JP5255989B2 - Electrocatalyst for polymer electrolyte fuel cell - Google Patents

Electrocatalyst for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5255989B2
JP5255989B2 JP2008272640A JP2008272640A JP5255989B2 JP 5255989 B2 JP5255989 B2 JP 5255989B2 JP 2008272640 A JP2008272640 A JP 2008272640A JP 2008272640 A JP2008272640 A JP 2008272640A JP 5255989 B2 JP5255989 B2 JP 5255989B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon
fuel cell
polymer electrolyte
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008272640A
Other languages
Japanese (ja)
Other versions
JP2010102911A (en
Inventor
宣明 水谷
宏明 高橋
智寛 石田
貴寛 永田
寿晴 田端
洋輔 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2008272640A priority Critical patent/JP5255989B2/en
Publication of JP2010102911A publication Critical patent/JP2010102911A/en
Application granted granted Critical
Publication of JP5255989B2 publication Critical patent/JP5255989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は高発電性能であり耐久後の電圧特性に優れた固体高分子型燃料電池用電極触媒に関する。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell having high power generation performance and excellent voltage characteristics after durability.

従来、固体高分子電解質型燃料電池の電極触媒のカソード触媒及びアノード触媒としては、白金又は白金合金等の貴金属をカーボン担体に担持した触媒が用いられてきた。白金担持カーボン担体は、塩化白金酸水溶液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボン担体に担持させ、洗浄後、必要に応じて熱処理することにより調製するのが一般的である。固体高分子電解質型燃料電池の電極は、白金担持カーボン担体を高分子電解質溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することにより作製される。この2枚の電極で高分子電解質膜を挟み、ホットプレスをすることにより電解質膜−電極接合体(MEA)が組立られる。   Conventionally, as a cathode catalyst and an anode catalyst of an electrode catalyst of a solid polymer electrolyte fuel cell, a catalyst in which a noble metal such as platinum or a platinum alloy is supported on a carbon carrier has been used. The platinum-supported carbon support is obtained by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution, then reacting with hydrogen peroxide solution, supporting the resulting platinum colloid on the carbon support, washing, and then heat-treating as necessary. It is common to prepare. An electrode of a solid polymer electrolyte fuel cell is prepared by dispersing a platinum-supported carbon carrier in a polymer electrolyte solution, preparing an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. The An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a polymer electrolyte membrane between these two electrodes and performing hot pressing.

触媒金属である白金は高価な貴金属であり、少ない担持量で十分な性能を発揮させることが望まれている。そのため、より少量の白金で触媒活性を高める検討がなされている。   Platinum, which is a catalyst metal, is an expensive noble metal, and it is desired to exhibit sufficient performance with a small amount of support. Therefore, studies have been made to increase the catalytic activity with a smaller amount of platinum.

下記特許文献1には、炭素粉末担体上に白金とコバルトを合金化してなる触媒粒子が担持された高分子固体電解質形燃料電池の空気極用の触媒が開示されている。具体的には、白金とコバルトとの配合比は6:1〜3:1(モル比)とし、比表面積600〜1200m/gの炭素粉末からなる担体に、触媒粒子を担持密度40〜65%で担持することが開示されている。 Patent Document 1 below discloses a catalyst for an air electrode of a polymer electrolyte fuel cell in which catalyst particles formed by alloying platinum and cobalt are supported on a carbon powder carrier. Specifically, the blending ratio of platinum and cobalt is 6: 1 to 3: 1 (molar ratio), and catalyst particles are supported at a density of 40 to 65 on a support made of carbon powder having a specific surface area of 600 to 1200 m 2 / g. % Is disclosed.

又、下記特許文献2には、白金又は白金合金触媒がカーボン担体に担持された燃料電池用電極触媒の製造方法が開示されている。ここで、白金合金触媒として、白金と、ニッケル、コバルト、クロム、マンガン及び鉄より選ばれる1種又は2種以上からなる合金触媒が開示されている。   Patent Document 2 below discloses a method for producing an electrode catalyst for a fuel cell in which a platinum or platinum alloy catalyst is supported on a carbon carrier. Here, an alloy catalyst made of platinum and one or more selected from nickel, cobalt, chromium, manganese and iron is disclosed as a platinum alloy catalyst.

