JP5243465B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5243465B2
JP5243465B2 JP2010016303A JP2010016303A JP5243465B2 JP 5243465 B2 JP5243465 B2 JP 5243465B2 JP 2010016303 A JP2010016303 A JP 2010016303A JP 2010016303 A JP2010016303 A JP 2010016303A JP 5243465 B2 JP5243465 B2 JP 5243465B2
Authority
JP
Japan
Prior art keywords
substrate
heat transfer
tray
recess
transfer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010016303A
Other languages
Japanese (ja)
Other versions
JP2011155170A (en
Inventor
尚吾 置田
彰三 渡邉
浩海 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010016303A priority Critical patent/JP5243465B2/en
Publication of JP2011155170A publication Critical patent/JP2011155170A/en
Application granted granted Critical
Publication of JP5243465B2 publication Critical patent/JP5243465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus.

特許文献1には、有底の凹部に基板を収容したトレイを静電チャック(ESC)により基板サセプタに保持する構成のICP型のドライエッチング装置が開示されている。基板サセプタには冷却機構が設けられている。トレイを介した基板サセプタとの間接的な熱伝導により基板が冷却されるため、比較的均一に基板が冷却されるものの、基板の冷却効率は低い。そのため、特許文献1に記載のドライエッチング装置では、高いエッチングレートを実現するために高い高周波電力を投入することができない。   Patent Document 1 discloses an ICP type dry etching apparatus configured to hold a tray containing a substrate in a bottomed concave portion on a substrate susceptor by an electrostatic chuck (ESC). The substrate susceptor is provided with a cooling mechanism. Since the substrate is cooled by indirect heat conduction with the substrate susceptor via the tray, the substrate is cooled relatively uniformly, but the cooling efficiency of the substrate is low. For this reason, the dry etching apparatus described in Patent Document 1 cannot supply high-frequency power in order to achieve a high etching rate.

特許文献2には、バッチ処理が可能なICP型のドライエッチング装置が開示されている。図15に示すように、特許文献2のドライエッチング装置は、トレイ100に形成された厚み方向に貫通する複数の基板収容孔100aにそれぞれ基板101を収容し、トレイ100ごと基板サセプタ102のESC103に基板101を保持する構成である。基板サセプタ102には冷媒の循環路104を含む冷却機構が設けられている。個々の基板101の下面とESC103との間にはヘリウム(He)等の伝熱ガスが充填されている。ESC103が備える基板載置部105の上端部は、その最外周縁に沿って設けられた環状突出部106と、この環状突出部106で囲まれた伝熱ガスを溜めるための凹部107と、凹部107に内に設けられた多数の柱状突起108とを備える。環状突出部106と柱状突起108の上端面が、基板101の下面に接触する基板接触面106a,108aとして機能する。凹部107の深さDe(基板載置面106a,108aから凹部107の底面までの距離)は、一定である。凹部107に充填された伝熱ガスを介した基板サセプタ102との熱伝導により、プラズマ処理中の基板101が冷却される。伝熱ガスを利用する直接的な冷却により基板101を効果的に冷却できるので、難エッチング材料の高エッチングレートでのエッチングに要求される高い高周波電力の投入が可能である。例えばLEDの製造工程の一部であるサファイア(SF)基板のエッチングや、SF基板に設けた窒化ガリウム(GaN)エピタキシャル層のエッチングを特許文献2のドライエッチング装置で実行する場合、トレイ100の直径が340mmであれば、プラズマ発生用のコイルに投入する高周波電力が1000〜2800W程度、基板サセプタ102側に投入する高周波電力(バイアス電力)が500〜2000W程度である。   Patent Document 2 discloses an ICP type dry etching apparatus capable of batch processing. As shown in FIG. 15, the dry etching apparatus of Patent Document 2 accommodates a substrate 101 in each of a plurality of substrate accommodation holes 100 a formed in the tray 100 in the thickness direction, and the tray 100 together with the ESC 103 of the substrate susceptor 102. The substrate 101 is held. The substrate susceptor 102 is provided with a cooling mechanism including a refrigerant circulation path 104. A heat transfer gas such as helium (He) is filled between the lower surface of each substrate 101 and the ESC 103. The upper end portion of the substrate platform 105 provided in the ESC 103 includes an annular protrusion 106 provided along the outermost peripheral edge, a recess 107 for storing heat transfer gas surrounded by the annular protrusion 106, and a recess. 107 includes a plurality of columnar protrusions 108 provided therein. The upper end surfaces of the annular protrusion 106 and the columnar protrusion 108 function as substrate contact surfaces 106 a and 108 a that contact the lower surface of the substrate 101. The depth De of the recess 107 (the distance from the substrate placement surfaces 106a and 108a to the bottom surface of the recess 107) is constant. The substrate 101 during the plasma processing is cooled by heat conduction with the substrate susceptor 102 through the heat transfer gas filled in the recess 107. Since the substrate 101 can be effectively cooled by direct cooling using a heat transfer gas, it is possible to input high-frequency power required for etching a difficult-to-etch material at a high etching rate. For example, when the etching of a sapphire (SF) substrate, which is a part of the LED manufacturing process, or the etching of a gallium nitride (GaN) epitaxial layer provided on the SF substrate is performed by the dry etching apparatus of Patent Document 2, the diameter of the tray 100 Is 340 mm, the high frequency power supplied to the plasma generating coil is about 1000 to 2800 W, and the high frequency power (bias power) supplied to the substrate susceptor 102 side is about 500 to 2000 W.

しかし、特許文献2に記載のドライエッチング装置で高い高周波電力を投入する場合、個々の基板における面内温度分布を十分に考慮する必要がある。図16の上段のグラフは、基板の中心から周縁に向けて生じた基板温度の分布の一例を示す(周縁に近い領域で比較的急激に基板温度が上昇している)。このような基板温度の分布があると、特にSF基板のエッチングの場合、エッチングレートの基板温度依存性(基板温度が高い程エッチングレートが低い)が顕著であるので、図16の中段のグラフに示すように、基板温度の分布に対応してエッチングレートにも分布が生じる可能性がある(周縁に近い領域で急激にエッチングレートが低下する)。また、エッチングにより形成される構造の側壁のテーパ角度にも基板温度の分布に対応した分布が生じる可能性がある。例えば、図16の下段のグラフに示すように、基板の中心では60度程度である側壁のテーパ角度は基板の外側ほど増加し、基板の周縁では75度程度となる場合がある。このように、基板の面内温度分布は、プラズマ処理の面内ばらつきの原因となり得る。   However, when high-frequency power is input using the dry etching apparatus described in Patent Document 2, it is necessary to sufficiently consider the in-plane temperature distribution in each substrate. The upper graph in FIG. 16 shows an example of the distribution of the substrate temperature generated from the center of the substrate toward the periphery (the substrate temperature rises relatively abruptly in a region near the periphery). When there is such a substrate temperature distribution, especially in the case of etching an SF substrate, the substrate temperature dependence of the etching rate (the higher the substrate temperature, the lower the etching rate) is significant. As shown, there is a possibility that the etching rate is also distributed corresponding to the distribution of the substrate temperature (the etching rate is drastically decreased in a region near the periphery). In addition, a distribution corresponding to the distribution of the substrate temperature may occur in the taper angle of the side wall of the structure formed by etching. For example, as shown in the lower graph of FIG. 16, the taper angle of the side wall, which is about 60 degrees at the center of the substrate, increases toward the outside of the substrate, and may be about 75 degrees at the periphery of the substrate. Thus, the in-plane temperature distribution of the substrate can cause in-plane variations in the plasma processing.

特許文献3は、He又は水素である伝熱ガスのガス圧が0〜20torr程度(0〜2600Pa)であれば、基板とESC間の熱伝達係数が主としてガス圧で決まるので基板温度の制御性が良好であるとしている。また、特許文献3は、このガス圧の範囲で前述の図15における深さDeを40μm未満、好ましくは20〜35μmに設定すれば基板温度の均一性が得られるとしている。さらに、特許文献3によれば、He又は水素である伝熱ガスのガス圧が0〜10torr程度(0〜1300Pa)の自由分子領域では熱伝達係数は伝熱ガスの圧力のみに依存するので特に好ましく、10〜78torr程度(1300Pa〜10140Pa程度)の遷移領域では熱伝達係数は伝熱ガスの圧力と深さDeに依存し、78torr程度(10140Pa程度)を上回る連続体領域では熱伝達係数は深さDeに依存するとされている。   In Patent Document 3, if the gas pressure of the heat transfer gas, which is He or hydrogen, is about 0 to 20 torr (0 to 2600 Pa), the heat transfer coefficient between the substrate and the ESC is mainly determined by the gas pressure, so the controllability of the substrate temperature. Is going to be good. Further, Patent Document 3 states that uniformity of the substrate temperature can be obtained if the depth De in FIG. 15 is set to be less than 40 μm, preferably 20 to 35 μm, within this gas pressure range. Furthermore, according to Patent Document 3, the heat transfer coefficient depends on only the pressure of the heat transfer gas, particularly in the free molecule region where the gas pressure of the heat transfer gas that is He or hydrogen is about 0 to 10 torr (0 to 1300 Pa). Preferably, in the transition region of about 10 to 78 torr (about 1300 Pa to 10140 Pa), the heat transfer coefficient depends on the pressure and depth De of the heat transfer gas, and in the continuum region exceeding about 78 torr (about 10140 Pa), the heat transfer coefficient is deep. It depends on De.

しかしながら、SF基板やそれに形成したGaNエピタキシャル層のような難エッチング材料の高いエッチングレートでのエッチングには高い高周波電力の投入が必要であり、この高い高周波電力に対応して基板の冷却効率を高めるには、基板とESCの間に充填する伝熱ガスのガス圧を特許文献3で特に好ましいとされている0〜10torr程度(0〜1300Pa程度)よりも高い領域、具体的には1300Pa〜3000Pa程度に設定する必要がある。そのため、特許文献3で教示されているように図15の深さDeを40μm未満の一定値に設定しても、図16を参照して説明した基板温度の面内分布と、それに起因するエッチングレートや形状の面内ばらつきを解消できない。   However, high-frequency power needs to be input to etch difficult-to-etch materials such as SF substrates and GaN epitaxial layers formed on them at a high etching rate, and the cooling efficiency of the substrate is increased corresponding to this high-frequency power. Includes a region in which the gas pressure of the heat transfer gas filled between the substrate and the ESC is higher than about 0 to 10 torr (about 0 to 1300 Pa), specifically 1300 Pa to 3000 Pa. It is necessary to set the degree. Therefore, even if the depth De in FIG. 15 is set to a constant value of less than 40 μm as taught in Patent Document 3, the in-plane distribution of the substrate temperature described with reference to FIG. In-plane variation in rate and shape cannot be resolved.

特開2000−58514号公報JP 2000-58514 A 特開2005−297378号公報JP 2005-297378 A 特許第3176305号公報(段落0038〜0041,0060)Japanese Patent No. 3176305 (paragraphs 0038 to 0041, 0060)

本発明は、基板とESCの間に伝熱ガスを充填するプラズマ処理装置において、伝熱ガスのガス圧が例えばSF基板やそれに形成したGaNエピタキシャル層のエッチングに要求されるような高圧であっても、基板温度の面内分布を均一化し、プラズマ処理の面内ばらつきを解消することを課題とする。   The present invention provides a plasma processing apparatus in which a heat transfer gas is filled between a substrate and an ESC, and the gas pressure of the heat transfer gas is a high pressure required for etching, for example, an SF substrate or a GaN epitaxial layer formed thereon. Another problem is to make the in-plane distribution of the substrate temperature uniform and to eliminate in-plane variations in plasma processing.

本発明は、プラズマを発生させる減圧可能なチャンバと、基板が載置される基板載置部を少なくとも1個備え、前記基板載置部に載置された前記基板を静電的に保持する静電チャックを有する、前記チャンバ内に設けられた基板保持部と、前記基板と前記基板載置部との間に伝熱ガスを供給する伝熱ガス供給機構と、前記基板保持部を冷却する冷却機構とを備え、前記静電チャックの前記基板載置部の上端部は、周縁に設けられた環状突出部と、同一平面上にある前記環状突出部の上端面と共に前記基板の下面を載置する基板載置面を構成する上端面をそれぞれ備える複数の突起と、前記環状突出部で囲まれた領域である凹部とを有し、前記環状突出部は上端面に設けられた環状溝により互いに区切られた2重又は3重の環状部分を備え、前記環状突出部で囲まれた領域である前記凹部は、前記基板載置部の前記上端部の中心を含む内側領域と、この内側領域と前記環状突出部の間の外側領域とを備え、前記内側領域における前記基板載置面から底面までの第1の深さより、前記外側領域における前記基板載置面から底面までの第2の深さが浅く、前記基板載置面に載置された前記基板で閉鎖された前記凹部内に前記伝熱ガス供給機構からの前記伝熱ガスが充填される、プラズマ処理装置を提供する The present invention comprises a chamber capable of reducing pressure for generating plasma and at least one substrate platform on which a substrate is placed, and statically holds the substrate placed on the substrate platform. A substrate holding unit provided in the chamber, having an electric chuck, a heat transfer gas supply mechanism for supplying a heat transfer gas between the substrate and the substrate mounting unit, and cooling for cooling the substrate holding unit An upper end portion of the substrate mounting portion of the electrostatic chuck is mounted on the lower surface of the substrate together with an annular protrusion provided on the periphery and the upper end surface of the annular protrusion on the same plane. A plurality of protrusions each having an upper end surface constituting a substrate mounting surface, and a recess that is an area surrounded by the annular protrusion, and the annular protrusion is mutually connected by an annular groove provided on the upper end surface. comprising a delimited double or triple annular portion has, before The concave portion, which is a region surrounded by an annular protrusion, includes an inner region including the center of the upper end portion of the substrate platform, and an outer region between the inner region and the annular protrusion, The substrate placed on the substrate placement surface , wherein the second depth from the substrate placement surface to the bottom surface in the outer region is shallower than the first depth from the substrate placement surface to the bottom surface in the region. in the heat transfer gas from the heat transfer gas supply mechanism to the closed the recess is filled, to provide a plasma processing apparatus.

具体的には、前記伝熱ガス供給機構は、前記凹部の前記内側領域内に前記伝熱ガスの供給口を有する。凹部の内側領域に含まれる基板載置部の中心に単一の伝熱ガスの供給口を設けてもよいし、内側領域内に複数個の伝熱ガスの供給口を複数個設けてもよい。   Specifically, the heat transfer gas supply mechanism has the heat transfer gas supply port in the inner region of the recess. A single heat transfer gas supply port may be provided in the center of the substrate mounting portion included in the inner region of the recess, or a plurality of heat transfer gas supply ports may be provided in the inner region. .

