JP2006066160A - Fuel cell film/electrode junction and manufacturing method thereof - Google Patents

Fuel cell film/electrode junction and manufacturing method thereof Download PDF

Info

Publication number
JP2006066160A
JP2006066160A JP2004246052A JP2004246052A JP2006066160A JP 2006066160 A JP2006066160 A JP 2006066160A JP 2004246052 A JP2004246052 A JP 2004246052A JP 2004246052 A JP2004246052 A JP 2004246052A JP 2006066160 A JP2006066160 A JP 2006066160A
Authority
JP
Japan
Prior art keywords
membrane
fuel cell
gas diffusion
electrode
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246052A
Other languages
Japanese (ja)
Inventor
Noboru Yamauchi
昇 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004246052A priority Critical patent/JP2006066160A/en
Publication of JP2006066160A publication Critical patent/JP2006066160A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell film/electrode junction in which no shrinkage nor wrinkle occurs at the periphery (an exposed part from a gas diffusion electrode) of a polyelectrolyte film, with increased adhesion to a gasket when assembled in a cell for improved gas sealing characteristics, and also to provide a method of manufacturing the fuel cell film/electrode junction hot-pressing the junction with no shrinkage or wrinkle by deformation at the periphery of the polyelectrolyte film. <P>SOLUTION: When hot-pressing a polyelectrolyte film 2 and gas diffusion electrodes 3 and 3, the central part of the electrolyte film 2 is pinched with the gas diffusion electrodes 3 and 3. Pressurizing of a laminate 1 where the outer edge of electrolyte film 2 exposed from the gas diffusion electrode 3 is covered with polymer sheets 4 and 4 is started at such low temperature zone from room temperature to 100°C. After completion of hot-pressing, it is released while cooled down to the temperature of room temperature to 100°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池(PEFC)に用いられる膜・電極接合体(MEA:Membrane Electrode Assembly)を得るためのホットプレス技術に係わり、例えばフッ素樹脂系高分子のようなプロトン伝導性固体高分子膜をガス拡散電極で挟持した構造を有する膜・電極接合体と、このような接合体の製造方法に関するものである。   The present invention relates to a hot press technology for obtaining a membrane electrode assembly (MEA) used in a polymer electrolyte fuel cell (PEFC), for example, proton conductivity such as a fluororesin polymer. The present invention relates to a membrane / electrode assembly having a structure in which a solid polymer membrane is sandwiched between gas diffusion electrodes, and a method for producing such a conjugate.

プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、他のタイプの燃料電池と比較して低温で作動することから、自動車などの移動体用動力源として期待され、その実用も進んでいる。
このような固体高分子形燃料電池においては、プロトン伝導性固体高分子膜を挟んで1対の電極(酸素極と燃料極)に、水素を含有する燃料ガスと酸素を有する酸化ガスとをそれぞれ供給することにより、次式で示される反応が生じ、電気エネルギーが取出される。
カソード反応(酸素極): 2H+2e+(1/2)O → H
アノード反応(燃料極): H → 2H+2e
Solid polymer fuel cells using proton-conducting solid polymer membranes operate at lower temperatures than other types of fuel cells, and are expected to be used as power sources for mobile vehicles such as automobiles. Progressing.
In such a polymer electrolyte fuel cell, a hydrogen-containing fuel gas and an oxygen-containing oxidizing gas are respectively applied to a pair of electrodes (oxygen electrode and fuel electrode) with a proton conductive solid polymer membrane interposed therebetween. By supplying, the reaction represented by the following formula occurs, and electric energy is taken out.
Cathode reaction (oxygen electrode): 2H + + 2e + (1/2) O 2 → H 2 O
Anode reaction (fuel electrode): H 2 → 2H + + 2e

固体高分子形燃料電池に使用されるガス拡散電極は、高分子電解質膜と同種あるいは異種のイオン交換樹脂(高分子電解質)で被覆された触媒担持カーボン微粒子を含有する電極触媒層と、この触媒層に反応ガスを供給すると共に触媒層に発生する電荷を集電するガス拡散層から成り、当該ガス拡散層の電極触媒層の側を高分子電解質膜に対向させた状態で接合することによって膜電極接合体が形成される。なお、ガス拡散層には、一般に、カーボン繊維を用いて作成されたカーボンペーパーや織布、不織布が用いられる。
そして、このような膜電極接合体をガス流路を備えたセパレータ(ガス流路形成部材)を介して多数積層することによって燃料電池が構成される。
A gas diffusion electrode used for a polymer electrolyte fuel cell includes an electrode catalyst layer containing catalyst-supported carbon fine particles coated with an ion exchange resin (polymer electrolyte) of the same type or different type from a polymer electrolyte membrane, and the catalyst. A gas diffusion layer that supplies a reaction gas to the layer and collects the charge generated in the catalyst layer, and is bonded by facing the electrode catalyst layer side of the gas diffusion layer to the polymer electrolyte membrane. An electrode assembly is formed. The gas diffusion layer is generally made of carbon paper, woven fabric, or non-woven fabric made using carbon fibers.
And a fuel cell is comprised by laminating | stacking many such membrane electrode assemblies through the separator (gas flow path formation member) provided with the gas flow path.

