Stretching portion 15 Membrane substrate Forming part 16 Impregnation press-fitting part 18 Swelling part 61 Belt conveying device 63 Charging belt 74 Solvent tank F Solvent

Claims (11)

固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、
前記電解質膜の上に所定量の前記電極触媒粒子を載せる工程と、
前記電極触媒粒子を前記電解質膜に圧入して前記膜表層部の電解質樹脂内に埋め込む工程と、
前記電解質膜を延伸して前記膜表層部の電解質樹脂と前記電極触媒粒子との間を一部剥離させる工程と、
を含むことを特徴とする固体高分子形燃料電池用の膜電極接合体の製造方法。
In the method for producing a membrane electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte membrane used in a polymer electrolyte fuel cell,
Placing a predetermined amount of the electrode catalyst particles on the electrolyte membrane;
Pressing the electrode catalyst particles into the electrolyte membrane and embedding it in the electrolyte resin of the membrane surface layer portion;
Stretching the electrolyte membrane to partially separate the electrolyte resin of the membrane surface layer portion and the electrode catalyst particles;
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, comprising:
前記電解質膜を加熱した状態で前記電極触媒粒子を前記電解質膜に圧入することを特徴とする請求項1に記載の膜電極接合体の製造方法。   The method for producing a membrane / electrode assembly according to claim 1, wherein the electrode catalyst particles are press-fitted into the electrolyte membrane while the electrolyte membrane is heated. 前記電解質膜は、電解質樹脂溶液を多孔性補強膜に含浸させて形成された電解質含浸膜であることを特徴とする請求項1又は2に記載の膜電極接合体の製造方法。   The method for manufacturing a membrane electrode assembly according to claim 1 or 2, wherein the electrolyte membrane is an electrolyte-impregnated membrane formed by impregnating a porous reinforcing membrane with an electrolyte resin solution. 固体高分子形燃料電池に用いられる電解質含浸膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、
多孔性補強膜の上に電解質樹脂シートを載せる工程と、
該電解質樹脂シートの上に所定量の電極触媒粒子を載せる工程と、
前記電解質樹脂シートを加熱溶融して前記電解質樹脂シートの電解質樹脂溶液を前記多孔性補強膜に含浸させて前記電解質含浸膜を形成するとともに、前記電極触媒粒子を前記電解質含浸膜に圧入して前記膜表層部の電解質樹脂内に埋め込む工程と、
前記電解質含浸膜を延伸して前記膜表層部の電解質樹脂と前記電極触媒粒子との間を一部剥離させる工程と、
を含むことを特徴とする膜電極接合体の製造方法。
In a method for producing a membrane electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte impregnated membrane used in a polymer electrolyte fuel cell,
Placing an electrolyte resin sheet on the porous reinforcing membrane;
Placing a predetermined amount of electrode catalyst particles on the electrolyte resin sheet;
The electrolyte resin sheet is heated and melted to impregnate the porous reinforcing membrane with the electrolyte resin solution of the electrolyte resin sheet to form the electrolyte impregnated membrane, and the electrode catalyst particles are press-fitted into the electrolyte impregnated membrane to A step of embedding in the electrolyte resin of the membrane surface layer,
Stretching the electrolyte-impregnated membrane to partially separate the electrolyte resin on the surface portion of the membrane and the electrode catalyst particles;
The manufacturing method of the membrane electrode assembly characterized by including.
固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、
前記電解質膜の上に所定量の前記電極触媒粒子を載せる工程と、
前記電極触媒粒子を前記電解質膜に圧入して前記膜表層部の電解質樹脂内に埋め込む工程と、
溶媒を用いて前記膜表層部の電解質樹脂を膨潤させる工程と、
前記電解質膜を延伸して前記膜表層部の電解質樹脂と前記電極触媒粒子との間を一部剥離させる工程と、
を含むことを特徴とする固体高分子形燃料電池用の膜電極接合体の製造方法。
In the method for producing a membrane electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte membrane used in a polymer electrolyte fuel cell,
Placing a predetermined amount of the electrode catalyst particles on the electrolyte membrane;
Pressing the electrode catalyst particles into the electrolyte membrane and embedding it in the electrolyte resin of the membrane surface layer portion;
Swelling the electrolyte resin of the membrane surface layer using a solvent;
Stretching the electrolyte membrane to partially separate the electrolyte resin of the membrane surface layer portion and the electrode catalyst particles;
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, comprising:
固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体の製造方法において、
溶媒を用いて前記膜表層部の電解質樹脂を膨潤させる工程と、
前記電解質膜の上に所定量の前記電極触媒粒子を載せる工程と、
前記電極触媒粒子を前記電解質膜に圧入して前記膜表層部の電解質樹脂内に埋め込む工程と、
前記電解質膜を延伸して前記膜表層部の電解質樹脂と前記電極触媒粒子との間を一部剥離させる工程と、
を含むことを特徴とする固体高分子形燃料電池用の膜電極接合体の製造方法。
