JPS59197520A - Manufacture of single-oriented electromagnetic steel sheet having low iron loss - Google Patents

Manufacture of single-oriented electromagnetic steel sheet having low iron loss

Info

Publication number
JPS59197520A
JPS59197520A JP58068346A JP6834683A JPS59197520A JP S59197520 A JPS59197520 A JP S59197520A JP 58068346 A JP58068346 A JP 58068346A JP 6834683 A JP6834683 A JP 6834683A JP S59197520 A JPS59197520 A JP S59197520A
Authority
JP
Japan
Prior art keywords
annealing
iron loss
steel sheet
final
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58068346A
Other languages
Japanese (ja)
Other versions
JPH0369968B2 (en
Inventor
Keiji Sato
圭司 佐藤
Bunjiro Fukuda
福田 文二郎
Hiroshi Shimizu
洋 清水
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58068346A priority Critical patent/JPS59197520A/en
Publication of JPS59197520A publication Critical patent/JPS59197520A/en
Publication of JPH0369968B2 publication Critical patent/JPH0369968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Abstract

PURPOSE:To obtain a single-oriented electromagnetic steel sheet of which iron loss is not determined even though high temperature stress-relieving annealing is processed, by inducting seams onto the steel sheet before the final finish annealing process of silicon steel hot-rolled sheet limiting Si content. CONSTITUTION:The silicon steel hot-rolled sheet containing 4.5wt% max. Si is cold-rolled to final product sheet thickness putting intermediate annealing between the cold rollings and final finish annealing is processed after decarborizing annealing. Seams are inducted onto the steel sheet before this final finish annealing process. If possible, those seams should be 300mum max. in width, about 1.0mum max. in length and about 1mm. in the gap of rolling direction in the direction almost at right angle to rolling direction, and they are given by means of the edge of knife, laser beam etc. By this method, the iron loss improved for annealing at a high temperature can be maintained and the single-oriented electromagnetic steel sheet having iron loss suitable for iron core material can be obtained.

Description

【発明の詳細な説明】 技術分野 一方向性電磁鋼板は、主として変圧器その他の電気機器
の鉄心として用いられ、その磁気特性が良好であること
が要求される。特に鉄心として使用した際のエネルギー
損失、即ち鉄損が低いことが重要であり、近年のエネル
ギー事情の悪化からとくに鉄損の低い電磁鋼板に対する
要求は一段と高19つつある。
DETAILED DESCRIPTION OF THE INVENTION Technical Field Unidirectional electrical steel sheets are mainly used as cores for transformers and other electrical equipment, and are required to have good magnetic properties. In particular, it is important that the energy loss, ie, iron loss, be low when used as an iron core, and as the energy situation has worsened in recent years, the demand for electrical steel sheets with particularly low iron loss has become even higher.

従来技術とその問題点 ところで鉄損全減少させるためには、結晶方位を(11
0)(001)方位により高度に揃えること、S1含有
量を上げ、それにより鋼板の電気抵抗を増加式せること
、そして不純物を低減させること、などが種々に試みら
れた。しかしながら、これらの方法による鉄損の低減は
近年の技術の向上によりほぼ限界近くに達している。
Conventional technology and its problems By the way, in order to completely reduce the iron loss, the crystal orientation must be changed to (11
Various attempts have been made to align the 0)(001) orientation to a higher degree, to increase the S1 content, thereby increasing the electrical resistance of the steel sheet, and to reduce impurities. However, reduction of iron loss by these methods has almost reached its limit due to recent technological improvements.

一万特開昭50−187819号公報では、鋼板に二次
再結晶阻止領域を形成させることにより、二次粒径を小
さくシ、鉄損を減少ちせる方法が提案されているが、と
、の方法は実用化が難しく、実際には用いられていない
Japanese Patent Application Laid-Open No. 50-187819 proposes a method for reducing the secondary grain size and iron loss by forming a secondary recrystallization inhibiting region in a steel plate. This method is difficult to put into practical use and is not actually used.

このように冶金学的な手法による鉄損の低減はほぼ限界
近くに達していて、W1715oで1.ooW、4゜以
下の鋼板を製造することは不可能であった。ここでW1
715oは磁束密度1.7T 、周波数50 Hzでの
鉄損である。
In this way, the reduction of iron loss by metallurgical methods has almost reached its limit, and W1715o has reached a limit of 1. ooW, it was impossible to manufacture a steel plate of 4° or less. Here W1
715o is the iron loss at a magnetic flux density of 1.7 T and a frequency of 50 Hz.

したがって鉄損の飛躍的な減少を達成するためには冶金
学的手段以外の手法を講する必要がある。
Therefore, in order to achieve a dramatic reduction in iron loss, it is necessary to use methods other than metallurgical means.