上記特許文献1及び2に開示された触媒は、初期性能の面では優れているものの、カーボン酸化耐久性の面では未だ改良の余地が残されていた。   Although the catalysts disclosed in Patent Documents 1 and 2 are excellent in terms of initial performance, there is still room for improvement in terms of carbon oxidation durability.

固体高分子型燃料電池用電極触媒においては、燃料電池の起動時、停止時及び運転中に、電位が上昇することで、次式に示すように、電極触媒のカーボン担体の酸化反応が促進され、カーボンが腐食することで、触媒が劣化し、燃料電池の発電性能が低下する。
C+2HO→CO+2H (1)
In an electrode catalyst for a polymer electrolyte fuel cell, an oxidation reaction of a carbon support of the electrode catalyst is promoted as shown in the following equation by increasing the potential at the start, stop and operation of the fuel cell. As the carbon corrodes, the catalyst deteriorates, and the power generation performance of the fuel cell decreases.
C + 2H 2 O → CO 2 + 2H 2 (1)

このような現象は、燃料電池の起動時のみならず、停止時にも同様に生じ、さらに燃料電池の起動・停止の操作を繰り返すと、この現象がさらに加速する傾向にあり、セル電圧の低下に伴い、発電性能が低下する可能性があった。   This phenomenon occurs not only when the fuel cell is started but also when it is stopped, and when the fuel cell is started / stopped repeatedly, this phenomenon tends to accelerate further, leading to a decrease in cell voltage. Along with this, the power generation performance may be reduced.

このため、初期発電性能とカーボン酸化耐久性の両面で優れた電極触媒が望まれていた。   For this reason, an electrode catalyst excellent in both initial power generation performance and carbon oxidation durability has been desired.

特許第3643552号公報Japanese Patent No. 3643552 特許第319518号公報Japanese Patent No. 319518

本発明は、発電の初期性能を長く維持することのできる耐久後の電圧特性に優れた固体高分子型燃料電池用電極触媒を提供することを目的とする。   An object of the present invention is to provide an electrode catalyst for a polymer electrolyte fuel cell, which can maintain the initial performance of power generation for a long time and has excellent voltage characteristics after durability.

本発明者は、特定の合金触媒系において、カーボン担体の結晶性に着目し、カーボン結晶性と耐久性(発電性能維持率)との間に強い相関関係があることを見出し、本発明に到達した。   The present inventor has focused on the crystallinity of the carbon support in a specific alloy catalyst system, found that there is a strong correlation between the carbon crystallinity and durability (power generation performance maintenance ratio), and reached the present invention. did.

即ち、PtCo系触媒について鋭意検討を行った結果PtCoにAuなどの撥水性元素をある限られた範囲内で配合し合金化したものと、Laをある限られた範囲内に限定した高結晶化カーボンブラックを担体として組み合わせることで、前述の課題を解決することができた。PtCoに担持する物質はAuの他にRh、Pdなどがあげられる。   That is, as a result of diligent study on PtCo-based catalysts, PtCo was mixed with a water repellent element such as Au within a limited range and alloyed, and high crystallization with La limited to a limited range. By combining carbon black as a carrier, the above-mentioned problems could be solved. Examples of the substance supported on PtCo include Au, Rh, Pd and the like.

Auなどの撥水性元素の添加によるカーボン酸化耐性向上のメカニズムについては、Auなどの撥水性元素の撥水作用がカーボン酸化反応
C+2HO→CO+2H (1)
を抑制する効果があると考えられ、従来より酸化耐性をもつ高結晶化カーボンの酸化を飛躍的に抑制すると推定される。
Regarding the mechanism of improving carbon oxidation resistance by adding a water repellent element such as Au, the water repellent action of a water repellent element such as Au is the carbon oxidation reaction C + 2H 2 O → CO 2 + 2H 2 (1)
Therefore, it is estimated that the oxidation of highly crystallized carbon having oxidation resistance is greatly suppressed.