前記内側領域の平面視での外形寸法は、前記基板載置部の平面視での外形寸法の0.5倍以上0.93倍以下に設定される。基板の直径が4インチ(約100mm)であり、基板載置部の平面での直径が約90〜100mm(例えば97mm)である場合、内側領域の直径は基板載置部の直径の0.64倍以上0.9倍以下に設定される。また、基板の直径が6インチ(約150mm)であり、基板載置部の平面での直径が約140〜150mm(例えば147mm)である場合、内側領域の直径は基板載置部の直径の0.73倍場合以上0.93倍以下に設定される。さらに、基板の直径が3インチ(約76mm)であり、基板載置部の直径が約66〜76mm(例えば73mm)である場合、内側領域の直径は基板載置部の直径の0.6倍以上0.86倍以下に設定される。さらにまた、基板の直径が2インチ(約50mm)であり、基板載置部の直径が約48〜50mm(例えば4.8mm)である場合、内側領域の直径は基板載置部の直径の0.5倍以上0.8倍以下に設定される。   The outer dimension of the inner region in plan view is set to be not less than 0.5 times and not more than 0.93 times of the outer dimension of the substrate platform in plan view. When the diameter of the substrate is 4 inches (about 100 mm) and the diameter of the substrate platform in the plane is about 90 to 100 mm (for example, 97 mm), the diameter of the inner region is 0.64 of the diameter of the substrate platform. It is set to not less than twice and not more than 0.9 times. When the diameter of the substrate is 6 inches (about 150 mm) and the diameter of the substrate platform is about 140 to 150 mm (for example, 147 mm), the diameter of the inner region is 0 of the diameter of the substrate platform. .73 times or more and 0.93 times or less are set. Further, when the diameter of the substrate is 3 inches (about 76 mm) and the diameter of the substrate mounting portion is about 66 to 76 mm (for example, 73 mm), the diameter of the inner region is 0.6 times the diameter of the substrate mounting portion. It is set to 0.86 times or less. Furthermore, when the diameter of the substrate is 2 inches (about 50 mm) and the diameter of the substrate mounting portion is about 48 to 50 mm (for example, 4.8 mm), the diameter of the inner region is 0 of the diameter of the substrate mounting portion. .5 times or more and 0.8 times or less is set.

さらに、前記第1の深さは40μm以上100μm未満であり、前記第2の深さは10μm以上40μm未満である。   Furthermore, the first depth is 40 μm or more and less than 100 μm, and the second depth is 10 μm or more and less than 40 μm.

基板載置面に載置された基板で閉鎖されて伝熱ガスが供給される凹部は、中心を含む深さが深い(40μm以上100μm未満)内側領域と、内側領域と環状突出部の間である深さが浅い(10μm以上40μm未満)外側領域とを備える。内側領域では伝熱ガスの拡散性を向上させるために凹部の深さを深く設定している。伝熱ガスの拡散性向上により、基板の中心(伝熱ガスの供給口)から周縁へ向けての伝熱ガスの圧力降下の勾配が小さくなる。その結果、内側領域では、伝熱ガスのガス圧が比較的高く、かつ伝熱ガスのガス圧分布は均一化される。   The recess that is closed by the substrate placed on the substrate placement surface and is supplied with heat transfer gas has a deep depth including the center (40 μm or more and less than 100 μm) between the inner region and the annular protrusion. And an outer region having a shallow depth (10 μm or more and less than 40 μm). In the inner region, the depth of the recess is set deep in order to improve the diffusibility of the heat transfer gas. By improving the diffusibility of the heat transfer gas, the gradient of the pressure drop of the heat transfer gas from the center of the substrate (heat transfer gas supply port) toward the periphery becomes small. As a result, in the inner region, the gas pressure of the heat transfer gas is relatively high, and the gas pressure distribution of the heat transfer gas is made uniform.

環状突出部の上端面(基板載置面)と基板の周縁付近の下面との間の微細な隙間を通って、凹部からチャンバ内に微量の伝熱ガスが漏洩する。仮に凹部の外側領域の深さを内側領域と同じ深い深さに設定すると、基板の周縁付近において凹部に充填されている伝熱ガスの圧力が過度に高くなる。この過度に高い圧力により、平面視で基板の周縁のうちの単一又は複数の特定の箇所のみから凹部内の伝熱ガスが漏洩し、基板の周縁の他の箇所からは凹部内の伝熱ガスが漏洩しない状態となるおそれがある。このような凹部からの不均一な伝熱ガスの漏洩は、基板の温度の面内ばらつきを生じさせて、プラズマ処理の面内ばらつきの原因となる。本発明のプラズマ処理装置では、外側領域の深さを内側領域よりも浅く設定して内側領域よりも基板の周縁に向かう伝熱ガスの圧力降下の勾配を大きくしている。そして、圧力降下の勾配を大きくすることで、凹部からの不均一な伝熱ガスの漏洩(基板の周縁のうちの特定の箇所のみからの伝熱ガスの漏洩)が生じない程度に、基板の周縁付近における凹部内の伝熱ガスの圧力を低下させている。   A small amount of heat transfer gas leaks from the recess into the chamber through a fine gap between the upper end surface (substrate mounting surface) of the annular protrusion and the lower surface near the periphery of the substrate. If the depth of the outer region of the recess is set to the same depth as the inner region, the pressure of the heat transfer gas filled in the recess near the periphery of the substrate becomes excessively high. Due to this excessively high pressure, the heat transfer gas in the recess leaks from only one or a plurality of specific locations on the periphery of the substrate in plan view, and the heat transfer in the recess from other locations on the periphery of the substrate. There is a risk that gas will not leak. Such uneven leakage of the heat transfer gas from the recesses causes in-plane variations in the temperature of the substrate and causes in-plane variations in the plasma processing. In the plasma processing apparatus of the present invention, the depth of the outer region is set shallower than the inner region, and the gradient of the pressure drop of the heat transfer gas toward the peripheral edge of the substrate is made larger than the inner region. Then, by increasing the gradient of the pressure drop, non-uniform heat transfer gas leakage from the recesses (leakage of heat transfer gas from only a specific portion of the periphery of the substrate) does not occur. The pressure of the heat transfer gas in the recess in the vicinity of the periphery is reduced.

以上のように、本発明では、ガス圧分布と伝熱ガスの不均一な漏洩防止との両方を考慮し、内側領域では凹部の深さを深くする一方、外側領域では凹部の深さを浅く設定している。   As described above, in the present invention, in consideration of both gas pressure distribution and non-uniform leakage of heat transfer gas, the depth of the recess is increased in the inner region, while the depth of the recess is decreased in the outer region. It is set.

凹部の深さを浅く設定した外側領域では、基板の下面と凹部の底面との距離が短くなることで基板と基板載置部との間の伝熱係数が大きくなる。この伝熱係数の増加は、伝熱ガスの不均一な漏洩防止のために凹部の深さを深く設定したこと(伝熱ガスの圧力降下の勾配を大きくしたこと)による外側領域における基板の冷却効率の低下を補う。その結果、凹部の深さを異ならせたことに起因する内側領域と外側領域における基板の冷却効率の差は最小限に抑制される。   In the outer region where the depth of the recess is set shallow, the distance between the lower surface of the substrate and the bottom surface of the recess is shortened, so that the heat transfer coefficient between the substrate and the substrate mounting portion is increased. This increase in the heat transfer coefficient is due to the cooling of the substrate in the outer region caused by setting the depth of the recesses deep (to increase the pressure drop gradient of the heat transfer gas) to prevent uneven leakage of the heat transfer gas. Make up for the loss of efficiency. As a result, the difference in the cooling efficiency of the substrate between the inner region and the outer region due to the different depths of the recesses is minimized.

以上の理由により、内側領域では凹部の深さを深く設定し、外側領域では内側領域よりも凹部の深さを浅く設定することで、凹部に充填される伝熱ガスのガス圧がSF基板やそれに形成したGaNエピタキシャル層のような難エッチング材の高エッチングレートでのエッチングに要求されるような高圧(例えば1300〜3000Pa程度)であっても、基板温度の面内分布を均一化し、プラズマ処理の面内ばらつきを解消できる。   For the above reasons, the depth of the recess is set deeper in the inner region, and the depth of the recess is set shallower in the outer region than in the inner region, so that the gas pressure of the heat transfer gas filled in the recess is reduced to the SF substrate or Even in a high pressure (for example, about 1300 to 3000 Pa) required for etching a difficult-to-etch material such as a GaN epitaxial layer formed on the substrate at a high etching rate, the in-plane distribution of the substrate temperature is made uniform and plasma treatment is performed. In-plane variation can be eliminated.

前記環状突出部は上端面に設けられた環状溝により互いに区切られた2重又は3重の環状部分を備える。   The annular protrusion includes double or triple annular portions that are separated from each other by an annular groove provided on an upper end surface.

この構成により、基板の周縁の下面を通って凹部から漏洩する伝熱ガスの経路が一種のラビリンス状となる。そのため、いわゆるラビリンス効果により、凹部からの伝熱ガスの漏洩が抑制される。この漏洩抑制により、前述の不均一な伝熱ガスの漏洩を生じることなく、凹部の外側領域、特に環状突出部付近で伝熱ガスのガス圧を高い圧力で維持でき、基板の周縁付近における基板と基板載置部との間の熱伝達係数の値を大きくできる。その結果、基板の周縁付近における基板の冷却効果が向上し、基板温度分布の均一性がさらに向上する。   With this configuration, the path of the heat transfer gas leaking from the recess through the lower surface of the peripheral edge of the substrate becomes a kind of labyrinth. Therefore, leakage of heat transfer gas from the recess is suppressed by a so-called labyrinth effect. By suppressing the leakage, the gas pressure of the heat transfer gas can be maintained at a high pressure in the outer region of the recess, particularly in the vicinity of the annular protrusion, without causing the above-described uneven heat transfer gas leakage, and the substrate near the periphery of the substrate. The value of the heat transfer coefficient between the substrate and the substrate mounting portion can be increased. As a result, the cooling effect of the substrate near the periphery of the substrate is improved, and the uniformity of the substrate temperature distribution is further improved.

前記凹部は、前記内側領域と前記外側領域の境界に設けられた第1のガス分配溝と、前記外側領域と前記環状突出部の境界に設けられた第2のガス分配溝と、前記中心側から前記環状突出部に向けて延びるように設けられた前記第1及び第2のガス分配溝と連通する第3のガス分配溝とを備える。   The recess includes a first gas distribution groove provided at a boundary between the inner region and the outer region, a second gas distribution groove provided at a boundary between the outer region and the annular protrusion, and the center side. And a third gas distribution groove that communicates with the first and second gas distribution grooves provided so as to extend toward the annular protrusion.

この構成により、凹部の内側領域及び外側領域の両方における伝熱ガスの拡散性が向上する。その結果、凹部内での伝熱ガスの圧力分布の均一性がさらに向上し、基板温度分布の均一性がさらに向上する。   With this configuration, the diffusibility of the heat transfer gas in both the inner region and the outer region of the recess is improved. As a result, the uniformity of the pressure distribution of the heat transfer gas in the recess is further improved, and the uniformity of the substrate temperature distribution is further improved.

前記基板載置面から前記第1から第3のガス分配溝の底面までの第3の深さは100μm以下である。   A third depth from the substrate placement surface to the bottom surfaces of the first to third gas distribution grooves is 100 μm or less.

この構成により、第1から第3のガス分配溝を設けたことに起因する基板の下面と静電チャックの基板載置部との間での局所的な異常放電の発生を防止できる。   With this configuration, it is possible to prevent local abnormal discharge from occurring between the lower surface of the substrate and the substrate mounting portion of the electrostatic chuck due to the provision of the first to third gas distribution grooves.

好ましくは、それぞれ前記基板が収容される厚み方向に貫通する複数の基板収容孔と、個々の前記基板収容孔の孔壁から突出する基板支持部とを備え、前記基板を前記チャンバ内に搬入出可能なトレイをさらに備え、前記静電チャックは、複数の前記基板載置部と、これらの基板載置部が突出するトレイ支持部とを備え、前記基板の搬送時には、前記基板収容孔に収容された前記基板の下面の外周縁部分が前記基板支持部で支持され、前記基板の処理時には、前記トレイが前記基板保持部へ向けて降下することにより、個々の前記基板収容孔に対応する前記基板載置部が前記トレイの下面から挿入され、前記トレイの前記下面が前記静電チャックの前記トレイ支持部に載置されると共に、前記トレイ支持部から前記基板支持部の上面までの距離が前記トレイ支持部から前記基板載置面までの距離よりも短いことにより、前記基板が前記基板支持部の上面から浮き上がって下面が前記基板載置面上に載置され、前記トレイは前記静電チャックの前記トレイ保持部に静電的に保持されるPreferably, the apparatus includes a plurality of substrate accommodation holes penetrating in the thickness direction in which the substrate is accommodated, and a substrate support portion protruding from a hole wall of each of the substrate accommodation holes, and the substrate is carried into and out of the chamber. The electrostatic chuck further includes a plurality of the substrate placement portions and a tray support portion from which the substrate placement portions protrude, and is accommodated in the substrate accommodation hole when the substrate is transported. The outer peripheral edge portion of the lower surface of the substrate is supported by the substrate support portion, and when the substrate is processed, the tray is lowered toward the substrate holding portion, thereby corresponding to each of the substrate accommodation holes. substrate platform is inserted from the lower surface of the tray, distance together with the lower surface of the tray is placed on the tray support portion of the electrostatic chuck, from the tray support portion to the upper surface of the substrate support portion There By shorter than the distance from the tray support portion to the substrate mounting surface, a lower surface wherein the substrate is lifted from the upper surface of the substrate support portion is placed on the substrate mounting surface, said tray electrostatic It is electrostatically held by the tray holding part of the electric chuck .

トレイの基板収容孔内に基板載置部が進入することにより、複数の基板がそれぞれ高い位置決め精度で対応する基板載置部の基板載置面に載置される。そのため、個々の基板毎に基板温度の面内分布をさらに均一化できる。   When the substrate placement portion enters the substrate accommodation hole of the tray, the plurality of substrates are placed on the substrate placement surface of the corresponding substrate placement portion with high positioning accuracy. Therefore, the in-plane distribution of the substrate temperature can be made more uniform for each individual substrate.

また、トレイが効果的に冷却され、輻射や対流によるトレイの基板収容孔の孔壁及び基板支持部から基板の周縁へのわずかな熱伝達の影響さえも除かれるので、基板温度の均一性がさらに向上する。トレイは基板と同様に静電チャックが内蔵する電極によりトレイ保持部に対して静電的に吸着されてもよいし、トレイ保持部に自己静電吸着してもよい。 In addition , the tray is effectively cooled, and even the slight influence of heat transfer from the hole and the substrate support to the peripheral edge of the substrate due to radiation and convection is eliminated. Further improve. Similar to the substrate, the tray may be electrostatically attracted to the tray holding portion by an electrode built in the electrostatic chuck, or may be self-electrostatically attracted to the tray holding portion.

前記トレイの個々の前記基板収容孔の前記孔壁には、複数個の前記基板支持部が周方向に間隔をあけて突出し、個々の前記基板載置部の側周壁には、前記基板載置部の上端から前記トレイ支持部に向けて延びる複数の収容溝が設けられ、前記基板の処理時には、前記トレイが前記トレイ支持に向けて降下することにより個々の前記基板支持部が対応する前記収容溝に進入してもよい。   A plurality of the substrate support portions project at intervals in the circumferential direction on the hole walls of the individual substrate receiving holes of the tray, and the substrate mounting portions are arranged on the side peripheral walls of the individual substrate mounting portions. A plurality of receiving grooves extending from the upper end of the portion toward the tray supporting portion, and when the substrate is processed, the receiving portion corresponding to each of the substrate supporting portions corresponds to each of the substrate supporting portions as the tray descends toward the tray supporting portion. You may enter the groove.