このような方法の一つとして特開昭49−96920号
公報に提案されているように鋼板表面を鏡面にする方法
も知られているが、鋼板の絶縁などの問題があり実用化
されていない。
One such method is to make the surface of the steel plate mirror-like, as proposed in Japanese Patent Application Laid-Open No. 49-96920, but it has not been put to practical use due to problems such as insulation of the steel plate. .

また仕上焼なましずみ鋼板にナイフやかみそりの刃先な
どで線状疵を導入することによって鉄損全減少させる試
みもあるけれども、この方法では疵による絶縁被膜の劣
化、疵の周辺に生ずるかえりによる占積率の劣化、磁歪
の劣化などの問題があり、とくに鋼板を積層した際に単
板での鉄損特性がそのまま生かさ2、れないという欠・
点をもつ。したがって積層して使用するトランスや巻鉄
心に対しては実用上のメリットがなく、実際には使用さ
れていない。
There have also been attempts to completely reduce iron loss by introducing linear flaws into finished annealed steel sheets with the edge of a knife or razor, but this method does not allow for the deterioration of the insulation coating due to the flaws and the burrs that form around the flaws. There are problems such as deterioration of space factor and deterioration of magnetostriction.In particular, when steel plates are laminated, the iron loss characteristics of a single plate cannot be utilized as is.
Has a point. Therefore, transformers and wound cores that are used in a stacked manner have no practical advantage and are not actually used.

さらに別の方法として特開昭FMI−117016号、
特開昭55−18566号および特開昭57−1888
10号各公報などには、仕上焼なまし後鋼板に微小歪を
生じさせることによる鉄損特性改善方法が提案され、こ
れらはそれぞれボールペン状の小球によるスクラッチ、
レーザーによるスー!ラッチ、放電加工と手段は異なる
が、いずれも、仕上焼なましのあと、上記微小歪を導入
することにより磁区の細分化をはかり、鉄損を減少させ
ようとする基本構想を同じくしている。
As yet another method, JP-A No. 117016,
JP-A-55-18566 and JP-A-57-1888
No. 10 and other publications propose methods for improving iron loss characteristics by creating micro-strains in steel sheets after finish annealing.
Sue by laser! Although the methods are different, latching and electrical discharge machining, both have the same basic concept: to subdivide the magnetic domain by introducing the above-mentioned minute strain after final annealing, and to reduce iron loss. .

しかしながらこれらの方法には、その後高温での焼な1
しか行われたときに、鉄損は劣化するという欠点かう9
、高温での歪−取焼なましを必要とする巻鉄心用材料と
しては実用上の効果が得られない。
However, these methods require subsequent annealing at high temperatures.
The disadvantage is that the iron loss deteriorates when the
However, it cannot be used as a material for wound cores that require strain-removal annealing at high temperatures.

発  明  の  目  的 この発明は上に述べたような欠点がなく、高温での歪取
焼なましが行われた場合でも、−それによる鉄損の劣化
のない低鉄損一方向性電磁鋼板を製造することを目的と
するものである。
Purpose of the Invention The present invention provides a low iron loss unidirectional electrical steel sheet which does not have the above-mentioned drawbacks and does not suffer from deterioration of iron loss even when strain relief annealing is performed at high temperatures. The purpose is to manufacture.

発  明  の  構 成 すなわちこの発明はsi、 4.5重量%(以下単に%
と略す)以下を含むけい素鋼熱延板′f:1回または中
間焼なましをはさむ2回以上の冷間圧延により最終製品
板厚となし、脱炭焼なましののち最終仕上げ焼なましを
行なう一方向性電磁鋼板の製造方法において、最終仕上
焼なまし工程の前に、鋼板に線状疵を導入することから
成る鉄損の低い一方向性電磁鋼板の製造方法であり、最
終仕上焼なまし工程の前に、鋼板に導入する線状疵が鋼
板の圧延方向とほぼ直角な方向に、幅800μ以下、深
で100μ以下、圧延方向の間隔1 mm以上であるこ
とが実施上好ましい態様である。
The constitution of the invention, that is, this invention is based on Si, 4.5% by weight (hereinafter simply referred to as %).
Hot-rolled silicon steel sheet 'f' containing the following: The final product thickness is obtained by cold rolling once or twice or more with intermediate annealing, and after decarburization annealing, final finish annealing is performed. This is a method for producing unidirectional electrical steel sheets with low core loss, which involves introducing linear flaws into the steel sheet before the final finishing annealing process. It is practically preferable that the linear flaws introduced into the steel sheet before the annealing step have a width of 800 μm or less, a depth of 100 μm or less, and an interval of 1 mm or more in the rolling direction in a direction substantially perpendicular to the rolling direction of the steel sheet. It is a mode.

以下上記構成について詳細に解説を加電る。The above configuration will be explained in detail below.