電解質膜にガス拡散電極を接合するにはホットプレスが適用され、通常、電解質膜をガス拡散電極で挟持した積層物をホットプレス機によって加圧・加熱を行なうようにしている。このとき、上記ガス拡散電極の電解質膜と接する側には電解質と電極触媒の混合物が塗布されており、加熱によって電解質が溶けて接合剤として働くようになっている。   A hot press is applied to join the gas diffusion electrode to the electrolyte membrane. Usually, a laminate in which the electrolyte membrane is sandwiched between the gas diffusion electrodes is pressed and heated by a hot press machine. At this time, a mixture of the electrolyte and the electrode catalyst is applied to the side of the gas diffusion electrode in contact with the electrolyte membrane, and the electrolyte is melted by heating to act as a bonding agent.

ホットプレスに際しては、加圧・加熱時にガス拡散電極と接していない周縁部分の電解質膜が縮れてしまい、その結果セルとして組み立てる際にガスケットと電解質膜周辺部がうまく接触せず、反応ガスがセル外へリークするという問題がある。
このため、電解質膜のガス拡散電極と接していない周縁部を、例えばカーボンペーパーのような面粗度の大きい平板で両面から機械的に支持することによって、ホットプレスに際して電解質膜を拘束し、当該電解質膜の収縮を防止したり(例えば、特許文献1参照)、同じく周縁部を枠状シートで挟持すると共に、さらに通気孔を有するシート部材と吸水性を備えたペーパーウエスで挟持することによって、ホットプレスの際に電解質膜から蒸発する水分をペーパーウエスに吸水させて水分の偏りをなくし、電解質膜の皺を防止したり(例えば、特許文献2参照)することが提案されている。
特開2000−223134号公報 特開2002−151099号公報
During hot pressing, the electrolyte membrane in the peripheral area that is not in contact with the gas diffusion electrode during pressurization / heating is shrunk, and as a result, when assembling as a cell, the gasket and the periphery of the electrolyte membrane do not come into good contact, and the reaction gas flows into the cell. There is a problem of leaking outside.
For this reason, the electrolyte membrane is restrained during hot pressing by mechanically supporting the peripheral portion of the electrolyte membrane that is not in contact with the gas diffusion electrode with a flat plate having a large surface roughness such as carbon paper, for example. By preventing the electrolyte membrane from shrinking (for example, refer to Patent Document 1), similarly by sandwiching the peripheral portion with a frame-like sheet, and further sandwiching with a sheet member having air holes and a paper waste having water absorption, It has been proposed that moisture evaporated from the electrolyte membrane during hot pressing is absorbed by the paper waste to eliminate the unevenness of the moisture and prevent the electrolyte membrane from wrinkling (see, for example, Patent Document 2).
JP 2000-223134 A JP 2002-151099 A

しかしながら、上記特許文献に記載された技術は、電解質の膨潤及び収縮が比較的小さく、しかも電解質膜が乾燥していてもガス拡散電極の接合が可能なフッ素系電解質膜に適用した場合には、多少の効果が認められなくはないものの、縮れや皺を完全に防止するまでには到らず、必ずしも十分な効果が得られず、特に、上記技術を炭化水素系電解質膜に適用した場合においては、膜が乾燥しているとガス拡散電極がうまく接合しないため、ホットプレス時にある程度電解質膜に水分を与えておく必要があることから、ホットプレス時に電解質膜の露出部を平板で押さえつけたとしても膜の変形を防止することができず、縮れを防止できないという問題点があった。   However, when the technique described in the above-mentioned patent document is applied to a fluorine-based electrolyte membrane in which the electrolyte swells and contracts is relatively small, and the gas diffusion electrode can be bonded even when the electrolyte membrane is dry, Although some effect is not recognized, it does not reach the point of completely preventing the crimp and wrinkle, and the sufficient effect is not necessarily obtained, especially when the above technique is applied to the hydrocarbon electrolyte membrane. Since the gas diffusion electrode does not bond well when the membrane is dry, it is necessary to give water to the electrolyte membrane to some extent during hot pressing, so the exposed portion of the electrolyte membrane is pressed with a flat plate during hot pressing. However, there is a problem that deformation of the film cannot be prevented and shrinkage cannot be prevented.

本発明は、従来の燃料電池用膜・電極接合体のホットプレスにおける上記課題に着目してなされたものであって、その目的とするところは、高分子電解質膜の周縁部におけるガス拡散電極からの露出部分に縮れや皺などがなく、セルに組み立てた際のガスケットとの密着性を増し、ガスシール性を向上させることができる燃料電池用膜・電極接合体と、上記露出部分に変形を発生させることなく接合体をホットプレスすることができる燃料電池用膜・電極接合体の製造方法、さらには、このような膜・電極接合体を用いた固体高分子形燃料電池を提供することにある。   The present invention has been made paying attention to the above-mentioned problems in the hot press of a conventional membrane / electrode assembly for a fuel cell. The object of the present invention is from the gas diffusion electrode in the peripheral portion of the polymer electrolyte membrane. The exposed part of the fuel cell has no shrinkage or wrinkles, and has improved adhesion to the gasket when assembled into a cell, and can improve gas sealability, and the exposed part is deformed. To provide a method for producing a membrane-electrode assembly for a fuel cell that can hot-press the assembly without generating it, and to provide a solid polymer fuel cell using such a membrane-electrode assembly is there.