この構成により、基板の基板載置部の基板載置面に対する位置決め精度がさらに向上するので、基板と基板載置部の上端部の平面視での寸法及び形状を実質的に一致させることができる。言い換えれば、基板の基板載置部の上端部に対する位置がずれた場合を考慮して基板載置部の平面視での寸法を基板よりも小さく設定する必要がない。その結果、個々の基板の最外周縁付近まで基板載置面が接触することで特に基板の周縁付近が効果的に冷却され、基板温度分布の均一性がさらに向上する。   With this configuration, since the positioning accuracy of the substrate mounting portion with respect to the substrate mounting surface is further improved, it is possible to substantially match the size and shape of the substrate and the upper end portion of the substrate mounting portion in plan view. . In other words, it is not necessary to set the size of the substrate platform in plan view smaller than that of the substrate in consideration of a case where the position of the substrate relative to the upper end of the substrate platform is shifted. As a result, the substrate mounting surface comes into contact with the vicinity of the outermost periphery of each substrate, so that particularly the vicinity of the periphery of the substrate is effectively cooled, and the uniformity of the substrate temperature distribution is further improved.

本発明の係るプラズマ処理装置では、基板載置面に載置された基板で閉鎖されて伝熱ガスが供給される基板載置部の凹部のうち、内側領域では伝熱ガスの拡散性を向上させてガス圧分布を均一化するために深さを深く設定している(第1の深さ)。一方、凹部のうち外側領域では深さを浅く設定し(第2の深さ)、凹部からの伝熱ガスの漏洩の不均一化を防止すると共に、基板の下面と凹部の底面との距離を短くして基板と基板載置部との間の熱伝達係数を大きくしている。その結果、凹部に充填される伝熱ガスのガス圧がSF基板やそれに形成したGaNエピタキシャル層のような難エッチング材料の高いエッチングレートでのエッチングに要求されるような高圧(例えば1300〜3000Pa)であっても、基板温度の面内分布を均一化し、プラズマ処理の面内ばらつきを解消できる。   In the plasma processing apparatus according to the present invention, the diffusibility of the heat transfer gas is improved in the inner region of the concave portion of the substrate mounting portion that is closed by the substrate mounted on the substrate mounting surface and supplied with the heat transfer gas. In order to make the gas pressure distribution uniform, the depth is set deep (first depth). On the other hand, the outer region of the recess is set to a shallow depth (second depth) to prevent uneven heat transfer gas leakage from the recess, and to reduce the distance between the bottom surface of the substrate and the bottom surface of the recess. The heat transfer coefficient between the substrate and the substrate mounting portion is increased by shortening. As a result, the gas pressure of the heat transfer gas filled in the recesses is as high as required for etching at a high etching rate of difficult-to-etch materials such as the SF substrate and the GaN epitaxial layer formed thereon (for example, 1300 to 3000 Pa). Even so, the in-plane distribution of the substrate temperature can be made uniform, and the in-plane variation of the plasma processing can be eliminated.

本発明の第1実施形態に係るドライエッチング装置の模式的な断面図。1 is a schematic cross-sectional view of a dry etching apparatus according to a first embodiment of the present invention. 図1の部分Iの拡大図。The enlarged view of the part I of FIG. 基板サセプタ、トレイ、及び基板を示す斜視図。The perspective view which shows a board | substrate susceptor, a tray, and a board | substrate. トレイの平面図。The top view of a tray. 第1実施形態における基板載置部の平面図。The top view of the board | substrate mounting part in 1st Embodiment. 第1実施形態における基板載置部の模式的な部分拡大断面図。The typical partial expanded sectional view of the board | substrate mounting part in 1st Embodiment. 第1実施形態における基板載置部の模式的な斜視図。The typical perspective view of the board | substrate mounting part in 1st Embodiment. 伝熱ガスのガス圧と基板温度及び伝熱係数の関係を示す模式的な線図。The schematic diagram which shows the relationship between the gas pressure of heat transfer gas, a substrate temperature, and a heat transfer coefficient. 形状及び温度の測定箇所を説明するための基板の平面図。The top view of the board | substrate for demonstrating the measurement location of a shape and temperature. 3重構造の突出部を有する基板載置部の部分拡大断面図。The partial expanded sectional view of the board | substrate mounting part which has the protrusion part of a triple structure. ラビンリンス構造がない環状突出部を有する基板載置部の部分拡大断面図。The partial expanded sectional view of the board | substrate mounting part which has the cyclic | annular protrusion part which does not have a rabin rinse structure. 4重構造の突出部を有する基板載置部の部分拡大断面図。The partial expanded sectional view of the board | substrate mounting part which has a protrusion part of a quadruple structure. ラビリンス構造の有無による圧力分布の相違を概念的に示す線図。The diagram which shows notionally the difference in pressure distribution by the presence or absence of a labyrinth structure. 本発明の第2実施形態に係るドライエッチング装置における基板サセプタ、トレイ、及び基板を示す斜視図。The perspective view which shows the board | substrate susceptor, tray, and board | substrate in the dry etching apparatus which concerns on 2nd Embodiment of this invention. 図11Aの部分拡大図。The elements on larger scale of FIG. 11A. 第2実施形態における基板載置部の平面図。The top view of the board | substrate mounting part in 2nd Embodiment. 第2実施形態における基板載置部の模式的な斜視図。The typical perspective view of the board | substrate mounting part in 2nd Embodiment. 従来のドライエッチング装置の一例の模式的な部分拡大断面図。The typical partial expanded sectional view of an example of the conventional dry etching apparatus. 図14のドライエッチング装置における基板の中心からの位置と、基板温度、エッチングレート、及びテーパ角度の関係を示す線図。FIG. 15 is a diagram showing the relationship between the position from the center of the substrate, the substrate temperature, the etching rate, and the taper angle in the dry etching apparatus of FIG.

次に、添付図面を参照して本発明の実施形態を説明する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings.

(第1実施形態)
図1及び図2は本発明の第1実施形態に係るICP(誘導結合プラズマ)型のドライエッチング装置1を示す。このドライエッチング装置1は、6枚の4インチ(100mm)の基板2に対して同時にドライエッチング処理を行うバッチ処理を実行可能である。
(First embodiment)
1 and 2 show an ICP (inductively coupled plasma) type dry etching apparatus 1 according to a first embodiment of the present invention. The dry etching apparatus 1 can execute batch processing for simultaneously performing dry etching processing on six 4-inch (100 mm) substrates 2.

ドライエッチング装置1は、基板2にプラズマ処理を行うための減圧可能な処理室が内部に構成されたチャンバ(真空容器)3を備える。チャンバ3には、基板2をトレイ4と共にチャンバ3内に搬入出するための開閉可能なゲート3aが設けられている。また、チャンバ3には、真空ポンプ等を備える真空排気装置11が接続された排気口3bが設けられている。チャンバ3内の底部側には、バイアス電圧が印加される下部電極としての機能と、基板2及びトレイ4の保持台としての機能とを有する基板サセプタ(基板保持部)5が配設されている。この基板サセプタ5と対向するチャンバ3の上端開口は石英等の誘電体からなる天板7で閉鎖されている。天板7の上方には、錐体状に巻回された複数の帯状の導電体を備えるICPコイル8が配設されている。ICPコイル8には、それぞれマッチング回路12を介して、高周波電源13が電気的に接続されている。チャンバ3に設けられたガスエッチング供給口3cはMFC(マスフローコントローラ)等を備えるエッチングガス供給源14に接続されている。   The dry etching apparatus 1 includes a chamber (vacuum vessel) 3 in which a processing chamber capable of being depressurized for performing plasma processing on a substrate 2 is configured. The chamber 3 is provided with an openable / closable gate 3 a for carrying the substrate 2 in and out of the chamber 3 together with the tray 4. Further, the chamber 3 is provided with an exhaust port 3b to which an evacuation device 11 having a vacuum pump or the like is connected. A substrate susceptor (substrate holding unit) 5 having a function as a lower electrode to which a bias voltage is applied and a function as a holding table for the substrate 2 and the tray 4 is disposed on the bottom side in the chamber 3. . The upper end opening of the chamber 3 facing the substrate susceptor 5 is closed by a top plate 7 made of a dielectric material such as quartz. Above the top plate 7, an ICP coil 8 having a plurality of strip-shaped conductors wound in a cone shape is disposed. A high frequency power supply 13 is electrically connected to the ICP coil 8 via a matching circuit 12. A gas etching supply port 3c provided in the chamber 3 is connected to an etching gas supply source 14 having an MFC (mass flow controller) or the like.

図3及び図4を併せて参照すると、トレイ4は、例えばSiC、アルミナ(Al2O3)、イットリア、AlN等のセラミクス材からなる直径340mm程度で厚みが一定の薄板である。トレイ4には、上面4aから下面4bまで厚み方向に貫通する6個の基板収容孔9A〜9Fが設けられている。個々の基板収容孔9A〜9Fに4インチの基板2が収容される。1個の基板収容孔9Aがトレイ4の中央領域に設けられ、その周囲に残りの5個の基板収容孔9B〜9Fが等角度間隔で配置されている。トレイ4には個々の基板収容孔9A〜9Fの孔壁から内向きに突出する本実施形態では無端環状の基板支持部10が設けられている。個々の基板収容孔9A〜9Bにそれぞれ1枚の基板2が収容される。基板収容孔9A〜9Fに収容された基板2は、その下面の外周縁部分が基板支持部10の上面に支持される。 Referring to FIGS. 3 and 4 together, the tray 4 is a thin plate having a constant thickness of about 340 mm and made of a ceramic material such as SiC, alumina (Al 2 O 3 ), yttria, and AlN. The tray 4 is provided with six substrate housing holes 9A to 9F penetrating in the thickness direction from the upper surface 4a to the lower surface 4b. A 4-inch substrate 2 is accommodated in each of the substrate accommodation holes 9A to 9F. One substrate accommodation hole 9A is provided in the central region of the tray 4, and the remaining five substrate accommodation holes 9B to 9F are arranged at equiangular intervals around the substrate. In the present embodiment, the tray 4 is provided with an endless annular substrate support portion 10 that protrudes inward from the hole walls of the individual substrate accommodation holes 9A to 9F. One substrate 2 is accommodated in each of the substrate accommodation holes 9A to 9B. The substrate 2 accommodated in the substrate accommodation holes 9 </ b> A to 9 </ b> F is supported by the upper surface of the substrate support portion 10 at the outer peripheral edge portion of the lower surface thereof.

基板サセプタ5は、セラミクス等の誘電体からなる静電チャック(ESC)21、表面にアルマイト被覆を形成したアルミニウム等からなり本実施形態ではペデスタル電極として機能する金属板22、及びセラミクス等の誘電体からなるスペーサ板23を備える。基板サセプタ5の最上部を構成するESC21はインジウム等の接合層24により金属板22の上面に固定されている。   The substrate susceptor 5 is made of an electrostatic chuck (ESC) 21 made of a dielectric material such as ceramics, aluminum having an alumite coating on the surface, etc., and a metal plate 22 functioning as a pedestal electrode in this embodiment, and a dielectric material such as ceramics A spacer plate 23 is provided. The ESC 21 constituting the uppermost part of the substrate susceptor 5 is fixed to the upper surface of the metal plate 22 by a bonding layer 24 such as indium.

基板サセプタ5の最上部を構成するESC21は、全体として薄い円板状であり平面視での外形が円形である。ESC21の上端面であるトレイ支持面26から、バッチ処理される基板2の枚数に対応する6個の基板載置部27A〜27Fが上向きに突出している。本実施形態では、基板載置部27A〜27Fは扁平な短円柱状である。トレイ支持面26の中央に1個の基板載置部27Aが配置され、この基板載置部27Aの周囲に残りの5個の基板載置部27B〜27Fが平面視で、等角度間隔で配置されている。後に詳述するように、トレイ4がESC21のトレイ支持面26で支持され、6枚の基板2がそれぞれ基板載置部27A〜27Fの上端部27aに保持される。   The ESC 21 that constitutes the uppermost part of the substrate susceptor 5 has a thin disk shape as a whole and has a circular outer shape in plan view. Six substrate mounting portions 27A to 27F corresponding to the number of substrates 2 to be batch-processed project upward from a tray support surface 26 that is the upper end surface of the ESC 21. In the present embodiment, the substrate mounting portions 27A to 27F have a flat short cylindrical shape. One substrate platform 27A is arranged at the center of the tray support surface 26, and the remaining five substrate platforms 27B to 27F are arranged at equal angular intervals in plan view around the substrate platform 27A. Has been. As will be described in detail later, the tray 4 is supported by the tray support surface 26 of the ESC 21, and the six substrates 2 are held on the upper end portions 27a of the substrate platforms 27A to 27F, respectively.

図2に示すように、ESC21の個々の基板載置部27A〜27Fの上端部27a付近には静電吸着電極28が内蔵されている。これらの静電吸着電極28には直流電圧印加機構15から静電吸着用の直流電圧が印加される。   As shown in FIG. 2, an electrostatic chucking electrode 28 is built in the vicinity of the upper end portion 27 a of each substrate mounting portion 27 </ b> A to 27 </ b> F of the ESC 21. A DC voltage for electrostatic adsorption is applied to the electrostatic adsorption electrodes 28 from the DC voltage application mechanism 15.

図1及び図3を参照すると、個々の基板載置部27A〜27Fの上端部27aには、伝熱ガス(本実施形態ではヘリウム)の供給孔29が設けられている。個々の基板載置部27A〜27Fの上端部27aとその上に載置された基板2の下面2aとの間の閉鎖された空間には、供給孔29に接続された伝熱ガス供給機構16(図1に図示する。)によって伝熱ガス(本実施形態ではヘリウムガス)が供給される。伝熱ガスの供給時にはカットオフバルブ16aは閉弁され、伝熱ガス供給源(本実施形態ではヘリウムガス源)16bから供給流路16cを経て供給孔29へ伝熱ガスが送られる。流量計16dと圧力計16eで検出される供給流路16cの流量及び圧力に基づき、流量制御バルブ16fが制御される。一方、伝熱ガスの排出時にはカットオフバルブ16aが開弁され、供給孔29、供給流路16c、及び排出流路16gを経て排気口16hから伝熱ガスが排気される。   Referring to FIGS. 1 and 3, heat transfer gas (helium in this embodiment) supply holes 29 are provided in the upper end portions 27 a of the individual substrate mounting portions 27 </ b> A to 27 </ b> F. In a closed space between the upper end portion 27a of each of the substrate placement portions 27A to 27F and the lower surface 2a of the substrate 2 placed thereon, the heat transfer gas supply mechanism 16 connected to the supply hole 29 is provided. A heat transfer gas (in this embodiment, helium gas) is supplied by (illustrated in FIG. 1). When supplying the heat transfer gas, the cutoff valve 16a is closed, and the heat transfer gas is sent from the heat transfer gas supply source (helium gas source in the present embodiment) 16b to the supply hole 29 via the supply flow path 16c. The flow control valve 16f is controlled based on the flow rate and pressure of the supply flow path 16c detected by the flow meter 16d and the pressure gauge 16e. On the other hand, when the heat transfer gas is discharged, the cut-off valve 16a is opened, and the heat transfer gas is exhausted from the exhaust port 16h through the supply hole 29, the supply flow path 16c, and the discharge flow path 16g.

金属板22には、バイアス電圧としての高周波を印加する高周波印加機構17が電気的に接続されている。また、金属板22を冷却する冷却機構18が設けられている。冷却機構18は、金属板22内に形成された冷媒流路18aと、温調された冷媒を冷媒流路18a中で循環させる冷媒循環装置18bとを備える。   A high frequency applying mechanism 17 that applies a high frequency as a bias voltage is electrically connected to the metal plate 22. Further, a cooling mechanism 18 for cooling the metal plate 22 is provided. The cooling mechanism 18 includes a refrigerant flow path 18a formed in the metal plate 22 and a refrigerant circulation device 18b that circulates the temperature-controlled refrigerant in the refrigerant flow path 18a.

