JP5256594B2 - Iron core transformer and method for manufacturing the same - Google Patents

Iron core transformer and method for manufacturing the same Download PDF

Info

Publication number
JP5256594B2
JP5256594B2 JP2006235912A JP2006235912A JP5256594B2 JP 5256594 B2 JP5256594 B2 JP 5256594B2 JP 2006235912 A JP2006235912 A JP 2006235912A JP 2006235912 A JP2006235912 A JP 2006235912A JP 5256594 B2 JP5256594 B2 JP 5256594B2
Authority
JP
Japan
Prior art keywords
groove
junction
rolling
iron loss
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006235912A
Other languages
Japanese (ja)
Other versions
JP2008060353A (en
Inventor
匡 中西
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006235912A priority Critical patent/JP5256594B2/en
Publication of JP2008060353A publication Critical patent/JP2008060353A/en
Application granted granted Critical
Publication of JP5256594B2 publication Critical patent/JP5256594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、主に電力用変圧器として使用される積鉄心変圧器ならびにその製造方法に関し、特に実機における鉄損特性の向上を図ろうとするものである。   The present invention relates to a product core transformer used mainly as a power transformer and a method for manufacturing the same, and particularly to improve iron loss characteristics in an actual machine.

Siを含有し、かつ結晶方位が(110)[001]方位や(100)[001]方位に配向した方向性電磁鋼板は、優れた磁気特性を有することから、特に電力用変圧器の鉄心材料として用いられている。電力用変圧器としては、その鉄心構造によって積鉄心変圧器と巻鉄心変圧器とに大別される。積鉄心変圧器とは、所望の形状に切断した鋼板を積層することによって鉄心を形成するものである。一方、巻鉄心変圧器とは、所望の幅にスリットした鋼帯を巻き重ねることにより鉄心を形成するものである。大容量用の変圧器としては、現在、専ら積鉄心変圧器が使用されている。
このような電力用変圧器に要求される特性の中で、特に重要なのは変圧器鉄損が小さいことである。この変圧器鉄損とは、変圧器鉄心が励磁された時に生じるエネルギー損失であり、できるだけ低減することが必要とされる。
A grain-oriented electrical steel sheet containing Si and having a crystal orientation oriented in the (110) [001] orientation or the (100) [001] orientation has excellent magnetic properties. It is used as. Power transformers are roughly classified into product core transformers and wound core transformers according to their core structure. A laminated iron core transformer forms an iron core by laminating steel plates cut into a desired shape. On the other hand, a wound iron core transformer forms an iron core by winding a steel strip slit to a desired width. Currently, bulk iron core transformers are exclusively used as transformers for large capacity.
Among the characteristics required for such a power transformer, it is particularly important that the transformer iron loss is small. The transformer iron loss is energy loss that occurs when the transformer core is excited, and it is necessary to reduce it as much as possible.

したがって、鉄心の素材である方向性電磁鋼板に要求される特性としても、鉄損値が低いことが重要である。また、変圧器の励磁電流を少なくするため、方向性電磁鋼板は磁束密度が高いことも必要とされる。磁束密度の高い方向性電磁鋼板はヒステリシス損も低い場合が多く、鉄損特性上も優れていることが多い。このように変圧器鉄損を小さくするためには、一般には鉄心の素材である方向性電磁鋼板の鉄損を小さくすれば良いと考えられている。実際に、巻鉄心変圧器においては素材鉄損と変圧器鉄損がほぼ一致することから、素材の鉄損を小さくすることによって変圧器鉄損を小さくすることができる。
しかしながら、積鉄心変圧器、特に3脚または5脚を有する積鉄心変圧器では、素材鉄損と変圧器鉄損とが一定の対応関係とならず、このため素材鉄損が小さいからといって必ずしも変圧器鉄損が小さくなるとは限らない。
素材鉄損の測定法(エプスタイン試験:JIS C2550)における磁束は圧延方向の正弦波であり、巻鉄心変圧器における磁束は、ほぼ素材鉄損測定時と同様な磁束状態となるため、素材鉄損と変圧器鉄損がほぼ一致する。一方、積鉄心変圧器において、磁束は回転したり歪んだり、また圧延方向以外にも流れたりするため、磁束状態が素材鉄損測定時と異なってしまう。この現象は、これまでの研究により、三相積鉄心変圧器の場合、図1に示す斜線部分のT接合部1で最も大きいことが判っている。すなわち、T接合部以外2では、磁束はほとんど圧延方向に流れるので鉄損の大きな増大は招かないが、T接合部1では磁束は不可避的に圧延方向以外の方向へも流れざるを得ないため、鉄損の増大を招くわけである。また、T接合部では回転磁束を生じることが知られており、この回転鉄損の値は通常の交番鉄損の2〜3倍にも達するため、変圧器鉄損を一層劣化させる。
さらに、一般に、磁束密度の高い方向性電磁鋼板ほど圧延方向の鉄損には優れるものの、圧延方向以外の方向の鉄損は高く、また回転鉄損の値も高くなる傾向がある。従って、磁束密度の高い方向性電磁鋼板を用いて積鉄心変圧器を製造した場合、素材である方向性電磁鋼板の良好な鉄損特性が積鉄心変圧器の鉄損に反映されない場合が多い。これは、折角の良好な材料特性が変圧器の実機特性に活かせないことを意味し、問題となっている。
Therefore, it is important that the iron loss value is low as a characteristic required for the grain-oriented electrical steel sheet which is a material of the iron core. In order to reduce the exciting current of the transformer, the grain-oriented electrical steel sheet is also required to have a high magnetic flux density. A grain-oriented electrical steel sheet having a high magnetic flux density often has a low hysteresis loss and is often excellent in iron loss characteristics. In order to reduce the transformer iron loss in this way, it is generally considered that the iron loss of the grain-oriented electrical steel sheet, which is the material of the iron core, should be reduced. Actually, in the wound core transformer, the material iron loss and the transformer iron loss substantially coincide with each other. Therefore, the transformer iron loss can be reduced by reducing the iron loss of the material.
However, in a core iron transformer, especially a core iron transformer having three or five legs, the material iron loss and the transformer iron loss do not have a constant correspondence, and therefore the material iron loss is small. The transformer iron loss is not necessarily reduced.
The magnetic flux in the material iron loss measurement method (Epstein test: JIS C2550) is a sine wave in the rolling direction, and the magnetic flux in the wound core transformer is almost the same as when measuring the material iron loss. And transformer iron loss are almost the same. On the other hand, in the iron core transformer, the magnetic flux rotates or is distorted and flows in directions other than the rolling direction, so that the magnetic flux state is different from that at the time of measuring the material iron loss. This phenomenon is known to be the largest in the T-junction 1 in the shaded area shown in FIG. That is, since the magnetic flux almost flows in the rolling direction at 2 other than the T-joined portion, the iron loss is not greatly increased. However, at the T-joined portion 1, the magnetic flux inevitably flows in a direction other than the rolling direction. This leads to an increase in iron loss. Further, it is known that a rotating magnetic flux is generated at the T junction, and the value of the rotating iron loss reaches 2 to 3 times the normal alternating iron loss, which further deteriorates the transformer iron loss.
Furthermore, in general, the grain-oriented electrical steel sheet having a higher magnetic flux density is superior in iron loss in the rolling direction, but the iron loss in directions other than the rolling direction is high, and the value of rotational iron loss tends to be high. Therefore, when a laminated iron core transformer is manufactured using a directional electromagnetic steel sheet having a high magnetic flux density, the good iron loss characteristics of the directional electromagnetic steel sheet as the material are often not reflected in the iron loss of the laminated iron core transformer. This is a problem because it means that the material characteristics with good folding angle cannot be utilized for the actual characteristics of the transformer.

以上のような現状に対して、従来から、三相積鉄心変圧器のT接合部の鉄損を改善することによって積鉄心変圧器鉄損の低減を図ろうとする試みが種々なされている。
例えば、特許文献1には、三相積鉄心変圧器の回転磁束を生ずる部分にレーザービームを照射する方法が開示されている。この方法は、三相積鉄心変圧器のT接合部分の鋼板に、その圧延方向と平行にレーザービームを照射することによって、圧延方向と直角な方向の鉄損を改善しようとするものである。しかし、変圧器鉄損の改善率は3%強にすぎない。
特許文献2には、T接合部には二方向性電磁鋼板を配置し、それ以外の部分には一方向性電磁鋼板を配置する方法が開示されている。しかしながら特許文献2に記載の方法は、鉄心素材として二方向性電磁鋼板と一方向性電磁鋼板を必要とするため材料管理が煩雑になることに加え、二方向性電磁鋼板の製造が困難なことから、工業的に実用化されていない。
In the past, various attempts have been made to reduce the core loss of the core transformer by improving the core loss of the T-junction of the three-phase core transformer.
For example, Patent Document 1 discloses a method of irradiating a laser beam to a portion that generates a rotating magnetic flux of a three-phase core transformer. This method is intended to improve the iron loss in the direction perpendicular to the rolling direction by irradiating the steel plate at the T-junction portion of the three-phase core transformer with a laser beam parallel to the rolling direction. However, the improvement rate of transformer iron loss is only over 3%.
Patent Document 2 discloses a method in which a bi-directional electrical steel sheet is disposed at a T-junction portion and a unidirectional electrical steel sheet is disposed at other portions. However, the method described in Patent Document 2 requires a bi-directional electrical steel sheet and a unidirectional electrical steel sheet as the iron core material, so that the material management becomes complicated and it is difficult to manufacture the bi-directional electrical steel sheet. Therefore, it is not put into practical use industrially.