本発明者は、上記目的を達成するために、膜・電極接合体の構造や材料、ホットプレス条件などについて鋭意検討を重ねた結果、高分子電解質膜の周縁部のガス拡散電極からの露出部分に、適当な高分子材料からなるシートを配設して電解質膜の露出部分を覆うと共に、ホットプレス時の加圧と加熱のタイミングをコントロールすることによって、ホットプレス時の変形を防止することができるようになることを見出し、本発明を完成するに到った。   In order to achieve the above object, the present inventor has conducted extensive studies on the structure and material of the membrane / electrode assembly, hot press conditions, etc., and as a result, the exposed portion of the polymer electrolyte membrane from the gas diffusion electrode at the peripheral portion. In addition, a sheet made of a suitable polymer material is disposed to cover the exposed portion of the electrolyte membrane, and by controlling the pressure and heating timing during hot pressing, deformation during hot pressing can be prevented. The present inventors have found that it is possible to complete the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の燃料電池用膜・電極接合体は、固体高分子電解質膜と、該電解質膜の中央部分においてその両面に接触するガス拡散電極を備えた接合体であって、上記電解質膜の外縁部における上記ガス拡散電極との非接触部分に、例えばPFA(4フッ化エチレン‐パーフルオロアルコキシエチレン共重合体)などの高分子シートを設けた構成としたことを特徴としている。   That is, the present invention is based on the above knowledge, and the membrane / electrode assembly for a fuel cell of the present invention comprises a solid polymer electrolyte membrane and a gas diffusion electrode that is in contact with both surfaces at the central portion of the electrolyte membrane. A polymer sheet such as PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer) is provided in a non-contact portion with the gas diffusion electrode at the outer edge of the electrolyte membrane. It is characterized by having a configuration.

また、本発明の燃料電池用膜・電極接合体の製造方法においては、固体高分子電解質膜とガス拡散電極をホットプレスして上記した本発明の膜・電極接合体を製造するに際して、固体高分子電解質膜をガス拡散電極及び高分子シートで挟持して成る積層体に対する加圧を室温以上100℃以下の温度で開始し、ホットプレスの後、室温以上100℃以下の温度まで冷却した状態で上記積層体に対する加圧を解除するようになすことを特徴としている。   In the method for producing a membrane / electrode assembly for a fuel cell according to the present invention, the solid polymer electrolyte membrane and the gas diffusion electrode are hot pressed to produce the above-described membrane / electrode assembly according to the present invention. Pressurization of a laminate comprising a molecular electrolyte membrane sandwiched between a gas diffusion electrode and a polymer sheet is started at a temperature of room temperature to 100 ° C., and after hot pressing, is cooled to a temperature of room temperature to 100 ° C. It is characterized by releasing the pressure applied to the laminate.

そして、本発明の固体高分子形燃料電池は、本発明の上記膜・電極接合体をセパレータを介して積層したものである。   The polymer electrolyte fuel cell of the present invention is obtained by laminating the membrane-electrode assembly of the present invention via a separator.

本発明の燃料電池用膜・電極接合体においては、固体高分子電解質膜の外縁部分であるガス拡散電極からの露出部分(ガス拡散電極との非接触部分)に、例えばPFAなどから成る高分子シートが配置されているので、当該高分子シートがホットプレス時に電解質膜に密着して、電解質膜からの水分の蒸発を防いで、縮れや皺などの変形を防止することができ、セルに組み立てた際のガスケットとの密着性が上がり、ガスシール性を向上させることができるという優れた効果がもたらされる。   In the fuel cell membrane / electrode assembly of the present invention, a polymer made of, for example, PFA is used as an exposed portion (non-contact portion with the gas diffusion electrode) from the gas diffusion electrode which is an outer edge portion of the solid polymer electrolyte membrane. Since the sheet is placed, the polymer sheet adheres to the electrolyte membrane during hot pressing, prevents evaporation of moisture from the electrolyte membrane, prevents deformation such as crimping and wrinkling, and is assembled into a cell Adhesiveness with the gasket at the time is improved, and an excellent effect that the gas sealing property can be improved is brought about.

また、本発明の燃料電池用膜・電極接合体の製造方法によれば、ホットプレスに際して、固体高分子電解質膜をガス拡散電極及び高分子シートで挟持した積層体の加圧を室温以上100℃以下の温度で開始し、ホットプレスした後、室温以上100℃以下の温度まで冷却した状態で上記加圧を解除するようにしているので、電解質膜から水分が蒸発し易い温度域においては、常に加圧状態となって変形が拘束されることから、縮れや皺などの発生を効果的に防止することができる。   Further, according to the method for producing a membrane / electrode assembly for a fuel cell of the present invention, during hot pressing, the pressure of the laminate in which the solid polymer electrolyte membrane is sandwiched between the gas diffusion electrode and the polymer sheet is increased from room temperature to 100 ° C. Since the above pressurization is released in a state of cooling to a temperature of room temperature to 100 ° C. after hot pressing, starting at the following temperature, in a temperature range where moisture easily evaporates from the electrolyte membrane, always Since deformation is constrained in a pressurized state, it is possible to effectively prevent the occurrence of shrinkage and wrinkles.

そして、本発明の固体高分子形燃料電池においては、本発明の上記膜電極接合体を使用し、当該膜・電極接合体の少なくとも1個をセパレータで挟持して成るものであるから、セパレータのガスケットとの密着性が向上し、ガスシール性に優れた高性能な燃料電池とすることができる。   In the polymer electrolyte fuel cell of the present invention, the membrane electrode assembly of the present invention is used, and at least one of the membrane / electrode assemblies is sandwiched between separators. Adhesiveness with the gasket is improved, and a high-performance fuel cell excellent in gas sealability can be obtained.

以下、本発明の燃料電池用膜・電極触接合体と、当該接合体の製造方法について、さらに詳細に説明する。   Hereinafter, the membrane / electrode contact assembly for fuel cells of the present invention and the method for producing the assembly will be described in more detail.