図1にのみ模式的に示すコントローラ30は、流量計16d及び圧力計16eを含む種々のセンサや操作入力に基づいて、高周波電源13、エッチングガス供給源3c、真空排気装置11、直流電圧印加機構15、伝熱ガス供給機構16、高周波電圧印加機構17、及び冷却機構18を含むドライエッチング装置1全体の動作を制御する。   A controller 30 schematically shown only in FIG. 1 is based on various sensors and operation inputs including a flow meter 16d and a pressure gauge 16e, and a high-frequency power source 13, an etching gas supply source 3c, a vacuum exhaust device 11, and a DC voltage application mechanism. 15, the operation of the entire dry etching apparatus 1 including the heat transfer gas supply mechanism 16, the high-frequency voltage application mechanism 17, and the cooling mechanism 18 is controlled.

次に、本実施形態のドライエッチング装置の動作の概要を説明する。   Next, an outline of the operation of the dry etching apparatus of this embodiment will be described.

基板収容孔9A〜9Fにそれぞれ基板2が収容されたトレイ4は、図示しない搬送アームによりゲート3aからチャンバ3内に搬入され、上昇位置にある昇降ピン19の先端に移載される(このとき昇降ピン19の先端は基板サセプタ5よりも上方に位置する。)。次に、駆動機構20により昇降ピン19が降下することで、基板2とトレイ4が基板サセプタ5に載置される。具体的には、トレイ4は下面4bがESC21のトレイ支持面26へ降下する。トレイ4がトレイ支持面26に向けて降下する際、ESC21の基板載置部27A〜27Fがトレイ4の対応する基板収容孔9A〜9F内へトレイ4の下面4b側から進入する。トレイ4の下面4bがESC21のトレイ支持面26に載置されると、トレイ支持面26から基板支持部10の上面まで距離がトレイ支持面26から基板載置部27A〜27Fの上端までの距離よりも短いため、個々の基板収容孔9A〜9F内の基板2は基板支持面10の上面から持ち上げられて基板載置部27A〜27Fの上端部27aに載置される。   The tray 4 in which the substrate 2 is accommodated in each of the substrate accommodation holes 9A to 9F is carried into the chamber 3 from the gate 3a by a transfer arm (not shown) and transferred to the tip of the elevating pin 19 at the raised position (at this time) (The tip of the lifting pin 19 is positioned above the substrate susceptor 5). Next, the lift pins 19 are lowered by the drive mechanism 20, whereby the substrate 2 and the tray 4 are placed on the substrate susceptor 5. Specifically, the lower surface 4b of the tray 4 descends to the tray support surface 26 of the ESC 21. When the tray 4 descends toward the tray support surface 26, the substrate placement portions 27A to 27F of the ESC 21 enter the corresponding substrate accommodation holes 9A to 9F of the tray 4 from the lower surface 4b side of the tray 4. When the lower surface 4b of the tray 4 is placed on the tray support surface 26 of the ESC 21, the distance from the tray support surface 26 to the upper surface of the substrate support portion 10 is the distance from the tray support surface 26 to the upper ends of the substrate placement portions 27A to 27F. Therefore, the substrate 2 in each of the substrate accommodation holes 9A to 9F is lifted from the upper surface of the substrate support surface 10 and placed on the upper end portions 27a of the substrate placement portions 27A to 27F.

次に、静電吸着電極28に対して直流電圧印加機構15から直流電圧が印加され、個々の基板載置部27A〜27Fの上端部27aに基板2が静電吸着される。続いて、個々の基板載置部27A〜27Fと基板2の下面2aとの間の空間が、伝熱ガス供給機構16から供給孔29を通って供給される伝熱ガスにより充填される。その後、エッチングガス供給源14からチャンバ3内にエッチングガスが供給され、真空排気装置11によりチャンバ3内は所定圧力に維持される。続いて、高周波電源13からICPコイル11に高周波電圧を印加する。ICPコイル8が発生する高周波磁界によりチャンバ3内に誘導電界を発生させ、電子を加速してプラズマを発生さる。このプラズマにより基板2がエッチングされる。1枚のトレイ4で6枚の基板2を基板サセプタ6上に載置できるので、バッチ処理となる。エッチング中は、冷媒循環装置18bにより金属板22の冷媒流路18a中で冷媒を循環させることでESC21を冷却し、基板載置部27A〜27Fとの伝熱ガスを介した熱伝導により個々の基板2を冷却する。   Next, a DC voltage is applied from the DC voltage application mechanism 15 to the electrostatic adsorption electrode 28, and the substrate 2 is electrostatically adsorbed to the upper end portions 27a of the individual substrate mounting portions 27A to 27F. Subsequently, spaces between the individual substrate placement portions 27 </ b> A to 27 </ b> F and the lower surface 2 a of the substrate 2 are filled with the heat transfer gas supplied from the heat transfer gas supply mechanism 16 through the supply holes 29. Thereafter, an etching gas is supplied from the etching gas supply source 14 into the chamber 3, and the inside of the chamber 3 is maintained at a predetermined pressure by the vacuum exhaust device 11. Subsequently, a high frequency voltage is applied from the high frequency power source 13 to the ICP coil 11. An induction electric field is generated in the chamber 3 by the high-frequency magnetic field generated by the ICP coil 8, and electrons are accelerated to generate plasma. The substrate 2 is etched by this plasma. Since six substrates 2 can be placed on the substrate susceptor 6 with one tray 4, batch processing is performed. During etching, the refrigerant circulation device 18b circulates the refrigerant in the refrigerant flow path 18a of the metal plate 22 to cool the ESC 21, and the individual heat conduction with the substrate mounting portions 27A to 27F through the heat transfer gas. The substrate 2 is cooled.

エッチング終了後は、駆動機構20により昇降ピン19が上昇することで、基板2を基板収容孔9A〜9Fに収容したトレイ4が基板サセプタ5から上昇する。その後、図示しない搬送アームにより、基板2を保持したトレイ4がゲート3aを通ってチャンバ3から搬出される。   After the etching is finished, the elevating pins 19 are raised by the drive mechanism 20, so that the tray 4 containing the substrate 2 in the substrate accommodation holes 9 </ b> A to 9 </ b> F is raised from the substrate susceptor 5. Thereafter, the tray 4 holding the substrate 2 is carried out of the chamber 3 through the gate 3a by a transfer arm (not shown).

次に、本実施形態におけるESC21の基板載置部27A〜27Fの上端部27aの構造を詳細に説明する。基板載置部27A〜27Fの構造は同一であるので、以下では基板載置部27Dについて説明する。   Next, the structure of the upper end portion 27a of the substrate placement portions 27A to 27F of the ESC 21 in this embodiment will be described in detail. Since the substrate platforms 27A to 27F have the same structure, the substrate platform 27D will be described below.

基板載置部27Dの上端部27aの平面視での最外周縁の部分に沿って途切れなく、上向きに突出する環状突出部41が設けられている。本実施形態における環状突出部41は、平面視での形状が円環状である。環状突出部41の上端面は平坦面であり、基板載置部27Dに載置される基板2の下面2aと直接接触する基板載置面41aとして機能する。   An annular projecting portion 41 projecting upward is provided along the outermost peripheral portion of the upper end portion 27a of the substrate platform 27D in plan view. The annular protrusion 41 in the present embodiment has an annular shape in plan view. The upper end surface of the annular protrusion 41 is a flat surface, and functions as a substrate placement surface 41a that directly contacts the lower surface 2a of the substrate 2 placed on the substrate placement portion 27D.

図6及び図7に示すように、環状突出部41は上端面(基板載置面41a)に設けられた環状溝42により内側部41bと外側部41cとに区切られている。本実施形態では、環状突出部41の幅W1(一定幅)が3.2mmであり、内側部41b、環状溝42、外側部41cの幅W2,W3,W4(いずれも一定幅)がそれぞれ1.2mm、0.8mm、1.2mmである。また、本実施形態では、環状溝42の深さDe1(基板載置面41aから環状溝42の底面までの距離)は25μmである。   As shown in FIGS. 6 and 7, the annular projecting portion 41 is divided into an inner portion 41b and an outer portion 41c by an annular groove 42 provided on the upper end surface (substrate mounting surface 41a). In this embodiment, the width W1 (constant width) of the annular protrusion 41 is 3.2 mm, and the widths W2, W3, and W4 (all constant widths) of the inner portion 41b, the annular groove 42, and the outer portion 41c are each 1. .2mm, 0.8mm and 1.2mm. In the present embodiment, the depth De1 of the annular groove 42 (the distance from the substrate mounting surface 41a to the bottom surface of the annular groove 42) is 25 μm.

基板載置部27Dの上端部27aの環状突出部41で囲まれた領域は、伝熱ガスを充填するための凹部43となっている。凹部43の底面45a,46aからは互いに間隔をあけて配置された多数個の短円柱状の柱状突起47,48が上向きに突出している。これらの柱状突起47,48の上端面は平坦面であり、前述した環状突出部41の上端面は平坦面と同様、基板載置部27Dに載置される基板2の下面2aと直接接触する基板載置面47a,48aとして機能する。つまり、図6に示すように、環状突出部41の上端面(基板載置面41a)と柱状突起47,48の上端面(基板載置面47a,48a)は同一水平面上にあり、基板載置部27Dの上端部27aに載置された基板2の下面2aは、基板載置面41a,47a,48aに直接接触することで基板載置部27Dの上端部27aに支持される。そして、環状突出部41の内周面、凹部43の底面45a,46a、及び基板2の下面2aで画定される閉鎖空間に伝熱ガスが充填される。本実施形態では、柱状突起47,48の上端面(基板載置面47a,48a)の直径DIは2.5〜3.0mm程度である。   A region surrounded by the annular projecting portion 41 of the upper end portion 27a of the substrate mounting portion 27D is a concave portion 43 for filling the heat transfer gas. A large number of short columnar columnar protrusions 47 and 48 that are spaced apart from each other protrude from the bottom surfaces 45a and 46a of the recess 43 upward. The upper end surfaces of the columnar protrusions 47 and 48 are flat surfaces, and the upper end surface of the annular protrusion 41 described above is in direct contact with the lower surface 2a of the substrate 2 placed on the substrate platform 27D, like the flat surface. It functions as the substrate mounting surfaces 47a and 48a. That is, as shown in FIG. 6, the upper end surface (substrate placement surface 41a) of the annular protrusion 41 and the upper end surfaces (substrate placement surfaces 47a and 48a) of the columnar protrusions 47 and 48 are on the same horizontal plane. The lower surface 2a of the substrate 2 placed on the upper end portion 27a of the placement portion 27D is supported by the upper end portion 27a of the substrate placement portion 27D by directly contacting the substrate placement surfaces 41a, 47a, and 48a. The closed space defined by the inner peripheral surface of the annular protrusion 41, the bottom surfaces 45a and 46a of the recess 43, and the lower surface 2a of the substrate 2 is filled with heat transfer gas. In the present embodiment, the diameter DI of the upper end surfaces (substrate mounting surfaces 47a and 48a) of the columnar protrusions 47 and 48 is about 2.5 to 3.0 mm.

凹部43内は、平面視では内側領域45と外側領域46とに分かれている。内側領域45は基板載置部27Dの上端部27aの中心を含む円形の領域であり、外側領域46は内側領域45と環状突出部41との間の円環状の領域である。図1から図3に加えて図5から図7を参照すると、平面視での基板載置部27Dの上端部27aの中心に、伝熱ガスの供給孔29が1個のみ開口している。本実施形態では、この供給孔29を除いて伝熱ガスの供給口は設けられていない。しかし、複数の供給孔29を内側領域45内に設けてもよい。特に、基板のサイズが大きい場合(例えば本実施形態では4インチであるのに対して6インチである場合)には、それに伴って基板載置部27A〜27Dも大型化するので、配置箇所に特に制約を受けることなく複数個の供給孔29を内側領域45内に設けることができる。   The recess 43 is divided into an inner region 45 and an outer region 46 in plan view. The inner region 45 is a circular region including the center of the upper end portion 27a of the substrate platform 27D, and the outer region 46 is an annular region between the inner region 45 and the annular protrusion 41. Referring to FIGS. 5 to 7 in addition to FIGS. 1 to 3, only one heat transfer gas supply hole 29 is opened at the center of the upper end portion 27a of the substrate mounting portion 27D in plan view. In the present embodiment, no heat transfer gas supply port is provided except for the supply hole 29. However, a plurality of supply holes 29 may be provided in the inner region 45. In particular, when the size of the substrate is large (for example, when it is 6 inches compared to 4 inches in the present embodiment), the substrate mounting portions 27A to 27D are enlarged accordingly. A plurality of supply holes 29 can be provided in the inner region 45 without any particular restriction.

内側領域45と外側領域46では、凹部43の深さDe2,De3が異なる。具体的には、内側領域45における凹部43の深さDe2(基板載置面41a,47a,48aから内側領域45における凹部43の底面45aまでの距離)よりも、外側領域46における凹部43の深さDe3(基板載置面41a,47a,48aから外側領域46における凹部43の底面46aまでの距離)を浅く設定している。本実施形態では、内側領域45での凹部の深さDe2が50μm程度、外側領域46での凹部43の深さDe3を25μm程度に設定している。別の見方をすれば、内側領域45に属する柱状突起47よりも、外側領域46に属する柱状突起48の高さが低い(前者が50μmで後者が25μm)。内側領域45の深さDe2は40μm以上100μm未満の範囲で設定し、外側領域46の深さDe3は10μm以上40μm未満の範囲で設定される。内側領域45の深さDe2と外側領域46の深さDe3との間には10〜80μm程度、特に10〜50μm程度の差があることが好ましい。   In the inner region 45 and the outer region 46, the depths De2 and De3 of the recess 43 are different. Specifically, the depth De2 of the recess 43 in the inner region 45 (the distance from the substrate placement surfaces 41a, 47a, 48a to the bottom surface 45a of the recess 43 in the inner region 45) is greater than the depth De2 of the recess 43 in the outer region 46. De3 (distance from the substrate placement surfaces 41a, 47a, 48a to the bottom surface 46a of the recess 43 in the outer region 46) is set shallow. In the present embodiment, the depth De2 of the recess in the inner region 45 is set to about 50 μm, and the depth De3 of the recess 43 in the outer region 46 is set to about 25 μm. From another viewpoint, the height of the columnar protrusion 48 belonging to the outer region 46 is lower than that of the columnar protrusion 47 belonging to the inner region 45 (the former is 50 μm and the latter is 25 μm). The depth De2 of the inner region 45 is set in a range of 40 μm or more and less than 100 μm, and the depth De3 of the outer region 46 is set in a range of 10 μm or more and less than 40 μm. There is preferably a difference of about 10 to 80 μm, particularly about 10 to 50 μm, between the depth De 2 of the inner region 45 and the depth De 3 of the outer region 46.