一方向性電磁鋼板はsi 4.5%以下を含むけい素鋼
熱延板を1回または中間焼なましをはさむ2回以上の冷
間圧延により最終製品板厚となし〜脱炭焼なましを施し
たのち、最終仕上焼なましを行なうことにより製造され
るのが通例である。
Unidirectional electrical steel sheets are made by cold rolling silicon steel hot-rolled sheets containing Si 4.5% or less once or twice or more with intermediate annealing to achieve the final product thickness - decarburization annealing. After that, it is usually manufactured by performing a final finish annealing.

最終仕上焼なましは、鋼板に主としてMgOよりなる焼
鈍分離剤を塗布し、コイル状にして約1200℃の水素
雰囲気1中で行なわれ、この焼なましでは″二次再結晶
と鋼中の不純物の純化が行なわれる。
Final annealing is performed by coating a steel plate with an annealing separator mainly consisting of MgO, coiling it, and performing it in a hydrogen atmosphere at approximately 1200°C. Purification of impurities takes place.

仕上焼なまし後鋼板は未反応のMgOを除去し、その上
にりん酸塩などの絶縁被膜処理が行なわれる。この被膜
処理では、鋼板は800℃程度に加熱され、仕上焼なま
し時のコイルセットを除去することが同時に行なわれる
After final annealing, unreacted MgO is removed from the steel sheet, and an insulating coating such as phosphate is applied thereon. In this coating treatment, the steel plate is heated to about 800° C., and the coil set during final annealing is removed at the same time.

発明者らは、最終仕上焼なましに関して稲々検討した結
果、とくに鋼板に線状疵を導入した状態で仕上焼なまし
を行なうと鉄損が大幅に減少することを以下に示す実験
により見出したのである0実験にはOO,045%、 
Si 8.8%、 Mn 0.07%。
As a result of extensive research regarding final finish annealing, the inventors found through the experiment shown below that iron loss is significantly reduced, especially when finish annealing is performed with linear flaws introduced into the steel sheet. For the 0 experiment, OO,045%,
Si 8.8%, Mn 0.07%.

またインヒビj−としてse U 、 02%、’Sb
@0 、025%を含む連続鋳造スラブから熱間圧延し
て一方向性電磁鋼板素材とし、2回冷間圧延法にて最終
板厚。
Also, as inhibitor j-, se U, 02%, 'Sb
A continuous cast slab containing @0 and 025% is hot rolled to produce a unidirectional electrical steel sheet material, and the final thickness is obtained by cold rolling twice.

o、sommに冷間圧延した試料を用いた。それらの試
料について最終冷間圧延後(A)最終冷間圧延を経た脱
炭焼なまし後(B)、さらに最終冷間圧延、脱炭焼な1
0を経た仕上焼なまし後(0)に、それぞれ幅100μ
、深さ20μ−の線状疵全圧延方向とほぼ直角な方向に
5 mm間隔で導入し、各供試鋼板はさらに上記の順に
、脱炭焼なまし一仕上焼なまし一絶縁被膜処理、仕上焼
なまし一絶縁被膜処理、絶縁被膜処理のみをそれぞれ施
して製品とした。それらの磁気特性を、疵の導入をせす
に同様な工程を経友場合CD)と比較して表1に鉄損、
磁束密度の値を掲げた。
A cold rolled sample was used. For those samples, after final cold rolling (A), after final cold rolling and decarburization annealing (B), and further after final cold rolling and decarburization annealing.
After finishing annealing through 0 (0), each width is 100μ
Linear flaws with a depth of 20μ were introduced at 5 mm intervals in a direction almost perpendicular to the rolling direction, and each test steel sheet was further subjected to decarburization annealing, finishing annealing, insulation coating treatment, and finishing in the above order. Products were made by performing annealing, insulation coating treatment, and insulation coating treatment only. Table 1 shows the iron loss and the magnetic properties of these magnetic properties compared with that of CD (CD), which uses a similar process without introducing flaws.
The value of magnetic flux density is listed.

表1 この磁気特性は幅150朋、長さ280朋の試片をその
まま用いる単板試験器による成績(SST測定値)と、
幅3Qmlfr、長さ280mmの試片を800℃×3
時間歪取焼なまししたあとでのエプスタイン試験器によ
る測定値(JI302550 )の両方で対比しである
。同表から試料(A)、CB)ではSST測定、エプス
タイン測定共に試−科(C)。
Table 1 The magnetic properties are based on the results (SST measurement values) using a veneer tester using a specimen of width 150 mm and length 280 mm, and
Samples with a width of 3Qmlfr and a length of 280mm were heated at 800℃ x 3
The values measured by an Epstein tester (JI302550) after time-strain annealing are compared. From the same table, for samples (A) and CB), both SST measurement and Epstein measurement were tested (C).

CD)に比べて鉄損が少くとも0.04〜0−094の
ように、著しく向上していることがわかる。
It can be seen that the iron loss is significantly improved as compared to CD) by at least 0.04 to 0-094.