本発明の燃料電池用膜・電極接合体は、固体高分子電解質膜を該電解質膜よりも小さい寸法のガス拡散電極によって挟持すると共に、当該電解質膜の外縁部、すなわちガス拡散電極との非接触部分を高分子シートによって覆ったものであって、上記高分子シートの役割は、ホットプレス時に電解質膜に密着して、電解質膜が縮むのを防止している。   The fuel cell membrane / electrode assembly of the present invention sandwiches a solid polymer electrolyte membrane with a gas diffusion electrode having a smaller size than the electrolyte membrane, and does not contact the outer edge of the electrolyte membrane, that is, the gas diffusion electrode. The portion is covered with a polymer sheet, and the role of the polymer sheet is to adhere to the electrolyte membrane during hot pressing and prevent the electrolyte membrane from shrinking.

本発明において、固体高分子電解質膜としては、Nafion(登録商標)に代表されるフッ素系電解質材料や、PI(ポリイミド)、PEEK(ポリエーテルエーテルケトン)、PES(ポリエーテルスルフォン)、PPBP(ポリフェノキシベンゾイルフェニレン)のような炭化水素電解質材料をスルフォン化したものを使用することができる。   In the present invention, as the solid polymer electrolyte membrane, fluorine-based electrolyte materials typified by Nafion (registered trademark), PI (polyimide), PEEK (polyether ether ketone), PES (polyether sulfone), PPBP (polyethylene) are used. A sulfonated hydrocarbon electrolyte material such as phenoxybenzoylphenylene can be used.

また、上記高分子シートとしては、ホットプレス時の高温・高圧条件下で溶解・分解したり破れたりしないことが要求され、例えばPTFE(ポリテトラフルオロエチレン)やPFA(4フッ化エチレン‐パーフルオロアルコキシエチレン共重合体)といったフッ素系高分子材料や、PI(ポリイミド)、PEEK(ポリエーテルエーテルケトン)、ポリフェニレンスルフィド(PPS)、PBI(ポリベンズイミダゾール)、PBO(ポリベンズオキサゾール)、PPBP(ポリフェノキシベンゾイルフェニレン)などのエンジニアリングプラスチックを使用することが好ましく、これらの中では、柔軟性が高く、破損し難いことから、とくにPFAを使用することが望ましい。   Further, the polymer sheet is required not to be dissolved / decomposed or torn under high temperature and high pressure conditions during hot pressing. For example, PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene-perfluoro) Fluoropolymer materials such as alkoxyethylene copolymers), PI (polyimide), PEEK (polyetheretherketone), polyphenylene sulfide (PPS), PBI (polybenzimidazole), PBO (polybenzoxazole), PPBP (poly) It is preferable to use engineering plastics such as phenoxybenzoylphenylene. Among them, PFA is particularly preferable because of its high flexibility and resistance to breakage.

このような膜・電極接合体を製造するには、ホットプレスに際して、図1に示すように、固体高分子電解質膜とガス拡散電極と高分子シートとを上記のように重ねた積層体、すなわち電解質膜2の中央部分をガス拡散電極3,3で挟持し、さらにガス拡散電極3から露出した電解質膜2の外縁部分を上記のような高分子シート4,4で覆うことによって積層体1とし、この積層体1に対して、ポリテトラフルオロエチレン(PTFE)シート6及び金属板7を挟んだ状態で、室温以上100℃以下の比較的低温の状態で加圧を開始し、ホットプレスの終了後、室温以上100℃以下の温度まで冷却した状態で圧力を解除するようになす。なお、本発明において「室温」とは、15℃から30℃程度を意味し、したがって本発明方法における加圧の開始及び終了温度は、15〜100℃の範囲ということになる。   In order to manufacture such a membrane-electrode assembly, during hot pressing, as shown in FIG. 1, a laminate in which a solid polymer electrolyte membrane, a gas diffusion electrode, and a polymer sheet are stacked as described above, that is, The center portion of the electrolyte membrane 2 is sandwiched between the gas diffusion electrodes 3 and 3, and the outer edge portion of the electrolyte membrane 2 exposed from the gas diffusion electrode 3 is covered with the polymer sheets 4 and 4 as described above to form the laminate 1. The laminate 1 is pressed in a relatively low temperature state between room temperature and 100 ° C. with the polytetrafluoroethylene (PTFE) sheet 6 and the metal plate 7 sandwiched therebetween, and the hot press is completed. Thereafter, the pressure is released in a state of cooling to a temperature of room temperature to 100 ° C. In the present invention, “room temperature” means about 15 ° C. to 30 ° C. Therefore, the pressurization start and end temperatures in the method of the present invention are in the range of 15 to 100 ° C.

このように、100℃を超える温度領域に加熱される前の状態で加圧を開始し、終了時においても100℃を超える温度領域では加圧状態を維持するのは、電解質膜からの水分の放散が大きい温度領域で圧を抜いてしまうことによって、電解質膜の収縮が促進されるのを防止するためである。言い換えると、電解質膜から水分が放散され易い温度領域では、電解質膜が常に加圧状態にあって、電解質膜の変形が拘束されているので、水分が蒸発したとしてもその変形を最小限に抑えることができる。   Thus, pressurization is started in a state before being heated to a temperature region exceeding 100 ° C., and the pressurized state is maintained in a temperature region exceeding 100 ° C. even at the end. This is to prevent the contraction of the electrolyte membrane from being promoted by releasing the pressure in a temperature range where the diffusion is large. In other words, in a temperature range where moisture is easily dissipated from the electrolyte membrane, the electrolyte membrane is always in a pressurized state, and deformation of the electrolyte membrane is restrained, so even if moisture evaporates, the deformation is minimized. be able to.