以下、図5を参照して、内側領域45の大きさの設定、つまり内側領域45と外側領域46の境界の設定について説明する。本実施形態では、前述のように基板2は4インチ(約100mm)であり、それに対応して基板載置部27Dの直径D1は97mmに設定されている。なお、基板2が4インチの場合、基板載置部27Dの平面視での直径D1は約90〜100mm程度の範囲で設定できる。直径D1を約100mm程度、すなわち4インチの基板2の直径と同程度に設定する場合、後述する第2実施形態のように基板載置部27の側壁に設けた収容溝55に基板支持部21を収容する構成が採用される。この基板載置部27Dの直径D1(=97mm)に対し、内側領域45の直径D2は62mm以上87mm以下の範囲で設定される。言い換えれば、内側領域45の直径D2は基板載置部27Dの直径D1(=97mm)の0.64倍以上0.9倍以下の範囲で設定される。外側領域46の幅W6(環状突出部41の幅W1も含む)は、内側領域45の直径D2に応じて5mm以上17.5mm以下の範囲で設定される。以下の表1に基板2が4インチで基板載置部27Dの直径D1が97mmの場合の内側領域45の直径D2、基板載置部27Dの直径D1に対する内側領域45の直径D2の比率D2/D1、及び外側領域46の幅W6の関係を示す。   Hereinafter, the setting of the size of the inner region 45, that is, the setting of the boundary between the inner region 45 and the outer region 46 will be described with reference to FIG. In the present embodiment, the substrate 2 is 4 inches (about 100 mm) as described above, and the diameter D1 of the substrate platform 27D is set to 97 mm correspondingly. In addition, when the board | substrate 2 is 4 inches, the diameter D1 in planar view of board | substrate mounting part 27D can be set in the range of about 90-100 mm. When the diameter D1 is set to about 100 mm, that is, about the same as the diameter of the 4-inch substrate 2, the substrate support portion 21 is provided in the receiving groove 55 provided on the side wall of the substrate mounting portion 27 as in the second embodiment described later. The structure which accommodates is employ | adopted. The diameter D2 of the inner region 45 is set in the range of 62 mm or more and 87 mm or less with respect to the diameter D1 (= 97 mm) of the substrate platform 27D. In other words, the diameter D2 of the inner region 45 is set in a range from 0.64 times to 0.9 times the diameter D1 (= 97 mm) of the substrate platform 27D. The width W6 of the outer region 46 (including the width W1 of the annular protrusion 41) is set in a range of 5 mm to 17.5 mm according to the diameter D2 of the inner region 45. Table 1 below shows that the diameter D2 of the inner region 45 when the substrate 2 is 4 inches and the diameter D1 of the substrate platform 27D is 97 mm, and the ratio D2 / of the diameter D2 of the inner region 45 to the diameter D1 of the substrate platform 27D. A relationship between D1 and the width W6 of the outer region 46 is shown.

Figure 0005243465
Figure 0005243465

以下の表2は、基板2が6インチ(約150mm)であり、基板載置部27Dの直径D1が147mmの場合の内側領域45の直径D2、比率D2/D1、及び外側領域46の幅W6の関係を示す。なお、基板2が6インチの場合、基板載置部27Dの平面視での直径D1は約140〜150mm程度の範囲で設定できる。直径D1を約150mm程度、すなわち6インチの基板2の直径と同程度に設定する場合、後述する第2実施形態のように基板載置部27の側壁に設けた収容溝55に基板支持部21を収容する構成が採用される。表2に示すように、基板2が6インチの場合、内側領域45の直径D2は基板載置部27Dの直径D1(=147mm)の0.73倍以上0.93倍以下の範囲で設定される。   Table 2 below shows the diameter D2 of the inner region 45, the ratio D2 / D1, and the width W6 of the outer region 46 when the substrate 2 is 6 inches (about 150 mm) and the diameter D1 of the substrate mounting portion 27D is 147 mm. The relationship is shown. In addition, when the board | substrate 2 is 6 inches, the diameter D1 in planar view of board | substrate mounting part 27D can be set in about 140-150 mm. When the diameter D1 is set to about 150 mm, that is, about the same as the diameter of the 6-inch substrate 2, the substrate support portion 21 is provided in the receiving groove 55 provided on the side wall of the substrate mounting portion 27 as in the second embodiment described later. The structure which accommodates is employ | adopted. As shown in Table 2, when the substrate 2 is 6 inches, the diameter D2 of the inner region 45 is set in the range of 0.73 times to 0.93 times the diameter D1 (= 147 mm) of the substrate platform 27D. The

Figure 0005243465
Figure 0005243465

以下の表3は、基板2が3インチ(約76mm)であり、基板載置部27Dの直径D1が73mmの場合の内側領域45の直径D2、比率D2/D1、及び外側領域46の幅W6の関係を示す。なお、基板2が3インチの場合、基板載置部27Dの平面視での直径D1は約66〜76mm程度の範囲で設定できる。直径D1を約100mm程度、すなわち3インチの基板2の直径と同程度に設定する場合、後述する第2実施形態のように基板載置部27の側壁に設けた収容溝55に基板支持部21を収容する構成が採用される。表3に示すように、基板2が3インチの場合、内側領域45の直径D2は基板載置部27Dの直径D1(=73mm)の0.6倍以上0.86倍以下の範囲で設定される。   Table 3 below shows the diameter D2 of the inner region 45, the ratio D2 / D1, and the width W6 of the outer region 46 when the substrate 2 is 3 inches (about 76 mm) and the diameter D1 of the substrate mounting portion 27D is 73 mm. The relationship is shown. When the substrate 2 is 3 inches, the diameter D1 of the substrate platform 27D in plan view can be set in the range of about 66 to 76 mm. When the diameter D1 is set to about 100 mm, that is, about the same as the diameter of the 3-inch substrate 2, the substrate support portion 21 is provided in the receiving groove 55 provided on the side wall of the substrate mounting portion 27 as in the second embodiment described later. The structure which accommodates is employ | adopted. As shown in Table 3, when the substrate 2 is 3 inches, the diameter D2 of the inner region 45 is set in the range of 0.6 to 0.86 times the diameter D1 (= 73 mm) of the substrate platform 27D. The

Figure 0005243465
Figure 0005243465

以下の表4は、基板2が2インチ(約50mm)であり、基板載置部27Dの直径D1が48mmの場合の内側領域45の直径D2、比率D2/D1、及び外側領域46の幅W6の関係を示す。なお、基板2が2インチの場合、基板載置部27Dの平面視での直径D1は約45〜50mm程度の範囲で設定できる。直径D1を約50mm程度、すなわち2インチの基板2の直径と同程度に設定する場合、後述する第2実施形態のように基板載置部27の側壁に設けた収容溝55に基板支持部21を収容する構成が採用される。
表4に示すように、基板2が2インチの場合、内側領域45の直径D2は基板載置部27Dの直径D1(=48mm)の0.5倍以上0.8倍以下の範囲で設定される。
Table 4 below shows the diameter D2 of the inner region 45, the ratio D2 / D1, and the width W6 of the outer region 46 when the substrate 2 is 2 inches (about 50 mm) and the diameter D1 of the substrate mounting portion 27D is 48 mm. The relationship is shown. When the substrate 2 is 2 inches, the diameter D1 of the substrate platform 27D in plan view can be set in a range of about 45 to 50 mm. When the diameter D1 is set to about 50 mm, that is, about the same as the diameter of the 2-inch substrate 2, the substrate support portion 21 is provided in the receiving groove 55 provided on the side wall of the substrate mounting portion 27 as in the second embodiment described later. The structure which accommodates is adopted.
As shown in Table 4, when the substrate 2 is 2 inches, the diameter D2 of the inner region 45 is set in the range of 0.5 to 0.8 times the diameter D1 (= 48 mm) of the substrate platform 27D. The

Figure 0005243465
Figure 0005243465

表1から表4より明らかなように、基板2が2インチ(約50mm)から6インチ(約150mm)である場合、内側領域45の直径D2は基板載置部27Dの直径D1(=45〜150mm)の0.5倍以上0.93倍以下の範囲で設定される。   As apparent from Tables 1 to 4, when the substrate 2 is 2 inches (about 50 mm) to 6 inches (about 150 mm), the diameter D2 of the inner region 45 is equal to the diameter D1 (= 45 to 45) of the substrate mounting portion 27D. 150 mm) is set in a range of 0.5 to 0.93 times.

次に、内側領域45における凹部43の深さDe2よりも外側領域46における凹部43の深さDe3を深く設定している理由を説明する。   Next, the reason why the depth De3 of the recess 43 in the outer region 46 is set deeper than the depth De2 of the recess 43 in the inner region 45 will be described.

ドライエッチング中、基板2の平面視での周縁付近は、主として下面2aが環状突出部41の上端面(基板載置面41a)と直接的に接触することによる熱伝導で冷却される。一方、ドライエッチング中、基板2のうち周縁付近よりも中心側は、凹部43に充填された伝熱ガス(本実施形態ではHeガス)を介した基板2の下面2aと基板載置部27Dの上端部27aとの間の熱伝達により冷却される。基板2がSF基板で120mm/min程度の高いエッチングレートとする場合、チャンバ3内の圧力を低圧(例えば0.6Pa)として高い高周波電力をIPCコイル8と基板サセプタ5に高い高周波電力を印加する。そのため、基板2を適切な温度(本実施形態では110℃程度)に冷却するには凹部43に充填される伝熱ガスのガス圧力を2000Pa以上の高圧(本実施形態では2600Pa)に設定する必要がある。   During dry etching, the vicinity of the peripheral edge of the substrate 2 in plan view is mainly cooled by heat conduction due to the lower surface 2a directly contacting the upper end surface (substrate mounting surface 41a) of the annular protrusion 41. On the other hand, during the dry etching, the center side of the substrate 2 with respect to the periphery is closer to the lower surface 2a of the substrate 2 and the substrate mounting portion 27D via the heat transfer gas (He gas in this embodiment) filled in the recess 43. It is cooled by heat transfer with the upper end 27a. When the substrate 2 is an SF substrate and has a high etching rate of about 120 mm / min, the high pressure power is applied to the IPC coil 8 and the substrate susceptor 5 with a low pressure (for example, 0.6 Pa) in the chamber 3 and a high frequency power. . Therefore, in order to cool the substrate 2 to an appropriate temperature (about 110 ° C. in this embodiment), it is necessary to set the gas pressure of the heat transfer gas filled in the recess 43 to a high pressure of 2000 Pa or higher (2600 Pa in this embodiment). There is.

図8の上側のグラフには、凹部43は内側領域45と外側領域46の深さDe2,De3が25μmで一定であると仮定した場合の凹部43内の伝熱ガスの圧力(供給孔29が設けられている基板2の中心に対応する位置での圧力)と基板2の温度の関係を示す(実線が基板の周縁付近を示し点線は基板の中心を示す)。また、図6の上側のグラフの破線は、この場合の基板2の中心から周縁までの凹部43内の伝熱ガスの圧力を示す。なお、図8の下側のグラフに示すように伝熱ガスのガス圧が1300〜10140Paであると、伝熱ガスは遷移領域であり基板2と基板載置部27Dとの間の熱伝達係数は伝熱ガスの圧力と基板2の下面2aから基板載置部27Dの上端部27aとの間の距離(凹部43の深さ)の両方に依存する。   In the upper graph of FIG. 8, the pressure of the heat transfer gas in the concave portion 43 (the supply hole 29 is defined in the concave portion 43 when the depths De2 and De3 of the inner region 45 and the outer region 46 are assumed to be constant at 25 μm. The relationship between the pressure at a position corresponding to the center of the substrate 2 provided) and the temperature of the substrate 2 is shown (the solid line indicates the vicinity of the periphery of the substrate and the dotted line indicates the center of the substrate). Further, the broken line in the upper graph of FIG. 6 indicates the pressure of the heat transfer gas in the recess 43 from the center to the peripheral edge of the substrate 2 in this case. As shown in the lower graph of FIG. 8, when the gas pressure of the heat transfer gas is 1300 to 10140 Pa, the heat transfer gas is a transition region, and the heat transfer coefficient between the substrate 2 and the substrate platform 27D. Depends on both the pressure of the heat transfer gas and the distance between the lower surface 2a of the substrate 2 and the upper end portion 27a of the substrate mounting portion 27D (depth of the recess 43).

図6の上側のグラフの破線で示すように、凹部43の深さを浅い深さ(25μm)で一定として場合には、供給孔29が設けられている基板2の中心から周縁に向う伝熱ガスの拡散性が十分でないために、基板2の中心から周縁に向けての伝熱ガスの圧力降下の勾配が大きい。そのため、図8の上側のグラフに示すように、凹部43の深さが25μmで浅いと、供給孔29からの伝熱ガスの供給圧力が2600Paであって十分高い場合でも、基板2の周縁の温度(98℃)と基板2の中心の温度(87℃)の間には10℃を上回る温度差がある。本実施形態では、内側領域45の凹部43の深さDe3を深く(50μm)設定している。深さDe3を深くして伝熱ガスの拡散性向上させたことで、図6の上側のグラフの実線で示すように、内側領域45における基板2の中心から周縁へ向けての伝熱ガスの圧力降下の勾配が小さくなる(内側領域45における伝熱ガスの圧力分布が均一化される)。これは凹部43の深さが深い方が供給孔29から流す伝熱ガスの凹部43内での拡散に対する抵抗が小さくなり、伝熱ガスの拡散性が向上するためであると推察される。圧力分布が均一化された方が基板2の冷却効果が均一となるので、基板温度の分布が均一化される。そして、図16を参照して説明したように、基板温度の分布が均一化された方が、エッチングレートやエッチングにより得られる形状も均一化される。   As shown by the broken line in the upper graph of FIG. 6, when the depth of the recess 43 is constant at a shallow depth (25 μm), heat transfer from the center of the substrate 2 provided with the supply hole 29 toward the periphery. Since the gas diffusivity is not sufficient, the gradient of the pressure drop of the heat transfer gas from the center of the substrate 2 toward the periphery is large. Therefore, as shown in the upper graph of FIG. 8, if the depth of the concave portion 43 is 25 μm and shallow, even when the supply pressure of the heat transfer gas from the supply hole 29 is 2600 Pa and is sufficiently high, There is a temperature difference exceeding 10 ° C. between the temperature (98 ° C.) and the temperature at the center of the substrate 2 (87 ° C.). In the present embodiment, the depth De3 of the recess 43 in the inner region 45 is set deep (50 μm). By increasing the depth De3 and improving the diffusibility of the heat transfer gas, as shown by the solid line in the upper graph of FIG. The gradient of the pressure drop becomes small (the pressure distribution of the heat transfer gas in the inner region 45 is made uniform). This is presumably because the greater the depth of the recess 43, the lower the resistance to diffusion of the heat transfer gas flowing from the supply hole 29 in the recess 43, and the heat transfer gas diffusivity is improved. Since the cooling effect of the substrate 2 becomes uniform when the pressure distribution is made uniform, the substrate temperature distribution is made uniform. Then, as described with reference to FIG. 16, when the substrate temperature distribution is made uniform, the etching rate and the shape obtained by etching are made uniform.

以上が内側領域45の深さDe2を深く設定している理由である。続いて、外側領域46の深さDe3を浅く設定している理由を説明する。   This is the reason why the depth De2 of the inner region 45 is set deep. Next, the reason why the depth De3 of the outer region 46 is set to be shallow will be described.