本発明は、高結晶性カーボン担体上に白金(Pt)、コバルト(Co)、及び撥水性元素から選択される1種以上からなる触媒微粒子が担持された固体高分子型燃料電池用電極触媒の発明であって、高結晶性カーボンの結晶子の六員環面方向の長さLaが4.5nm以上であり、触媒微粒子が白金(Pt):コバルト(Co):撥水性元素=1:0.01〜0.1:0.03〜0.1、好ましくは白金(Pt):コバルト(Co):撥水性元素=1:0.02〜0.06:0.03〜0.07であることを特徴とする。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell in which catalyst fine particles comprising at least one selected from platinum (Pt), cobalt (Co), and a water repellent element are supported on a highly crystalline carbon support. In the invention, the length La in the six-membered ring plane direction of the crystallite of the highly crystalline carbon is 4.5 nm or more, and the catalyst fine particles are platinum (Pt): cobalt (Co): water repellent element = 1: 0. 0.01-0.1: 0.03-0.1, preferably platinum (Pt): cobalt (Co): water repellent element = 1: 0.02-0.06: 0.03-0.07 It is characterized by that.

本発明の燃料電池用電極触媒により、カーボン結晶化度が所定値より大であることにより、Pt−Co−撥水性元素からなる3元系電極触媒の耐久性(発電性能維持率)を向上できた。ここで、結晶子の六員環面方向の長さLaとは、カーボン担体を構成する炭素の黒鉛構造に基づく六員環面のA、B軸方向の長さを示し、カーボン担体のX線回折パターンから算出される値である。   With the fuel cell electrode catalyst of the present invention, the durability (power generation performance maintenance rate) of the ternary electrode catalyst composed of Pt—Co—water-repellent element can be improved when the carbon crystallinity is larger than a predetermined value. It was. Here, the length La in the six-membered ring plane direction of the crystallite indicates the length in the A and B axis directions of the six-membered ring plane based on the graphite structure of carbon constituting the carbon support. It is a value calculated from the diffraction pattern.

本発明の電極触媒では、撥水性元素として、金(Au)、ロジウム(Rh)、パラジウム(Pd)から選択される1種以上が好ましく例示される。これらの撥水性元素は、白金、コバルトと3元系合金からなる触媒微粒子を形成する。
本発明の電極触媒では、触媒微粒子の平均粒径が3〜10nmであることが好ましい。
In the electrode catalyst of the present invention, one or more types selected from gold (Au), rhodium (Rh), and palladium (Pd) are preferably exemplified as the water repellent element. These water repellent elements form catalyst fine particles composed of platinum, cobalt and a ternary alloy.
In the electrode catalyst of the present invention, the average particle diameter of the catalyst fine particles is preferably 3 to 10 nm.

本発明は、高結晶性カーボン担体上にPt−Co−撥水性元素からなる3元系合金媒微粒子を担持させて燃料電池用電極触媒とすることにより、高い初期発電性能を長期間維持することができる。具体的には、本発明の燃料電池用電極触媒によれば、炭素担体の耐腐食性を高めると共に、触媒活性の低下を防ぎ、長期に亘って、安定した発電性能が得られる。   The present invention maintains high initial power generation performance for a long period of time by using a ternary alloy medium fine particle composed of Pt—Co—water-repellent element on a highly crystalline carbon support to form a fuel cell electrode catalyst. Can do. Specifically, according to the electrode catalyst for a fuel cell of the present invention, the corrosion resistance of the carbon support is enhanced and the catalytic activity is prevented from being lowered, and stable power generation performance can be obtained over a long period of time.