このときのホットプレス条件としては、プレス温度が低過ぎると、ガス拡散電極に接合材(バインダ)として塗布されているフッ素系電解質が溶けず、うまく接合することができない。また、逆に温度が高過ぎると、電解質膜を構成する高分子材料の分解を招くことになる。但し、バインダとして他の材料(例えば炭化水素系電解質)を使用した場合、フッ素系電解質とガラス転移点が異なるためプレス時の最低温度が変わる可能性がある。
また、炭化水素系電解質のガラス転移点も材料によって異なるので、最高温度も一概に決められないが、概ね120〜250℃、さらに好ましくは120〜180℃の温度範囲とすることが望ましい。
As hot press conditions at this time, if the press temperature is too low, the fluorine-based electrolyte applied as a bonding material (binder) to the gas diffusion electrode does not melt and cannot be bonded well. On the other hand, when the temperature is too high, the polymer material constituting the electrolyte membrane is decomposed. However, when another material (for example, a hydrocarbon electrolyte) is used as the binder, the glass transition point is different from that of the fluorine electrolyte, so that the minimum temperature during pressing may be changed.
Further, since the glass transition point of the hydrocarbon-based electrolyte also varies depending on the material, the maximum temperature cannot be determined unconditionally, but it is desirable that the temperature range is approximately 120 to 250 ° C, more preferably 120 to 180 ° C.

一方、プレス圧力については、低過ぎると、ガス拡散電極を接合することができず、逆に高過ぎると接合はできるものの、電解質膜を傷つけてしまい、反応ガスのクロスリーク、すなわち、燃料ガスである水素ガスと、酸化ガスである空気や酸素ガスとが電解質膜で十分に遮断されず、これらのガスが混じってしまう現象を引き起こすことになるため、2〜10MPaの範囲とすることが望ましい   On the other hand, if the press pressure is too low, the gas diffusion electrode cannot be bonded. Conversely, if the pressure is too high, bonding can be performed, but the electrolyte membrane is damaged, and cross-leakage of the reaction gas, that is, fuel gas. Since a certain hydrogen gas and air or oxygen gas, which is an oxidizing gas, are not sufficiently blocked by the electrolyte membrane and cause a phenomenon in which these gases are mixed, it is desirable to set the pressure within the range of 2 to 10 MPa.

なお、図1においては、図示しないプレス機と積層体1の間に、PTFEシート6及び金属板7を挟むようにしているが、このPTFEシート6は、プレス時におけるガス拡散電極(通常、カーボンペーパー)の挫屈を防止するためであり、金属板7は上記PTFEシート6とプレス機の加圧盤が癒着するのを防止することを目的としている。   In FIG. 1, a PTFE sheet 6 and a metal plate 7 are sandwiched between a press machine (not shown) and the laminate 1, and this PTFE sheet 6 is a gas diffusion electrode (usually carbon paper) at the time of pressing. The purpose of the metal plate 7 is to prevent the PTFE sheet 6 and the pressure plate of the press from adhering to each other.

また、積層体1のホットプレスに際しては、図2に示すように、上記高分子シート4,4の上に弾性体8を重ねた状態でホットプレスすることが望ましい。
これによって、電解質膜2のガス拡散電極3と接していない部分を弾性体8によって機械的に支持することができるようになり、ホットプレス時の電解質膜2の縮れを最小限に抑えることができるようになる。
Further, when the laminated body 1 is hot pressed, it is desirable to hot press the elastic body 8 on the polymer sheets 4 and 4 as shown in FIG.
As a result, the portion of the electrolyte membrane 2 that is not in contact with the gas diffusion electrode 3 can be mechanically supported by the elastic body 8, and the crimping of the electrolyte membrane 2 during hot pressing can be minimized. It becomes like this.

このとき、弾性体8の厚さ及び弾性率がガス拡散電極3と極力同じであることが好ましい。すなわち、弾性体8の弾性率が高過ぎたり、厚さが大き過ぎたりすると、ホットプレスの圧力が弾性体8に大きく掛かるようになる結果、ガス拡散電極3の方に掛からなくなくなり、電解質膜2とガス拡散電極3,3とを所定の強度で接合することが難しくなる。一方、弾性体8の弾性率が低過ぎたり、厚さが薄過ぎたりすると、電解質膜を押さえつける力が弱くなり、弾性体8を挟む効果が小さなものとなる。
したがって、弾性体8としてはガス拡散電極3と同じもの、例えばガス拡散電極3,3としてカーボンペーパーを用いた場合は、弾性体8にも同じ厚さのカーボンペーパーを用いるのがさらに望ましいことになる。
At this time, it is preferable that the thickness and the elastic modulus of the elastic body 8 are the same as those of the gas diffusion electrode 3. That is, if the elastic modulus of the elastic body 8 is too high or the thickness is too large, the pressure of the hot press is applied to the elastic body 8 so that it does not apply to the gas diffusion electrode 3 and the electrolyte membrane. It becomes difficult to join 2 and the gas diffusion electrodes 3 and 3 with a predetermined strength. On the other hand, if the elastic modulus of the elastic body 8 is too low or the thickness is too thin, the force for pressing the electrolyte membrane becomes weak, and the effect of sandwiching the elastic body 8 becomes small.
Therefore, when the elastic body 8 is the same as the gas diffusion electrode 3, for example, when carbon paper is used as the gas diffusion electrodes 3, 3, it is more desirable to use the same thickness of carbon paper for the elastic body 8. Become.