この鉄損減少の理由は明確ではないが仕上焼なましに際
して、鋼板に線状疵が存在することにより雰囲気ガスが
鋼板層間内部までよく浸透し、不純物の純化が促進され
るためと考えられる。
The reason for this decrease in iron loss is not clear, but it is thought to be because the presence of linear flaws in the steel sheet during final annealing allows atmospheric gas to penetrate well into the interlayers of the steel sheet, promoting purification of impurities.

次に上記試料(A)につき鋼板の圧延方向とほぼ直角な
方向に5朋間隔で、脱炭焼なましに先立って導入した線
状疵の幅および深さが製品の鉄損低域に及ぼす影智を調
べてその結果を第1図に示した。
Next, the width and depth of the linear flaws introduced into the sample (A) before decarburization annealing at intervals of 5 squares in a direction approximately perpendicular to the rolling direction of the steel plate affect the low iron loss range of the product. Figure 1 shows the results of an investigation of wisdom.

図中e、■、■、■およびX印で区別した鉄損低減高は
、線状疵を導入した鋼板の鉄損値(W1フイ。)と疵を
導入しない銅版のそれとの差で示し、疵の深さ100μ
以下、幅300μ以下の範囲内で鉄損低減高に目ざまし
い改善が明らかである。
The iron loss reduction height, which is distinguished by marks e, ■, ■, ■ and Depth of flaw 100μ
Hereinafter, it is clear that there is a remarkable improvement in the reduction in iron loss within the width range of 300 μm or less.

同様に前記試料(A)につき、第2図に線状疵を導入し
た間隔が鉄損低減高に及ぼす効果全示し、1 myth
より狭い導入間隔では鉄損はむしろ劣化する場合があり
、間隔は1 rnm以上とくに5朋程度とすることが望
ましい。
Similarly, for the sample (A), Fig. 2 shows the full effect of the interval at which linear flaws are introduced on the iron loss reduction height, 1 myth
If the introduction interval is narrower, the iron loss may actually deteriorate, so it is desirable that the interval be 1 rnm or more, particularly about 5 nm.

線状疵の導入方法としては、ナイフの刃先、レーザービ
ーム、放電加工、電子ビームなどがらげられるが、特に
限定するまでもなく、要は所望の形状の線状疵を導入す
ることができればよいのである。
Methods for introducing linear flaws include the edge of a knife, laser beam, electric discharge machining, electron beam, etc., but there is no particular limitation, and the point is that any method that can introduce linear flaws in a desired shape is sufficient. It is.

さらに第8図は同様に、試料(A)につき線状疵・の導
入方向と鉄損低減高の関係を示し、鉄損低減効果は線状
疵の導入方向を圧延方向と直角な方向とした場合に最も
大きく、圧延方向に近くなるにつれて小さくなる。した
がって線状疵を導入する方向は圧延方向とほぼ直角な方
向とすることが望1.。
Furthermore, Figure 8 similarly shows the relationship between the introduction direction of linear flaws and the iron loss reduction height for sample (A), and the iron loss reduction effect was determined when the introduction direction of linear flaws was perpendicular to the rolling direction. It is largest in the rolling direction, and becomes smaller as it gets closer to the rolling direction. Therefore, it is preferable that the direction in which linear flaws are introduced is approximately perpendicular to the rolling direction.1. .

ましい。Delicious.

また疵は線状とすることが必要で、線状の形は直線、波
線、破線、点線のいずれであってもかまわない。
Further, the flaw needs to be linear, and the linear shape may be a straight line, a wavy line, a broken line, or a dotted line.

この発明の特徴とするところは、最終仕上焼な(−8ま
し工程の前に鋼板に線状疵を導入する点にある。。
The feature of this invention is that linear flaws are introduced into the steel plate before the final finishing annealing process.

疵を導入する時期については最終仕上焼なlし工程の前
であればよく、導入した疵が最終仕上焼なまし時に残っ
ていることが肝要であり、一方向性電磁鋼板の製造工程
を考慮した場合、最終製品。
Regarding the timing of introducing defects, it is sufficient to introduce them before the final finish annealing process, and it is important that the introduced defects remain during the final finish annealing, taking into account the manufacturing process of grain-oriented electrical steel sheets. If so, the final product.

板厚となす冷延工程以降、最終仕上焼なまし工程前の間
で導入するのが望ましい。
It is desirable to introduce it after the cold rolling process to adjust the plate thickness and before the final finishing annealing process.

すなわち最終仕上焼鈍時に疵が残っていればよいわけで
あるから、必ずしも最終冷間圧延後に疵を導入する必要
はなく、最終冷間圧延以前に導入してもか壕わない。但
し、この場合は最終冷間圧延の圧下率を疵がなくならな
い程度とすることが必要である。
That is, since it is sufficient that the flaws remain at the time of the final finish annealing, it is not necessarily necessary to introduce the flaws after the final cold rolling, and it is also possible to introduce the flaws before the final cold rolling. However, in this case, it is necessary to set the rolling reduction rate in the final cold rolling to a level that does not eliminate defects.