環状突出部41の上端面(基板載置面41a)と基板2の周縁付近の下面2aとの間の微細な隙間を通って、凹部43からチャンバ3内に微量の伝熱ガスが漏洩する。仮に凹部43の外側領域46の深さDe3を内側領域と同じ深い深さに設定すると、基板2の周縁付近において凹部43に充填されている伝熱ガスの圧力が過度に高くなる。この過度に高い圧力により、平面視で基板2の周縁のうちの単一又は複数の特定の箇所のみから凹部43内の伝熱ガスが漏洩し、基板2の周縁の他の箇所からは凹部43内の伝熱ガスが漏洩しない状態となるおそれがある。このような凹部43からの不均一な伝熱ガスの漏洩は、基板2の温度の面内ばらつきを生じさせて、プラズマ処理の面内ばらつきの原因となる。本実施形態では、外側領域46の深さDe3を内側領域45の深さDe2よりも浅く(50μm)設定し、内側領域45よりも基板2の周縁に向かう伝熱ガスの圧力降下の勾配を大きくしている。そして、圧力降下の勾配を大きくすることで、凹部43からの不均一な伝熱ガスの漏洩(基板2の周縁のうちの特定の箇所のみからの伝熱ガスの漏洩)が生じない程度に、基板2の周縁付近における凹部43内の伝熱ガスの圧力を低下させている。   A small amount of heat transfer gas leaks from the recess 43 into the chamber 3 through a fine gap between the upper end surface (substrate mounting surface 41 a) of the annular protrusion 41 and the lower surface 2 a near the periphery of the substrate 2. If the depth De3 of the outer region 46 of the recess 43 is set to the same depth as the inner region, the pressure of the heat transfer gas filled in the recess 43 near the periphery of the substrate 2 becomes excessively high. Due to this excessively high pressure, the heat transfer gas in the recess 43 leaks from only one or a plurality of specific locations on the periphery of the substrate 2 in plan view, and the recess 43 from other locations on the periphery of the substrate 2. There is a risk that the heat transfer gas inside will not leak. Such non-uniform leakage of the heat transfer gas from the recess 43 causes in-plane variations in the temperature of the substrate 2 and causes in-plane variations in the plasma processing. In this embodiment, the depth De3 of the outer region 46 is set shallower (50 μm) than the depth De2 of the inner region 45, and the gradient of the pressure drop of the heat transfer gas toward the periphery of the substrate 2 is larger than the inner region 45. doing. And by increasing the gradient of the pressure drop, non-uniform heat transfer gas leakage from the recess 43 (leakage of heat transfer gas from only a specific portion of the periphery of the substrate 2) does not occur. The pressure of the heat transfer gas in the recess 43 near the periphery of the substrate 2 is reduced.

以上のように、ガス圧分布と伝熱ガスの不均一な漏洩防止との両方を考慮し、内側領域45では凹部43の深さDe2を深くする一方、外側領域46では凹部43の深さDe3を浅く設定している。   As described above, considering both the gas pressure distribution and the prevention of uneven leakage of the heat transfer gas, the depth De2 of the recess 43 is increased in the inner region 45, while the depth De3 of the recess 43 is increased in the outer region 46. Is set shallower.

凹部43の深さDe3を浅く設定した外側領域46では、基板2の下面2aと凹部43の底面との距離が短くなることで基板2と基板載置部27Dとの間の伝熱係数が大きくなる。この伝熱係数の増加は、伝熱ガスの不均一な漏洩防止のために凹部43の深さDe3を深く設定したこと(伝熱ガスの圧力降下の勾配を大きくしたこと)による外側領域46における基板2の冷却効率の低下を補う。その結果、凹部43の深さDe2,De3を異ならせたことに起因する内側領域46と外側領域45における基板2の冷却効率の差は最小限に抑制される。   In the outer region 46 in which the depth De3 of the concave portion 43 is set shallow, the distance between the lower surface 2a of the substrate 2 and the bottom surface of the concave portion 43 is shortened so that the heat transfer coefficient between the substrate 2 and the substrate mounting portion 27D is large. Become. The increase in the heat transfer coefficient is caused in the outer region 46 by setting the depth De3 of the recess 43 deep (increasing the gradient of the pressure drop of the heat transfer gas) in order to prevent uneven heat transfer gas leakage. The decrease in the cooling efficiency of the substrate 2 is compensated. As a result, the difference in the cooling efficiency of the substrate 2 in the inner region 46 and the outer region 45 due to the different depths De2 and De3 of the recess 43 is suppressed to the minimum.

以上のように、内側領域45では凹部43の深さDe2を深く設定し、外側領域46では内側領域45よりも凹部43の深さDe3を浅く設定することで、凹部43に充填される伝熱ガスのガス圧がSFからなる基板2やそれに形成したGaNエピタキシャル層のような難エッチング材の高エッチングレートでのエッチングに要求されるような高圧(例えば1300〜3000Pa程度で本実施形態では2600Pa)であっても、基板温度の面内分布を均一化し、プラズマ処理の面内ばらつきを解消できる。   As described above, by setting the depth De2 of the concave portion 43 deep in the inner region 45 and setting the depth De3 of the concave portion 43 shallower than the inner region 45 in the outer region 46, the heat transfer filled in the concave portion 43 is performed. The gas pressure of the gas is as high as required for etching at a high etching rate of a difficult-to-etch material such as the substrate 2 made of SF or a GaN epitaxial layer formed on the substrate 2 (for example, about 1300 to 3000 Pa and 2600 Pa in this embodiment). Even so, the in-plane distribution of the substrate temperature can be made uniform, and the in-plane variation of the plasma processing can be eliminated.

凹部43の底面45a,46aには、ガス分配溝51,52,53,54が設けられている。図5に示すように、ガス分配溝51〜53は平面視で同心円状に配置された円環状の溝であり、ガス分配溝54は平面視で凹部43の中心(基板載置部27Aの上端部27aの中心)から環状突出部41に向けて径方向外向きに延びる直線状の溝である。本実施形態では、6個の直線状のガス分配溝54が平面視で、等角度間隔で配置されている。個々の直線状のガス分配溝54と、環状のガス分配溝51〜53とは、それらの交差位置で互いに連通し、伝熱ガスがガス分配溝54からガス分配溝51〜53へ、又はその逆に流れるようになっている。   Gas distribution grooves 51, 52, 53 and 54 are provided on the bottom surfaces 45 a and 46 a of the recess 43. As shown in FIG. 5, the gas distribution grooves 51 to 53 are annular grooves arranged concentrically in a plan view, and the gas distribution groove 54 is the center of the recess 43 in the plan view (the upper end of the substrate mounting portion 27A). This is a linear groove extending radially outward from the center of the portion 27a toward the annular protrusion 41. In the present embodiment, six straight gas distribution grooves 54 are arranged at equiangular intervals in plan view. The individual straight gas distribution grooves 54 and the annular gas distribution grooves 51 to 53 communicate with each other at their intersecting positions, and the heat transfer gas flows from the gas distribution grooves 54 to the gas distribution grooves 51 to 53 or It is designed to flow in reverse.

ガス分配溝51は内側領域45のうち比較的中心側に近い位置に設けられている。また、ガス分配溝52は、内側領域45と外側領域46の境界、つまり内側領域45における凹部43の底面45aのうち外側領域46に接している部分に設けられている。さらに、ガス分配溝53は、外側領域46と環状突出部41の境界、つまり外側領域46における凹部43の底面46aのうち環状突出部41の内周面に接している部分に設けられている。本実施形態では、ガス分配溝51〜54の幅W5は1.0mm程度に設定している。   The gas distribution groove 51 is provided at a position relatively close to the center side in the inner region 45. Further, the gas distribution groove 52 is provided at the boundary between the inner region 45 and the outer region 46, that is, the portion of the bottom surface 45 a of the recess 43 in the inner region 45 that is in contact with the outer region 46. Further, the gas distribution groove 53 is provided at a boundary between the outer region 46 and the annular protrusion 41, that is, a portion of the bottom surface 46 a of the recess 43 in the outer region 46 that is in contact with the inner peripheral surface of the annular protrusion 41. In this embodiment, the width W5 of the gas distribution grooves 51 to 54 is set to about 1.0 mm.

ガス分配溝51〜54を設けることで供給孔29から凹部43に内に供給される伝熱ガス(Heガス)の拡散性が向上する。その結果、凹部43内での伝熱ガスの圧力分布の均一性がさらに向上するので、基板温度分布の均一性がさらに向上してエッチングレートやエッチング形状の面内ばらつきをより一層低減できる。   By providing the gas distribution grooves 51 to 54, the diffusibility of the heat transfer gas (He gas) supplied into the recess 43 from the supply hole 29 is improved. As a result, the uniformity of the pressure distribution of the heat transfer gas in the recess 43 is further improved, so that the uniformity of the substrate temperature distribution is further improved, and the in-plane variation of the etching rate and the etching shape can be further reduced.

本実施形態では、ガス分配溝51〜54の深さDe4(基板載置面41a,47a,48aからガス分配溝51〜54の底面までの距離)を100μmに設定している。その理由は以下の通りである。本実施形態のように凹部43に充填するHeガスの圧力が2600Pa以上である場合、基板2の下面2aとESC21の表面との距離が300μm程度以上となると基板2の下面2a側に放電(いわゆるバッハクファイアー)が生じる。また、基板2がSF基板にGaNエキタピシャル層を形成したものである場合、基板2がESC21から離れる向きに最大で150μm程度の反りが生じる。従って、ガス分配溝51〜54の深さDe4は、放電防止のための300μmから基板2の反りを考慮した150μmと位置ずれ等の他の要因を考慮した50μmと引いた差である100μm以下に設定することが好ましい。なお、過度に浅いと伝熱ガスの拡散を効果的に促進できないので、ガス分配溝51〜54の深さDe4は50μm以上に設定することが好ましい。   In this embodiment, the depth De4 of the gas distribution grooves 51 to 54 (distances from the substrate placement surfaces 41a, 47a, and 48a to the bottom surfaces of the gas distribution grooves 51 to 54) is set to 100 μm. The reason is as follows. When the pressure of the He gas filled in the recess 43 is 2600 Pa or more as in the present embodiment, discharge (so-called “so-called”) occurs on the lower surface 2a side of the substrate 2 when the distance between the lower surface 2a of the substrate 2 and the surface of the ESC 21 is about 300 μm or more. Bach fire) occurs. Further, when the substrate 2 is formed by forming a GaN epitaxial layer on the SF substrate, a warp of about 150 μm at maximum occurs in the direction in which the substrate 2 moves away from the ESC 21. Therefore, the depth De4 of the gas distribution grooves 51 to 54 is less than 100 μm, which is a difference obtained by subtracting from 300 μm for preventing discharge to 150 μm considering warpage of the substrate 2 and 50 μm considering other factors such as displacement. It is preferable to set. In addition, since the diffusion of heat transfer gas cannot be effectively promoted if it is excessively shallow, it is preferable to set the depth De4 of the gas distribution grooves 51 to 54 to 50 μm or more.

前述のように、本実施形態のドライエッチング装置1では、トレイ4の個々の基板収容孔9A〜9F内にESC21の対応する基板載置部27A〜27Fが進入することにより、6枚の基板2が基板載置部27A〜27Fの上端部27aに載置される。つまり、個々の基板2の対応する基板載置部27A〜27Fの載置は、基板収容孔9A〜9Fへの基板載置部27A〜27Fの差し込みで案内される。そのため、個々の基板2の基板載置面41a,47a,48aに対する位置決め精度が高い。このように基板載置面41a,47a,48aに対して基板2が高精度で載置される点でも、個々の基板2毎の基板温度の面内分布を均一化し、エッチングレートやエッチング形状の面内ばらつきの低減を図ることができる。   As described above, in the dry etching apparatus 1 of the present embodiment, the six substrate 2 is formed by the corresponding substrate mounting portions 27A to 27F of the ESC 21 entering the individual substrate receiving holes 9A to 9F of the tray 4. Are placed on the upper end portions 27a of the substrate placement portions 27A to 27F. That is, the placement of the corresponding substrate placement portions 27A to 27F on each substrate 2 is guided by the insertion of the substrate placement portions 27A to 27F into the substrate accommodation holes 9A to 9F. Therefore, the positioning accuracy with respect to the substrate placement surfaces 41a, 47a, 48a of the individual substrates 2 is high. Thus, even in the point that the substrate 2 is placed with high accuracy on the substrate placement surfaces 41a, 47a, and 48a, the in-plane distribution of the substrate temperature for each individual substrate 2 is made uniform, and the etching rate and the etching shape are changed. In-plane variation can be reduced.

(実験例)
本実施形態のドライエッチング装置で実際に基板2のドライエッチングを実行し、エッチングレート、エッチングにより形成される構造の側壁のテーパ角度、及びエッチング中の基板温度を測定した。基板2(4インチ)はSFであった。伝熱ガスは、BCl3とArの混合ガスであり、BCl3ガスとArガスの流量は共に100sccmであった。チャンバ3内の圧力は0.6Paとした。ICPコイル8に印加される高周波電力は1500Wで、基板サセプタ5に印加されるバイアスの高周波電力は1500Wとした。ESC21の静電吸着用電極に印加される直流電圧は2.56kVとした。供給孔29から凹部43内へのHeガス(伝熱ガス)の供給圧力は2600Paとした。基板サセプタ5の温度は45℃に維持される。エッチング時間は545秒であった。図9に示すように、基板2上に高さ1.0μmで直径3.0μmの円柱2bを5.0μmピッチで多数形成した。円柱2bの形状は基板2の中心である測定点P1と、基板2の外周縁から1.5mmだけ内側に等角度間隔で配置された4個の測定点P2〜P5との合計5点について測定した。具体的には、走査電子顕微鏡を使用した個々の測定点P1〜P5について複数個の円柱2bの側壁のテーパ角度θを測定した。個々の測定点P1〜P5毎に最大値から最小値を引いた差を平均値で除した値を求め、その値をその測定点P1〜P50でのテーパ角度θとした。また、基板温度はサーモラベルを使用して基板2の中心(測定点P1)と周縁側の測定点P2〜P5の1つにおいて測定した。
(Experimental example)
The substrate 2 was actually dry etched with the dry etching apparatus of this embodiment, and the etching rate, the taper angle of the side wall of the structure formed by etching, and the substrate temperature during etching were measured. Substrate 2 (4 inches) was SF. The heat transfer gas was a mixed gas of BCl 3 and Ar, and the flow rates of both BCl 3 gas and Ar gas were 100 sccm. The pressure in the chamber 3 was 0.6 Pa. The high frequency power applied to the ICP coil 8 was 1500 W, and the high frequency power of the bias applied to the substrate susceptor 5 was 1500 W. The DC voltage applied to the electrostatic chucking electrode of the ESC 21 was 2.56 kV. The supply pressure of He gas (heat transfer gas) from the supply hole 29 into the recess 43 was 2600 Pa. The temperature of the substrate susceptor 5 is maintained at 45 ° C. The etching time was 545 seconds. As shown in FIG. 9, a large number of cylinders 2b having a height of 1.0 μm and a diameter of 3.0 μm were formed on the substrate 2 at a pitch of 5.0 μm. The shape of the cylinder 2b is measured at a total of five points including a measurement point P1 that is the center of the substrate 2 and four measurement points P2 to P5 that are arranged at an equal angular interval 1.5 mm from the outer periphery of the substrate 2. did. Specifically, the taper angle θ of the side walls of the plurality of cylinders 2b was measured for each measurement point P1 to P5 using a scanning electron microscope. A value obtained by dividing the difference obtained by subtracting the minimum value from the maximum value by the average value for each measurement point P1 to P5 was obtained, and the value was defined as the taper angle θ at the measurement points P1 to P50. The substrate temperature was measured at one of the center (measurement point P1) of the substrate 2 and the peripheral measurement points P2 to P5 using a thermo label.