In the method for producing a membrane electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte membrane used in a polymer electrolyte fuel cell,
Swelling the electrolyte resin of the membrane surface layer using a solvent;
Placing a predetermined amount of the electrode catalyst particles on the electrolyte membrane;
Pressing the electrode catalyst particles into the electrolyte membrane and embedding it in the electrolyte resin of the membrane surface layer portion;
Stretching the electrolyte membrane to partially separate the electrolyte resin of the membrane surface layer portion and the electrode catalyst particles;
A method for producing a membrane electrode assembly for a polymer electrolyte fuel cell, comprising:
固体高分子形燃料電池に用いられる電解質膜の膜表層部に電極触媒粒子を含む電極触媒層が形成された膜電極接合体を製造する膜電極接合体製造装置において、
前記電極触媒粒子を前記電解質膜に圧入して前記膜表層部の電解質樹脂内に埋め込む圧入部と、
該圧入部によって前記電極触媒粒子が圧入された前記電解質膜を延伸して前記膜表層部の電解質樹脂と前記電極触媒粒子との間を一部剥離させる延伸部と、
を有することを特徴とする膜電極接合体製造装置。
In a membrane / electrode assembly manufacturing apparatus for manufacturing a membrane / electrode assembly in which an electrode catalyst layer containing electrode catalyst particles is formed on a membrane surface layer portion of an electrolyte membrane used in a polymer electrolyte fuel cell,
A press-fitting part in which the electrode catalyst particles are press-fitted into the electrolyte membrane and embedded in the electrolyte resin of the membrane surface layer part;
An extending part that extends the electrolyte membrane in which the electrode catalyst particles are press-fitted by the press-fitting part to partially separate the electrolyte resin of the membrane surface layer part from the electrode catalyst particles;
An apparatus for manufacturing a membrane electrode assembly, comprising:
前記圧入部は、前記電解質膜を加熱する第1ヒータと、該第1ヒータによって加熱された電解質膜内に前記電極触媒粒子を圧入する一対の圧入ローラを有することを特徴とする請求項7に記載の膜電極接合体製造装置。   8. The press-fitting part has a first heater for heating the electrolyte membrane, and a pair of press-fitting rollers for press-fitting the electrode catalyst particles into the electrolyte membrane heated by the first heater. The membrane electrode assembly manufacturing apparatus of description. 前記延伸部は、前記電解質膜を加熱する第2ヒータと、該第2ヒータによって加熱された電解質膜を移動方向もしくは移動方向に直交する幅方向の少なくとも一方に延伸する延伸手段とを有することを特徴とする請求項7又は8に記載の膜電極接合体製造装置。   The extending section includes a second heater for heating the electrolyte membrane, and an extending means for extending the electrolyte membrane heated by the second heater in at least one of a moving direction or a width direction orthogonal to the moving direction. The membrane electrode assembly manufacturing apparatus according to claim 7 or 8, characterized in that 溶媒を用いて前記膜表層部の電解質樹脂を膨潤させる膨潤部を有し、
前記延伸部は、前記圧入部によって前記電極触媒粒子が圧入されかつ前記膨潤部により前記膜表層部の電解質樹脂が膨潤された前記電解質膜を延伸することを特徴とする請求項7から請求項9のいずれか一項に記載の膜電極接合体製造装置。
It has a swelling part that swells the electrolyte resin of the membrane surface layer part using a solvent,
10. The stretched part stretches the electrolyte membrane in which the electrode catalyst particles are press-fitted by the press-fitted part and the electrolyte resin of the membrane surface layer part is swollen by the swollen part. The membrane electrode assembly manufacturing apparatus according to any one of the above.
前記膨潤部は、前記溶媒を貯留して該溶媒に前記電解質膜を浸漬可能な溶媒槽と、該溶媒槽に貯留された前記溶媒を加温する第3ヒータを有することを特徴とする請求項7から請求項10のいずれか一項に記載の膜電極接合体製造装置。   The swelling portion includes a solvent tank capable of storing the solvent and immersing the electrolyte membrane in the solvent, and a third heater for heating the solvent stored in the solvent tank. The membrane electrode assembly manufacturing apparatus according to any one of claims 7 to 10.
JP2009070851A 2008-04-24 2009-03-23 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus Expired - Fee Related JP5262893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070851A JP5262893B2 (en) 2008-04-24 2009-03-23 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008114080 2008-04-24
JP2008114080 2008-04-24
JP2009070851A JP5262893B2 (en) 2008-04-24 2009-03-23 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2009283448A JP2009283448A (en) 2009-12-03
JP5262893B2 true JP5262893B2 (en) 2013-08-14