カーボン担体の結晶化度は、カーボン担体のグラファイト化により容易に調整することができる。カーボン担体のグラファイト化は、熱処理など、従来一般的に用いられているものであれば特に限定されない。前記熱処理は、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気下で行うのが好ましい。また、熱処理温度、熱処理時間は、用いるカーボン担体の材質によって異なるが、1,000〜2,000℃で、5〜20時間程度行えばよい。このように、グラファイト化などによりカーボン担体の結晶化度が向上する。   The crystallinity of the carbon support can be easily adjusted by graphitization of the carbon support. The graphitization of the carbon support is not particularly limited as long as it is conventionally used, such as heat treatment. The heat treatment is preferably performed in an inert gas atmosphere such as nitrogen, argon, or helium. Moreover, although heat processing temperature and heat processing time change with materials of the carbon support | carrier to be used, what is necessary is just to carry out at 1,000-2,000 degreeC for about 5 to 20 hours. Thus, the crystallinity of the carbon support is improved by graphitization or the like.

以下、本発明の実施例と比較例を示す。
[実施例1]
比表面積が760m/gのカーボンブラックをアルゴンガス雰囲気中、昇温速度20℃/minで1300℃まで昇温し、6時間熱処理を行い黒鉛化カーボンを得た。XRDで42°近辺にあるピークの位置(角度)と半価幅からLa、26°近辺にあるピークの位置(角度)と半価幅からLcを出した結果、La=7.3nm、Lc=3.4nmであった。
Examples of the present invention and comparative examples are shown below.
[Example 1]
Carbon black having a specific surface area of 760 m 2 / g was heated to 1300 ° C. at a heating rate of 20 ° C./min in an argon gas atmosphere, and heat-treated for 6 hours to obtain graphitized carbon. As a result of calculating La from the position (angle) and half-value width of a peak near 42 ° in XRD, and Lc from the position (angle) and half-value width of a peak near 26 °, La = 7.3 nm, Lc = It was 3.4 nm.

この熱処理で得られた黒鉛化カーボン粉末6.03gに純水0.5Lを加え、分散させた。この分散液に、Pt5.12gを含むヘキサヒドロキソ白金硝酸溶液、Au0.2gを含む亜硫酸金ナトリウム、Co1.02gを含む硝酸コバルト水溶液の順にそれぞれ滴下し、十分にカーボンとなじませた。これに0.01Nアンモニア約5mLを添加してPHを約9とし、それぞれ水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過排液の導電率が50μS/cm以下になるまで繰返しろ過洗浄して得られた粉末を100℃で10時間真空乾燥させた。   To 6.03 g of the graphitized carbon powder obtained by this heat treatment, 0.5 L of pure water was added and dispersed. To this dispersion, a hexahydroxo platinum nitric acid solution containing 5.12 g of Pt, a sodium gold sulfite containing 0.2 g of Au, and an aqueous cobalt nitrate solution containing 1.02 g of Co were added dropwise in this order, and were sufficiently blended with carbon. About 5 mL of 0.01N ammonia was added thereto to adjust the pH to about 9, and hydroxides were formed and precipitated on carbon. The powder obtained by repeatedly filtering and washing this dispersion liquid until the electric conductivity of the filtrate drainage solution was 50 μS / cm or less was vacuum-dried at 100 ° C. for 10 hours.

次に水素ガス中で500℃、2時間保持して還元処理した後、窒素ガス中で900℃、2時間保持して合金化した。さらにこの触媒粉末を1N塩酸0.5L中で攪拌して未合金コバルト約40wt%を酸洗浄除去した後、ろ過排液の導電率が50μS/cm以下になるまで純水で繰返し洗浄した。   Next, after reducing in hydrogen gas at 500 ° C. for 2 hours, it was alloyed by holding in nitrogen gas at 900 ° C. for 2 hours. Further, this catalyst powder was stirred in 0.5 L of 1N hydrochloric acid to remove about 40 wt% of unalloyed cobalt with acid, and then repeatedly washed with pure water until the conductivity of the filtered effluent became 50 μS / cm or less.