そして、本発明の製造方法においては、ホットプレス前の固体高分子電解質膜を所定の雰囲気に調整した恒温槽内に保管することが望ましく、特に炭化水素系電解質の場合、これによってガス拡散電極との接合性がよくなり、電解質膜の縮れも防止することができるようになる。
なお、一般的な炭化水素系電解質膜の場合には、例えば相対湿度が40%以上、より好ましくは60〜80%の室温雰囲気に、6時間程度放置することが好ましいが、電解質膜の種類によっては上記条件外の方が良い結果が得られることもあるので、このような雰囲気条件のみに限定されるわけではない。
In the production method of the present invention, it is desirable to store the solid polymer electrolyte membrane before hot pressing in a thermostatic chamber adjusted to a predetermined atmosphere, particularly in the case of a hydrocarbon-based electrolyte, thereby Therefore, it is possible to prevent the electrolyte membrane from shrinking.
In the case of a general hydrocarbon-based electrolyte membrane, it is preferable to leave it in a room temperature atmosphere with a relative humidity of 40% or more, more preferably 60 to 80%, for about 6 hours, depending on the type of the electrolyte membrane. In some cases, better results may be obtained if the above conditions are not satisfied. Therefore, the present invention is not limited to such atmospheric conditions.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be specifically described based on examples. Needless to say, the present invention is not limited to these examples.

(実施例1)
まず、固体高分子電解質膜2として炭化水素系電解質であるPES(ポリエーテルスルフォン)をスルフォン化したものを使用し、これを70mm×70mmの正方形に切断した。
一方、Pt(白金)微粒子を担持させたカーボンブラック粉末から成る電極触媒と高分子電解質であるNafionを厚さ300μmのカーボンペーパー(弾性率:20MPa)に塗布して乾燥させたのち、50mm×50mmに切断して、ガス拡散電極3とした。
Example 1
First, as the solid polymer electrolyte membrane 2, one obtained by sulfonating PES (polyether sulfone), which is a hydrocarbon-based electrolyte, was cut into a 70 mm × 70 mm square.
On the other hand, an electrode catalyst made of carbon black powder supporting Pt (platinum) fine particles and a polymer electrolyte Nafion are applied to carbon paper (elastic modulus: 20 MPa) having a thickness of 300 μm and dried, and then 50 mm × 50 mm. The gas diffusion electrode 3 was cut.

次に、上記サイズに切断した電解質膜2の中央部をガス拡散電極3,3によって挟持すると共に、その外周部の両面に、PFA(4フッ化エチレン‐パーフルオロアルコキシエチレン共重合体)から成り、上記電解質膜2及びガス拡散電極3の大きさに合わせて枠状に切断した、厚さ25μmの高分子シート4,4を重ね、図1に示すような積層体1を得た。   Next, the central part of the electrolyte membrane 2 cut to the above size is sandwiched between the gas diffusion electrodes 3 and 3, and the outer peripheral part is made of PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer). Then, polymer sheets 4 and 4 having a thickness of 25 μm, which were cut into a frame shape according to the size of the electrolyte membrane 2 and the gas diffusion electrode 3, were stacked to obtain a laminate 1 as shown in FIG.

そして、この積層体1をホットプレスするに際しては、当該積層体1を図示しないプレス機にPTFEシート6及び金属板7と共にセットし、加熱を開始する前、すなわち室温(20℃)の状態で8MPaに加圧し、130℃に昇温後3分間保持することによってこれらを接合した後、100℃まで冷却されるのを待って、加圧状態を解除し、図に示すような膜・電極接合体を得た。   When the laminated body 1 is hot-pressed, the laminated body 1 is set together with the PTFE sheet 6 and the metal plate 7 in a pressing machine (not shown), and before starting heating, that is, 8 MPa in a room temperature (20 ° C.) state. After being heated to 130 ° C. and held for 3 minutes, these are joined, and after waiting for cooling to 100 ° C., the pressurized state is released, and a membrane / electrode assembly as shown in the figure Got.

そして、このようにして得られた膜・電極接合体の縮みや皺の発生を観察すると共に、当該接合体をガス流路を備えた図示しないセパレータ及び集電体で挟み、固体高分子形燃料電池の単セルとした。   The membrane / electrode assembly thus obtained is observed for shrinkage and generation of wrinkles, and the assembly is sandwiched between a separator (not shown) having a gas flow path and a current collector, and a solid polymer fuel A single cell of the battery was used.

次いで、この単セルの性能を評価するため、1A/cmにおける出力電圧を計測した。これらの結果を表1に示す。 Subsequently, in order to evaluate the performance of this single cell, the output voltage at 1 A / cm 2 was measured. These results are shown in Table 1.

(実施例2)
高分子シート4の材料をPI(ポリイミド)に変えたこと以外は、上記実施例1と同様の操作を繰返し、本例の膜・電極接合体を得た。
得られた接合体について、縮みや皺の発生を観察すると共に、同様に出力電圧を計測した。これらの結果を表1に併せて示す。
(Example 2)
Except for changing the material of the polymer sheet 4 to PI (polyimide), the same operation as in Example 1 was repeated to obtain a membrane / electrode assembly of this example.
About the obtained joined body, while shrinkage | contraction and wrinkle generation | occurrence | production were observed, the output voltage was measured similarly. These results are also shown in Table 1.

(実施例3)
ホットプレスにおける加圧開始温度を130℃、加圧解除温度を130℃としたことを除いて、上記実施例1と同様の操作を繰返し、本例の膜・電極接合体を得た。
得られた接合体について、縮みや皺の発生を観察すると共に、同様に出力電圧を計測した。これらの結果を表1に併せて示す。
(Example 3)
The same operation as in Example 1 was repeated except that the pressurization start temperature in hot pressing was 130 ° C. and the pressurization release temperature was 130 ° C., to obtain a membrane / electrode assembly of this example.
About the obtained joined body, while shrinkage | contraction and wrinkle generation | occurrence | production were observed, the output voltage was measured similarly. These results are also shown in Table 1.