Family

ID=41453664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070851A Expired - Fee Related JP5262893B2 (en) 2008-04-24 2009-03-23 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5262893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692284B2 (en) * 2013-05-21 2015-04-01 トヨタ自動車株式会社 Manufacturing method and apparatus for manufacturing reinforced electrolyte membrane
JP6826621B2 (en) * 2019-03-20 2021-02-03 日本碍子株式会社 Electrochemical cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258756A (en) * 1992-03-02 1993-10-08 Honda Motor Co Ltd Surface treating method for fuel battery electrolyte film
JP3423799B2 (en) * 1994-11-24 2003-07-07 トヨタ自動車株式会社 Method for forming reaction layer of fuel cell
US6042959A (en) * 1997-10-10 2000-03-28 3M Innovative Properties Company Membrane electrode assembly and method of its manufacture
JP2002367616A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for polymer electrolyte fuel cell, and manufacturing device for the same
JP2006140134A (en) * 2004-10-14 2006-06-01 Canon Inc Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell
JP5283826B2 (en) * 2005-03-02 2013-09-04 キヤノン株式会社 Membrane electrode assembly and polymer electrolyte fuel cell
JP4793317B2 (en) * 2007-04-23 2011-10-12 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method, membrane electrode assembly, membrane electrode assembly manufacturing apparatus, and fuel cell

Also Published As

Publication number Publication date
JP2009283448A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US8546043B2 (en) Method for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
US20140011116A1 (en) Manufacturing method and apparatus for membrane electrode assembly, and polymer electrolyte fuel cell
JP5439867B2 (en) Membrane electrode assembly manufacturing method and manufacturing apparatus
EP2535972A1 (en) Catalyst-coated membrane assembly manufacturing method and device
EP2654112B1 (en) Method for manufacturing membrane-catalyst layer assembly
JP2006134611A (en) Manufacturing device and manufacturing method of junction
JP2010198948A (en) Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP5412860B2 (en) Manufacturing apparatus and manufacturing method for membrane catalyst layer assembly, and manufacturing apparatus and manufacturing method for membrane electrode assembly
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP5262893B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
US20230027116A1 (en) Method and apparatus for producing membrane electrode assembly
EP4084158A1 (en) Manufacturing method and manufacturing device for film/catalyst assembly
JP5699348B2 (en) Manufacturing apparatus and manufacturing method for membrane catalyst layer assembly, and manufacturing apparatus and manufacturing method for membrane electrode assembly
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP2010062040A (en) Method of manufacturing fuel cell
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP2017117786A (en) Assembly manufacturing method and manufacturing device
JP2004288391A (en) Manufacturing method of membrane/electrode junction, membrane/electrode junction, and fuel cell
KR20170003278A (en) Shrink-resistance laminate, method for manufacturing the shrink-resistance laminate and device for manufacturing the shrink-resistance
JP6175356B2 (en) Method for producing membrane electrode assembly for fuel cell
KR20240012363A (en) Catalyst-coated membranes and preparation methods
JP2006066160A (en) Fuel cell film/electrode junction and manufacturing method thereof
JP2011198681A (en) Membrane electrode assembly for solid polymer fuel cell, method for manufacturing of membrane electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

LAPS Cancellation because of no payment of annual fees