測定結果は以下の通りである。エッチングレートは110nm/minであった。基板温度は中心では87℃であるのに対して周縁側では98℃であった。すなわち、中心と周縁側の温度差は5℃程度でありエッチング中の基板温度の面内ばらつきが非常に小さいことが確認できた。また、テーパ角度θは中心では60°であるのに対して周縁側では65°であった。すなわち、中心と周縁でのテーパ角度θの差は5°程度であり、面内ばらつきが解消された均一化なプラズマ処理を実現できることが確認できた。   The measurement results are as follows. The etching rate was 110 nm / min. The substrate temperature was 87 ° C. at the center and 98 ° C. on the peripheral side. That is, the temperature difference between the center and the peripheral side was about 5 ° C., and it was confirmed that the in-plane variation of the substrate temperature during etching was very small. Further, the taper angle θ was 60 ° at the center, whereas it was 65 ° on the peripheral side. That is, the difference in taper angle θ between the center and the periphery is about 5 °, and it has been confirmed that uniform plasma processing in which in-plane variation is eliminated can be realized.

本実施形態では、例えば図6中の拡大図に示すように、環状突出部41は1個の環状溝42により2つの環状部分、すなわち内側部41bと外側部41cに分かれている。つまり環状突出部41は2重構造となっている。図10Aに示すように、環状突出部41は2個の平面視で同心円状の環状溝42,42’により3つの環状部分41d,41e,41fに分かれた3重構造としてもよい。環状突出部41をこのような2重構造又は3重構造とすることによっても、基板2の冷却効果の向上と基板温度部分の均一化向上を図ることができる。以下、その理由を説明する。   In the present embodiment, for example, as shown in the enlarged view in FIG. 6, the annular projecting portion 41 is divided into two annular portions, that is, an inner portion 41 b and an outer portion 41 c by one annular groove 42. That is, the annular protrusion 41 has a double structure. As shown in FIG. 10A, the annular protrusion 41 may have a triple structure divided into three annular portions 41d, 41e, 41f by concentric annular grooves 42, 42 'in two plan views. Even if the annular protrusion 41 has such a double structure or a triple structure, it is possible to improve the cooling effect of the substrate 2 and improve the uniformity of the substrate temperature portion. The reason will be described below.

まず、環状突出部41を2重又は3重構造とすると、基板2の周縁付近の下面2aと環状突出部41aの上端面(基板載置面41a)の接触箇所を経て凹部43から漏洩する伝熱ガスの経路は一種のラビリンス状となる。そのため、いわゆるラビリンス効果により、環状突出部41の上端面と基板2の下面2aとの間の微細な隙間から伝熱ガスの漏洩が防止される。この漏洩抑制により、凹部43の外側領域46、特に環状突出部41付近で伝熱ガスのガス圧力を高い圧力で維持できる。その結果、基板2の周縁付近における基板2と基板載置部27Dとの間の熱伝達係数の値を大きくできる。   First, when the annular projecting portion 41 has a double or triple structure, the leakage from the recess 43 through the contact portion between the lower surface 2a near the periphery of the substrate 2 and the upper end surface (substrate mounting surface 41a) of the annular projecting portion 41a. The hot gas path is a kind of labyrinth. Therefore, due to the so-called labyrinth effect, leakage of heat transfer gas is prevented from a minute gap between the upper end surface of the annular protrusion 41 and the lower surface 2a of the substrate 2. By suppressing this leakage, the gas pressure of the heat transfer gas can be maintained at a high pressure in the outer region 46 of the recess 43, particularly in the vicinity of the annular protrusion 41. As a result, the value of the heat transfer coefficient between the substrate 2 and the substrate platform 27D in the vicinity of the periphery of the substrate 2 can be increased.

図10Bに示すように、環状突出部41に環状溝を設けずに1重構造とした場合、環状突出部41付近で伝熱ガスのガス圧力が低くなる(図11の実線は本実施形態のように環状溝42によって伝熱ガスの経路をラビリンス状とした場合を示す、破線は環状突出部41の上端面(基板載置面41a)を単なる平坦面とした場合を示す)。環状溝42を設けない(環状突出部41が1重構造)である点を除いて、前述した実験例と同一条件で基板2の温度を測定したところ、中心では87℃であったが周縁側では126℃であった。すなわち、中心と周縁側の温度差は40℃を上回り、エッチング中の基板温度の面内ばらつきが大きい。これは環状突出部41が1重構造であるため環状突出部41の上端面と基板2の下面2aとの間の微細な隙間から伝熱ガスの漏洩を効果的に防止できないために、基板2の周縁側で伝熱ガスの圧力が低下したためと考えられる。   As shown in FIG. 10B, when the annular protrusion 41 is not provided with an annular groove and has a single structure, the gas pressure of the heat transfer gas is reduced in the vicinity of the annular protrusion 41 (the solid line in FIG. Thus, the case where the path of the heat transfer gas is made labyrinth-like by the annular groove 42 is shown, and the broken line shows the case where the upper end surface (substrate mounting surface 41a) of the annular protrusion 41 is simply a flat surface). The temperature of the substrate 2 was measured under the same conditions as in the experimental example described above, except that the annular groove 42 was not provided (the annular protrusion 41 has a single structure). It was 126 ° C. That is, the temperature difference between the center and the peripheral side exceeds 40 ° C., and the in-plane variation of the substrate temperature during etching is large. This is because the annular protrusion 41 has a single structure, and thus leakage of heat transfer gas cannot be effectively prevented from a minute gap between the upper end surface of the annular protrusion 41 and the lower surface 2a of the substrate 2. This is thought to be because the pressure of the heat transfer gas was reduced on the peripheral side.

図10Cに示すように、環状突出部41を3個の同心円状の環状溝42,42’,42’’により4つ環状部分41d〜41gを分かれた4重構造とした場合、環状溝42〜42’や環状部分41d〜41gの幅が本実施形態と同様(内側部41b、環状溝42、外側部41cの幅W2,W3,W4はそれぞれ1.2mm、0.8mm、1.2mm)とすると、環状突出部41の幅W1が7.2mm程度に達する。この程度まで環状突出部41の幅が大きくなると、基板2の周縁付近において凹部43に充填されている伝熱ガスの圧力が過度に高くなる。その結果、平面視で基板2の周縁のうちの単一又は複数の特定の箇所のみから凹部43内の伝熱ガスが漏洩し、基板2の周縁の他の箇所からは凹部43内の伝熱ガスが漏洩しない状態となるおそれがある。このような凹部43からの不均一な伝熱ガスの漏洩は、基板2の温度の面内ばらつきを生じさせて、プラズマ処理の面内ばらつきの原因となる。従って、環状突出部41は4重以上の構造ではなく、2重又は3重構造が好ましい。   As shown in FIG. 10C, when the annular protrusion 41 has a quadruple structure in which the four annular portions 41d to 41g are separated by three concentric annular grooves 42, 42 ', and 42' ', the annular grooves 42 to 42 ′ and the widths of the annular portions 41d to 41g are the same as in this embodiment (the widths W2, W3, and W4 of the inner portion 41b, the annular groove 42, and the outer portion 41c are 1.2 mm, 0.8 mm, and 1.2 mm, respectively). Then, the width W1 of the annular protrusion 41 reaches about 7.2 mm. When the width of the annular protrusion 41 increases to this extent, the pressure of the heat transfer gas filled in the recess 43 near the periphery of the substrate 2 becomes excessively high. As a result, the heat transfer gas in the recess 43 leaks from only one or a plurality of specific locations on the periphery of the substrate 2 in plan view, and the heat transfer in the recess 43 from other locations on the periphery of the substrate 2. There is a risk that gas will not leak. Such non-uniform leakage of the heat transfer gas from the recess 43 causes in-plane variations in the temperature of the substrate 2 and causes in-plane variations in the plasma processing. Therefore, the annular protrusion 41 is preferably not a quadruple or more structure but a double or triple structure.

(第2実施形態)
図12Aから図14に示す本発明の第2実施形態のドライエッチング装置1は、ESC21の基板載置部27A〜27Fに対する基板2の位置決め精度をさらに向上させるための構造を備えている。
(Second Embodiment)
The dry etching apparatus 1 according to the second embodiment of the present invention shown in FIGS. 12A to 14 has a structure for further improving the positioning accuracy of the substrate 2 with respect to the substrate mounting portions 27A to 27F of the ESC 21.

図12A及び図12Bを参照すると、トレイ4の基板収容孔9A〜9Fの孔壁には、周方向に間隔をあけて突起状の3個の基板支持部10が設けられている。詳細には、基板収容孔9A〜9Fの貫通方向から見ると、基板収容孔9A〜9Fの中心に対して等角過度間隔(120°間隔)で3個の基板支持部21が設けられている。図13及び図14を併せて参照すると、ESC21の個々の基板載置部27A〜27Fの側周壁には上端部27aからトレイ支持面26に向けて鉛直方向に延びる3個の収容溝55が形成されている。平面視では、個々の基板載置部27A〜27Fの平面視での中心に対して等角度間隔で3個の収容溝55が設けられている。収容溝55の平面視での寸法及び形状は、突起状の基板支持部19よりもわずかに大きく設定されている。   Referring to FIGS. 12A and 12B, three protruding substrate support portions 10 are provided on the hole walls of the substrate accommodation holes 9 </ b> A to 9 </ b> F of the tray 4 at intervals in the circumferential direction. Specifically, when viewed from the penetration direction of the substrate accommodation holes 9A to 9F, the three substrate support portions 21 are provided at equiangular excess intervals (120 ° intervals) with respect to the centers of the substrate accommodation holes 9A to 9F. . Referring to FIGS. 13 and 14 together, three accommodation grooves 55 extending in the vertical direction from the upper end portion 27a toward the tray support surface 26 are formed on the side peripheral walls of the individual substrate placement portions 27A to 27F of the ESC 21. Has been. In the plan view, three receiving grooves 55 are provided at equiangular intervals with respect to the centers of the individual substrate placement portions 27A to 27F in the plan view. The size and shape of the receiving groove 55 in plan view are set slightly larger than the protruding substrate support portion 19.

図13及び図14に示すように、環状突出部41とガス分配溝53の収容溝55を通る部分は、収容溝55を取り囲むように部分的に内側に迂回している。つまり、基板載置部27A〜27Fには収容溝55を設けているが、第1実施形態と同様に、環状突出部41とガス分配溝53は無端状である。   As shown in FIGS. 13 and 14, the portion of the annular protrusion 41 and the gas distribution groove 53 that passes through the accommodation groove 55 partially detours inward so as to surround the accommodation groove 55. That is, although the accommodation grooves 55 are provided in the substrate mounting portions 27A to 27F, the annular protrusion 41 and the gas distribution groove 53 are endless as in the first embodiment.

図12Aに示すようにESC21の個々の基板載置部27A〜27Fの上方にトレイ4の個々の基板収容孔9A〜9Fが平面視で位置合わせされた状態で配置されている場合、トレイ4がESC21に向けて降下すると、個々の基板収容孔9A〜9Fの3個の基板支持部21が対応する基板載置部27A〜27Fの収容溝55の上端からその内部に進入して下方に収容溝55内を降下する。従って、この場合、トレイ4の下面4bがトレイ支持面26に達し、かつ基板2の下面2aが基板載置面41a,47a,48a上に載置されるまでトレイ4を降下させることができる。しかし、個々の基板載置部27A〜27Fに対する個々の基板収容孔9A〜9Fの平面視での位置がずれている場合、基板支持部10と収容溝55の平面視での位置もずれるので、基板支持部10は収容溝55に進入できず、基板載置部27A〜27Fと干渉し、基板収容孔9A〜9Fに対して基板載置部27A〜27Fが挿入されない。このように、従って、突起状の基板支持部10と収容溝55とを設けることにより、個々の基板2の基板載置面41a,47a,48aに対する位置決め精度をさらに高めることができる。   As shown in FIG. 12A, when the individual substrate receiving holes 9A to 9F of the tray 4 are arranged in a plan view above the individual substrate placement portions 27A to 27F of the ESC 21, the tray 4 is When descending toward the ESC 21, the three substrate support portions 21 of the individual substrate accommodation holes 9 </ b> A to 9 </ b> F enter the inside from the upper ends of the accommodation grooves 55 of the corresponding substrate mounting portions 27 </ b> A to 27 </ b> F and enter the accommodation grooves downward. Go down 55. Accordingly, in this case, the tray 4 can be lowered until the lower surface 4b of the tray 4 reaches the tray support surface 26 and the lower surface 2a of the substrate 2 is placed on the substrate placement surfaces 41a, 47a, 48a. However, when the positions of the individual substrate receiving holes 9A to 9F in the plan view with respect to the individual substrate placement portions 27A to 27F are shifted, the positions of the substrate support portion 10 and the receiving groove 55 in the plan view are also shifted. The substrate support portion 10 cannot enter the accommodation groove 55, interferes with the substrate placement portions 27A to 27F, and the substrate placement portions 27A to 27F are not inserted into the substrate accommodation holes 9A to 9F. Thus, the positioning accuracy of the individual substrates 2 with respect to the substrate placement surfaces 41a, 47a, and 48a can be further increased by providing the protruding substrate support 10 and the accommodation groove 55.

突起状の基板支持部10と収容溝55を採用して位置決め精度を高めることで、基板2と基板載置部27A〜27Fの上端部27aの平面視での寸法及び形状を実質的に一致させることができる。言い換えれば、基板2の基板載置部27A〜27Fの上端部27aに対する位置がずれた場合を考慮して基板載置部27A〜27Fの平面視での寸法を基板2よりも小さく設定する必要がない。その結果、個々の基板2の最外周縁付近まで環状突出部41の上端面である基板載置面41aが接触することで基板2の周縁付近における冷却効果が向上し、基板温度分布の均一性がさらに向上する。例えば、基板2の直径が100mmであれば基板載置部27A〜27Fの直径をそれと同一の100mmに設定できる。   By adopting the protruding substrate support portion 10 and the receiving groove 55 to increase the positioning accuracy, the size and shape of the substrate 2 and the upper end portions 27a of the substrate mounting portions 27A to 27F are substantially matched. be able to. In other words, it is necessary to set the dimensions of the substrate platforms 27A to 27F smaller than the substrate 2 in consideration of the case where the positions of the substrate platforms 2A to 27F with respect to the upper end portions 27a are shifted. Absent. As a result, the substrate mounting surface 41a, which is the upper end surface of the annular projection 41, contacts the vicinity of the outermost peripheral edge of each substrate 2, thereby improving the cooling effect in the vicinity of the peripheral edge of the substrate 2 and uniformity of the substrate temperature distribution. Is further improved. For example, if the diameter of the substrate 2 is 100 mm, the diameters of the substrate mounting portions 27A to 27F can be set to the same 100 mm.

第2実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。   Since other configurations and operations of the second embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

本発明は前記実施形態に限定されず、例えば以下に列挙するような種々の変形が可能である。   The present invention is not limited to the above-described embodiment, and various modifications such as those listed below are possible.