得られたPt合金担持カーボン触媒粉末のPt担持密度は41.9wt%、Au担持密度は1.60wt%で、Co担持密度は6.90wt%であった。Pt合金担持カーボン触媒粉末の各元素の原子比率はPt:Co:Au=1:0.05:0.04であった。さらにXRDを測定したところ、Ptのピークのみ観察され、39°付近のPt(111)面のピークシフトから不規則配列合金の形成を確認した。さらにPt(111)面のピーク位置と半価幅から平均粒径を算出したところ4.2nmであった。
得られた触媒粉末の物性を表1に示す。
The obtained Pt alloy-supported carbon catalyst powder had a Pt support density of 41.9 wt%, an Au support density of 1.60 wt%, and a Co support density of 6.90 wt%. The atomic ratio of each element of the Pt alloy-supported carbon catalyst powder was Pt: Co: Au = 1: 0.05: 0.04. Furthermore, when XRD was measured, only the peak of Pt was observed, and formation of a disordered alloy was confirmed from the peak shift of the Pt (111) plane near 39 °. Furthermore, it was 4.2 nm when the average particle diameter was computed from the peak position and half value width of Pt (111) plane.
Table 1 shows the physical properties of the obtained catalyst powder.

[実施例2]
カーボンの熱処理温度を1700℃、6時間とすることで結晶化度の異なる(LaとLcの異なる)カーボンブラックを得た。このカーボンブラックに実施例1と同様の手法でPtCoAuを担持した。
得られた触媒粉末の物性を表1に示す。
[Example 2]
Carbon black having different crystallinity (different in La and Lc) was obtained by setting the heat treatment temperature of carbon to 1700 ° C. for 6 hours. This carbon black was loaded with PtCoAu in the same manner as in Example 1.
Table 1 shows the physical properties of the obtained catalyst powder.

[実施例3]
カーボンの熱処理温度を2000℃、8時間とすることで結晶化度の異なる(LaとLcの異なる)カーボンブラックを得た。このカーボンブラックに実施例1と同様の手法でPtCoAuを担持した。
得られた触媒粉末の物性を表1に示す。
[Example 3]
Carbon black having different crystallinity (different in La and Lc) was obtained by setting the heat treatment temperature of carbon to 2000 ° C. for 8 hours. This carbon black was loaded with PtCoAu in the same manner as in Example 1.
Table 1 shows the physical properties of the obtained catalyst powder.

[比較例1]
カーボンの熱処理なしとすることで結晶化度の異なる(LaとLcの異なる)カーボンブラックを得た。このカーボンブラックに実施例1と同様の手法でPtCoAuを担持した。
得られた触媒粉末の物性を表1に示す。
[Comparative Example 1]
Carbon black with different crystallinity (different in La and Lc) was obtained by eliminating the heat treatment of carbon. This carbon black was loaded with PtCoAu in the same manner as in Example 1.
Table 1 shows the physical properties of the obtained catalyst powder.

[実施例4]
実施例1のカーボンブラックに、Coの比率の異なるPtCoAuを担持した。Coの比率はカーボンブラックに対するPt及びAu重量比率を一定として変化させた。Coの比率をPt:Co:Au=1:0.01:0.04にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Example 4]
The carbon black of Example 1 was loaded with PtCoAu having a different Co ratio. The ratio of Co was changed with the weight ratio of Pt and Au to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the ratio of Co was changed to Pt: Co: Au = 1: 0.01: 0.04. Table 1 shows the physical properties of the obtained catalyst powder.

[実施例5]
実施例1のカーボンブラックに、Coの比率の異なるPtCoAuを担持した。Coの比率はカーボンブラックに対するPt及びAu重量比率を一定として変化させた。Coの比率をPt:Co:Au=1:0.1:0.04にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Example 5]
The carbon black of Example 1 was loaded with PtCoAu having a different Co ratio. The ratio of Co was changed with the weight ratio of Pt and Au to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the ratio of Co was changed to Pt: Co: Au = 1: 0.1: 0.04. Table 1 shows the physical properties of the obtained catalyst powder.

[比較例2]
実施例1のカーボンブラックに、Coの比率の異なるPtCoAuを担持した。Coの比率はカーボンブラックに対するPt及びAu重量比率を一定として変化させた。Coの比率をPt:Co:Au=1:0.004:0.04にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Comparative Example 2]
The carbon black of Example 1 was loaded with PtCoAu having a different Co ratio. The ratio of Co was changed with the weight ratio of Pt and Au to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the ratio of Co was changed to Pt: Co: Au = 1: 0.004: 0.04. Table 1 shows the physical properties of the obtained catalyst powder.