さらに疵導入後、最終仕上焼なましを施した鋼板にりん
酸塩被膜等の絶縁被膜を施してもこの発明の効果は失わ
れない。
Further, even if an insulating coating such as a phosphate coating is applied to the final annealed steel sheet after the introduction of defects, the effects of the present invention will not be lost.

なお前掲した特開昭50−187819号公報では、最
終焼なまし前の鋼板に幅0.5〜3順にわたる塑性歪を
与えて二次再結晶阻止領域を導入し、もって結晶粒径を
コントロールすることにより、鉄損を低減させることが
述べられているのに反して、この発明における上記した
線状疵の導入にあっては、疵の位置と粒界は無関係であ
り、同様に試料(A)について第4図(a)、(b)で
線状疵の有無による比較全金属組織3真にて示すように
線状疵はニー次再結晶阻止の働きを持たず、結晶粒径の
コント・−ルなどに寄与しな\いのである。
In the above-mentioned Japanese Patent Application Laid-Open No. 50-187819, a secondary recrystallization inhibiting region is introduced by applying plastic strain to a steel sheet before final annealing in a range of 0.5 to 3 widths, thereby controlling the crystal grain size. On the contrary, in the introduction of the above-mentioned linear flaws in this invention, the position of the flaws and the grain boundaries are unrelated, and the sample ( Regarding A), as shown in Fig. 4 (a) and (b), the total metal structure with and without linear flaws is shown in Figure 3, linear flaws do not have the function of inhibiting secondary recrystallization, and the crystal grain size is It does not contribute to control, etc.

以上のようにこの発明で最終仕上焼なまし工程前に線状
疵を導入することによる鉄損の改善は、高温での歪取焼
なましを施したあとでも持続されて鉄損値に何らの変化
はない。したがって巻鉄心用材料としても使用できると
いう大きなメリットを有する。
As described above, in this invention, the improvement in iron loss by introducing linear flaws before the final finish annealing process is sustained even after high-temperature strain relief annealing, and there is no effect on the iron loss value. There is no change. Therefore, it has the great advantage that it can also be used as a material for wound cores.

実施例1 00.043%、 Si 8.3%、 ’bin 0.
068%、インヒビターとしてSeO,018%、 S
b O,024%含む連続鋳造スラブから熱間圧延した
一方向性電磁鋼板素材を、2回冷間圧延にて最終板厚o
、aommに冷間圧延した鋼板につきパルスレーザ−照
射条件を変えながら、圧延方向とほぼ直角な方向に51
趨間隔で表2に示した幅、深さの線状疵を導入した。こ
れらの各鋼板(E、)〜(H)は脱脂したのち、湿水素
雰囲気中で820°Cの一次再結晶焼なましをかねる脱
炭焼なまし後、水素雰囲気中で1180℃×5時間の仕
上高温焼なまし一絶縁被膜処理を施して・製品とした場
合の凪気特性を、疵の導入をせずに同様な工程を経た場
合(I)と比較して表2に鉄損、磁束密度の値を掲げた
Example 1 00.043%, Si 8.3%, 'bin 0.
068%, SeO as inhibitor, 018%, S
b A unidirectional electrical steel sheet material hot-rolled from a continuous casting slab containing 24% O, was cold-rolled twice to a final thickness of o.
, aomm cold-rolled steel sheet, 51 mm in a direction almost perpendicular to the rolling direction while changing the pulse laser irradiation conditions.
Linear flaws with widths and depths shown in Table 2 were introduced at the spacing between the edges. After degreasing each of these steel plates (E,) to (H), decarburization annealing, which also serves as primary recrystallization annealing at 820°C in a wet hydrogen atmosphere, was performed at 1180°C for 5 hours in a hydrogen atmosphere. Table 2 shows the iron loss and magnetic flux of the cooling characteristics of the finished product after high-temperature annealing and insulating coating treatment, compared with the case (I) that went through the same process without introducing flaws. The density value was listed.

表2 注θ却;(1)は比較 同表に示すように線状疵の導入により、0.02〜0−
09 W4gの鉄損低減効果が得られた。
Table 2 Note: (1) is 0.02 to 0-0 due to the introduction of linear flaws as shown in the comparison table.
09 W4g iron loss reduction effect was obtained.

実施例2 次に実施例1と成分組成および製造履歴を同じくする冷
延鋼板に圧延方向と直角な方”向に刃物で機械的に幅8
5μ、深さ20μの線状疵を5 mm間隔で導入した。
Example 2 Next, a cold-rolled steel sheet having the same composition and manufacturing history as Example 1 was mechanically cut to a width of 8" with a knife in a direction perpendicular to the rolling direction.
Linear flaws of 5μ and depth of 20μ were introduced at 5mm intervals.

この鋼板を脱脂したのち、湿水素雰囲気中で820°C
の1次再結晶焼なましをかねる脱炭焼なまし後、水素雰
囲気中で1180’QX5時間の仕上高温焼なましを行
なった結果、次のような特性を有する一方向性電磁鋼板
が得られた。
After degreasing this steel plate, it was heated to 820°C in a wet hydrogen atmosphere.
After decarburization annealing, which also serves as primary recrystallization annealing, a final high temperature annealing of 1180'QX for 5 hours was performed in a hydrogen atmosphere. As a result, a unidirectional electrical steel sheet with the following properties was obtained. Ta.

W 1’7/i、o= 0.98 w、4.  B1o
= 1.91’l” (SST値)W  17/。−0
,93%   B□。= 1.91T  (エプスタイ
ンf直9この時疵全導入しない比較材の磁気t+?f性
は、W 1715o−1,03W4 B 1.o −1
,92T CSST値〕W1フイ。=  1.04兄4
g  Bよ。=1.92T(エプスタイン値ってあり、
線状疵の導入により約0 、10 W4の鉄損低減効果
が得られた。
W 1'7/i, o= 0.98 w, 4. B1o
= 1.91'l" (SST value) W 17/.-0
,93% B□. = 1.91T (Epstein f straight 9 At this time, the magnetic t+?f property of the comparative material without introducing any defects is W 1715o-1,03W4 B 1.o-1
, 92T CSST value] W1 phi. = 1.04 brother 4
g B. = 1.92T (there is an Epstein value,
By introducing linear flaws, an iron loss reduction effect of approximately 0.10 W4 was obtained.

実施例3 同様に実施例1と成分組成および製造履歴を同・じくす
る冷延鋼板を脱脂したのち、湿水素雰囲気中で820℃
の一次再結晶焼なましをかねる脱炭焼なましを施した。
Example 3 A cold-rolled steel sheet having the same composition and manufacturing history as Example 1 was similarly degreased and then heated at 820°C in a wet hydrogen atmosphere.
Decarburization annealing was performed, which also serves as primary recrystallization annealing.

この鋼板に放@加工を施すことにより、圧延方向と直角
な方向に一80μ、深さ15μの線状疵を5 mm間隔
で導入した。しかるのち、水素雰囲気中で1180℃×
5時間の仕上高温焼なましを施した結果、次のような特
性を有する一方向性電磁鋼板が得られた。
By subjecting this steel plate to hot working, linear flaws of 180 μm and 15 μm in depth were introduced at 5 mm intervals in a direction perpendicular to the rolling direction. After that, it was heated at 1180℃× in a hydrogen atmosphere.
As a result of finishing high temperature annealing for 5 hours, a unidirectional electrical steel sheet having the following properties was obtained.

W 1?10=0.96 W/jgB□。=1.90 
T (SST値)W 17zgo= 0−95 VJ/
fcgB□o= 1..91 T(エプスタイン値)こ
の時、疵全導入しない比較材の磁気特性は、Wlフイ。
W 1?10=0.96 W/jgB□. =1.90
T (SST value) W 17zgo= 0-95 VJ/
fcgB□o=1. .. 91 T (Epstein value) At this time, the magnetic properties of the comparison material without introducing any defects are Wl phi.

−E−04,W/icy  B□。−1,91T(SS
T値)W 1?10=1.0.3”/#  B、。=1
.91T (エプスタイン値)であり、線状疵の導入に
より0 、08 WAgの鉄損低減効果が得られた。
-E-04, W/icy B□. -1,91T (SS
T value) W 1?10=1.0.3”/# B,.=1
.. 91T (Epstein value), and an iron loss reduction effect of 0.08 WAg was obtained by introducing linear flaws.

発  明  の  効 朱 以上のとおり、この発明によって有利に、鉄損低波高の
著しい改善が一方向性電磁鋼板の製造過程のさしたる変
更を要せずに実現される。
Effects of the Invention As described above, this invention advantageously achieves a significant improvement in iron loss and low wave height without requiring any significant changes in the manufacturing process of grain-oriented electrical steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明において導入した疵の形状と鉄損低波
高の関係を示すグラフ、 第2図は、線状疵の導入間隔と鉄損低波高の関係を示す
グラフ、 第3図は線状疵の導入方向と鉄損低波高の関係を示すグ
ラフであり、 第4図(a)、(b)は、線状疵を導入しない場合に対
し、この発明により導入した線状疵力≦二次再結1・・
品に影響を及ぼさないことを示す組織写真である。 特許出願人 川崎製鉄株式会社 ΔW%呟プジ ・010〜 0005〜θ、θ9 00.03〜0θ4 ■0.Ol〜θθ2 鷹自ヒめ巾 (/l) 第2図 臘4に庇尋入聞隔濡m)
Figure 1 is a graph showing the relationship between the shape of the flaw introduced in this invention and the iron loss low wave height, Figure 2 is a graph showing the relationship between the introduction interval of linear flaws and the iron loss low wave height, and Figure 3 is the line 4 is a graph showing the relationship between the introduction direction of flaws and the iron loss low wave height, and FIGS. 4(a) and 4(b) show that the linear flaw force ≦ introduced by the present invention is different from the case where no linear flaws are introduced. Secondary reunion 1...
This is a photograph of the structure showing that it does not affect the product. Patent applicant: Kawasaki Steel Corporation ΔW% Tsumupuji 010~0005~θ, θ9 00.03~0θ4 ■0. Ol~θθ2 Takajihime-width (/l) Fig. 2 臘4 is covered with a shield m)