ESC21は、基板2を静電吸着するための静電吸着電極28により、又は静電吸着電極28とは別の設けた静電吸着電極によりトレイ支持面26にトレイ4の下面4bを静電吸着により保持してもよい。あるいは、自己静電吸着によりトレイ4の下面4bをESC21のトレイ支持面26に静電吸着させてもよい。前述の実施形態のようにチャンバ3内の圧力が低圧(0.6Pa)である場合でも、輻射や対流によるトレイ4の基板収容孔9A〜9Fの孔壁及び基板支持部10から基板2への周縁への僅かな熱伝導がある。トレイ4をESC21に静電吸着して基板2と同様に冷却するとことにより、輻射や対流によるわずかな熱伝達の影響さえも除かれるので、基板温度の均一性がさらに向上する。   The ESC 21 electrostatically attracts the lower surface 4b of the tray 4 to the tray support surface 26 by an electrostatic attracting electrode 28 for electrostatically attracting the substrate 2 or by an electrostatic attracting electrode provided separately from the electrostatic attracting electrode 28. You may hold by. Alternatively, the lower surface 4b of the tray 4 may be electrostatically attracted to the tray support surface 26 of the ESC 21 by self electrostatic adsorption. Even when the pressure in the chamber 3 is low (0.6 Pa) as in the above-described embodiment, the hole walls of the substrate receiving holes 9A to 9F of the tray 4 and the substrate support 10 to the substrate 2 due to radiation or convection are used. There is a slight heat conduction to the periphery. Since the tray 4 is electrostatically attracted to the ESC 21 and cooled in the same manner as the substrate 2, even the slight heat transfer effect due to radiation and convection is eliminated, so that the uniformity of the substrate temperature is further improved.

ドライエッチング装置を例に本発明を説明したが、本発明は化学気相成長(CVD)装置を含む他のプラズマ処理装置にも適用できる。   Although the present invention has been described by taking a dry etching apparatus as an example, the present invention can also be applied to other plasma processing apparatuses including a chemical vapor deposition (CVD) apparatus.

1 ドライエッチング装置
2 基板
2a 下面
3 チャンバ
3a ゲート
3b 排気口
3c エッチングガス供給口
4 トレイ
4a 上面
4b 下面
5 基板サセプタ
7 天板
8 ICPコイル
9A〜9F 基板収容孔
10 基板支持部
11 真空排気装置
12 マッチング回路
13 高周波電源
14 エッチングガス供給源
15 直流電圧印加機構
16 伝熱ガス供給機構
16a カットオフバルブ
16b 伝熱ガス供給源
16c 供給流路
16d 流量計
16e 圧力計
16f 流量制御バルブ
16g 排出流路
16h 排気口
17 高周波電圧印加機構
18 冷却機構
18a 冷媒流路
18b 冷媒循環装置
19 昇降ピン
20 駆動機構
21 静電チャック(ESC)
22 金属板
23 スペーサ板
24 接合層
26 トレイ支持面
27A〜27F 基板載置部
27a 上端部
28 静電吸着用電極
29 供給孔
30 コントローラ
41 環状突出部
41a 基板載置面
41b 内側部
41c 外側部
42 環状溝
43 凹部
45 内側領域
45a 底面
46 外側領域
46a 底面
47,48 柱状突起
47a,48a 基板載置面
51,52,53,54 ガス分配溝
55 収容溝
100 トレイ
100a 基板収容孔
101 基板
102 基板サセプタ
103 ESC
104 循環路
105 基板載置部
106 突出部
106a 基板載置面
107 凹部
108 柱状突起
108a 基板載置面
DESCRIPTION OF SYMBOLS 1 Dry etching apparatus 2 Substrate 2a Lower surface 3 Chamber 3a Gate 3b Exhaust port 3c Etching gas supply port 4 Tray 4a Upper surface 4b Lower surface 5 Substrate susceptor 7 Top plate 8 ICP coil 9A-9F Substrate accommodation hole 10 Substrate support part 11 Vacuum exhaust device 12 Matching circuit 13 High frequency power source 14 Etching gas supply source 15 DC voltage application mechanism 16 Heat transfer gas supply mechanism 16a Cut-off valve 16b Heat transfer gas supply source 16c Supply flow path 16d Flow meter 16e Pressure gauge 16f Flow control valve 16g Discharge flow path 16h Exhaust port 17 High-frequency voltage application mechanism 18 Cooling mechanism 18a Refrigerant flow path 18b Refrigerant circulation device 19 Lifting pin 20 Drive mechanism 21 Electrostatic chuck (ESC)
22 Metal plate 23 Spacer plate 24 Bonding layer 26 Tray support surface 27A to 27F Substrate mounting portion 27a Upper end portion 28 Electrostatic chucking electrode 29 Supply hole 30 Controller 41 Annular protrusion 41a Substrate mounting surface 41b Inner portion 41c Outer portion 42 Annular groove 43 recess 45 inner region 45a bottom surface 46 outer region 46a bottom surface 47, 48 columnar projection 47a, 48a substrate mounting surface 51, 52, 53, 54 gas distribution groove 55 receiving groove 100 tray 100a substrate receiving hole 101 substrate 102 substrate susceptor 103 ESC
104 Circulating path 105 Substrate placement portion 106 Projection portion 106a Substrate placement surface 107 Recessed portion 108 Columnar projection 108a Substrate placement surface

Claims (6)

プラズマを発生させる減圧可能なチャンバと、
基板が載置される基板載置部を少なくとも1個備え、前記基板載置部に載置された前記基板を静電的に保持する静電チャックを有する、前記チャンバ内に設けられた基板保持部と、
前記基板と前記基板載置部との間に伝熱ガスを供給する伝熱ガス供給機構と、
前記基板保持部を冷却する冷却機構と
を備え、
前記静電チャックの前記基板載置部の上端部は、
周縁に設けられた環状突出部と、
同一平面上にある前記環状突出部の上端面と共に前記基板の下面を載置する基板載置面を構成する上端面をそれぞれ備える複数の突起と、
前記環状突出部で囲まれた領域である凹部とを有し、
前記環状突出部は上端面に設けられた環状溝により互いに区切られた2重又は3重の環状部分を備え、
前記環状突出部で囲まれた領域である前記凹部は、前記基板載置部の前記上端部の中心を含む内側領域と、この内側領域と前記環状突出部の間の外側領域とを備え、前記内側領域における前記基板載置面から底面までの第1の深さより、前記外側領域における前記基板載置面から底面までの第2の深さが浅く、
前記基板載置面に載置された前記基板で閉鎖された前記凹部内に前記伝熱ガス供給機構からの前記伝熱ガスが充填される、プラズマ処理装置。
A depressurizable chamber for generating plasma;
A substrate holder provided in the chamber, comprising an electrostatic chuck for electrostatically holding the substrate placed on the substrate platform, comprising at least one substrate platform on which a substrate is placed And
A heat transfer gas supply mechanism for supplying a heat transfer gas between the substrate and the substrate mounting portion;
A cooling mechanism for cooling the substrate holder,
The upper end portion of the substrate mounting portion of the electrostatic chuck is
An annular protrusion provided on the periphery,
A plurality of protrusions each having an upper end surface constituting a substrate mounting surface for mounting the lower surface of the substrate together with the upper end surface of the annular protrusion on the same plane;
A recess that is a region surrounded by the annular protrusion,
The annular protrusion includes double or triple annular portions separated from each other by an annular groove provided on an upper end surface,
The concave portion, which is a region surrounded by the annular protrusion, includes an inner region including the center of the upper end portion of the substrate platform, and an outer region between the inner region and the annular protrusion, The second depth from the substrate placement surface to the bottom surface in the outer region is shallower than the first depth from the substrate placement surface to the bottom surface in the inner region,
The heat transfer gas from the heat transfer gas supply mechanism is filled with the substrate mounting the recess which is closed by the placed the substrate surface, the plasma processing apparatus.
前記内側領域の平面視での外形寸法は、前記基板載置部の平面視での外形寸法の0.5倍以上0.93倍以下である、請求項1に記載のプラズマ処理装置。 2. The plasma processing apparatus according to claim 1, wherein an outer dimension of the inner region in plan view is not less than 0.5 times and not more than 0.93 times of an outer dimension of the substrate placement unit in plan view. 前記第1の深さは40μm以上100μm未満であり、前記第2の深さは10μm以上40μm未満である、請求項1又は請求項2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1 or 2 , wherein the first depth is not less than 40 µm and less than 100 µm, and the second depth is not less than 10 µm and less than 40 µm. 前記凹部は、
前記内側領域と前記外側領域の境界に設けられた第1のガス分配溝と、
前記外側領域と前記環状突出部の境界に設けられた第2のガス分配溝と、
前記中心側から前記環状突出部に向けて延びるように設けられた前記第1及び第2のガス分配溝と連通する第3のガス分配溝と
を備える、請求項から請求項のいずれか1項に記載のプラズマ処理装置。
The recess is
A first gas distribution groove provided at a boundary between the inner region and the outer region;
A second gas distribution groove provided at a boundary between the outer region and the annular protrusion;
And a third gas distribution groove communicating with said first and second gas distribution groove is provided so as to extend toward the annular projecting portion from the center side, one of claims 1 to 3 2. The plasma processing apparatus according to item 1.
前記基板載置面から前記第1から第3のガス分配溝の底面までの第3の深さが100μm以下である、請求項に記載のプラズマ処理装置。 5. The plasma processing apparatus according to claim 4 , wherein a third depth from the substrate mounting surface to a bottom surface of the first to third gas distribution grooves is 100 μm or less. それぞれ前記基板が収容される厚み方向に貫通する複数の基板収容孔と、個々の前記基板収容孔の孔壁から突出する基板支持部とを備え、前記基板を前記チャンバ内に搬入出可能なトレイをさらに備え、
前記静電チャックは、複数の前記基板載置部と、これらの基板載置部が突出するトレイ支持部とを備え、
前記基板の搬送時には、前記基板収容孔に収容された前記基板の下面の外周縁部分が前記基板支持部で支持され、
前記基板の処理時には、前記トレイが前記基板保持部へ向けて降下することにより、個々の前記基板収容孔に対応する前記基板載置部が前記トレイの下面から挿入され、前記トレイの前記下面が前記静電チャックの前記トレイ支持部に載置されると共に、前記トレイ支持部から前記基板支持部の上面までの距離が前記トレイ支持部から前記基板載置面までの距離よりも短いことにより、前記基板が前記基板支持部の上面から浮き上がって下面が前記基板載置面上に載置され、
前記トレイは前記静電チャックの前記トレイ保持部に静電的に保持される、請求項1に記載のプラズマ処理装置。
A tray that includes a plurality of substrate accommodation holes penetrating in the thickness direction in which the substrates are accommodated, and a substrate support portion protruding from a hole wall of each of the substrate accommodation holes, and is capable of carrying the substrates in and out of the chamber. Further comprising
The electrostatic chuck includes a plurality of the substrate mounting portions and a tray support portion from which these substrate mounting portions protrude,
When transporting the substrate, the outer peripheral edge portion of the lower surface of the substrate housed in the substrate housing hole is supported by the substrate support portion,
During the processing of the substrate, the tray is lowered toward the substrate holding portion, so that the substrate placement portion corresponding to each of the substrate accommodation holes is inserted from the lower surface of the tray, and the lower surface of the tray is While being placed on the tray support portion of the electrostatic chuck, the distance from the tray support portion to the upper surface of the substrate support portion is shorter than the distance from the tray support portion to the substrate placement surface, The substrate is lifted from the upper surface of the substrate support portion and the lower surface is placed on the substrate placement surface,
The plasma processing apparatus according to claim 1, wherein the tray is electrostatically held by the tray holding portion of the electrostatic chuck.
JP2010016303A 2010-01-28 2010-01-28 Plasma processing equipment Active JP5243465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016303A JP5243465B2 (en) 2010-01-28 2010-01-28 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016303A JP5243465B2 (en) 2010-01-28 2010-01-28 Plasma processing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013027579A Division JP2013153171A (en) 2013-02-15 2013-02-15 Plasma processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
JP2011155170A JP2011155170A (en) 2011-08-11
JP5243465B2 true JP5243465B2 (en) 2013-07-24

Family

ID=44540919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016303A Active JP5243465B2 (en) 2010-01-28 2010-01-28 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5243465B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010433B2 (en) * 2012-11-15 2016-10-19 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
JP6348321B2 (en) * 2013-05-17 2018-06-27 キヤノンアネルバ株式会社 Etching device
JP6520160B2 (en) * 2015-02-02 2019-05-29 住友大阪セメント株式会社 Electrostatic chuck device
US11837479B2 (en) * 2016-05-05 2023-12-05 Applied Materials, Inc. Advanced temperature control for wafer carrier in plasma processing chamber
US20180148835A1 (en) * 2016-11-29 2018-05-31 Lam Research Corporation Substrate support with varying depths of areas between mesas and corresponding temperature dependent method of fabricating
KR102460310B1 (en) * 2018-08-20 2022-10-28 주식회사 원익아이피에스 Substrate supporting module and Substrate processing apparatus
JP7407529B2 (en) 2019-07-10 2024-01-04 東京エレクトロン株式会社 Substrate mounting table, substrate processing equipment, and temperature control method
CN115513028A (en) * 2021-06-22 2022-12-23 东京毅力科创株式会社 Substrate processing apparatus and electrostatic chuck
CN114836826B (en) * 2022-04-15 2023-08-18 江西兆驰半导体有限公司 Graphite base

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234944A (en) * 1992-02-19 1993-09-10 Hitachi Ltd Wafer temperature control method and equipment
US5810933A (en) * 1996-02-16 1998-09-22 Novellus Systems, Inc. Wafer cooling device
JP4237317B2 (en) * 1997-12-26 2009-03-11 株式会社日立製作所 Plasma processing equipment
JPH11330219A (en) * 1998-05-12 1999-11-30 Hitachi Ltd Electrostatic chucking device
JP3977935B2 (en) * 1998-08-05 2007-09-19 松下電器産業株式会社 Plasma processing method and apparatus
JP2002270681A (en) * 2001-03-07 2002-09-20 Anelva Corp Electrostatic attraction mechanism for processing substrate
JP4869610B2 (en) * 2005-03-17 2012-02-08 東京エレクトロン株式会社 Substrate holding member and substrate processing apparatus
JP2007109771A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Tray for plasma treatment apparatus
JP4361045B2 (en) * 2005-10-12 2009-11-11 パナソニック株式会社 Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP2011155170A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5243465B2 (en) Plasma processing equipment
JP2013153171A (en) Plasma processing apparatus and plasma processing method
KR101153118B1 (en) Plasma processing apparatus and plasma processing method
JP4361045B2 (en) Plasma processing apparatus and plasma processing method
KR102056723B1 (en) Electrostatic chuck and semiconductor/liquid crystal manufacturing equipment
KR101924488B1 (en) Confined process volume pecvd chamber
JP7373022B2 (en) Flat board edge contact with open space pressure equalization passage and lateral confinement
JP2007109771A (en) Tray for plasma treatment apparatus
US9947559B2 (en) Thermal management of edge ring in semiconductor processing
JP2012074618A (en) Vertical heat treatment device
US20170301578A1 (en) Focus ring assembly and a method of processing a substrate using the same
JP5378902B2 (en) Plasma processing method and plasma processing apparatus for plasma processing apparatus
JP2010225775A (en) Plasma treatment apparatus
JP5595549B2 (en) Tray for plasma processing apparatus, plasma processing apparatus, and plasma processing method
JP5324975B2 (en) Plasma processing equipment
JP2010232250A (en) Plasma treating apparatus
JP2011003913A (en) Electrostatic chuck
JP5539436B2 (en) Plasma processing apparatus and plasma processing method
JP5891405B2 (en) Substrate plasma processing method and plasma processing apparatus
JP4781445B2 (en) Plasma processing apparatus and plasma processing method
JP4969595B2 (en) Plasma processing apparatus and plasma processing method
JP5821039B2 (en) Plasma processing equipment
JP5291644B2 (en) Tray for plasma processing equipment
KR20120038287A (en) Susceptor
TW202114029A (en) Edge ring, substrate support, substrate processing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150