[比較例3]
実施例1のカーボンブラックに、Coの比率の異なるPtCoAuを担持した。Coの比率はカーボンブラックに対するPt及びAu重量比率を一定として変化させた。Coの比率をPt:Co:Au=1:0.3:0.04にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Comparative Example 3]
The carbon black of Example 1 was loaded with PtCoAu having a different Co ratio. The ratio of Co was changed with the weight ratio of Pt and Au to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the ratio of Co was changed to Pt: Co: Au = 1: 0.3: 0.04. Table 1 shows the physical properties of the obtained catalyst powder.

[実施例6]
実施例1のカーボンブラックに、Auの比率の異なるPtCoAuを担持した。Auの比率はカーボンブラックに対するPt及びCo重量比率を一定として変化させた。Auの比率をPt:Co:Au=1:0.05:0.03にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Example 6]
The carbon black of Example 1 was loaded with PtCoAu having a different Au ratio. The Au ratio was varied with the weight ratio of Pt and Co to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the Au ratio was changed to Pt: Co: Au = 1: 0.05: 0.03. Table 1 shows the physical properties of the obtained catalyst powder.

[実施例7]
実施例1のカーボンブラックに、Auの比率の異なるPtCoAuを担持した。Auの比率はカーボンブラックに対するPt及びCo重量比率を一定として変化させた。Auの比率をPt:Co:Au=1:0.05:0.1にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Example 7]
The carbon black of Example 1 was loaded with PtCoAu having a different Au ratio. The Au ratio was varied with the weight ratio of Pt and Co to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the Au ratio was changed to Pt: Co: Au = 1: 0.05: 0.1. Table 1 shows the physical properties of the obtained catalyst powder.

[比較例4]
実施例1のカーボンブラックに、Auの比率の異なるPtCoAuを担持した。Auの比率はカーボンブラックに対するPt及びCo重量比率を一定として変化させた。Auの比率をPt:Co:Au=1:0.05:0.013にした以外は、実施例1と同様にして触媒粉末を調製した。得られた触媒粉末の物性を表1に示す。
[Comparative Example 4]
The carbon black of Example 1 was loaded with PtCoAu having a different Au ratio. The Au ratio was varied with the weight ratio of Pt and Co to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the Au ratio was changed to Pt: Co: Au = 1: 0.05: 0.013. Table 1 shows the physical properties of the obtained catalyst powder.

[比較例5]
実施例1のカーボンブラックに、Auの比率の異なるPtCoAuを担持した。Auの比率はカーボンブラックに対するPt及びCo重量比率を一定として変化させた。Auの比率をPt:Co:Au=1:0.05:0.13にした以外は、実施例1と同様にして触媒粉末を調製した。
[Comparative Example 5]
The carbon black of Example 1 was loaded with PtCoAu having a different Au ratio. The Au ratio was varied with the weight ratio of Pt and Co to carbon black being constant. A catalyst powder was prepared in the same manner as in Example 1 except that the Au ratio was changed to Pt: Co: Au = 1: 0.05: 0.13.

[単セルの作製]
実施例1〜7および比較例1〜5の触媒粉末を用い、次に示す手法で単セルを作製した。
触媒粉末を水、アルコール系溶媒、及びナフィオン(登録商標)溶液の混合液に分散させ、この分散液をテフロン(登録商標)シートへ塗布して触媒層を形成した。電極面積1cmあたりのPt触媒の量は0.4mgとした。これらの触媒粉末から形成した電極をそれぞれ高分子電解質膜を介してホットプレスにより貼り合わせその両側に拡散層を設置して単セル電極を形成した。
[Production of single cell]
Using the catalyst powders of Examples 1 to 7 and Comparative Examples 1 to 5, single cells were produced by the following method.
The catalyst powder was dispersed in a mixed solution of water, an alcohol solvent, and a Nafion (registered trademark) solution, and this dispersion was applied to a Teflon (registered trademark) sheet to form a catalyst layer. The amount of Pt catalyst per 1 cm 2 of electrode area was 0.4 mg. The electrodes formed from these catalyst powders were bonded by hot pressing through polymer electrolyte membranes, respectively, and diffusion layers were installed on both sides thereof to form single cell electrodes.