(実施例4)
上記実施例1で作成した積層体1の高分子シート4,4の上に、図2に示したように、ガス拡散電極3に用いたものと同じ材質及び厚さのカーボンペーパーから成る弾性体8,8をそれぞれ載置した状態で、上記実施例1と同じ条件のもとにホットプレスすることによって、本例の膜・電極接合体を得た。
得られた接合体について、縮みや皺の発生を観察すると共に、同様に出力電圧を計測した。これらの結果を表1に併せて示す。
Example 4
An elastic body made of carbon paper having the same material and thickness as those used for the gas diffusion electrode 3 on the polymer sheets 4 and 4 of the laminate 1 prepared in Example 1 as shown in FIG. The membrane / electrode assembly of this example was obtained by hot pressing under the same conditions as in Example 1 with 8 and 8 mounted.
About the obtained joined body, while shrinkage | contraction and wrinkle generation | occurrence | production were observed, the output voltage was measured similarly. These results are also shown in Table 1.

(実施例5)
上記実施例1と同様に積層体1を作成するに先立って、固体高分子電解質膜2を相対湿度70%の室温雰囲気に調整した恒温槽内に6時間保管したこと以外は、上記実施例1と同様の操作を繰返し、本例の膜・電極接合体を得た。
得られた接合体について、縮みや皺の発生を観察すると共に、同様に出力電圧を計測した。これらの結果を表1に併せて示す。
(Example 5)
Prior to producing the laminate 1 in the same manner as in Example 1 above, Example 1 except that the solid polymer electrolyte membrane 2 was stored in a thermostatic chamber adjusted to a room temperature atmosphere with a relative humidity of 70% for 6 hours. The same operation was repeated to obtain a membrane / electrode assembly of this example.
About the obtained joined body, while shrinkage | contraction and wrinkle generation | occurrence | production were observed, the output voltage was measured similarly. These results are also shown in Table 1.

(比較例1)
高分子シート4を使用することなく、固体高分子電解質膜2とガス拡散電極3から成る積層体をホットプレスしたことを除いて、上記実施例1と同様の操作を繰返し、本例の膜・電極接合体を得た。
得られた接合体について、縮みや皺の発生を観察すると共に、同様に出力電圧を計測した。これらの結果を表1に併せて示す。
(Comparative Example 1)
The same operation as in Example 1 was repeated except that the laminate composed of the solid polymer electrolyte membrane 2 and the gas diffusion electrode 3 was hot-pressed without using the polymer sheet 4, and the membrane of this example An electrode assembly was obtained.
About the obtained joined body, while shrinkage | contraction and wrinkle generation | occurrence | production were observed, the output voltage was measured similarly. These results are also shown in Table 1.

Figure 2006066160
Figure 2006066160

表1の結果から明らかなように、電解質膜2の外縁部のガス拡散電極3からの露出部分を覆うことなく、そのままの状態でホットプレスした比較例の膜・電極接合体においては、当該部分に変形による皺や縮みが発生するのに対し、上記露出部分を高分子シート4によってカバーした本発明の膜・電極接合体においては、皺や縮みの発生を効果的に防止することができ、ガスシール性が向上して、出力性能に優れた固体高分子形燃料電池を得ることができることが確認された。   As is apparent from the results in Table 1, in the membrane / electrode assembly of the comparative example hot-pressed as it is without covering the exposed portion from the gas diffusion electrode 3 at the outer edge of the electrolyte membrane 2, the portion In the membrane / electrode assembly of the present invention, in which the exposed portion is covered with the polymer sheet 4, the occurrence of wrinkles and shrinkage can be effectively prevented. It was confirmed that a polymer electrolyte fuel cell with improved gas sealing performance and excellent output performance can be obtained.

本発明の燃料電池用膜・電極接合体の構造及びその製造要領を説明する概略断面図である。It is a schematic sectional drawing explaining the structure of the membrane electrode assembly for fuel cells of this invention, and its manufacture point. 本発明による燃料電池用膜・電極接合体の製造方法の好適形態を示す概略断面図である。It is a schematic sectional drawing which shows the suitable form of the manufacturing method of the membrane electrode assembly for fuel cells by this invention.

符号の説明Explanation of symbols

1 積層体(燃料電池用膜・電極接合体)
2 固体高分子電解質膜
3 ガス拡散層
4 高分子シート
8 弾性体
1 Laminate (Fuel Cell Membrane / Electrode Assembly)
2 Solid polymer electrolyte membrane 3 Gas diffusion layer
4 Polymer sheet 8 Elastic body

Claims (9)

固体高分子電解質膜と、該電解質膜の中央部分においてその両面に接触するガス拡散電極を備え、上記電解質膜の外縁部であって上記ガス拡散電極との非接触部分に高分子シートが設けてあることを特徴とする燃料電池用膜・電極接合体。   A solid polymer electrolyte membrane and a gas diffusion electrode in contact with both surfaces of the electrolyte membrane at a central portion thereof, and a polymer sheet is provided at an outer edge portion of the electrolyte membrane and in a non-contact portion with the gas diffusion electrode. A membrane / electrode assembly for a fuel cell. 上記高分子シートがポリテトラフルオロエチレン、4フッ化エチレン‐パーフルオロアルコキシエチレン共重合体、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリベンズオキサゾール及びポリフェノキシベンゾイルフェニレンから成る群から選ばれた材料から成るものであることを特徴とする請求項1に記載の燃料電池用膜・電極接合体。   The polymer sheet is selected from the group consisting of polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polyimide, polyetheretherketone, polyphenylene sulfide, polybenzimidazole, polybenzoxazole and polyphenoxybenzoylphenylene. 2. The membrane-electrode assembly for a fuel cell according to claim 1, wherein the membrane-electrode assembly is made of the above-described material. 請求項1又は2に記載の膜・電極接合体を製造する方法であって、固体高分子電解質膜とガス拡散電極をホットプレスするに際して、固体高分子電解質膜をガス拡散電極及び高分子シートで挟持して成る積層体に対する加圧を室温以上100℃以下の温度で開始し、ホットプレス後、室温以上100℃以下の温度まで冷却した状態で上記積層体に対する加圧を解除することを特徴とする燃料電池用膜・電極接合体の製造方法。   A method for producing a membrane / electrode assembly according to claim 1 or 2, wherein when the solid polymer electrolyte membrane and the gas diffusion electrode are hot-pressed, the solid polymer electrolyte membrane is formed with a gas diffusion electrode and a polymer sheet. Pressurization to the laminated body sandwiched is started at a temperature of room temperature to 100 ° C, and after hot pressing, the pressure to the laminated body is released in a state of cooling to a temperature of room temperature to 100 ° C. A method for producing a membrane-electrode assembly for a fuel cell. ホットプレス時の圧力が2〜10MPa、温度が120〜250℃であることを特徴とする請求項3に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane-electrode assembly for a fuel cell according to claim 3, wherein the pressure during hot pressing is 2 to 10 MPa and the temperature is 120 to 250 ° C. 上記ガス拡散電極と実質的に同じ厚さと弾性率を有する弾性体を上記高分子シートに重ねた状態でホットプレスすることを特徴とする請求項3又は4に記載の燃料電池用膜・電極接合体の製造方法。   5. The fuel cell membrane / electrode joint according to claim 3 or 4, wherein an elastic body having substantially the same thickness and elastic modulus as the gas diffusion electrode is hot-pressed in a state of being superimposed on the polymer sheet. Body manufacturing method. 上記弾性体がガス拡散電極と同じ材質であることを特徴とする請求項5に記載の燃料電池用膜・電極接合体の製造方法。   6. The method for producing a membrane / electrode assembly for a fuel cell according to claim 5, wherein the elastic body is made of the same material as that of the gas diffusion electrode. ホットプレス前に、上記電解質膜を湿度管理雰囲気下に保存することを特徴とする請求項3〜6のいずれか1つの項に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane / electrode assembly for a fuel cell according to any one of claims 3 to 6, wherein the electrolyte membrane is stored in a humidity control atmosphere before hot pressing. 上記雰囲気の温度が室温、相対湿度が40%以上であることを特徴とする請求項7に記載の燃料電池用膜・電極接合体の製造方法。   The method for producing a membrane-electrode assembly for a fuel cell according to claim 7, wherein the temperature of the atmosphere is room temperature and the relative humidity is 40% or more. 請求項1又は2に記載の燃料電池用膜・電極接合体をセパレータで挟持して成ることを特徴とする固体高分子形燃料電池。   3. A polymer electrolyte fuel cell comprising the fuel cell membrane / electrode assembly according to claim 1 or 2 sandwiched between separators.
JP2004246052A 2004-08-26 2004-08-26 Fuel cell film/electrode junction and manufacturing method thereof Pending JP2006066160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246052A JP2006066160A (en) 2004-08-26 2004-08-26 Fuel cell film/electrode junction and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246052A JP2006066160A (en) 2004-08-26 2004-08-26 Fuel cell film/electrode junction and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006066160A true JP2006066160A (en) 2006-03-09

Family

ID=36112476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246052A Pending JP2006066160A (en) 2004-08-26 2004-08-26 Fuel cell film/electrode junction and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006066160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243399A (en) * 2007-03-26 2008-10-09 Nok Corp Manufacturing method of polymer electrolyte membrane-electrode assembly
JP2009170387A (en) * 2008-01-21 2009-07-30 Toyota Motor Corp Manufacturing method of membrane-electrode assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243399A (en) * 2007-03-26 2008-10-09 Nok Corp Manufacturing method of polymer electrolyte membrane-electrode assembly
JP2009170387A (en) * 2008-01-21 2009-07-30 Toyota Motor Corp Manufacturing method of membrane-electrode assembly

Similar Documents

Publication Publication Date Title
JP5363335B2 (en) Gas diffusion layer with built-in gasket
US8512907B2 (en) Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP2007035621A (en) Fuel cell system for high temperatures
JP2006339022A (en) Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
KR100599716B1 (en) Fuel cell and method for preparating the same
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP2003282088A (en) Polymerelectrolyte type fuel cell and production process thereof
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
US8057954B2 (en) Membrane-electrode assembly including guard gasket
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
KR102169843B1 (en) Method of manufacturing membrane electrode assembly and laminate
JP2004119065A (en) Manufacturing method of membrane electrode jointed assembly of solid polymer fuel cell
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP5836060B2 (en) Manufacturing method of fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP2010003470A (en) Fuel cell
JP2005085594A (en) Solid polymer electrolyte type fuel cell and manufacturing method of the same
JP4163029B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP5387059B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
KR20190037878A (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP2006066160A (en) Fuel cell film/electrode junction and manufacturing method thereof
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP5993987B2 (en) Manufacturing method of fuel cell