Claims (1)

【特許請求の範囲】 L  Si4.5重量%以下を含むけい素鋼熱延板を1
口重たは中間焼なましをはさむ2回以上の冷間圧延によ
り最終製品板厚となし、脱炭焼なましののち最終仕上げ
焼な1しを行なう一方向性電磁鋼板の製造方法において
、最終仕上焼な丑し工程の前に、鋼板に線状疵全導入す
ることを特徴とする鉄損の低い一方向性電磁鋼板の製造
方法。 a 最終仕°上焼なまし工程の前に、鋼板の圧延方向と
ほぼ直角な方向に幅800μ以下、深さ100μ以下、
圧延方向の間隔IIπm以上の線状疵を導入することか
ら成る1記載の方法。
[Claims] 1 silicon steel hot-rolled plate containing 4.5% by weight or less of L Si.
In the manufacturing method of grain-oriented electrical steel sheets, the final product thickness is obtained by cold rolling two or more times with intermediate annealing, and final finish annealing is performed after decarburization annealing. A method for producing a unidirectional electrical steel sheet with low core loss, characterized by fully introducing linear defects into the steel sheet before a finishing firing process. a Before the final finishing annealing process, the width is 800μ or less and the depth is 100μ or less in a direction almost perpendicular to the rolling direction of the steel plate.
1. The method according to 1, which comprises introducing linear flaws having a spacing of IIπm or more in the rolling direction.
JP58068346A 1983-04-20 1983-04-20 Manufacture of single-oriented electromagnetic steel sheet having low iron loss Granted JPS59197520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068346A JPS59197520A (en) 1983-04-20 1983-04-20 Manufacture of single-oriented electromagnetic steel sheet having low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068346A JPS59197520A (en) 1983-04-20 1983-04-20 Manufacture of single-oriented electromagnetic steel sheet having low iron loss

Publications (2)

Publication Number Publication Date
JPS59197520A true JPS59197520A (en) 1984-11-09
JPH0369968B2 JPH0369968B2 (en) 1991-11-06

Family

ID=13371176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068346A Granted JPS59197520A (en) 1983-04-20 1983-04-20 Manufacture of single-oriented electromagnetic steel sheet having low iron loss

Country Status (1)

Country Link
JP (1) JPS59197520A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117284A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Production of low-iron loss grain-oriented electromagnetic steel sheet
JPS61149433A (en) * 1984-12-19 1986-07-08 アリゲニ− ラドラム ステイ−ル コ−ポレ−シヨン Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JPS62151521A (en) * 1985-12-26 1987-07-06 Nippon Steel Corp Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPS62156221A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel having good adhesiveness of glass film and low iron loss
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate
US4846939A (en) * 1986-01-11 1989-07-11 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
US5028279A (en) * 1985-12-06 1991-07-02 Nippon Steel Corporation Grain oriented electrical steel sheet having improved glass film properties and low watt loss and process for producing same
JPH0499130A (en) * 1990-08-02 1992-03-31 Kawasaki Steel Corp Production of low-iron loss grain oriented electrical steel sheet
JPH05247538A (en) * 1991-11-29 1993-09-24 Nippon Steel Corp Manufacture of low iron loss grain-oriented electrical steel sheet
US6110298A (en) * 1997-07-17 2000-08-29 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
KR100676936B1 (en) * 2003-03-19 2007-02-02 신닛뽄세이테쯔 카부시키카이샤 Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
JP2008060353A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Product iron core transformer and manufacturing method therefor
WO2009093492A1 (en) 2008-01-24 2009-07-30 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
JP4782248B1 (en) * 2010-07-28 2011-09-28 新日本製鐵株式会社 Oriented electrical steel sheet and manufacturing method thereof
WO2019156220A1 (en) 2018-02-08 2019-08-15 日本製鉄株式会社 Grain-oriented electrical steel sheet
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063829A (en) * 2009-09-15 2011-03-31 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP5891578B2 (en) * 2010-09-28 2016-03-23 Jfeスチール株式会社 Oriented electrical steel sheet
JP6121086B2 (en) 2010-09-30 2017-04-26 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
US10629346B2 (en) 2012-04-26 2020-04-21 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
KR102360385B1 (en) 2018-01-31 2022-02-08 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing the wound iron core and the wound iron core of a transformer made using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137819A (en) * 1974-04-25 1975-11-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137819A (en) * 1974-04-25 1975-11-01

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117284A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Production of low-iron loss grain-oriented electromagnetic steel sheet
JPS6254873B2 (en) * 1984-11-10 1987-11-17 Nippon Steel Corp
JPH0525929B2 (en) * 1984-12-19 1993-04-14 Allegheny Int Inc
JPS61149433A (en) * 1984-12-19 1986-07-08 アリゲニ− ラドラム ステイ−ル コ−ポレ−シヨン Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
US5028279A (en) * 1985-12-06 1991-07-02 Nippon Steel Corporation Grain oriented electrical steel sheet having improved glass film properties and low watt loss and process for producing same
JPS62151521A (en) * 1985-12-26 1987-07-06 Nippon Steel Corp Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPH0327629B2 (en) * 1985-12-26 1991-04-16 Nippon Steel Corp
JPS62156221A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel having good adhesiveness of glass film and low iron loss
JPH0327630B2 (en) * 1985-12-27 1991-04-16 Nippon Steel Corp
US4846939A (en) * 1986-01-11 1989-07-11 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPS62179105A (en) * 1986-02-03 1987-08-06 Nippon Steel Corp Manufacture of low iron loss unidirectional electromagnetic steel plate
JPH0569284B2 (en) * 1986-02-03 1993-09-30 Nippon Steel Corp
JPH0499130A (en) * 1990-08-02 1992-03-31 Kawasaki Steel Corp Production of low-iron loss grain oriented electrical steel sheet
JPH05247538A (en) * 1991-11-29 1993-09-24 Nippon Steel Corp Manufacture of low iron loss grain-oriented electrical steel sheet
US6110298A (en) * 1997-07-17 2000-08-29 Kawasaki Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic characteristics and production process for same
KR100676936B1 (en) * 2003-03-19 2007-02-02 신닛뽄세이테쯔 카부시키카이샤 Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
US7442260B2 (en) 2003-03-19 2008-10-28 Nippon Steel Corooration Grain-oriented electrical steel sheet superior in electrical characteristics and method of production of same
JP2008060353A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Product iron core transformer and manufacturing method therefor
WO2009093492A1 (en) 2008-01-24 2009-07-30 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
US8202374B2 (en) 2009-04-06 2012-06-19 Nippon Steel Corporation Method of treating steel for grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US9659693B2 (en) 2010-07-28 2017-05-23 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
WO2012014290A1 (en) * 2010-07-28 2012-02-02 新日本製鐵株式会社 Orientated electromagnetic steel sheet and manufacturing method for same
EP2599883A1 (en) * 2010-07-28 2013-06-05 Nippon Steel & Sumitomo Metal Corporation Orientated electromagnetic steel sheet and manufacturing method for same
EP2599883A4 (en) * 2010-07-28 2013-10-02 Nippon Steel & Sumitomo Metal Corp Orientated electromagnetic steel sheet and manufacturing method for same
US8790471B2 (en) 2010-07-28 2014-07-29 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
JP4782248B1 (en) * 2010-07-28 2011-09-28 新日本製鐵株式会社 Oriented electrical steel sheet and manufacturing method thereof
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2019156220A1 (en) 2018-02-08 2019-08-15 日本製鉄株式会社 Grain-oriented electrical steel sheet
KR20200103100A (en) 2018-02-08 2020-09-01 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
US11551838B2 (en) 2018-02-08 2023-01-10 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
KR20210010526A (en) 2018-06-21 2021-01-27 닛폰세이테츠 가부시키가이샤 Directional electromagnetic steel plate with excellent magnetic properties
US11512360B2 (en) 2018-06-21 2022-11-29 Nippon Steel Corporation Grain-oriented electrical steel sheet with excellent magnetic characteristics

Also Published As

Publication number Publication date
JPH0369968B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07268474A (en) Grain oriented silicon steel sheet with low iron loss
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JP3846064B2 (en) Oriented electrical steel sheet
JP4811390B2 (en) Bi-directional electrical steel sheet
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4075258B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6354767B2 (en)
JP3176646B2 (en) Manufacturing method of non-oriented electrical steel sheet for high frequency
JPH03140442A (en) Silicon steel sheet having excellent magnetic characteristics and its manufacture
JPH021893B2 (en)
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS58107417A (en) Method of making unidirectional silicon steel sheet excellent in iron loss
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH0277526A (en) Production of low-iron-loss grain-oriented electrical steel sheet
KR920004949B1 (en) Making process for the electic steel plate