[カーボン酸化劣化耐久評試験]
実施例1〜7および比較例1〜5の触媒粉末で作製した単セルについてカーボン酸化劣化耐久試験を行った。試験は1V、30minの定電圧連続運転により行い試験後の0.9A/cmの電圧値で比較した。
以上、実施例1〜7および比較例1〜5の触媒物性を表1に示す。
[Carbon oxidation deterioration durability evaluation test]
The carbon oxidation deterioration durability test was done about the single cell produced with the catalyst powder of Examples 1-7 and Comparative Examples 1-5. The test was carried out by constant voltage continuous operation at 1 V for 30 min, and comparison was made with a voltage value of 0.9 A / cm 2 after the test.
The catalyst physical properties of Examples 1 to 7 and Comparative Examples 1 to 5 are shown in Table 1.

Figure 0005255989
Figure 0005255989

又、図1に、Au原子比率と耐久試験後の電圧の関係を示す。図2に、高結晶性カーボンの結晶子の六員環面方向の長さLaと耐久試験後の電圧の関係を示す。図3に、Co原子比率と耐久試験後の電圧の関係を示す。   FIG. 1 shows the relationship between the Au atomic ratio and the voltage after the durability test. FIG. 2 shows the relationship between the length La of the crystallites of highly crystalline carbon in the six-membered ring plane direction and the voltage after the durability test. FIG. 3 shows the relationship between the Co atomic ratio and the voltage after the durability test.

表1の結果より、高結晶性カーボンの結晶子の六員環面方向の長さLaが4.5nm以上であり、触媒微粒子が白金(Pt):コバルト(Co):撥水性元素=1:0.01〜0.1:0.03〜0.1である場合に耐久試験後も高活性が維持されることが分かる。   From the results of Table 1, the length La of the crystallites of highly crystalline carbon is 4.5 nm or more, and the catalyst fine particles are platinum (Pt): cobalt (Co): water repellent element = 1: It can be seen that high activity is maintained even after the durability test when 0.01 to 0.1: 0.03 to 0.1.

本発明の固体高分子型燃料電池用電極触媒は、従来のPtCo/C触媒に更にAuなどの撥水性元素を担持し、加えて高結晶性カーボンを担体として用いることで、優れた初期発電性能を長期間維持するという耐久性を飛躍的に向上できる。これにより、燃料電池の普及に貢献する。   The electrode catalyst for a polymer electrolyte fuel cell of the present invention has excellent initial power generation performance by further supporting a water-repellent element such as Au on a conventional PtCo / C catalyst, and additionally using highly crystalline carbon as a carrier. Durability of maintaining for a long time can be dramatically improved. This contributes to the spread of fuel cells.

図1に、Au原子比率と耐久試験後の電圧の関係を示す。FIG. 1 shows the relationship between the Au atomic ratio and the voltage after the durability test. 高結晶性カーボンの結晶子の六員環面方向の長さLaと耐久試験後の電圧の関係を示す。The relationship between the length La in the six-membered ring plane direction of the crystallite of highly crystalline carbon and the voltage after the durability test is shown. Co原子比率と耐久試験後の電圧の関係を示す。The relationship between Co atomic ratio and the voltage after an endurance test is shown.

Claims (3)

高結晶性カーボン担体上に白金(Pt)、コバルト(Co)、及び撥水性元素から選択される1種以上からなる触媒微粒子が担持された固体高分子型燃料電池用電極触媒であって、高結晶性カーボンの結晶子の六員環面方向の長さLaが4.5nm以上であり、触媒微粒子が白金(Pt):コバルト(Co):撥水性元素=1:0.01〜0.1:0.03〜0.1であることを特徴とする固体高分子型燃料電池用電極触媒。   An electrode catalyst for a polymer electrolyte fuel cell, in which catalyst fine particles comprising at least one selected from platinum (Pt), cobalt (Co), and a water repellent element are supported on a highly crystalline carbon support, The length La of the crystalline carbon crystallite in the six-membered ring plane direction is 4.5 nm or more, and the catalyst fine particles are platinum (Pt): cobalt (Co): water repellent element = 1: 0.01 to 0.1. : 0.03-0.1 Electrocatalyst for polymer electrolyte fuel cell, characterized in that it is 0.03 to 0.1. 前記撥水性元素が、金(Au)、ロジウム(Rh)、パラジウム(Pd)から選択される1種以上であることを特徴とする請求項1に記載の固体高分子型燃料電池用電極触媒。   2. The polymer electrolyte fuel cell electrode catalyst according to claim 1, wherein the water repellent element is at least one selected from gold (Au), rhodium (Rh), and palladium (Pd). 前記触媒微粒子の平均粒径が3〜10nmであることを特徴とする請求項1又は2に記載の固体高分子型燃料電池用電極触媒。   The electrode catalyst for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the catalyst fine particles have an average particle size of 3 to 10 nm.
JP2008272640A 2008-10-23 2008-10-23 Electrocatalyst for polymer electrolyte fuel cell Active JP5255989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272640A JP5255989B2 (en) 2008-10-23 2008-10-23 Electrocatalyst for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272640A JP5255989B2 (en) 2008-10-23 2008-10-23 Electrocatalyst for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2010102911A JP2010102911A (en) 2010-05-06
JP5255989B2 true JP5255989B2 (en) 2013-08-07

Family

ID=42293396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272640A Active JP5255989B2 (en) 2008-10-23 2008-10-23 Electrocatalyst for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5255989B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515115B2 (en) * 2010-05-31 2014-06-11 独立行政法人物質・材料研究機構 Fuel cell electrode catalyst and method for producing the same
JP5553344B2 (en) * 2010-05-31 2014-07-16 独立行政法人物質・材料研究機構 Fuel cell electrode catalyst and method for producing the same
KR102291160B1 (en) * 2018-11-08 2021-08-19 한국과학기술원 Au doped Pt alloy catalysts for fuel cell and method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216772A (en) * 2004-01-30 2005-08-11 Nissan Motor Co Ltd Electrode catalyst, electrode and mea carrying the same
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
US7713910B2 (en) * 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP5110557B2 (en) * 2006-03-30 2012-12-26 トヨタ自動車株式会社 Performance evaluation method and search method for electrode catalyst for fuel cell
JP2008047472A (en) * 2006-08-18 2008-02-28 Nissan Motor Co Ltd Electrode catalyst
JP5141104B2 (en) * 2006-11-06 2013-02-13 トヨタ自動車株式会社 Manufacturing method of fuel cell

Also Published As

Publication number Publication date
JP2010102911A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
Chen et al. Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JP6411770B2 (en) Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
JP3896137B2 (en) Supported catalyst and method for producing the same
KR100681691B1 (en) Electrode catalyst for fuel cell
JP6352955B2 (en) Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
JP5328290B2 (en) Fuel cell electrode catalyst
KR100837396B1 (en) Supported catalyst, method for preparing the same, cathode electrode comprising the same, and fuel cell comprising the electrode
US20020009626A1 (en) Polymer electrolyte fuel cell and method for its production
Deng et al. Scalable preparation of PtPd/carbon nanowires in the form of membrane as highly stable electrocatalysts for oxygen reduction reaction
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
JP2015173132A (en) Fuel cell catalyst with metal oxide doped therein
JP2010027364A (en) Electrode catalyst for fuel cell and its manufacturing method
KR20140002628A (en) Process for produclng carbon-comprising support
JP2008041253A (en) Electrocatalyst and power generation system using the same
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP5255989B2 (en) Electrocatalyst for polymer electrolyte fuel cell
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same
JP2020161273A (en) Manufacturing method of electrode material
JP7387948B1 (en) fuel cell electrode catalyst
WO2022158395A1 (en) Fuel cell electrode catalyst
JP2004335328A (en) Electrode catalyst for solid polymer type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5255989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250