一方、鉄心の素材である方向性電磁鋼板そのものの鉄損を低減することにより上記問題を解決しようとする試みも、従来から多くなされている。
鉄損は概ねヒステリシス損と渦電流損の和で表わすことができる。このうち、ヒステリシス損ついては結晶方位をゴス方位、すなわち{110}<001>方位に高度に集積させることや、磁化したとき磁壁移動の際のピンニング因子の生成原因となる不純物元素を低減すること等により大幅に低減されてきた。また、渦電流損については、Si含有量を増加して電気抵抗を増大させること、鋼板板厚を薄くすること、鋼板地鉄表面に地鉄と熱膨張係数の異なる被膜を形成して地鉄に張力を付与すること、結晶粒の微細化により磁区幅を低減すること等によって低減が図られてきた。
渦電流損を低減すべく、鋼板の圧延方向と直角な方向に、特許文献3にはレーザー光を照射する方法が、特許文献4にはプラズマ炎を照射する方法がそれぞれ提案されている。これらの方法は、鋼板表面に線状又は点状に微小な熱歪みを導入することにより磁区を細分化し、鉄損を大幅に低減しようとするものである。ところがこれらの方法においては、磁区細分化後に高温での焼鈍を施すと、鉄損低減効果は消失してしまうため、照射処理後に歪取焼鈍を必要とする巻鉄心用素材として用いることはできなかった。
そこで歪取焼鈍にも耐え得る磁区細分化方法として、鋼板への溝形成を行う手法が種々提案されている。例えば、最終仕上げ焼鈍後即ち二次再結晶後の鋼板に局所的に溝を形成し、その反磁界効果によって磁区を細分化する方法がある。この溝の形成手段として、特許文献5には機械的な加工が開示されている。特許文献6にはレーザー光照射により絶縁被膜及び下地被膜を局所的に除去した後電解エッチングする方法が開示されている。また、特許文献7には、歯車型ロールで圧刻後、歪取焼鈍することで溝形成及び再結晶を達成して磁区を細分化する方法が開示されている。また、特許文献8には、最終仕上げ焼鈍前の鋼板に溝を形成する方法がそれぞれ開示されている。また、特許文献9には、積鉄心のT接合部に相当する部分の電磁鋼板に線状の歪を導入する方法が開示されている。
しかしながら、上記方向性電磁鋼板の素材そのものの鉄損を低減する技術は、主に圧延方向の鉄損低減に着目した技術であり、圧延直角方向の鉄損への影響は不明な点が多く、これらの技術による方向性電磁鋼板が積鉄心変圧器に適した材料であるとは言いがたい。すなわち、上記方向性電磁鋼板を積鉄心変圧器に用いたとしても、変圧器鉄損に反映されず、変圧器鉄損の低減は不十分である。
特開昭56-60005号公報 特開平6-251966号公報 特公昭57-2252号公報 特開昭62-96617号公報 特公昭50-35679号公報 特開昭63-76819号公報 特公昭62-53579号公報 特開昭59-197520号公報 特開2000-194432号公報
On the other hand, many attempts have been made to solve the above problem by reducing the iron loss of the grain-oriented electrical steel sheet itself, which is a material of the iron core.
The iron loss can be generally expressed as the sum of hysteresis loss and eddy current loss. Among these, with regard to hysteresis loss, the crystal orientation is highly integrated in the Goss orientation, that is, {110} <001> orientation, and the impurity elements that cause the generation of pinning factors during domain wall motion when magnetized are reduced. Has been significantly reduced. For eddy current loss, increasing the Si content to increase electrical resistance, reducing the thickness of the steel sheet, and forming a coating with a different thermal expansion coefficient from that of the steel It has been attempted to reduce the magnetic domain width by, for example, applying tension to the magnetic field and reducing the magnetic domain width by refining crystal grains.
In order to reduce eddy current loss, Patent Document 3 proposes a method of irradiating a laser beam in a direction perpendicular to the rolling direction of the steel sheet, and Patent Document 4 proposes a method of irradiating a plasma flame. These methods are intended to subdivide the magnetic domains by introducing minute thermal strains in the form of lines or dots on the surface of the steel sheet, thereby greatly reducing the iron loss. However, in these methods, if annealing is performed at a high temperature after magnetic domain fragmentation, the effect of reducing iron loss disappears, so it cannot be used as a material for a wound core that requires strain relief annealing after irradiation treatment. It was.
Accordingly, various methods for forming grooves in a steel sheet have been proposed as magnetic domain subdivision methods that can withstand strain relief annealing. For example, there is a method in which grooves are locally formed in the steel sheet after final finish annealing, that is, after secondary recrystallization, and the magnetic domains are subdivided by the demagnetizing field effect. As a means for forming the groove, Patent Document 5 discloses mechanical processing. Patent Document 6 discloses a method of performing electrolytic etching after locally removing an insulating film and a base film by laser light irradiation. Further, Patent Document 7 discloses a method of subdividing magnetic domains by achieving groove formation and recrystallization by performing stress relief annealing after pressing with a gear-type roll. Patent Document 8 discloses a method of forming grooves in a steel plate before final finish annealing. Patent Document 9 discloses a method for introducing linear strain into a portion of the electromagnetic steel sheet corresponding to the T-joint portion of the core product.
However, the technology for reducing the iron loss of the material of the grain-oriented electrical steel sheet itself is a technology that mainly focuses on reducing the iron loss in the rolling direction, and the influence on the iron loss in the direction perpendicular to the rolling is unclear, It is difficult to say that grain-oriented electrical steel sheets by these technologies are suitable materials for the steel core transformer. That is, even if the grain-oriented electrical steel sheet is used for a laminated iron core transformer, it is not reflected in the transformer iron loss, and the reduction of the transformer iron loss is insufficient.
JP 56-60005 JP-A-6-251966 Japanese Patent Publication No.57-2252 JP 62-96617 A Japanese Patent Publication No. 50-35679 JP 63-76819 A Japanese Examined Patent Publication No.62-53579 JP 59-197520 JP 2000-194432 A

本発明は、かかる事情に鑑み、鉄損特性の良好な磁束密度の高い方向性電磁鋼板を材料として変圧器を製造した場合に所望の良好な鉄損値が得られないという問題を有利に解決し、鉄損が低減した積鉄心変圧器とその製造方法を提案することを目的とする。   In view of such circumstances, the present invention advantageously solves the problem that a desired good iron loss value cannot be obtained when a transformer is manufactured using a grain-oriented electrical steel sheet having good magnetic loss characteristics and high magnetic flux density. The purpose of the present invention is to propose a product core transformer with reduced iron loss and a method for manufacturing the same.

発明者らは、上記課題を解決するために、鉄損低減のための磁区細分化処理、特にその中の処理方法の一つである「鋼板表面への溝形成」について着目し、詳細に調査、検討を行った。その結果、以下の知見を得、本発明を完成するに至った。
1)磁束状態が素材鉄損測定時と大きく異なる現象はT接合部で最も大きく、変圧器の実機特性を向上させるためには、T接合部の圧延直角方向の鉄損を下げることが重要である。
2)圧延直角方向の鉄損は溝形成条件に強く依存する。
3)圧延直角方向の鉄損低減に適正な溝形成条件は圧延方向の鉄損低減に適正な溝形成条件と異なる。
4)溝形成条件として、溝間隔を狭く(溝の密度を高く)すること、溝を深くすること、溝方向を圧延直角方向に近づけることが、圧延直角方向の鉄損低減に対してさらに有効である。
In order to solve the above problems, the inventors focused on magnetic domain subdivision processing for reducing iron loss, particularly “groove formation on the steel sheet surface”, which is one of the processing methods therein, and investigated in detail. ,Study was carried out. As a result, the following knowledge was obtained and the present invention was completed.
1) The phenomenon in which the magnetic flux state is significantly different from that at the time of measuring the material iron loss is greatest at the T-junction, and it is important to reduce the iron loss in the direction perpendicular to the rolling of the T-junction in order to improve the actual machine characteristics of the transformer. is there.
2) Iron loss in the direction perpendicular to rolling strongly depends on the groove forming conditions.
3) The groove forming conditions suitable for reducing the iron loss in the direction perpendicular to the rolling are different from the groove forming conditions appropriate for reducing the iron loss in the rolling direction.
4) As groove formation conditions, narrowing the groove interval (increasing the density of the grooves), deepening the groove, and bringing the groove direction closer to the direction perpendicular to the rolling are more effective for reducing iron loss in the direction perpendicular to the rolling. It is.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
]鉄心を電磁鋼板により構成しT接合部を有する積鉄心変圧器であって、前記T接合部の表面およびT接合部以外の表面にそれぞれ溝を有し、該溝が、平均幅:30〜300μm、平均深さ:5〜100μm、圧延方向に対する角度:60〜90°、及び圧延方向での平均間隔が1mm以上の範囲であり、前記T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、前記T接合部の表面の溝が、T接合部以外の表面の溝とは異なる条件で形成されることを特徴とする積鉄心変圧器。
]前記[]において、前記T接合部の表面の溝は、下記a)〜c)の条件のうちの少なくとも一つ以上を満たすことを特徴とする積鉄心変圧器。
a)T接合部以外の表面の溝に比べ、密度が高い
b)T接合部以外の表面の溝に比べ、溝深さが深い
c)T接合部以外の表面の溝に比べ、溝と圧延直角方向とのなす角が小さい
]積鉄心を電磁鋼板により構成しT接合部を形成する積鉄心変圧器の製造方法であって、前記T接合部分となる電磁鋼板表面およびT接合以外の部分となる電磁鋼板表面にそれぞれ溝を形成し、その際、該溝を平均幅:30〜300μm、平均深さ:5〜100μm、圧延方向に対する角度:60〜90°、及び圧延方向での平均間隔が1mm以上の範囲とし、前記T接合部分となる電磁鋼板表面に溝を形成するにあたり、前記T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、前記T接合部以外の部分となる電磁鋼板表面の溝形成とは異なる条件で行うことを特徴とする積鉄心変圧器の製造方法。
]前記[]において、下記a)〜c)の条件のうちの少なくとも一つ以上を満たすように、前記T接合部分となる電磁鋼板表面に溝を形成することを特徴とする積鉄心変圧器の製造方法。
a)T接合部以外の部分となる電磁鋼板表面の溝に比べ、密度が高い
b)T接合部以外の部分となる電磁鋼板表面の溝に比べ、溝深さが深い
c)T接合部以外の部分となる電磁鋼板表面の溝に比べ、溝と圧延直角方向とのなす角が
小さい
The present invention has been made based on the above findings, and the gist thereof is as follows.
[ 1 ] A product core transformer in which an iron core is made of an electromagnetic steel plate and has a T-junction, and has grooves on the surface of the T-junction and a surface other than the T-junction, and the groove has an average width: 30 to 300 μm, average depth: 5 to 100 μm, angle with respect to rolling direction: 60 to 90 °, average interval in rolling direction is 1 mm or more, and iron loss in rolling perpendicular direction of T joint is T The stacked iron core is characterized in that the grooves on the surface of the T-joint are formed under different conditions from the grooves on the surface other than the T-joint so as to be lower than the iron loss in the direction perpendicular to rolling other than the joint. Transformer.
[ 2 ] In the above [ 1 ], the product core transformer, wherein the groove on the surface of the T junction satisfies at least one of the following conditions a) to c).
a) Higher density than grooves on the surface other than the T-junction portion b) Deeper groove depth than grooves on the surface other than the T-junction portion c) Groove and rolling compared to grooves on the surface other than the T-junction portion A method of manufacturing a laminated iron core transformer in which an angle formed between a perpendicular direction and a small [ 3 ] core is composed of a magnetic steel sheet to form a T-junction, the surface of the magnetic steel sheet to be the T-junction portion and other than T-junction Grooves are respectively formed on the surface of the magnetic steel sheet to be a part, and in this case, the grooves have an average width of 30 to 300 μm, an average depth of 5 to 100 μm, an angle with respect to the rolling direction: 60 to 90 °, and an average in the rolling direction. When the gap is formed in the range of 1 mm or more and the groove is formed on the surface of the magnetic steel sheet to be the T-joined portion, the iron loss in the perpendicular direction of rolling of the T-joined portion is lower than the iron loss in the perpendicular direction of rolling other than the T-joined portion. so that the electromagnetic steel sheet which is a portion other than the T junction Method for producing a product core transformer which is characterized in that under different conditions than the groove forming surface.
[ 4 ] In the above [ 3 ], a grooved core is formed on the surface of the electromagnetic steel sheet to be the T-joined part so as to satisfy at least one of the following conditions a) to c). A method for manufacturing a transformer.
a) The density is higher than that of the groove on the surface of the electromagnetic steel sheet that is a part other than the T-joined part. The angle between the groove and the direction perpendicular to the rolling is smaller than the groove on the surface of the magnetic steel sheet

本発明によれば、T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、T接合部の表面に溝を形成することにより、積鉄心変圧器の鉄損特性を従来に比べて格段に向上させることができる。このように、容易な方法で材料特性を変圧器の実機特性に活かせることになり、本発明は産業上有益な発明となりうる。   According to the present invention, by forming a groove on the surface of the T-junction so that the iron loss in the direction perpendicular to the rolling direction of the T-junction portion is lower than the iron loss in the direction perpendicular to the rolling direction other than the T-junction portion, The iron loss characteristics of the transformer can be significantly improved compared to the conventional one. Thus, the material characteristics can be utilized for the actual machine characteristics of the transformer in an easy manner, and the present invention can be an industrially useful invention.

以下に、本発明の完成に至った経緯について、下記実験結果に基づき詳細に説明する。   Hereinafter, the process of completing the present invention will be described in detail based on the following experimental results.

磁区細分化処理としての鋼板表面への溝形成について、溝形成条件と圧延直角方向の鉄損との関係は、従来ほとんど調べられていない。そこで、発明者らは、溝形成条件と圧延直角方向の鉄損の関係を、圧延方向の鉄損と併せて実験により調査した。   Regarding the formation of grooves on the surface of a steel sheet as a magnetic domain refinement treatment, the relationship between the groove formation conditions and the iron loss in the direction perpendicular to the rolling has hardly been investigated. Therefore, the inventors investigated the relationship between the groove forming conditions and the iron loss in the direction perpendicular to the rolling, together with the iron loss in the rolling direction, through experiments.

試料は、通常の方向性電磁鋼板の製造方法で製造した板厚0.23mmの最終仕上焼鈍板を100mm×300mmの大きさにせん断した鋼板を用いた。なお、圧延方向の磁気特性評価用の試料は圧延方向を300mmに、圧延直角方向の磁気特性評価用の試料は圧延直角方向を300mmにした。   As the sample, a steel plate obtained by shearing a final finish annealed plate having a thickness of 0.23 mm manufactured by a normal grain-oriented electrical steel sheet manufacturing method into a size of 100 mm × 300 mm was used. The sample for evaluating magnetic properties in the rolling direction was set to 300 mm in the rolling direction, and the sample for evaluating magnetic properties in the direction perpendicular to the rolling was set to 300 mm in the direction perpendicular to the rolling.

上記試料を用いて、まず、溝形成前の磁気特性を評価するため、これらの試料に対して、窒素中で800℃、3時間の歪取り焼鈍を施し、その後、磁気特性を単板磁気試験器により測定した。
次に、これらの試料表面に0.7J/cm2のエネルギー密度のパルスレーザー光を、種々の条件にて線状に照射して被膜を線状に除去した後、NaCl電解液中で試料を陽極、平板状電極を陰極として電解エッチングした。溝の幅は約100μmであった。
その後、これらの試料に対して、窒素中で800℃、3時間の歪取り焼鈍を施した後、磁気特性を単板磁気試験器により測定した。
Using the above samples, first, in order to evaluate the magnetic properties before groove formation, these samples were subjected to strain relief annealing in nitrogen at 800 ° C. for 3 hours, and then the magnetic properties were subjected to a single plate magnetic test. Measured with a vessel.
Next, a pulse laser beam with an energy density of 0.7 J / cm 2 is irradiated linearly on these sample surfaces under various conditions to remove the coating into linear shapes, and then the samples are anoded in a NaCl electrolyte. Electrolytic etching was performed using the plate-like electrode as a cathode. The width of the groove was about 100 μm.
Thereafter, these samples were subjected to strain relief annealing in nitrogen at 800 ° C. for 3 hours, and then the magnetic properties were measured with a single plate magnetic tester.

以上により、得られた結果を図2〜4に示す。なお、評価にあたっては、一般に方向性電磁鋼板の鉄損は、50Hzの周波数で1.7Tに磁化させた時の損失でW17/50(W/kg)で表わされるので、圧延方向の鉄損はW17/50(W/kg)を用いた。一方、圧延直角方向の鉄損は、圧延直角方向と結晶の磁化容易軸のなす角が約45°で圧延直角方向に磁化されにくいこと、および積鉄心変圧器のT接合部においても圧延直角方向の磁束密度は比較的小さいことから、50Hzの周波数で1.0Tに磁化させた時の損失W10/50(W/kg)を用いた。また、図2〜4において、縦軸の鉄損変化量とは、変化量=溝形成前の試料鉄損値−溝形成後の試料鉄損値を示すものである。図2〜4より、圧延方向の鉄損低減には適正な溝形成条件が存在することがわかる。すなわち、溝間隔は3mm程度、溝深さは30μm程度、また溝方向は圧延直角方向に近い場合に圧延方向の鉄損低減が顕著になる。この圧延方向の鉄損の溝形成条件依存性は、従来の知見とほぼ同様である。   The results obtained as described above are shown in FIGS. In the evaluation, the iron loss of the grain-oriented electrical steel sheet is generally expressed as W17 / 50 (W / kg) when magnetized to 1.7 T at a frequency of 50 Hz. Therefore, the iron loss in the rolling direction is W17. / 50 (W / kg) was used. On the other hand, the iron loss in the perpendicular direction of rolling is that the angle between the perpendicular direction of rolling and the axis of easy magnetization of the crystal is about 45 ° and is not easily magnetized in the perpendicular direction of rolling. Since the magnetic flux density is relatively small, the loss W10 / 50 (W / kg) when magnetized to 1.0 T at a frequency of 50 Hz was used. Moreover, in FIGS. 2-4, the amount of iron loss change of a vertical axis | shaft shows the amount of change = sample iron loss value before groove formation-sample iron loss value after groove formation. 2-4, it turns out that the appropriate groove formation conditions exist for the iron loss reduction of a rolling direction. That is, when the groove interval is about 3 mm, the groove depth is about 30 μm, and the groove direction is close to the direction perpendicular to the rolling, iron loss reduction in the rolling direction becomes remarkable. The dependence of the iron loss in the rolling direction on the groove forming conditions is almost the same as the conventional knowledge.

一方、圧延直角方向の鉄損も溝形成条件に強く依存し適正な溝形成条件が存在しうることがわかる。しかし、その溝形成条件は圧延方向の鉄損低減に適正な溝形成条件とは明らかに異なっている。圧延直角方向の鉄損を低減するには、溝間隔を狭く(線状溝の密度を高く)すること、溝を深くすること、また、溝方向を圧延直角方向に近づけることが有効であることがわかる。
なお、圧延方向および圧延直角方向の磁束密度を変更した場合の鉄損でも、鉄損の溝形成条件依存性は上記と同様の結果が得られた。
On the other hand, it can be seen that the iron loss in the direction perpendicular to the rolling is also strongly dependent on the groove forming conditions, and there can be appropriate groove forming conditions. However, the groove forming conditions are clearly different from the groove forming conditions appropriate for reducing the iron loss in the rolling direction. In order to reduce iron loss in the direction perpendicular to rolling, it is effective to narrow the groove interval (increase the density of linear grooves), deepen the groove, and bring the groove direction closer to the direction perpendicular to rolling. I understand.
In addition, even in the iron loss when the magnetic flux density in the rolling direction and the direction perpendicular to the rolling was changed, the same result as described above was obtained for the dependency of the iron loss on the groove formation conditions.

ここで、従来の方法として、特許文献9には、積鉄心のT接合部に相当する部分の電磁鋼板に線状の歪を導入する方法が開示されている。そこで、従来の線状歪導入の効果と本発明の溝形成の効果を比較するため、上述の溝形成前と同様な試料を用い、種種の条件で線状歪を加えた後、歪取り焼鈍を実施せずに磁気測定を行った。得られた結果を上述の実験結果と併せて図5に示す。図5より、圧延方向の鉄損が同じ場合は、溝形成の方が歪導入よりも、圧延直角方向の鉄損低減効果が大きいことがわかる。さらには歪導入の場合は圧延直角方向の鉄損が改善される一方で圧延方向の鉄損は劣化する傾向にあるものの、溝形成の場合には、圧延方向の鉄損と圧延直角方向の鉄損を共に低減することが可能であることがわかる。なお、図5においては、上述の溝形成条件の他に、のこぎり状および矩形状等の溝形成の実験結果も加えてある。   Here, as a conventional method, Patent Document 9 discloses a method for introducing linear strain into a portion of the electromagnetic steel sheet corresponding to the T-joint portion of the core. Therefore, in order to compare the effect of the conventional linear strain introduction and the groove formation effect of the present invention, the same sample as before the groove formation described above was used, and after applying linear strain under various conditions, the strain relief annealing was performed. The magnetic measurement was performed without carrying out. The obtained results are shown in FIG. 5 together with the above experimental results. FIG. 5 shows that when the iron loss in the rolling direction is the same, the groove formation has a greater effect of reducing the iron loss in the direction perpendicular to the rolling than the introduction of strain. Furthermore, in the case of introducing strain, the iron loss in the direction perpendicular to the rolling is improved while the iron loss in the rolling direction tends to deteriorate, but in the case of groove formation, the iron loss in the rolling direction and the iron in the direction perpendicular to the rolling are It can be seen that both losses can be reduced. In FIG. 5, in addition to the above-described groove forming conditions, experimental results of forming grooves such as a saw and a rectangle are also added.

以上の実験の結果から、1)圧延直角方向の鉄損は溝形成条件に強く依存すること、2)圧延直角方向の鉄損低減に適正な溝形成条件は圧延方向の鉄損低減に適正な溝形成条件と異なること、3)溝形成条件として、溝間隔を狭く(線状溝の密度を高く)すること、溝を深くすること、溝方向を圧延直角方向に近づけることが、圧延直角方向の鉄損低減に対して有効であること、が新たに判明した。
以上より、本発明においては、T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、T接合部における電磁鋼板表面に溝を形成することとする。これは本発明において、最も重要な要件である。このような構成により、磁束状態が素材鉄損測定時と異なる現象が最も大きく、圧延直角方向をはじめとした圧延方向以外に磁束が流れ得るT接合部において、鉄損を低減することができ、積鉄心変圧器の鉄損を低減することが可能となる。
また、T接合部以外でも表面に溝を形成する場合は、T接合部の表面の溝は、T接合部以外の表面の溝とは異なる条件で形成されることが好ましく、さらには、a)T接合部以外の表面の溝に比べ、密度が高い、b)T接合部以外の表面の溝に比べ、溝深さが深い、c)T接合部以外の表面の溝に比べ、溝と圧延直角方向とのなす角が小さい、の条件のうち少なくとも一つ以上を満たすことが好ましい。
From the results of the above experiments, 1) the iron loss in the direction perpendicular to the rolling strongly depends on the groove formation conditions, and 2) the groove formation conditions appropriate for reducing the iron loss in the direction perpendicular to the rolling are appropriate for reducing the iron loss in the rolling direction. Different from the groove forming conditions, 3) As the groove forming conditions, narrowing the groove interval (increasing the density of linear grooves), deepening the groove, and bringing the groove direction closer to the perpendicular direction of rolling are perpendicular to the rolling direction. It was newly found that it is effective for reducing iron loss.
From the above, in the present invention, grooves are formed on the surface of the electrical steel sheet at the T joint so that the iron loss in the direction perpendicular to the rolling of the T joint is lower than the iron loss in the direction perpendicular to the rolling other than the T joint. And This is the most important requirement in the present invention. With such a configuration, the phenomenon that the magnetic flux state is the largest when the material iron loss is measured is the largest, and in the T-junction where the magnetic flux can flow in directions other than the rolling direction including the direction perpendicular to the rolling direction, the iron loss can be reduced. It becomes possible to reduce the iron loss of the core transformer.
Further, when a groove is formed on the surface other than the T-joint portion, the groove on the surface of the T-joint portion is preferably formed under conditions different from those on the surface other than the T-joint portion. Furthermore, a) Higher density than grooves on the surface other than the T-junction, b) Deeper groove depth than the grooves on the surface other than the T-junction, c) Groove and rolling compared to grooves on the surface other than the T-junction It is preferable to satisfy at least one of the conditions that the angle formed by the perpendicular direction is small.

このように本発明では、T接合部にのみ溝を形成するか、もしくはT接合部以外にも溝を形成する場合はT接合部の溝形成条件を変更するかのいずれかによって、T接合部の圧延直角方向の鉄損をT接合部以外の圧延直角方向の鉄損より低減することが重要である。
なお、変圧器の部分的な鉄損は、その部分の溝と同様な溝があり、かつ、変圧器を構成している電磁鋼板と同様な電磁鋼板から通常の試験片を採取し、その試験片を通常の測定方法(エプスタイン試験、単板磁気)で測定した値とすることができる。すなわち、溝形成条件から変圧器の部分的な鉄損を換算することが可能となる。
積方向により溝形成条件が異なる場合には、それぞれの溝形成条件から鉄損を換算し、それぞれの溝形成条件で溝形成した面積で重み付けした平均値を用いることとする。例えばT接合部において、T接合部鋼板表面の面積が積方向に依らず一定で500cm2、鉄損が1W/kgである溝形成条件の鋼板が100枚、鉄損が0.9W/kgである溝形成条件の鋼板が90枚、鉄損が0.8W/kgである溝形成条件の鋼板が80枚である場合、T接合部の鉄損は(500cm2×100枚×1W/kg+500cm2×90枚×0.9W/kg+500cm2×80枚×0.8W/kg)÷(500cm2×100枚+500cm2×90枚+500cm2×80枚)となる。
なお、一般に方向性電磁鋼板の鉄損は、50Hzの周波数で1.7Tに磁化させた時の損失でW17/50(W/kg)で表わされるので、圧延方向の鉄損はW17/50(W/kg)で評価することとする。一方、圧延直角方向の鉄損は、圧延直角方向と結晶の磁化容易軸のなす角が約45°で圧延直角方向に磁化されにくいこと、および積み鉄心変圧器のT接合部においても圧延直角方向の磁束密度は比較的低いことから、50Hzの周波数で1.0Tに磁化させた時の損失W10/50(W/kg)で評価することとする。
溝の形状は特に限定しない。しかし、生産上の理由から線状であることが好ましい。特に等間隔で平行な直線郡が適する。なお、ここで、線状とは、直線および曲線を含み、完全に連続した線だけでなく点線や破線、さらには鎖線等の不完全な線をも含めた呼称を意味する。また、線状溝は、平均幅:30〜300μmおよび平均深さ:5〜100μmで、圧延方向に対して60〜90°の角度で延び、この線状溝を圧延方向に1mm以上の平均間隔で配列することが好ましい。すなわち、平均深さが5μm未満では圧延方向および圧延直角方向の鉄損の低減が十分でなく、100μmを超えると磁束密度の低下が大きくなる。また、線状溝の間隔が1mm未満では圧延方向の鉄損低減が不十分となる。
また、T接合部以外にも溝を形成する場合は、前述の通り、T接合部以外の表面の溝よりも、T接合部の表面の溝の条件を、溝の密度が高い、かつ/あるいは、溝が深い、かつ/あるいは、溝と圧延直角方向とのなす角を小さくすることが有効である。なお、溝が線状溝である場合は、その密度は、線状溝に直角な方向の単位長さ当たりの線状溝の本数であり、溝が曲線状である場合は、その密度は単位面積当たりの溝の長さである。また、これら以外の点状等の形状になる溝を含む場合を考慮すれば、溝の密度は単位面積当たりの溝の縁の長さの半分(円形の溝では円周の長さの半分、線状の溝では溝の長さを2倍した半分)と一般化できる。
As described above, according to the present invention, the T-junction portion is formed by either forming the groove only in the T-junction portion or changing the groove forming condition of the T-junction portion when forming a groove other than the T-junction portion. It is important to reduce the iron loss in the direction perpendicular to the rolling direction from the iron loss in the direction perpendicular to the rolling direction other than the T-joint portion.
In addition, the partial iron loss of the transformer has a groove similar to the groove of that part, and a normal test piece is taken from the same electromagnetic steel sheet as that constituting the transformer, and the test is performed. The piece can be a value measured by a normal measurement method (Epstein test, single plate magnetism). That is, the partial iron loss of the transformer can be converted from the groove forming conditions.
When the groove forming conditions differ depending on the product direction, the iron loss is converted from each groove forming condition, and an average value weighted by the area formed by each groove forming condition is used. For example, in the T-joint area, the surface area of the T-joint steel sheet is constant regardless of the product direction, 500 cm 2 , 100 steel sheets with groove formation conditions with an iron loss of 1 W / kg, and the iron loss is 0.9 W / kg If there are 90 steel plates with groove forming conditions and 80 steel plates with groove forming conditions with an iron loss of 0.8 W / kg, the iron loss at the T joint is (500 cm 2 × 100 sheets × 1 W / kg + 500 cm 2 × 90 Sheet × 0.9 W / kg + 500 cm 2 × 80 sheets × 0.8 W / kg) ÷ (500 cm 2 × 100 sheets + 500 cm 2 × 90 sheets + 500 cm 2 × 80 sheets).
In general, the iron loss of grain-oriented electrical steel sheet is expressed as W17 / 50 (W / kg) when magnetized to 1.7T at a frequency of 50 Hz, so the iron loss in the rolling direction is W17 / 50 (W / kg). On the other hand, the iron loss in the direction perpendicular to the rolling is that the angle between the direction perpendicular to the rolling and the easy magnetization axis of the crystal is about 45 ° and is not easily magnetized in the direction perpendicular to the rolling. Since the magnetic flux density is relatively low, the loss W10 / 50 (W / kg) when magnetized to 1.0 T at a frequency of 50 Hz is evaluated.
The shape of the groove is not particularly limited. However, it is preferably linear for production reasons. In particular, straight straight lines with equal intervals are suitable. Here, the term “linear” means a name including not only a completely continuous line but also an incomplete line such as a dotted line or a broken line, including a straight line and a curved line. The linear groove has an average width of 30 to 300 μm and an average depth of 5 to 100 μm and extends at an angle of 60 to 90 ° with respect to the rolling direction. The linear groove has an average interval of 1 mm or more in the rolling direction. It is preferable to arrange by. That is, if the average depth is less than 5 μm, the iron loss in the rolling direction and the direction perpendicular to the rolling is not sufficiently reduced, and if it exceeds 100 μm, the magnetic flux density is greatly reduced. Moreover, if the space | interval of a linear groove is less than 1 mm, the iron loss reduction of a rolling direction will become inadequate.
When grooves other than the T junction are formed, as described above, the groove condition on the surface of the T junction is higher than the groove on the surface other than the T junction. It is effective to reduce the angle between the groove and / or the direction perpendicular to the rolling direction. If the groove is a linear groove, the density is the number of linear grooves per unit length in a direction perpendicular to the linear groove. If the groove is curved, the density is the unit. The length of the groove per area. In addition, considering the case of including a groove having a point-like shape other than these, the density of the groove is half the length of the edge of the groove per unit area (in the case of a circular groove, half the length of the circumference, In the case of a linear groove, it can be generalized as a half that is twice the length of the groove).

溝の形成方法は特に指定しない。例えば、最終冷間圧延後に溝形成部以外の部分にレジスト剤を塗布(非腐食部)した後、電解エッチング法等の電気化学的方法や酸洗等の化学的方法等で溝を形成することができる。また、最終仕上焼鈍板または製品板の表面の被膜をレーザー照射等により除去した後、電解エッチング法等の電気化学的方法および酸洗等の化学的方法等で溝を形成することができる。
上記のようにT接合部の圧延直角方向の鉄損を低減することによって、変圧器のT接合部における鉄損を低減でき、その結果、変圧器全体の鉄損の低減が達成される。
The method for forming the groove is not particularly specified. For example, after applying the resist agent to the part other than the groove forming part after the final cold rolling (non-corrosive part), the groove is formed by an electrochemical method such as an electrolytic etching method or a chemical method such as pickling. Can do. Further, after removing the coating on the surface of the final finish annealed plate or product plate by laser irradiation or the like, the grooves can be formed by an electrochemical method such as an electrolytic etching method or a chemical method such as pickling.
By reducing the iron loss in the direction perpendicular to the rolling direction of the T-junction as described above, the iron loss at the T-junction of the transformer can be reduced, and as a result, the reduction of the iron loss of the entire transformer is achieved.

次に、本発明の変圧器について述べる。
本発明では、積鉄心変圧器を対象とする。巻鉄心変圧器には磁束の流れの乱れがなく、鉄心の素材鉄損と変圧器鉄損がほぼ一致するので、本発明の対象外とする。また、変圧器の脚の本数は、3脚または5脚である。というのは、2脚変圧器には、この発明の対象とするT接合部が存在せず、この発明で目的とする鉄損低減効果が認められないからである。
また、本発明において、T接合部とは、図1に斜線で示した鉄心領域を指し、この接合部において、ヨーク部の鋼板と脚部の鋼板が接合されている。接合方法ついては、λ接合やV接合など公知の方法があるが、いずれも本発明に適合する。
Next, the transformer of the present invention will be described.
In the present invention, a product core transformer is intended. The wound core transformer has no disturbance in the flow of magnetic flux, and the material core loss of the iron core and the transformer core loss substantially coincide with each other. Therefore, it is excluded from the scope of the present invention. Moreover, the number of legs of the transformer is three or five. This is because the two-leg transformer does not have a T-junction that is the object of the present invention, and the iron loss reduction effect intended in the present invention is not recognized.
Further, in the present invention, the T-joined portion refers to the iron core region indicated by hatching in FIG. 1, and the steel plate of the yoke portion and the steel plate of the leg portion are joined at this joined portion. As for the bonding method, there are known methods such as λ bonding and V bonding, all of which are suitable for the present invention.

次に、本発明の積鉄心変圧器の製造方法について述べる。
積鉄心変圧器の製造工程は、通常、鉄心の積層、組み立て工程と銅線コイルの加工、組み立て工程およびこれらの結合工程ならびにケーシングなどその他の部品の付設工程からなる。この時、本発明において特に重要なのは、積層時の鉄心の構造である。すなわち、鉄心を構成しT接合部分に対応する電磁鋼板であっては、溝を形成し、溝を形成するにあたっては圧延直角方向の鉄損を低減するように溝形成条件を変更することが重要となる。そして、溝形成後、積層する。
上記を実施する有効な方法の一つとして、鋼板の斜角切断の後に、T接合部に対応する部分の鋼板表面の被膜をレーザー照射等により除去した後酸洗する方法がある。
なお、本発明において、素材であり、鉄心を構成する方向性電磁鋼板としては、従来公知の成分組成および製造方法のものを適合することができる。
Next, the manufacturing method of the iron core transformer of the present invention will be described.
The manufacturing process of the iron core transformer usually includes the lamination of iron cores, the assembling process and the processing of the copper wire coil, the assembling process and the connecting process thereof, and the attaching process of other parts such as a casing. At this time, what is particularly important in the present invention is the structure of the iron core during lamination. That is, in an electrical steel sheet that constitutes an iron core and corresponds to a T-junction portion, it is important to change the groove forming conditions so as to reduce the iron loss in the direction perpendicular to the rolling in forming the groove. It becomes. Then, after the grooves are formed, lamination is performed.
As one effective method for carrying out the above, there is a method of pickling after removing the coating on the surface of the steel sheet corresponding to the T-joined portion by laser irradiation or the like after oblique cutting of the steel sheet.
In the present invention, as the grain-oriented electrical steel sheet that is a material and constitutes the iron core, conventionally known component compositions and manufacturing methods can be adapted.

実施例1は、T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、T接合部表面のみに溝を形成する場合の実施例である。
Si:3.25mass%を含み、板厚が0.23mmで、W17/50:0.86W/kg、B8:1.93Tの磁気特性(圧延方向)を有する方向性電磁鋼板(溝形成なし)を用いて、3相3脚、鉄心の長さ:1000mm、幅:1200mm、厚み:200mm、ヨークおよび脚の幅:150mmのモデル変圧器を2台作製した。この時、T接合部の接合はV接合方式とし、鋼板の積み方式は2枚ずつ、5段階のステップラップとした。
このうち1台の変圧器では、鋼板を斜角切断した後にT接合部対応する部分に対して、試料表面に0.7J/cm2のエネルギー密度のパルスレーザー光を、圧延方向に3mm間隔で、直線状に照射して被膜を直線状に除去した後、NaCl電解液中で試料を陽極、平板状電極を陰極として電解エッチングし、幅が約100μm、深さが約18μmの溝を形成した。また単板磁気測定用に採取した試験片に、同様の溝を形成したときの圧延直角方向のW10/50は1.62W/kgであり、一方溝形成前の圧延直角方向のW10/50は1.78W/kgであった。
以上より得られた変圧器の鉄損特性は、溝を形成しなかった変圧器(比較例)ではW17/50:1.04W/kgであったのに対し、T接合部に溝を形成した変圧器(本発明例)ではW17/50:0.98W/kgであった。
以上から、本発明に従って製作された変圧器の鉄損値は大きく向上していることが分かる。
Example 1 is an example in the case where grooves are formed only on the surface of the T-junction so that the iron loss in the direction perpendicular to the rolling of the T-joint is lower than the iron loss in the direction perpendicular to the rolling other than the T-junction. .
Using a grain-oriented electrical steel sheet (without groove formation) with Si: 3.25 mass%, plate thickness of 0.23 mm, W17 / 50: 0.86 W / kg, B8: 1.93 T magnetic properties (rolling direction) Two model transformers with three-phase, three-leg transformer, iron core length: 1000 mm, width: 1200 mm, thickness: 200 mm, yoke and leg width: 150 mm were produced. At this time, the joining of the T joints was a V joining method, and the stacking method of steel plates was a two-step step lap.
In one of these transformers, a pulse laser beam with an energy density of 0.7 J / cm 2 is applied to the surface corresponding to the T-junction after the steel plate is cut at an oblique angle, at intervals of 3 mm in the rolling direction. After linearly irradiating and removing the coating, the sample was electrolytically etched in a NaCl electrolyte using the sample as the anode and the plate electrode as the cathode to form a groove having a width of about 100 μm and a depth of about 18 μm. In addition, W10 / 50 in the direction perpendicular to the rolling direction when a similar groove was formed on a test piece taken for single plate magnetic measurement was 1.62 W / kg, while W10 / 50 in the direction perpendicular to the rolling direction before forming the groove was 1.78. W / kg.
From the above, the iron loss characteristics of the transformer obtained were W17 / 50: 1.04 W / kg for the transformer without the groove (comparative example), whereas the transformer with the groove formed at the T junction. In the container (invention example), W17 / 50 was 0.98 W / kg.
From the above, it can be seen that the iron loss value of the transformer manufactured according to the present invention is greatly improved.

実施例2は、T接合部およびT接合部以外にも表面に溝を形成する場合で、T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、T接合部以外の表面の溝とは異なる条件で、T接合部の表面に溝を形成する場合の実施例である。
T接合部およびT接合部以外の電磁鋼板表面に溝を形成
C:0.06mass%、Si:3.4mass%、Mn:0.07mass%、Se:0.02mass%、Al:0.026mass%、およびN:0.009mass%を含有する珪素鋼スラブを、1360℃で1時間加熱後、熱間圧延を行い2.4mm厚の熱延板とした。次いで、1000℃で40分間のノルマ焼鈍を行った。その後、1100℃で1分間の中間焼鈍を挟む2回の冷間圧延を施して0.23mm厚の最終冷延板とした。
上記により得られた最終冷延板の表面に、線状溝の形状に対応する形状の非塗布部を残してレジストインキを塗布しマスキングした。レジストインキの塗布は、グラビアオフセット印刷によって行い、アルキド系樹脂を主成分とするグラビアインキを用いた。ここで、非塗布部は直線状とし、その方向は圧延直角方向とのなす角が10°となるようにした。このような直線状の非塗布部を、3mm間隔で平行線状に残した。
次に、上記鋼板にNaCl浴を用いた電解エッチング処理を施すことにより、深さ16μmの直線状の溝を鋼板表面に形成した。なお、電解エッチングはNaCl水溶液中で電流密度10A/dm2および電解時間20sの条件で行った。
その後、レジスト剤を除去し、通常の方法で脱炭焼鈍、仕上焼鈍を施したのち、張力コーティングを塗布焼き付けした。
Example 2 is a case where a groove is formed on the surface in addition to the T-joint and the T-joint, and the iron loss in the direction perpendicular to the rolling direction of the T-joint is lower than the iron loss in the direction perpendicular to the roll other than the T-joint. Thus, it is an Example in the case of forming a groove | channel on the surface of a T junction part on the conditions different from the groove | channel of surfaces other than a T junction part.
Grooves are formed on the surface of the magnetic steel sheet other than the T-junction and T-junction C: 0.06 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Se: 0.02 mass%, Al: 0.026 mass%, and N: 0.009 A silicon steel slab containing mass% was heated at 1360 ° C. for 1 hour and then hot rolled to obtain a 2.4 mm thick hot rolled sheet. Next, normal annealing was performed at 1000 ° C. for 40 minutes. After that, cold rolling was performed twice at 1100 ° C. with an intermediate annealing for 1 minute to obtain a final cold-rolled sheet having a thickness of 0.23 mm.
On the surface of the final cold-rolled plate obtained as described above, resist ink was applied and masked, leaving a non-application portion having a shape corresponding to the shape of the linear groove. The resist ink was applied by gravure offset printing, and a gravure ink mainly composed of an alkyd resin was used. Here, the non-applied part was linear, and the angle formed with the direction perpendicular to the rolling was 10 °. Such straight non-coated portions were left in parallel lines at intervals of 3 mm.
Next, an electrolytic etching process using a NaCl bath was performed on the steel sheet to form a linear groove having a depth of 16 μm on the steel sheet surface. The electrolytic etching was performed in a NaCl aqueous solution under the conditions of a current density of 10 A / dm 2 and an electrolysis time of 20 s.
Thereafter, the resist agent was removed, decarburization annealing and finish annealing were performed by a normal method, and then a tension coating was applied and baked.

変圧器製作
上記の張力コーティングを焼き付けした後の電磁鋼板を用いて、3相3脚、鉄心の長さ:1000mm、幅:1200mm、厚み:200mm、ヨークおよび脚の幅:150mmのモデル変圧器を2台製作した。この時、T接合部の接合はλ接合方式とし、鋼板の積み方式は2枚ずつの交互積みとした。
このうち、1台は、T接合部およびT接合部以外の表面の溝が全て同じである比較例として、斜角切りの後、そのまま積層し変圧器を製作した。
もう1台の変圧器では、本発明例として、鋼板を斜角切断した後にT接合部に対応する部分に対して、試験片表面に0.8J/cm2のエネルギー密度のパルスレーザー光を、既にある直線上溝の中間に照射して被膜を直線状に除去した後、NaCl電解液中で試料を陽極、平板状電極を陰極として電解エッチングし、幅が約80μm、深さ約20μmの直線状の溝を新たに形成した。即ち、直線状の溝の間隔を1.5mmとした。その後、そのまま積層し変圧器を製作した。
以上により得られた変圧器の鉄損特性は、溝間隔が3mmの変圧器(比較例)ではW17/50:0.92W/kgであったのに対し、T接合部の溝間隔を1.5mmにした変圧器(本発明例)ではW17/50:0.86W/kgであった。
以上から、本発明に従って製作された変圧器の鉄損値は大きく向上していることが分かる。
Transformer production Using a magnetic steel sheet after baking the above tension coating, a three-phase, three-legged model, iron core length: 1000 mm, width: 1200 mm, thickness: 200 mm, yoke and leg width: 150 mm Two units were made. At this time, the joining of the T joints was a λ joining method, and the stacking method of the steel plates was an alternate stacking of two sheets.
Among these, as a comparative example in which all of the grooves on the surface other than the T junction and the T junction were the same, one was laminated as it was after oblique cutting and a transformer was manufactured.
In another transformer, as an example of the present invention, a pulse laser beam having an energy density of 0.8 J / cm 2 is already applied to the surface of the test piece against the portion corresponding to the T-joint after the steel plate is cut at an oblique angle. After removing the film in a straight line by irradiating in the middle of a certain straight upper groove, electrolytic etching is performed using a sample as an anode and a plate-like electrode as a cathode in a NaCl electrolyte, and a linear shape having a width of about 80 μm and a depth of about 20 μm. A groove was newly formed. That is, the interval between the linear grooves was 1.5 mm. After that, they were laminated as they were to produce a transformer.
The iron loss characteristics of the transformer obtained above were W17 / 50: 0.92 W / kg for the transformer with 3 mm groove spacing (comparative example), while the groove spacing at the T junction was 1.5 mm. It was W17 / 50: 0.86W / kg in the transformer (example of the present invention).
From the above, it can be seen that the iron loss value of the transformer manufactured according to the present invention is greatly improved.

なお、上記のように、T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、T接合部の表面に溝を、T接合部以外の表面の溝とは異なる条件で形成するに際しては、以下に示す方法により、変圧器を構成する電磁鋼板と同様の鋼板から試験片を採取し、あらかじめ試験片の鉄損値を測定することによりT接合部の溝形成条件を決定した。   As described above, a groove is formed on the surface of the T-joining portion other than the T-joining portion so that the iron loss in the rolling perpendicular direction of the T-joining portion is lower than the iron loss in the rolling perpendicular direction other than the T-joining portion. When forming under conditions different from the groove on the surface, a test piece is taken from the same steel plate as the electromagnetic steel plate constituting the transformer by the method shown below, and the iron loss value of the test piece is measured in advance to obtain the T The groove forming conditions for the joint were determined.

溝形成条件および各方向における鉄損特性
T接合部およびT接合部以外の表面に溝(3mm間隔、深さ16μm、圧延直角方向とのなす角が10°)を形成した電磁鋼板からエプスタイン試験片を、その長手方向が圧延方向および圧延直角方向になるように切り出し、800℃で3時間の歪取焼鈍後、磁気特性を測定した。その結果、圧延方向の鉄損はW17/50:0.78W/kg、圧延直角方向の鉄損はW10/50:1.55W/kgであった。
次いで、上記エプスタイン試験片に対し、試験片表面に0.8J/cm2のエネルギー密度のパルスレーザー光を、既にある直線上溝の中間に照射して被膜を直線状に除去した後、NaCl電解液中で試料を陽極、平板状電極を陰極として電解エッチングし、幅が約80μm、深さ約20μmの直線状の溝(T接合部に形成される溝に対応)を新たに形成した。即ち、直線状の溝の間隔を1.5mmとした。このようにして得られたエプスタイン試験片を、800℃で3時間の歪取焼鈍後、磁気特性を測定した結果、圧延方向の鉄損はW17/50:0.80W/kg、圧延直角方向の鉄損はW10/50:0.94W/kgであった。
Epstein test piece from magnetic steel sheet with groove formation conditions and iron loss characteristics in each direction T-joint and grooves other than T-joint (3mm spacing, depth 16μm, angle formed with the direction perpendicular to rolling 10 °) Was cut out so that the longitudinal direction was the rolling direction and the perpendicular direction of rolling, and the magnetic properties were measured after strain relief annealing at 800 ° C. for 3 hours. As a result, the iron loss in the rolling direction was W17 / 50: 0.78 W / kg, and the iron loss in the direction perpendicular to the rolling was W10 / 50: 1.55 W / kg.
Next, with respect to the Epstein test piece, a pulse laser beam having an energy density of 0.8 J / cm 2 is irradiated on the surface of the test piece in the middle of the existing straight upper groove to remove the coating in a straight line, and then in the NaCl electrolyte. Then, the sample was electrolytically etched using the plate electrode as the cathode, and a new linear groove (corresponding to the groove formed in the T junction) having a width of about 80 μm and a depth of about 20 μm was formed. That is, the interval between the linear grooves was 1.5 mm. The Epstein test piece thus obtained was subjected to strain relief annealing at 800 ° C for 3 hours and then measured for magnetic properties. As a result, the iron loss in the rolling direction was W17 / 50: 0.80 W / kg, and the iron in the direction perpendicular to the rolling direction was measured. The loss was W10 / 50: 0.94 W / kg.

本発明の積鉄心変圧器は、その変圧器鉄損が素材鉄損とがほぼ一致し低いため、エネルギー効率が高く、電力用変圧器を中心に、幅広い用途での使用が期待される。   Since the transformer core loss of the present invention is substantially the same as that of the material core loss and low, the energy efficiency is high, and it is expected to be used in a wide range of applications mainly in power transformers.

ヨーク、脚からなる3脚変圧器の鉄心構造とT接合部の位置を示す図である。It is a figure which shows the iron core structure of the tripod transformer which consists of a yoke and a leg, and the position of T junction part. 溝間隔と溝形成による鉄損の変化量との関係を示す図である。It is a figure which shows the relationship between a groove | channel space | interval and the variation | change_quantity of the iron loss by groove formation. 溝方向と溝形成による鉄損の変化量との関係を示す図である。It is a figure which shows the relationship between a groove direction and the variation | change_quantity of the iron loss by groove formation. 溝深さと溝形成による鉄損の変化量との関係を示す図である。It is a figure which shows the relationship between a groove depth and the variation | change_quantity of the iron loss by groove formation. T接合部分に相当する電磁鋼板表面に溝形成もしくは歪導入を行った際の、圧延方向および圧延直角方向の鉄損変化量を示す図である。It is a figure which shows the iron loss variation | change_quantity of a rolling direction and a rolling orthogonal direction at the time of performing groove | channel formation or distortion introduction in the electromagnetic steel plate surface corresponded to a T junction part.

符号の説明Explanation of symbols

1 T接合部分
2 T接合部分以外の部分
1 T junction part 2 Parts other than T junction part

Claims (4)

鉄心を電磁鋼板により構成しT接合部を有する積鉄心変圧器であって、前記T接合部の表面およびT接合部以外の表面にそれぞれ溝を有し、該溝が、平均幅:30〜300μm、平均深さ:5〜100μm、圧延方向に対する角度:60〜90°、及び圧延方向での平均間隔が1mm以上の範囲であり、前記T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、前記T接合部の表面の溝が、T接合部以外の表面の溝とは異なる条件で形成されることを特徴とする積鉄心変圧器。   An iron core transformer in which an iron core is made of an electromagnetic steel plate and has a T-junction, and has grooves on the surface of the T-junction and a surface other than the T-junction, and the groove has an average width of 30 to 300 μm. The average depth: 5 to 100 μm, the angle with respect to the rolling direction: 60 to 90 °, and the average distance in the rolling direction is in the range of 1 mm or more, and the iron loss in the rolling perpendicular direction of the T joint is other than the T joint The product core transformer, wherein the groove on the surface of the T-junction is formed under conditions different from those on the surface other than the T-junction so as to be lower than the iron loss in the direction perpendicular to the rolling direction. 前記T接合部の表面の溝は、下記a)〜c)の条件のうちの少なくとも一つ以上を満たすことを特徴とする請求項に記載の積鉄心変圧器。
a)T接合部以外の表面の溝に比べ、密度が高い
b)T接合部以外の表面の溝に比べ、溝深さが深い
c)T接合部以外の表面の溝に比べ、溝と圧延直角方向とのなす角が小さい
The product core transformer according to claim 1 , wherein the groove on the surface of the T junction satisfies at least one of the following conditions a) to c).
a) Higher density than grooves on the surface other than the T-junction portion b) Deeper groove depth than grooves on the surface other than the T-junction portion c) Groove and rolling compared to grooves on the surface other than the T-junction portion Small angle with the perpendicular direction
積鉄心を電磁鋼板により構成しT接合部を形成する積鉄心変圧器の製造方法であって、前記T接合部分となる電磁鋼板表面およびT接合以外の部分となる電磁鋼板表面にそれぞれ溝を形成し、その際、該溝を平均幅:30〜300μm、平均深さ:5〜100μm、圧延方向に対する角度:60〜90°、及び圧延方向での平均間隔が1mm以上の範囲とし、前記T接合部分となる電磁鋼板表面に溝を形成するにあたり、前記T接合部の圧延直角方向の鉄損がT接合部以外の圧延直角方向の鉄損よりも低くなるように、前記T接合部以外の部分となる電磁鋼板表面の溝形成とは異なる条件で行うことを特徴とする積鉄心変圧器の製造方法。 A method of manufacturing a laminated iron core transformer in which a laminated iron core is made of an electromagnetic steel sheet to form a T-joint, and grooves are respectively formed on the surface of the electromagnetic steel sheet to be the T-junction part and the surface of the electromagnetic steel sheet to be a part other than the T-junction. In this case, the groove is set to have an average width of 30 to 300 μm, an average depth of 5 to 100 μm, an angle with respect to the rolling direction: 60 to 90 °, and an average interval in the rolling direction of 1 mm or more. When forming the groove on the surface of the magnetic steel sheet, the portion other than the T-junction is such that the iron loss in the direction perpendicular to the rolling of the T-joint is lower than the iron loss in the direction perpendicular to the rolling other than the T-junction. A method for manufacturing a steel core transformer, which is performed under conditions different from the groove formation on the surface of the electromagnetic steel sheet. 下記a)〜c)の条件のうちの少なくとも一つ以上を満たすように、前記T接合部分となる電磁鋼板表面に溝を形成することを特徴とする請求項に記載の積鉄心変圧器の製造方法。
a)T接合部以外の部分となる電磁鋼板表面の溝に比べ、密度が高い
b)T接合部以外の部分となる電磁鋼板表面の溝に比べ、溝深さが深い
c)T接合部以外の部分となる電磁鋼板表面の溝に比べ、溝と圧延直角方向とのなす角が
小さい
The grooved iron core transformer according to claim 3 , wherein a groove is formed on the surface of the electromagnetic steel sheet to be the T-junction so as to satisfy at least one of the following conditions a) to c). Production method.
a) The density is higher than that of the groove on the surface of the electromagnetic steel sheet that is a part other than the T-joined part. b) The groove depth is deeper than the groove on the surface of the electromagnetic steel sheet that is a part other than the T-joined part. The angle between the groove and the direction perpendicular to the rolling is smaller than the groove on the surface of the magnetic steel sheet
JP2006235912A 2006-08-31 2006-08-31 Iron core transformer and method for manufacturing the same Expired - Fee Related JP5256594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235912A JP5256594B2 (en) 2006-08-31 2006-08-31 Iron core transformer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235912A JP5256594B2 (en) 2006-08-31 2006-08-31 Iron core transformer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008060353A JP2008060353A (en) 2008-03-13
JP5256594B2 true JP5256594B2 (en) 2013-08-07

Family

ID=39242740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235912A Expired - Fee Related JP5256594B2 (en) 2006-08-31 2006-08-31 Iron core transformer and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5256594B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6215673B2 (en) 2013-11-29 2017-10-18 東芝産業機器システム株式会社 Vector magnetic property control material and iron core
KR101747937B1 (en) 2015-11-05 2017-06-15 주식회사 포스코 Stacked core type transformer, manufacturing apparatus and method thereof
JP6638599B2 (en) * 2016-09-01 2020-01-29 日本製鉄株式会社 Wound iron core and method of manufacturing the wound iron core
JP6575549B2 (en) * 2017-03-22 2019-09-18 Jfeスチール株式会社 Iron loss prediction method
JP2020009910A (en) * 2018-07-09 2020-01-16 東芝産業機器システム株式会社 Stationary induction apparatus lamination iron core, manufacturing method of the same, and stationary induction apparatus
JP7232133B2 (en) * 2019-06-20 2023-03-02 株式会社日立産機システム Stacked iron core static induction device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484229A (en) * 1977-12-19 1979-07-05 Nippon Steel Corp Reducing method of iron loss of three phase transformer iron core
JPS6028130B2 (en) * 1979-10-19 1985-07-03 新日本製鐵株式会社 Method for improving iron loss in three-phase transformer core
JPS5842924U (en) * 1981-09-17 1983-03-23 三菱電機株式会社 Electromagnetic induction equipment core
JPS59197520A (en) * 1983-04-20 1984-11-09 Kawasaki Steel Corp Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JPS61117218A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Manufacture of grain oriented magnetic steel sheet of low iron loss
JPS6376819A (en) * 1986-09-18 1988-04-07 Kawasaki Steel Corp Grain-oriented electrical steel sheet having small iron loss and its manufacture
JPH0641640A (en) * 1992-07-22 1994-02-15 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel with low core loss
JPH06251966A (en) * 1993-02-23 1994-09-09 Kawasaki Steel Corp Three-phase laminated iron core transformer of low iron loss
JP2005120405A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Grain oriented silicon steel sheet for lamination type iron core

Also Published As

Publication number Publication date
JP2008060353A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
CN106282512B (en) Low noise level transformer orientation silicon steel piece making method
KR101553497B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP5256594B2 (en) Iron core transformer and method for manufacturing the same
JP5938866B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101607909B1 (en) Grain-oriented electrical steel sheet and transformer iron core using same
RU2741403C1 (en) Textured sheet of electrical steel, tape core of transformer from textured sheet of electrical steel and method of making tape core
KR20130025965A (en) Oriented electromagnetic steel plate
JP2012052229A (en) Grain-oriented electromagnetic steel sheet and process for producing the same
JP2020516766A (en) Low iron loss grain oriented silicon steel and method for producing the same
RU2503729C1 (en) Method of making sheet from electric steel with aligned grain structure
JP5668378B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS6342332A (en) Production of low iron loss grain oriented electrical steel sheet
JPH07268474A (en) Grain oriented silicon steel sheet with low iron loss
JP2012057232A (en) Grain oriented magnetic steel sheet and production method therefor
JP4734455B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP4598321B2 (en) Oriented electrical steel sheet with excellent magnetic properties
JP2013227649A (en) Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
WO2023007953A1 (en) Wound core and wound core manufacturing method
JP7318846B1 (en) Three-phase tripod-wound iron core and manufacturing method thereof
WO2023167016A1 (en) Three-phase tripod iron core and manufacturing method therefor
JP7151947B1 (en) Wound core and method for manufacturing wound core
WO2024063163A1 (en) Grain-oriented electrical steel sheet
WO2023112420A1 (en) Method for manufacturing laminated iron core
JP5742175B2 (en) Low iron loss three-phase transformer
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees