JPH0641640A - Manufacture of grain-oriented silicon steel with low core loss - Google Patents

Manufacture of grain-oriented silicon steel with low core loss

Info

Publication number
JPH0641640A
JPH0641640A JP4195376A JP19537692A JPH0641640A JP H0641640 A JPH0641640 A JP H0641640A JP 4195376 A JP4195376 A JP 4195376A JP 19537692 A JP19537692 A JP 19537692A JP H0641640 A JPH0641640 A JP H0641640A
Authority
JP
Japan
Prior art keywords
final
annealing
grain
steel sheet
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4195376A
Other languages
Japanese (ja)
Inventor
Atsuto Honda
厚人 本田
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4195376A priority Critical patent/JPH0641640A/en
Publication of JPH0641640A publication Critical patent/JPH0641640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To easily and stably manufacture the grain-oriented silicon steel with a low core loss by forming linear grooves on the surface of the steel plate with a specified space after executing the final cold rolling of the grain-oriented silicon steel stock, and providing the specified tension in the rolling direction after executing the final finishing annealing. CONSTITUTION:The final plate thickness is obtained by two cold rollings including one or an intermediate annealing after the hot rolling of the grain-oriented silicon steel is executed, and then, the decarburizing annealing and the final finishing annealing are executed. In the manufacturing method of the grain-oriented silicon steel, linear grooves whose width is approximately 50-4300mum, and whose depth is approximately 5-40mum are formed at the repeating space of 5-15mm in the direction which is approximately orthogonal to the rolling direction on the surface of the steel plate after the final cold rolling and before or after the final finishing annealing. In addition, after the final finishing annealing, the tension F to satisfy the inequality: 8-0.006T<=F<=30-0.02 Tkgf/mm<2> in the relationship with the temperature T deg.C is provided to the steel plate where these linear grooves are formed in the rolling direction at the temperature 700 deg.C or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心としての使途に用いて好適な、低鉄損方向性
電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low iron loss grain oriented electrical steel sheet suitable for use as an iron core of a transformer or other electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器の鉄
心材料として用いられ、その磁気特性が良好であること
が要求される。特に鉄心として使用した場合のエネルギ
ー損即ち鉄損が低いことが重要である。そこで従来から
鉄損を低減させるために、結晶方位を(110) 001 方位に
より高度に揃えること、Si含有量を増すことによって鋼
板の電気抵抗を増加させること、不純物を低減するこ
と、そして板厚を薄くすることなどが種々試みられてき
た。その結果板厚が0.23mm以下の鋼板では、鉄損W17/50
(磁束密度1.7 T,50Hzの場合の鉄損)が0.9 W/kg以下
のものが製造されるようになった。しかしながら、これ
ら冶金学的な方法では、これ以上大幅な鉄損の改善は期
待できない。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as core materials for transformers, and are required to have good magnetic properties. In particular, it is important that the energy loss when used as an iron core, that is, the iron loss is low. Therefore, in order to reduce iron loss from the past, the crystal orientation is highly aligned with the (110) 001 orientation, the electrical resistance of the steel sheet is increased by increasing the Si content, the impurities are reduced, and the sheet thickness is reduced. Various attempts have been made to reduce the thickness. As a result, iron loss W 17/50
Products with a magnetic flux density of 1.7 T and iron loss at 50 Hz of 0.9 W / kg or less have come to be manufactured. However, these metallurgical methods cannot be expected to further improve iron loss.

【0003】そこで近年、鉄損の大幅な低減を達成する
ための手段として、人為的に磁区を細分化する方法が種
々試みられるようになった。その中で現在工業化されて
いる方法としては、特公昭57-2252 号公報で提案されて
いるような仕上焼鈍済みの鋼板表面にレーザーを照射す
る方法がある。しかしながらこの方法は、鉄損低減に効
果があるとはいうものの、歪取り焼鈍によって鉄損の劣
化を来すという欠点があり、歪取り焼鈍を必須とする巻
鉄心用としては適用できない。
Therefore, in recent years, various methods for artificially subdividing magnetic domains have been tried as means for achieving a significant reduction in iron loss. Among them, as a method which has been industrialized at present, there is a method of irradiating a laser on the surface of a steel sheet after finish annealing as proposed in Japanese Patent Publication No. 57-2252. However, although this method is effective in reducing iron loss, it has a drawback that the iron loss is deteriorated by stress relief annealing, and cannot be applied to a wound iron core that requires stress relief annealing.

【0004】一方、歪取り焼鈍が可能な技術として特公
昭62-54873号公報には、仕上焼鈍済みの鋼板につき、レ
ーザーや機械的手段によって局所的に絶縁被膜を除去し
た後この被膜除去部を酸洗したり、ナイフなどにより機
械的に直接地鉄までけがく等の方法により、線状の溝を
局部的に形成し、この溝を充てんするようにりん酸塩径
の張力付与被膜処理を施す方法が提案され、また特公昭
62-53579号公報には、仕上焼鈍済みの鋼板に90〜220 kg
f/mm2 の荷重で地鉄部分に深さ5μm 超の溝を形成した
のち、750 ℃以上の温度で加熱処理する方法が提案され
ている。また特開昭59-19520号公報、特開昭63-42332号
公報には、最終冷延板に線状の溝を形成することで、歪
取り焼鈍に耐える低鉄損方向性電磁鋼板を得る方法が提
案されている。
On the other hand, as a technique capable of strain relief annealing, Japanese Patent Publication No. Sho 62-54873 discloses a steel sheet that has been subjected to finish annealing, after the insulating coating is locally removed by laser or mechanical means. A linear groove is locally formed by a method such as pickling or mechanically scribing directly on the base metal with a knife, etc., and a phosphate-tensioning film is applied to fill the groove. The method of applying is proposed, and
No. 62-53579 discloses that 90-220 kg is applied to a steel sheet that has been finish annealed.
A method has been proposed in which a groove having a depth of more than 5 μm is formed in a base metal portion with a load of f / mm 2 and then heat treatment is performed at a temperature of 750 ° C. or higher. Further, in JP-A-59-19520 and JP-A-63-42332, a linear iron groove is formed in the final cold-rolled sheet to obtain a low iron loss grain-oriented electrical steel sheet resistant to strain relief annealing. A method has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記した各種方法によ
る電磁鋼板は、低鉄損であって、しかも歪取り焼鈍によ
っても特性が劣化しないものである。しかしながら、電
磁鋼板の鉄損特性は、ある程度の値であれば満足できる
ようなものではなく、エネルギー損をできるだけ低減す
るために、鉄損特性のさらなる改善が望まれているので
あり、また、その製造プロセスにおいては、より簡便
で、しかも安定して製造できることが望まれている。そ
こでこの発明は、上記の要請に対して、歪取り焼鈍によ
って特性劣化のない低鉄損の電磁鋼板を、より簡便な手
法により安定して製造することのできる方法を提案する
ことをその目的とする。
The electrical steel sheets produced by the above-mentioned various methods have low iron loss and their characteristics are not deteriorated by strain relief annealing. However, the iron loss characteristic of the electromagnetic steel sheet is not satisfactory if it is a certain value, and further improvement of the iron loss characteristic is desired in order to reduce energy loss as much as possible. In the manufacturing process, it is desired that the manufacturing be simpler and more stable. In view of the above, the present invention has an object to propose a method capable of stably producing a low iron loss magnetic steel sheet having no characteristic deterioration due to strain relief annealing by a simpler method. To do.

【0006】[0006]

【課題を解決するための手段】発明者らは、歪取り焼鈍
に耐えることはもちろん、従来よりもさらに低鉄損な方
向性電磁鋼板を得べく、鋭意実験と研究とを重ねた結
果、最終焼鈍の前又は後に、予め鋼板表面に圧延方向と
ほぼ直角方向に溝を形成しておき、しかる後の最終焼鈍
後に、鋼板全体を圧延方向に引っ張ることが、所期した
目的の達成に極めて有効であることの知見を得た。この
発明は、上記の知見に立脚するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive experiments and research to obtain a grain-oriented electrical steel sheet which not only withstands strain relief annealing but also has a lower iron loss than the conventional one. Before or after annealing, it is very effective to achieve the intended purpose by forming grooves on the surface of the steel sheet in the direction substantially perpendicular to the rolling direction in advance and then pulling the entire steel sheet in the rolling direction after the final annealing. I got the knowledge that. The present invention is based on the above findings.

【0007】すなわちこの発明は、方向性電磁鋼素材に
熱間圧延を施した後、1回又は中間焼鈍を挟む2回の冷
間圧延を施して最終板厚とし、その後脱炭焼鈍、次いで
最終仕上焼鈍を施す一連の工程により方向性電磁鋼板を
製造するにあたり、最終冷間圧延後で最終仕上焼鈍前又
は最終仕上焼鈍後に、鋼板表面に線状溝を、繰り返し間
隔5〜15mmでかつ圧延方向とほぼ直角方向に形成し、こ
の線状溝を形成した鋼板に最終仕上焼鈍後、700 ℃以下
の温度にて、温度T(℃)との関係で次式
That is, according to the present invention, the grain-oriented electrical steel material is hot-rolled, then cold-rolled once or twice with intermediate annealing to obtain a final plate thickness, followed by decarburization annealing and then final annealing. When manufacturing a grain-oriented electrical steel sheet by a series of processes for applying finish annealing, after final cold rolling, before final finish annealing or after final finish annealing, linear grooves are formed on the surface of the steel sheet with a repeating interval of 5 to 15 mm and rolling direction. After the final finish annealing of the steel sheet with linear grooves formed in a direction substantially perpendicular to the above, at the temperature of 700 ° C or less, the following formula is used in relation to the temperature T (° C).

【数2】8−0.006 T≦F≦30−0.02T(kgf/mm2 ) を満足する張力Fを圧延方向に付与することを特徴とす
る低鉄損方向性電磁鋼板の製造方法である。
## EQU2 ## A method of manufacturing a low iron loss grain oriented electrical steel sheet characterized by applying a tension F satisfying 8-0.006 T≤F≤30-0.02 T (kgf / mm 2 ) in the rolling direction.

【0008】[0008]

【作用】レーザー印加、プラズマ印加又はけがき等によ
って行われる従来の鉄損低減策は、基本的には鋼板表面
に微小歪域を導入し、その領域に生じる90°磁区が、反
磁場エネルギーを高め、磁区を細分化して渦電流損を低
減しているものと考えられる。また、鋼板表面に溝を導
入する方法は、90°磁区を形成させることなく、その溝
部周辺の反磁場エネルギーの増加により渦電流損を低減
するものと考えられる。したがって、上記のような局所
歪及び溝の両者を鋼板表面に存在させ、しかもこのよう
な状況を簡単に形成し得る方法があれば、工業的にさら
なる低鉄損化が達成できると考えたのがこの発明の発端
である。
[Function] Conventional iron loss reduction measures performed by laser application, plasma application, or scribing basically introduce a microstrain region on the surface of the steel sheet, and the 90 ° magnetic domain generated in that region causes demagnetizing field energy. It is considered that the eddy current loss is reduced by increasing the height and subdividing the magnetic domain. Further, it is considered that the method of introducing the groove on the surface of the steel sheet reduces the eddy current loss by increasing the demagnetizing field energy around the groove portion without forming the 90 ° magnetic domain. Therefore, it was thought that further iron loss reduction could be achieved industrially if there is a method in which both the local strain and the groove as described above are present on the surface of the steel sheet, and moreover, such a situation can be easily formed. Is the origin of this invention.

【0009】この発明では、最終焼鈍後、鋼板に圧延方
向の張力を付与する前に、鋼板表面には、圧延方向の繰
り返し間隔が5〜15mmで、圧延方向とほぼ直角方向の溝
が導入されていなければならない。かかる溝の繰り返し
間隔が鉄損特性に及ぼす影響を調べるために、C:0.07
wt%、Si:3.2 wt%、Mn:0.06wt%、Al:0.025wt%、
N:85ppm を含み、残部は鉄の組成になるけい素鋼スラ
ブを、1400℃に加熱して熱間圧延を行い、次いで圧下率
90%の冷間圧延を施して最終板厚0.20mmとした後、圧延
方向に直角方向に幅:200 μm 、深さ20μm で繰り返し
間隔を種々に変化させた線状溝を導入し、しかる後に湿
水素雰囲気、850 ℃、1分の脱炭焼鈍を施し、ついで焼
鈍分離剤を鋼板表面上に塗布してから、最終仕上焼鈍を
1200℃、10時間行ったのち300 ℃にて20kgf/mm2 の張力
で圧延方向に引っ張った鋼板について、その鉄損特性を
調べた。
According to the present invention, after the final annealing, before applying the tension in the rolling direction to the steel sheet, a groove in the rolling direction is introduced on the surface of the steel sheet with a repeating interval of 5 to 15 mm in the rolling direction. Must be In order to investigate the effect of the repetition interval of such grooves on the iron loss characteristics, C: 0.07
wt%, Si: 3.2 wt%, Mn: 0.06 wt%, Al: 0.025 wt%,
A silicon steel slab containing N: 85ppm, the balance of which is iron, is heated to 1400 ° C and hot-rolled, then the reduction ratio
After 90% cold rolling to a final strip thickness of 0.20 mm, we introduced linear grooves with a width of 200 μm and a depth of 20 μm in the direction perpendicular to the rolling direction and with various repetition intervals. Perform decarburization annealing at 850 ° C for 1 minute in a wet hydrogen atmosphere, then apply an annealing separator on the surface of the steel sheet, and then perform a final finish annealing.
The iron loss characteristics of the steel sheet that was pulled in the rolling direction at a tension of 20 kgf / mm 2 at 300 ° C after being performed at 1200 ° C for 10 hours were examined.

【0010】その結果を図1に示す。図1から、圧延方
向の繰り返し間隔が5mmに満たないと、鉄損が劣化し、
また15mmを超えると鉄損特性の向上が見られないことが
わかる。また、線状幅の形成方向は、圧延方向に対して
直角方向が良く、約20°程度のずれであれば問題はな
い。さらに、溝の形状は特に規定するものではないが、
好ましくは、溝幅:50〜300 μm 、溝深さ:5〜40μm
程度である。
The results are shown in FIG. From Fig. 1, if the repeating interval in the rolling direction is less than 5 mm, the iron loss deteriorates,
Further, it is clear that when the thickness exceeds 15 mm, the improvement of iron loss characteristics is not seen. Further, the direction of forming the linear width is preferably a direction perpendicular to the rolling direction, and there is no problem if it is offset by about 20 °. Furthermore, although the shape of the groove is not particularly specified,
Preferably, groove width: 50-300 μm, groove depth: 5-40 μm
It is a degree.

【0011】上述したような線状溝の導入は、最終冷延
後で、仕上焼鈍前又は仕上焼鈍前のいずれでも良く、そ
の導入法は、仕上焼鈍前の場合は、最終冷延板にエッチ
ングレジスト膜を選択的に形成して電解または化学エッ
チングする方法やロール表面に線状の突起を有する凸ロ
ールを用いる方法等があり、また仕上焼鈍の場合は、最
終焼鈍板に上記凸ロールを用いる方法等があり、いずれ
にせよ、線状溝形成のための既知の方法を用いることが
できる。
The introduction of the linear groove as described above may be carried out after the final cold rolling and before the finish annealing or before the finish annealing. The introduction method is to etch the final cold rolled sheet in the case before the finish annealing. There is a method of selectively forming a resist film and performing electrolytic or chemical etching, a method of using a convex roll having linear projections on the roll surface, or the like, and in the case of finish annealing, the convex roll is used for the final annealed plate. There are methods and the like, and in any case, a known method for forming the linear groove can be used.

【0012】次にこの発明で線状溝を形成した最終仕上
焼鈍後の鋼板に張力を付与する際は、700 ℃以下の温度
で行う必要がある。700 ℃を超えると、鉄損低減効果が
小さくなる。
Next, when applying tension to the steel sheet after the final finish annealing in which linear grooves are formed according to the present invention, it is necessary to apply the tension at a temperature of 700 ° C. or less. If it exceeds 700 ° C, the effect of reducing iron loss becomes small.

【0013】またその張力は、温度との関係で次式The tension is expressed by the following equation in relation to temperature.

【数3】8−0.006 T≦F≦30−0.02T(kgf/mm2 ) を満足させる必要がある。この張力と温度との関係につ
いて調べるために、C:0.065 wt%、Si:3.15wt%、M
n:0.06wt%、Al:0.023wt%、N:87ppm を含み、残部
は鉄の組成になるけい素鋼スラブを、1400℃に加熱して
熱間圧延を行い、次いで圧下率90%の冷間圧延を施して
最終板厚0.20mmとした後、圧延方向に直角方向に幅:15
0 μm 、深さ20μm で繰り返し間隔7.5 mmにした線状溝
を導入し、しかる後に湿水素雰囲気、850 ℃、1分の脱
炭焼鈍を施し、ついで焼鈍分離剤を鋼板表面上に塗布し
てから、最終仕上焼鈍を1200℃、10時間行ったのち、種
々の温度、引張応力で圧延方向に引っ張った鋼板につい
て、その鉄損特性を調べた。
[Equation 3] 8-0.006 T≤F≤30-0.02T (kgf / mm 2 ) must be satisfied. In order to investigate the relationship between this tension and temperature, C: 0.065 wt%, Si: 3.15 wt%, M
A silicon steel slab containing n: 0.06wt%, Al: 0.023wt%, N: 87ppm, the balance of which is iron, is heated to 1400 ° C and hot-rolled, and then cold rolled at a reduction rate of 90%. After hot rolling to a final thickness of 0.20 mm, width: 15 in the direction perpendicular to the rolling direction
A linear groove was introduced with 0 μm and 20 μm depth and a repetition interval of 7.5 mm, followed by decarburizing annealing at 850 ° C. for 1 minute in a wet hydrogen atmosphere, and then applying an annealing separator on the steel sheet surface. From the above, after the final finish annealing was performed at 1200 ° C. for 10 hours, the iron loss characteristics of the steel sheets pulled in the rolling direction at various temperatures and tensile stresses were examined.

【0014】その結果を図2に示す。図2においては、
鋼板表面に線状溝有りで張力を付与しない比較例に比べ
て、1.7 T,50Hzでの鉄損値が0.02W/kg以上低下した場
合は○印を、0.02W/kg低下しなかった場合は×印を示し
てある。図2から明らかなように、引張応力が8−0.00
6 T≦F≦30−0.02T(kgf/mm2 )を満足する場合にの
み、良好な鉄損改善特性が得られた。この張力の付与方
向は、圧延方向に平行でなければならない。
The results are shown in FIG. In FIG.
When the iron loss value at 1.7 T, 50 Hz decreased by 0.02 W / kg or more compared to the comparative example in which there was no linear tension on the surface of the steel plate and no tension was applied, the ○ mark did not decrease, and 0.02 W / kg did not decrease. Indicates an X mark. As is clear from FIG. 2, the tensile stress is 8-0.00.
Good iron loss improving characteristics were obtained only when 6 T ≦ F ≦ 30−0.02 T (kgf / mm 2 ) was satisfied. The direction of applying this tension must be parallel to the rolling direction.

【0015】この発明において、対象とする方向性電磁
鋼素材の成分組成は、特に限定するものではなく、従来
公知の成分組成範囲のいずれもが適合する。その代表組
成について掲げると、例えば、C:0.01〜0.08wt%、S
i:2.0 〜4.0 wt%を含み、かつインヒビターとしてMnS
e、MnS 、AlN 、BNのうち1種又は2種以上を含む組
成である。なお、インヒビター成分としては、上記以外
に、Sb、Sn、Cu、Bi等を含むものもこの発明では適合す
る。
In the present invention, the component composition of the target grain-oriented electrical steel material is not particularly limited, and any conventionally known component composition range is suitable. Typical compositions are, for example, C: 0.01 to 0.08 wt%, S
i: 2.0-4.0 wt% and contains MnS as an inhibitor
The composition includes one or more of e, MnS, AlN, and BN. In addition to the above, inhibitors containing Sb, Sn, Cu, Bi and the like are also suitable as the inhibitor component in the present invention.

【0016】[0016]

【実施例】C:0.070 wt%、Si:3.25wt%、Mn:0.068
wt%、Se:0.021 wt%、Al:0.026 wt%及びN:0.0084
wt%を含み、残部Feの組成になるけい素鋼スラブを、熱
間圧延し、次いで1000℃、1分の中間焼鈍を挟む2回の
冷間圧延を施して最終板厚0.23mmの冷延板とした。かか
る冷延コイルを、グラビアオフセット印刷によるレジス
ト塗布処理後、電解エッチングを施して鋼板表面に線状
溝を形成した。この際、レジストとしてはエポキシ系樹
脂を主成分とするインキを用い、電解液はNaCl液を用
い、電流密度10 A/dm3で20秒間エッチング処理して表面
の線状幅を約200 μm 、溝深さを約20μm にしたもので
ある。このように線状溝を形成したコイルを湿水素雰囲
気中で850 ℃、1分間の脱炭焼鈍後、MgO を主成分とす
る焼鈍分離剤を塗布してから、乾水素雰囲気中で1200
℃、5時間の最終仕上焼鈍を施し、その後種々の温度、
引張応力で鋼板を圧延方向に引っ張った。かくして得ら
れた製品コイルの磁気特性について調べた結果を表1に
示す。
[Example] C: 0.070 wt%, Si: 3.25 wt%, Mn: 0.068
wt%, Se: 0.021 wt%, Al: 0.026 wt% and N: 0.0084
A silicon steel slab containing wt% and having a balance of Fe is hot-rolled, and then cold-rolled twice at 1000 ° C. for 1 minute with intermediate annealing to obtain a final sheet thickness of 0.23 mm. It was a plate. The cold-rolled coil was subjected to resist coating treatment by gravure offset printing and then subjected to electrolytic etching to form linear grooves on the surface of the steel sheet. At this time, an ink containing an epoxy resin as a main component was used as the resist, a NaCl solution was used as the electrolytic solution, and the linear width of the surface was about 200 μm by etching for 20 seconds at a current density of 10 A / dm 3 and The groove depth is about 20 μm. The coil with the linear groove thus formed was decarburized and annealed at 850 ° C. for 1 minute in a wet hydrogen atmosphere, and then an annealing separator containing MgO as a main component was applied, and then 1200 C in a dry hydrogen atmosphere.
℃, 5 hours final finish annealing, then at various temperatures,
The steel sheet was pulled in the rolling direction by the tensile stress. Table 1 shows the results of examining the magnetic properties of the product coil thus obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、この発明に従う
適合例は、著しい鉄損低減が図られている。
As is clear from Table 1, the iron loss reduction of the conforming example according to the present invention is remarkably reduced.

【0019】[0019]

【発明の効果】この発明の低鉄損方向性電磁鋼板の製造
方法は、最終冷間圧延後で最終仕上焼鈍前又は最終仕上
焼鈍後に、鋼板表面にあらかじめ線状溝を形成し、この
線状溝を形成した鋼板に最終仕上焼鈍後、700 ℃以下の
温度にて、温度との所定の関係を満足するように張力F
を圧延方向に付与することにより、従来に比べてより一
層の低鉄損の方向性電磁鋼板を、工業的に簡便な方法に
より得ることができる。
The method for producing a low iron loss grain-oriented electrical steel sheet according to the present invention comprises a step of forming linear grooves on the surface of the steel sheet after the final cold rolling and before the final finishing annealing or after the final finishing annealing. After the final finish annealing of the grooved steel plate, at a temperature of 700 ° C or less, the tension F is set so as to satisfy the predetermined relationship with the temperature.
Is added to the rolling direction, it is possible to obtain a grain-oriented electrical steel sheet having a lower iron loss than the conventional one by an industrially simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、電磁鋼板の鉄損特性に及ぼす線状溝の
繰り返し間隔の影響を調べたグラフである。
FIG. 1 is a graph showing the effect of repeating intervals of linear grooves on iron loss characteristics of electromagnetic steel sheets.

【図2】図2は、電磁鋼板の鉄損改善効果に及ぼす引張
応力及びその時の温度の影響を調べたグラフである。
FIG. 2 is a graph in which the effects of tensile stress and temperature at that time on the iron loss improvement effect of an electromagnetic steel sheet are investigated.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼素材に熱間圧延を施した
後、1回又は中間焼鈍を挟む2回の冷間圧延を施して最
終板厚とし、その後脱炭焼鈍、次いで最終仕上焼鈍を施
す一連の工程により方向性電磁鋼板を製造するにあた
り、 最終冷間圧延後で最終仕上焼鈍前又は最終仕上焼鈍後
に、鋼板表面に線状溝を、繰り返し間隔5〜15mmでかつ
圧延方向とほぼ直角方向に形成し、 この線状溝を形成した鋼板に最終仕上焼鈍後、700 ℃以
下の温度にて、温度T(℃)との関係で次式 【数1】8−0.006 T≦F≦30−0.02T(kgf/mm2 ) を満足する張力Fを圧延方向に付与することを特徴とす
る低鉄損方向性電磁鋼板の製造方法。
1. A grain-oriented electrical steel material is hot-rolled and then cold-rolled once or twice with an intermediate annealing to obtain a final plate thickness, followed by decarburization annealing and then final finishing annealing. In the production of grain-oriented electrical steel sheets by a series of processes to be performed, after the final cold rolling, before the final finish annealing or after the final finish annealing, linear grooves are formed on the surface of the steel sheet with a repeating interval of 5 to 15 mm and at a right angle to the rolling direction. Direction, and after the final finish annealing of the steel sheet with the linear grooves formed, at the temperature of 700 ° C or less, the following equation is given in relation to the temperature T (° C): 8-0.006 T≤F≤30 A method for producing a low iron loss grain-oriented electrical steel sheet, which comprises applying a tension F satisfying -0.02 T (kgf / mm 2 ) in the rolling direction.
JP4195376A 1992-07-22 1992-07-22 Manufacture of grain-oriented silicon steel with low core loss Pending JPH0641640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195376A JPH0641640A (en) 1992-07-22 1992-07-22 Manufacture of grain-oriented silicon steel with low core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195376A JPH0641640A (en) 1992-07-22 1992-07-22 Manufacture of grain-oriented silicon steel with low core loss

Publications (1)

Publication Number Publication Date
JPH0641640A true JPH0641640A (en) 1994-02-15

Family

ID=16340142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195376A Pending JPH0641640A (en) 1992-07-22 1992-07-22 Manufacture of grain-oriented silicon steel with low core loss

Country Status (1)

Country Link
JP (1) JPH0641640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515461B1 (en) * 1997-04-03 2005-11-25 제이에프이 스틸 가부시키가이샤 Ultra-low iron loss unidirectional silicon steel sheet
JP2008060353A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Product iron core transformer and manufacturing method therefor
WO2024111639A1 (en) * 2022-11-22 2024-05-30 日本製鉄株式会社 Grain-oriented electrical steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515461B1 (en) * 1997-04-03 2005-11-25 제이에프이 스틸 가부시키가이샤 Ultra-low iron loss unidirectional silicon steel sheet
JP2008060353A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Product iron core transformer and manufacturing method therefor
WO2024111639A1 (en) * 2022-11-22 2024-05-30 日本製鉄株式会社 Grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
KR100885145B1 (en) Grain oriented electrical steel sheet with low iron loss and production method for same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
CN110651058B (en) Grain-oriented electromagnetic steel sheet and method for producing same
KR20160142881A (en) Method for producing oriented electromagnetic steel sheet
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020203928A1 (en) Directional electromagnetic steel sheet and manufacturing method of same
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
KR20210111822A (en) Method for manufacturing grain-oriented electrical steel sheet
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
WO2019181952A1 (en) Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP3390345B2 (en) Grain-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
JPH0641640A (en) Manufacture of grain-oriented silicon steel with low core loss
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
RU2805838C1 (en) Method for producing anisotropic electrical steel sheet
JP3541419B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet