JP5229868B2 - MgB2超伝導線材の製造方法 - Google Patents

MgB2超伝導線材の製造方法 Download PDF

Info

Publication number
JP5229868B2
JP5229868B2 JP2007542601A JP2007542601A JP5229868B2 JP 5229868 B2 JP5229868 B2 JP 5229868B2 JP 2007542601 A JP2007542601 A JP 2007542601A JP 2007542601 A JP2007542601 A JP 2007542601A JP 5229868 B2 JP5229868 B2 JP 5229868B2
Authority
JP
Japan
Prior art keywords
mgb
wire
powder
superconducting wire
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007542601A
Other languages
English (en)
Other versions
JPWO2007049623A1 (ja
Inventor
茂行 中根
仁 北口
宏樹 藤井
浩明 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007542601A priority Critical patent/JP5229868B2/ja
Publication of JPWO2007049623A1 publication Critical patent/JPWO2007049623A1/ja
Application granted granted Critical
Publication of JP5229868B2 publication Critical patent/JP5229868B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/704Wire, fiber, or cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Description

この出願の発明は、MgB2超伝導線材の製造方法に関するものである。さらに詳しくは、実用化レベルの十分高い臨界電流密度(Jc)を有するMgB2超伝導線材を、長尺にわたって均質化が可能で、使用環境に適した組成の材料をシース材に使用できるex-situプロセスを用いて製造することを可能とする線材の製造方法と、それにより製造されるMgB2超伝導線材に関するものである。
2001年に日本で発見された超伝導体二ホウ化マグネシウム(MgB2)は、金属系超伝導体の中では最高の39Kという超伝導臨界温度(Tc)を有し、かつバルク材の作製や線材加工が比較的容易であることから、世界中でその物性ならびに線材化の研究開発が行われている。
超伝導体の線材化の主要な方法として、原料粉末を金属管(シース材)に充填して線材加工するパウダー・イン・チューブ(PIT)法が知られている。このPIT法を、原料粉末の違いで分類すると、MgB2超伝導体の粉末そのものを利用するex-situプロセスと、Mg粉末とB粉末等の混合粉末を利用し、これを線材加工後の加熱処理で超伝導体化させるin-situプロセスに大分することができる。ex-situプロセスは、in-situプロセスに比べて均質な線材を作製しやすく、長尺線材の作製に向いているという利点がある。また、in-situプロセスでは、シース材として加熱処理時に原料粉末と反応するおそれがない鉄やニッケル系合金などを使用せざるを得ないが、ex-situプロセスでは、線材加工後に加熱処理をしなくても超伝導線材としての機能が得られることから、シース材選択の自由度が高く、シース材として使用環境に適した組成を有する材料を利用できるので、その応用が期待されている。
しかしながら、ex-situプロセスで作製される線材の臨界電流密度(Jc)特性は決して高いものではなく、原料として汎用されているMgB2粉末を用いて得られる超伝導線材はJc特性が極めて低く、実用の面では議論できるレベルではかった。そのため、ex-situプロセスについては、Jcの向上を目的とした多くの研究が試みられているのが現状である。これらの研究のうち、Jcの向上に確実な効果が認められるものは、シース材の組成を変化させる手法および線材作製後に加熱処理を施す手法であるが、これらの手法は、シース材の自由な選択、加熱処理を必要としない、というex-situプロセス本来の利点を全く活かすことができないものであった。また、その他の手法も含め、ex-situプロセスで作製されたMgB2超伝導線材のJcを、in-situプロセスで作製した線材のJcと同程度以上に向上させる成果は得られていない。したがって、PIT法による超伝導線材の製造では、in-situプロセスが採用するのが一般的である。
この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、実用化レベルの十分高いJcを有し、長尺にわたって均質なMgB2超伝導線材を、使用環境に適した組成の材料をシース材として用いて製造することが可能なMgB2超伝導線材の製造方法と、それにより得られるMgB2超伝導線材を提供することを課題としている。
この出願の発明は、上記の課題を解決するものとして、まず第1には、MgB2超伝導体の粉体を管に充填して線材加工するex-situプロセス用のMgB2超伝導体の粉体として、粒界結合性に優れ、かつ、結晶性を低下させることで臨界電流密度(Jc)を高めたMgB2超伝導体の粉体を使用することを特徴とするMgB2超伝導線材の製造方法を提供する。
第2には、上記の方法において、MgB2超伝導体の粉体として、マグネシウム(Mg)あるいは水素化マグネシウム(MgH2)とホウ素(B)との混合粉末を管に充填し、線材加工した後に加熱処理を行う手法で得られるMgB2超伝導体を粉体化して用いることを特徴とするMgB2超伝導線材の製造方法を提供する。MgB2超伝導体を得る際に、MgあるいはMgH2とBの混合の割合を、Mg:Bとして、0.9:2〜1.1:2の範囲とする。
第3には、上記の方法において、混合粉末に添加物として炭素(C)含有のセラミック、遷移金属または芳香族添加有機化合物の粉末を混合することを特徴とするMgB2超伝導線材の製造方法を提供する。
第4には、上記の方法において、混合粉末に添加物としてSiC、またはIn(インジウム)粉末を混合することを特徴とするMgB2超伝導線材の製造方法を提供する。
第5には、上記の方法において、管が、Fe,Cu,Al,Nb,Ti,Mg,Ag,Au,Liの何れか1種または2種以上の元素を含有する金属管であることを特徴とするMgB2超伝導線材の製造方法を提供する。
第6には、上記の方法において、混合粉末を充填する管をFe管とすることを特徴とするMgB2超伝導線材の製造方法を提供する。
第7には、上記の方法において、MgB2超伝導体の粉体を充填する管をAl管とすることを特徴とするMgB2超伝導線材の製造方法を提供する。
第8には、上記の方法において、MgB2超伝導体の粉体を充填した管を複数本束ねたり、複数の穴を有する金属棒に原料粉末を充填するなどして、多芯線に線材加工することを特徴とするMgB2超伝導線材の製造方法を提供する。
第9には、上記の方法において、MgB2超伝導体の粉体を充填した管を線材加工した後、必要に応じて加熱処理することを特徴とするMgB2超伝導線材の製造方法を提供する。
第10には、上記いずれかの方法により製造されたことを特徴とするMgB2超伝導線材を提供する。
第11には、シース材としての軽元素金属に被覆された長尺のMgB2であって、10T,4.2Kにおける臨界電流密度(Jc)が900A/cm2以上であることを特徴とするMgB2超伝導線材を提供する。
第12には、その軽元素金属がAlであることを特徴とするMgB2超伝導線材を提供する。
第13には、MgB2にはSiC、またはIn(インジウム)粉末が添加されていることを特徴とするMgB2超伝導線材を提供する。
第14には、上記線材が、シース材に被覆された長尺のMgB2線材を多数本束ねたり、複数の穴を有する金属棒に原料粉末を入れた後、線材加工したものなど、多芯線であることを特徴とするMgB2超伝導線材を提供する。
第15には、上記のいずれかのMgB2超伝導線材が用いられていることを特徴とする物品を提供する。
図1は、原料粉末およびFeシースMgB2超伝導線材のX線解析パターンの110ピークの半値幅を例示した図である。 図2は、実施例1におけるMgB2超伝導線材の製造工程を模式的に例示した図である。 図3は、実施例1で作製したFeシースMgB2超伝導線材の断面MgB2部のSEM観察像を例示した図である。 図4は、実施例1、2で作製したFeシースMgB2超伝導線材のJc−B特性を例示した図である。 図5は、実施例1で作製したFeシースMgB2超伝導線材の不可逆磁場Birrの温度依存性を例示した図である。 図6は、実施例3におけるFeシースMgB2超伝導線材のMgB2部の結晶性を示すX線解析パターンを例示した図である。 図7は、実施例3におけるFeシースMgB2超伝導線材の超伝導転移のAC磁場依存性を例示した図である。 図8は、実施例3におけるMgB2粉末およびFeシースMgB2超伝導線材の相対的ピン力の磁場依存性を例示した図である。 図9は、実施例4におけるMgB2超伝導線材のJc−B特性を例示した図である。 図10は、実施例4におけるAlシースMgB2超伝導線材と、ex-situ法により作製された公知の最高レベルのMgB2線材のJc−B特性とを比較した図である。 図11は、実施例4におけるAlシースMgB2超伝導線材の超伝導転移のAC磁場依存性を例示した図である。 図12は、実施例4におけるAlシース、FeシースMgB2超伝導線材の相対的ピン力の磁場依存性を例示した図である。 図13は、実施例5におけるJc−B特性を例示した図である。 図14は、実施例5における電流(160mA)を流したときの電圧の磁場依存性を例示した図である。 図15は、実施例6におけるJc−B特性を例示した図である。 図16は、実施例7におけるJc−B特性を例示した図である。
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
この出願の発明が提供するMgB2超伝導線材の製造方法は、MgB2超伝導体の粉体を管に充填して線材加工する、いわゆるex-situプロセスによるMgB2超伝導線材の製造方法であって、MgB2超伝導体の粉体として、粒界結合性に優れ、また、結晶性を低下されることで臨界電流密度(Jc)を向上させたMgB2超伝導体の粉体を使用することを特徴としている。
ex-situプロセスにより高性能の超伝導線材の作製を試みる際、一般的には、Tcが高く、結晶性の優れた超伝導体の粉末を原料粉として用いることが好ましいと考えられている。しかしながら、この出願の発明では、Jc特性の優れた超伝導線材を得るために、Jcが高く、粒界結合性の優れている粉体を原料に用いる。ここで、原料としてのMgB2超伝導体の粉体に関し、「Jcが高い」「粒界結合性が優れている」とは、通常のMgB2粉末と比較してJcおよび粒界結合性が高いものと理解することができる。これらの特性の判定するには、例えば、Jc値をJc−B特性を調べることや、粒界結合性を超伝導転移のAC磁場依存性を調べることで、容易に比較することができる。
より具体的には、上記のように、この出願の発明で原料として用いるMgB2粉末は、結晶性が比較的低く、たとえばTcは約36Kで、従来の一般的なMgB2粉末のTc(約39K)より低い特徴がある。このようなMgB2粉末は、結晶性が低い分だけ超伝導電子の空間的な拡がりを示すコヒーレンス長が短くなり、それによってTcが低下する代わりに、コヒーレンス長の二乗の逆数に比例する磁場の臨界値が向上する。磁場の臨界値が向上すると、超伝導体が電流を流せる磁場の最大値を向上させることにもつながるので、結果的に高磁場中でのJcが向上するものと考えられる。この出願の発明では、このような特性が、超伝導線材のJcを向上させるのに大きく寄与していると考えられる。
このような原料としてのMgB2超伝導体の粉体は、上述したように、マグネシウム(Mg)あるいは水素化マグネシウム(MgH2)とホウ素(B)との混合粉末を管に充填し、線材加工した後に加熱処理を行うことで得られるMgB2超伝導体を粉体化して調整することができる。このMgB2超伝導体の粉体は、従来のin-situプロセスで作製されるMgB2線材の超伝導コア部を取り出して粉末化したものとして理解することもできる。
ここで、MgあるいはMgH2、Bの粉末については、得られる原料粉末のJcおよび粒界結合性を優れたものとするために、たとえば、純度は90%以上、平均粒径100μm程度以下のものを用いるのを好適な例として考慮することができる。なお、純度は高ければ高いほど、粒径は細かければ細かいほど望ましいと考えられる。また、MgあるいはMgH2とBの混合の割合は、Mg:Bとして、0.9:2〜1.1:2程度とすることが目安として例示される。ここで、MgH2とBの混合粉末を保存する場合には、湿度と酸素分圧の低い、たとえば真空中や不活性ガス中とすることが望ましい。
以上の混合粉末を充填する管としては、後に行われる線材加工において破損することなく、加熱処理において混合粉末と反応しない材料からなる管であれば、各種のものを使用することができる。たとえば、混合粉末を充填する管としては、Fe,Cu,Nb,Ti,Mg,Ag,Au,Liの何れか1種または2種以上の元素を含有する金属管であることが好適な例として示される。線材加工時の応力効果を考慮すると、Fe管やSUS管などを用いるのがより好ましい。
線材加工における加工手段の詳細は特に制限されないが、得られるMgB2超伝導体原料粉末のJcおよび粒界結合性を優れたものとするために、混合粉末を十分に高密度化する加工を行うことが好ましい。具体的には、たとえば、できるだけ大きな径の金属管を使用して断面積の縮小率を上げることが、粒の粉砕や高密度化およびMgB2への応力効果が期待できるために好ましい。あるいはこれと同等以上の効果が得られる加工を行うことが考慮される。
加熱処理については、混合粉末が反応してMgB2を生成する条件で行うことができる。熱処理条件をあげるとすれば、湿度と酸素分圧を低くすることが好ましく、たとえば酸素分圧は10%以下とすることができる。酸素分圧は低ければ低いほど好ましく、好適には1%以下とすることが例示される。熱処理温度についても特に制限はないものの、たとえば、750℃以下の比較的低温での焼成が可能とされる。時間的な制限はなく、混合粉末の量等に応じて考慮することができ、たとえば、600〜650℃程度で1時間程度熱処理することが例示される。
これにより線材化されたMgB2超伝導体線材の内部から、芯として存在しているMgB2超伝導体を採りだし、粉体化すると、この出願の発明における原料としてのMgB2超伝導体の粉体を得ることができる。原料としてのMgB2超伝導体の粉体は、たとえば100μm程度以下で、細かければ細かいほど好ましい。
この出願の発明のMgB2超伝導線材の製造方法では、以上のようMgB2超伝導体の粉体を管に充填して線材加工するが、ここでMgB2超伝導体の粉体を充填する管としては、線材加工の際に破損することのない材料からなる管であれば、各種のものを使用することができる。たとえば、この管をシース材として機能させるために、Fe,Cu,Al,Nb,Ti,Mg,Ag,Au,Liの何れか1種または2種以上の元素を含有する金属管を用いることを例示することができる。また、加工による断面の縮小率を上げて得られるMgB2超伝導線材の特性をより高めたい場合には、硬度が高く展性に富んだステンレス等の高強度材等をシース材として使用するのが望ましい。線材加工時の応力効果が得られやすいFe管やSUS管などを用いるのがより好ましい例として示される。一方で、硬度が低く軟らかいが、Al等の軽量材を用いることも可能である。MgB2超伝導線材のシース材としてAlを用いて高特性を実現することは、この出願の発明により初めてなされるものである。
線材加工における加工手段および条件等の詳細は特に制限されないが、得られるMgB2超伝導線材のJc特性を優れたものとするために、原料粉末を十分に高密度化することができる加工を行うことが好ましい。たとえば、具体的には、できるだけ大きな径の金属管を使用して断面積の縮小率を上げる加工、あるいはこれと同等以上の効果が得られる加工を行うことが例示される。
また、MgB2超伝導体の粉体を充填した管を、たとえば線材加工後に複数本束ねて管に挿入し、さらに多芯線に線材加工することも可能である。また、MgB2超伝導体の粉体を、複数の穴を有する金属管に充填し、線材加工することで多芯線にすることも可能である。これらの場合の管の材質等はもちろん限定されない。
なお、この出願の発明のMgB2超伝導線材の製造方法では、原料としてのMgB2超伝導体の粉体に加熱処理を施すことは必ずしも必要ではないが、所望の特性に応じて、たとえばJc特性等をより高めるために、線材加工後のMgB2超伝導線材に加熱処理を施すことも考慮される。この場合の熱処理条件は、たとえば、酸素分圧10%以下、より好ましくは1%以下で、600〜900℃程度の温度範囲で0.01〜100時間程度加熱することが例示される。この場合、得られる線材の特性の劣化を避けるため、MgB2超伝導体の粉体を充填する管はMgB2と反応しないものを選択することが必要となる。
なお、この出願の発明においては、原料粉末としてのMgB2超伝導体の粉体の調整に際し、混合粉末に、添加物として、炭素を含有するセラミックス、遷移金属または芳香族有機化合物の粉末を加えることができる。このような粉末としては、たとえば、具体的には、SiC粉末や各種の遷移金属、なかでも、In、Sn、Sb、Te、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ga、Ge,Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pb、Bi、Pt、Hf、Ta、Hg等が例示される。
また、ベンゼン、トルエン、キシレン、ナフタレン、ペリレン、アントラセン等の芳香族化合物粉末などが代表的なものとして挙げられる。たとえば、SiCやInの粉末を混合する場合には、平均粒径が100μm程度以下、より好ましくは10nm〜1μm程度以下のものを、2.5〜35mol%、より好ましくは10〜25mol%程度添加することができる。粉末を添加するタイミングは、ex-situプロセスで線材作製を行う前であれば、MgB2の作製時に出発原料に混ぜても、MgB2の作製後に混ぜても構わないが、より大きな効果を得るためには、炭素を含有する化合物は、MgB2の作製時に出発原料に混ぜるのが好ましく、Inのような遷移金属は、作製後のMgB2粉体と混合するのが好ましい。このようなSiC粉末等の添加により、上記のMgB2超伝導線材への加熱処理を行わなくても、MgB2超伝導線材のJc特性をさらに高めることが可能となる。すなわち、管としてMgB2と反応する材料を使用した場合には、たとえばSiCやIn粉末を混合したMgB2超伝導体の粉体を用いることで、追加熱処理無しに線材の高性能化を図ることができる。
以上のこの出願のMgB2超伝導線材の製造方法により、ex-situプロセスによっても、十分に高いJc特性を有する超伝導線材が提供されることになる。また、ex-situプロセスによるため、in-situプロセスに比べて均質な線材を比較的容易に作製することができ、100m以上、さらには1km以上の長尺線材の作製が可能となり、工業的な側面で非常に有意義であるといえる。
そして、この出願の発明が提供するMgB2超伝導線材は、ex-situプロセスにより作製されるMgB2超伝導線材であって、高磁場特性が極めて優れたものとして実現される。たとえば、Feシース材の場合、4.2K,12Tで1000A/cm2以上、4.2K,10Tで3000A/cm2以上という、極めて優れたJc特性が確保されている。また、Alシース材の場合、4.2K,12Tで200A/cm2以上、4.2K,10Tで900A/cm2以上の優れたJc特性が確保されている。このようなこの出願の発明のMgB2超伝導線材は、代表的には上記の発明の方法により製造されるものである。
したがって、線材内のMgB2超伝導体についても、結晶性が低い分だけコヒーレンス長が短くなり、Tcは低下するものの磁場の臨界値が向上していると考えられる。また、結晶性が低いと、ex-situプロセスの線材化行程で結晶内部にひずみが入りやすく、このこともコヒーレンス長の短縮につながるので、磁場の臨界値を向上させることにつながる。磁場の臨界値が向上すると、超伝導体が電流を流せる磁場の最大値を向上させることにもつながるので、結果的に高磁場中でのJcが向上するものと考えられる。結果的に高磁場中でのJcが向上される。本出願の発明による線材内部のMgB2超伝導線材は、たとえば図1(b)に例示したように、X線回折パターンにおける110ピークの半値幅が0.5°以上となり、従来の線材内部のMgB2超伝導線材についての値0.4°程度よりも明らかに大きな値を示すことで特徴付けられる。図1に、(a)この出願の発明のMgB2超伝導線材の原料粉末、(b)この出願の発明のMgB2超伝導線材、(c)従来のex-situプロセスによるMgB2超伝導線材の110ピークの半値幅を例示した。
さらに、この出願の発明のMgB2超伝導線材は、たとえばシース材としてのAlに被覆された長尺のMgB2であって、7T以上の高磁場でも高い超伝導特性を示し、たとえば10T,4.2Kにおいて1.0×103A/cm2程度という、十分に実用可能な特性を有するものとして実現される。アルミニウム(Al)は熱伝導性がよく低コスト、電気伝導性が高い上に加工性にも優れているので、超伝導線材のシース材として注目されている材料である。しかしながら、AlとMgは非常に反応しやすく、またAlは融点が低いため、MgB2超伝導線材の製造においては、in-situプロセスでAlをシース材として用いるのは不可能である。(なお、これを可能とする実験が最近報告されたが、それでもなお現実的には不可能であると考えられている。)また、ex-situプロセスでAlをシース材として用いることは可能であるが、これまでに得られていたAlシースMgB2超伝導線材のJcは極めて低い(80A/cm2at4T,4.2K)ものであった。このことを考慮すると、管(シース材)としてAlを用いたこの出願の発明のMgB2超伝導線材は、全く新規な超伝導線材を実現したものといえる。
さらに、Al,Mg,Bはいずれも軽元素であることが注目される。Alは軽量で放射化し難く、熱伝導性、電気伝導性、磁性、加工性、コスト等の面ではFeよりもシース材として適している数少ない金属である。MgB2は、軽元素のみからなる超伝導体の中で唯一線材化が望める物質であり、シース材としてAlあるいはそれ以外の軽元素金属を利用したMgB2超伝導線材には、軽量化の観点から、搭載マグネットとしてロケットやリニアモーターカーへの応用を期待できる。また、軽元素の放射化し難い特性は、核融合炉用マグネットなどへの応用も期待することができる。現在、核融合炉のプラズマ閉じ込め用マグネットは、Nb系化合物の超伝導マグネットを使用しているが、Nbは放射化する物質なので、核融合炉などに使用した後廃棄する場合には、廃棄前に数百年レベルでの長期保存を余儀なくされる。これに対し、この出願の発明のMgB2超伝導線材の作製技術は、シース材として放射化しづらい軽元素金属を利用した線材を提供することができるので、マグネットとしてこの問題を克服することができ、環境面や保存等のコストの面で有意義であると考えられる。
以上のこの出願の発明のMgB2超伝導線材は、MgB2にはSiC粉末が添加されていてもよく、これによりJc特性が向上されている。また、単芯線に限定されることなく、MgB2超伝導体のコアが、たとえば10〜1000本、さらには、10000本以上の多芯線などとしても実現される。
以下に実施例を示し、この出願の発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
(実施例1)
図2に示した工程図に沿って、MgB2線材を製造した。まず、市販のMgH2粉末(アボガド社,325メッシュ,純度96%)とB粉末(アルドリッチ社,325メッシュ,純度99.99%)を1:2のモル比で混合して得た混合粉末を、外径6.02mm,内径3.5mmの鉄管(シース材)に充填し、溝ロール加工と平ロール圧延により幅5mm,厚さ0.5mmのテープ状に加工した。この線材をアルミナボートに置き、チタン粉末で完全に覆った後、管状炉を用いてアルゴン雰囲気中で、600℃、1時間の熱処理を行った。すなわち、従来のin-situプロセスによるMgB2線材の製造工程と同様の操作を行った。これによって得られたMgB2線材を線材(1)とする。
次に、上記で得られた線材(1)のシース材部分をペンチ、ニッパー等を用いて機械的に剥がして、内部に得られたMgB2のみを回収した。集めたMgB2を乳鉢で粉砕して粉体状にした。
得られた粉末を再度、外径6.02mm、内径3.5mmの鉄管(シース材)に充填し、溝ロール加工と平ロール圧延により幅5mm、厚さ0.5mmのテープ状に加工した。すなわち、ここから、従来のex-situプロセスによるMgB2線材の製造工程と同様とみることができる。これによって得られたMgB2線材を線材(2)とする。
なお、比較のため、従来のex-situプロセスで一般に使用されているMgB2粉末(アルドリッチ社,φ約60nm,純度99.99%)を使い、同様にしてテープを作製し、線材(3)とした。
これらのFeシースMgB2超伝導線材(1)(2)(3)の断面におけるMgB2部分の走査型電子顕微鏡(SEM)像をそれぞれ図3(1)(2)(3)に示した。
これらの線材(1)(2)(3)について、液体ヘリウム温度における種々の磁場中での臨界電流密度Jcを測定し、その結果を図4に示した。この出願の発明の線材(2)は、従来のex-situプロセスによる線材(3)をはるかに上回るJcを示すことが確認された。また、従来のex-situプロセスによる線材(3)は7T以上の高磁場中で超伝導特性が得られなかったのに対し、本願発明の線材(2)のJc値はin-situプロセスで作製した線材(1)と同程度であり、高磁場側では線材(1)のJcを上回り、優れた特性を示すものとなった。
線材(1)(2)(3)のMgB2部分をX線回折で調べたところ、いずれも不純物相は見られなかったが、結晶性については、本願発明の線材(2)よりも従来の線材(3)の方が若干良いことが確認された。一方、磁化の磁場依存性と線材中の各粒の粒界結合性を調べた結果では、本願発明の線材(2)は、従来の線材(3)よりもこれらの特性がはるかに優れているのが確認された。
これらのことから、本願発明の線材(2)における優れたJc特性は、原料粉末として、結晶性が低く、高JcのMgB2粉末を使うことにより、線材の磁気特性と粒界結合性が向上したためであると推測できる。
また、線材(1)、(2)および(3)の不可逆磁場Birrの温度依存性を調べ、その結果を図5に示した。グラフの左上にいくほど特性が優れていると考えることができ、この出願の発明の線材(2)の不可逆磁場特性は、線材(3)および(1)に比べて優れており、温度や磁場が変化してもJcが低下しにくい材料であることが示された。
(実施例2)
実施例1の線材(2)および(3)に600℃の加熱処理を施し、それぞれ線材(4)および(5)を得た。また実施例1と同様のMgH2粉末とB粉末の混合粉末に7.5mol%のSiCナノパウダーを添加し、後は線材(4)と同様の工程で線材(6)を得た。なお、このSiCナノパウダーは、アルドリッチ社,φ約60nm,純度99.99%のものであった。
得られた線材(4)(5)(6)の4.2KにおけるJc−B特性を図4に併せて示した。線材(4)のJc特性は、線材(2)よりも遥かに向上し、8T以上の広い高磁場側では実施例1の線材(1)を上回るものであった。一方の線材(5)は、線材(3)とほぼ同等Jc特性を示すにとどまった。線材(6)は、追加熱処理していないにも関わらず、600℃の加熱処理を施した線材(4)と同程度の優れたJc−B特性が得られることが確認された。
(実施例3)
実施例1および2と同様の、この出願の発明の線材(2)(4)および従来のin-situ
プロセスによる線材(1)、ex-situプロセスによる線材(3)(5)を試料とし、これらの結晶性をX線解析により調べ、その結果を図6に示した。また、各試料の電気抵抗率の温度依存性をAC磁場強度を変えて測定することで、超伝導転移のAC磁場依存性について調べ、その結果をそれぞれ図7に示した。
図6から、いずれのMgB2においても不純物の存在は確認できないが、全体的にこの出願の発明の線材(2)(4)のX線パターンはブロードであり、従来の線材(1)(3)(5)の方が結晶性が良いことが確認できた。また、MgB2超伝導線材はc軸に配向している方が特性が良いと考えられているが、従来の線材(3)(5)の方がこの出願の発明の線材(2)(4)よりも002ピークが高いため、c軸方向に配向していると思われる。
図7から、各試料のTcはいずれもMgB2本来のTc(39K)より低いことが解る。すなわち、線材(1)から得られるこの出願の発明の出発材料としてのMgB2粉末は、Tcが高いものではないことがわかった。なお、このようなTcの低下は、線材(1)の場合は粉体の焼結性が低いため、線材(2)(3)(4)(5)については線材加工時の応力効果の影響であると考えられる。また、線材(1)を用いたこの出願の発明の線材(2)のTcは、市販のMgB2粉末を用いた線材(3)のTcよりも低くなることがわかった。
一方で、一般に、磁場の変化に応じて超伝導転移がブロードになる試料ほど、粒界結合性が悪いと考えられている。この出願の発明において出発材料として用いられるMgB2粉末は、線材(1)と物性が同じであることから、粒界結合性が極めて良いことが確認された。また、そのMgB2粉末を用いたこの出願の発明の線材(2)の粒界結合性についても、市販のMgB2粉末を用いた線材(3)より優れていると考えられ、さらに追加熱処理を施した線材(4)が優れたものとなることが確認された。
また、線材(1)(2)(3)の相対的ピン力の磁場依存性を、図8に示した。相対的ピン力の磁場依存性は、曲線のピークがグラフ右の方にあり、高磁場においても低下しないもの程、高磁場特性が優れていることを意味する。図8から、線材(2)は線材(3)に比べて明らかに高磁場でのピン力特性が優れていることが確認された。この相対的ピン力の磁場依存性の向上は、不可逆磁場が向上したことによるものであり、Jcの高いMgB2粉末を原料として用いることにより、線材の不可逆磁場が従来の線材のものよりも優れたものとなることが示された。
(実施例4)
実施例1の線材(1)より得られたMgB2粉末、または従来のex-situプロセスで使用するMgB2粉末を同形状のAl管(シース材)に充填し、線材加工することで、この出願の発明のAlシースMgB2線材(7)および従来法によるAlシースMgB2線材(8)を得た。
この線材(7)および(8)のJc−B特性を、実施例1のシース材がFeの線材(1)(2)(3)のとともに図9に示した。シース材としてAlを用いた線材(7)(8)は、シース材としてFeを用いた線材(2)(3)と比較していずれもJc−B特性が低下するものの、この出願の発明のAlシースMgB2線材(7)は、従来のFeシースMgB2線材(3)よりもはるかに高特性を得ていることが確認された。線材(7)は、4T,4.2Kで1.1×104A/cm2という高いJcを示し、また、線材(3)では超伝導特性が得られなかった7T以上の高磁場でも、1.0×103A/cm2(10T,4.2K)という実用レベルの高い値を示すことが確認された。
参考のために、図10において、線材(7)および(8)のJc−B特性を、ex-situプロセスで作製された公知の最高レベルの線材の特性と比較した。この出願の発明のAlシースMgB2線材(7)をAl以外をシース管とするex-situMgB2線材と比較すると、熱処理を加えていない線材としては高磁場側で圧倒的に優れた特性を示すことがわかる。また、熱処理を加えたものと比較した場合でも、高磁場側ではその最高レベルの線材と同等の特性を示すことが確認された。
線材(1)および線材(7)(8)の超伝導転移のAC磁場依存性を図11に示した。図11から、この出願の発明の線材(7)の出発材料となる線材(1)は、Tcが高く優れたものではないが、粒界結合性が極めて良いことが確認できる。なお、Alシース材の場合には、Feシース材の場合と異なり、線材(7)と線材(8)の粒界結合性はそれほど差がなく特に優れてはいないことがわかる。これはシース材のAlがFeよりも強度がないため、線材化工程で超伝導芯を高密度化することができていないためであると考えられる。
また、Alシース線材(7)の相対的ピン力の磁場依存性を、実施例1のFeシース線材(2)(3)と比較した結果を図12に示した。相対的ピン力の磁場依存性は、曲線のピークがグラフ右の方にあり、高磁場においても低下しないもの程よいとされ、線材(7)は線材(2)に比べると若干ピン力が劣るものの、従来のFeシース線材に比べると明らかピン力が優れていることが確認された。この相対的ピン力の磁場依存性の向上は、不可逆磁場が向上したことによるものであり、シース材といてAlを用いる場合であっても、Jcの高いMgB2粉末を原料として用いているため、線材の不可逆磁場が従来の線材よりも優れたものとなることが示された。
(実施例5)
実施例2における7.5mol%のSiCパウダー添加した原料粉を用いて製造した本願発明の線材(6)と同様にして、SiC10mol%添加した線材としたものを、(6)に施した熱処理温度より高温の700℃で加熱処理し、本願発明の線材(9)として製造した。
この線材(9)について、Jc−B特性を評価した。その結果を、前記の本願発明の線材(2)(4)、従来法でのex-situ 線材(600℃加熱)(5)並びにin-situ 線材(1)の場合と対比して図13に示した。
図4にも示されているように、600℃加熱処理した本願発明の線材(4)のJcは、従来法による線材(5)よりも優れ、8T以上の高磁場中で、in-situ線材(1)よりも高いJcが得られることがわかる。図13からは、Mg原料とB原料にSiC添加して製造したMgB2粉末を用いて作製したex-situ線材に加熱処理した本願発明の線材(9)のJcは、さらに向上して、10Tで9000A/cm2以上の値が得られていることがわかる。
また、図14には、上記の線材(9)とともに、(4)(5)(1)の線材の各々について、これらに電流(160mA)を流したときの(電気抵抗に相当する)電圧の磁場依存性の結果を示した。磁場が小さいときは超伝導状態であり、電気抵抗はゼロなので電圧もゼロである。しかし、磁場が増加すると、超伝導状態が壊れ、電圧値が上昇する。この電圧がゼロではなくなる磁場の値が不可逆磁場であり、不可逆磁場が高い試料ほどJcも高い。図14からは、各線材の不可逆磁場はそれぞれ、
in-situ線材(1) 16.2T
ex-situ線材(従来法)(5) 13.8T
ex-situ線材(新手法)(4) 18.2T
ex-situ線材(新手法、SiC添加)(9) 20.2T
となり、本願発明の線材(4)(9)の不可逆磁場が従来法で作製したもの(5)やin-situ線材(1)よりも優れていることがわかる。
(実施例6)
本願発明の線材(2)の原料となるMgB2粉末にIn(10mol%)を添加し、線材(4)の作製時と同様に600℃で加熱して、本願発明の線材(10)を製造した。
この線材(10)について、Jc−B特性を評価し、その結果を図15に線材(4)(5)(1)と対比して示した。
本願発明の線材(4)では、そのJcは、8T以上の高磁場中で、in-situ線材(1)よりも高いJcが得られるが、Jc−B特性の傾きが小さく、低磁場側では線材(1)よりもJcが低くなる。しかし、図15からは、原料粉にIn(10mol%)を混合したex-situ線材(10)のJc−B特性の傾きは、in-situ線材(1)と同程度で、低磁場側でもJcが高い線材であることがわかる。
(実施例7)
本願発明の線材について、熱処理条件による効果を評価した。
実施例2における線材(4)と同様にして、600℃で1時間加熱処理、300℃で10時間加熱処理とした場合の本願発明の線材(11)(12)を製造し、Jc−B特性を評価した結果を、加熱を行っていない本願発明の線材(2)と対比して図16に示した。
熱処理条件は通常のex-situ線材と同様に600℃以上の高温だけでなく、熱処理時間を延ばせば300℃の低温でも、600℃で加熱した場合と同等のJc−B特性が得られることがわかる。
この出願の第1の発明のMgB2超伝導線材の製造方法によると、ex-situプロセスによっても、例えば従来よりJc値が一桁以上向上された、十分に高いJc特性を有する超伝導線材を得ることができる。また、第2の発明によると、そのex-situプロセスに用いる好適なMgB2超伝導体粉末の調整方法が提供される。
この出願の第3および第4の発明のMgB2超伝導線材の製造方法によると、線材に加熱処理を加えなくともMgB2超伝導線材の各種特性を向上させることができる。
さらに、第5の発明によるとシース材として所望の特性をもつ金属を選択することができるとともに、第6の発明によると、金属管との反応が低く、高品質なMgB2超伝導粉末を得ることができる。そして、第7の発明によると、Alをシース材とする高Jc特性のMgB2超伝導線材を得ることができ、MgB2超伝導線材の用途を著しく広く開拓することができる。
また、第8の発明によると、MgB2超伝導線材を所望の多芯線として製造することができ、第9の発明によると、線材加工後の加熱処理によりさらに特性が向上されたMgB2超伝導線材を得ることができる。
また、第10〜第14の発明によると、上記のとおりの優れた特性を有するMgB2超伝導線材、さらにはAlシースMgB2超伝導線材の利用が実現されることになる。
加えて、第15の発明によると、たとえば、軽量化されたロケットやリニアモーターカーなどへの搭載マグネット、放射化し難い核融合炉プラズマ閉じ込め用マグネットなどとして、多方面で有用な物品を実現することが可能となる。

Claims (12)

  1. MgB2超伝導体の粉体として、マグネシウム(Mg)あるいは水素化マグネシウム(MgH2)とホウ素(B)を0.9:2〜1.1:2の範囲で混合し、
    前記混合によって得られる混合粉末を第1の管に充填、線材加工した後に加熱処理を行うことで得られるMgB2超伝導体を粉体化し、
    前記粉体化によって得られたMgB2超伝導体の粉体を第2の管に充填して線材加工するMgB2超伝導線材の製造方法。
  2. 前記混合粉末に添加物として炭素(C)含有のセラミック、遷移金属または芳香族有機化合物の粉末を混合する、請求項1に記載のMgB2超伝導線材の製造方法。
  3. 前記添加物としてSiC、またはIn(インジウム)粉末を用いる、請求項2に記載のMgB2超伝導線材の製造方法。
  4. 前記第2の管が、Fe,Cu,Al,Nb,Ti,Mg,Ag,Au,Liの何れか1種または2種以上の元素を含有する金属管である、請求項1ないし3のいずれかに記載のMgB2超伝導線材の製造方法。
  5. 前記第1の管と前記第2の管の少なくとも一方がFe管である、請求項1ないし4のいずれかに記載のMgB2超伝導線材の製造方法。
  6. 前記第2の管がAl管である、請求項1ないし5のいずれかに記載のMgB2超伝導線材の製造方法。
  7. 前記MgB2超伝導体の粉体を充填した前記第2の管を複数本束ねて多芯線に線材加工する、請求項1ないし6のいずれかに記載のMgB2超伝導線材の製造方法。
  8. 前記MgB2超伝導体の粉体を充填した前記第2の管を線材加工した後、加熱処理する、請求項1ないし7のいずれかに記載のMgB2超伝導線材の製造方法。
  9. シース材としてのAlに被覆された長尺のMgB2であって、10T,4.2Kにおける臨界電流密度(Jc)が900A/cm2以上である、MgB2超伝導線材。
  10. 前記MgB2にはSiC、またはIn(インジウム)粉末が添加されている、請求項9に記載のMgB2超伝導線材。
  11. 前記シース材に被覆された長尺のMgB2が多数本束になった多芯線である、請求項9または10に記載のMgB2超伝導線材。
  12. 請求項9ないし11のいずれかに記載のMgB2超伝導線材が用いられている物品。

JP2007542601A 2005-10-24 2006-10-24 MgB2超伝導線材の製造方法 Expired - Fee Related JP5229868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542601A JP5229868B2 (ja) 2005-10-24 2006-10-24 MgB2超伝導線材の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005309131 2005-10-24
JP2005309131 2005-10-24
PCT/JP2006/321174 WO2007049623A1 (ja) 2005-10-24 2006-10-24 MgB2超伝導線材の製造方法
JP2007542601A JP5229868B2 (ja) 2005-10-24 2006-10-24 MgB2超伝導線材の製造方法

Publications (2)

Publication Number Publication Date
JPWO2007049623A1 JPWO2007049623A1 (ja) 2009-04-30
JP5229868B2 true JP5229868B2 (ja) 2013-07-03

Family

ID=37967733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007542601A Expired - Fee Related JP5229868B2 (ja) 2005-10-24 2006-10-24 MgB2超伝導線材の製造方法

Country Status (3)

Country Link
US (1) US8173579B2 (ja)
JP (1) JP5229868B2 (ja)
WO (1) WO2007049623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759269B1 (ko) * 2015-11-30 2017-07-19 한국기초과학지원연구원 고온초전도마그넷을 위한 지역절연권선 및 그 제조방법

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045858B4 (de) 2008-09-05 2017-08-10 H.C. Starck Gmbh Reduktionsverfahren
KR101212111B1 (ko) 2010-06-10 2012-12-13 한국기계연구원 이붕소마그네슘 초전도 선재의 제조방법 및 이에 의하여 제조되는 이붕소마그네슘 초전도 선재
US8592346B2 (en) * 2010-08-02 2013-11-26 The Texas A&M University System Textured powder wires
JP2013093401A (ja) * 2011-10-25 2013-05-16 Hitachi Ltd 超電導マグネット及びその製造方法
CN102543304B (zh) * 2011-12-20 2013-07-31 东南大学 一种MgB2超导线材的制备方法
JP5889116B2 (ja) * 2012-06-11 2016-03-22 株式会社日立製作所 MgB2超電導線材およびその製造方法
US20140100118A1 (en) * 2012-10-05 2014-04-10 Hyper Tech Research, Inc. Method for continuously forming superconducting wire and products therefrom
JP5440678B1 (ja) * 2012-11-15 2014-03-12 株式会社東京ワイヤー製作所 液体水素液面センサ用MgB2系超伝導線材、液体水素液面センサ及び液体水素用液面計
JP6161034B2 (ja) 2013-12-17 2017-07-12 国立研究開発法人物質・材料研究機構 MgB2超伝導体の製造方法およびMgB2超伝導体
US10431823B2 (en) 2014-08-04 2019-10-01 National Institute For Materials Science Method for manufacturing base material powder having carbon nano-coating layer, method for manufacturing MgB2 superconductor using the method, MgB2 superconductor, method for manufacturing positive electrode material for lithium ion battery, lithium ion battery, and method for manufacturing photocatalyst
CN104607643A (zh) * 2014-12-25 2015-05-13 东南大学 一种中心镁扩散法制备单芯MgB2超导线材的方法
SK289044B6 (sk) 2017-05-19 2023-02-22 Ústav materiálov a mechaniky strojov SAV, v. v. i. Supravodič na báze MgB2 s plášťom na báze Al a spôsob jeho výroby
EP3503230A1 (en) 2017-12-21 2019-06-26 Abant Izzet Baysal Universitesi Magnesium diboride superconducting wire with magnesium coated iron sheath and method of obtaining
CN113707402B (zh) * 2021-08-31 2022-06-07 西北有色金属研究院 一种MgB2超导螺线管线圈的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103716A1 (fr) * 2001-06-15 2002-12-27 Hitachi, Ltd. Materiau de fil supraconducteur et son procede de preparation, aimant supraconducteur comprenant ce dernier
JP2003331670A (ja) * 2002-05-16 2003-11-21 National Institute For Materials Science MgB2超伝導線材の作製方法
JP2004111237A (ja) * 2002-09-19 2004-04-08 National Institute For Materials Science MgB2超伝導線材とその製造方法
JP2005129412A (ja) * 2003-10-24 2005-05-19 National Institute For Materials Science MgB2超電導線材とその製造方法。
JP2005310600A (ja) * 2004-04-22 2005-11-04 Tokyo Wire Works Ltd MgB2線材の製造方法
JP2006143500A (ja) * 2004-11-17 2006-06-08 Yokohama National Univ ナノ微粒子含有MgB2系高温超伝導体、及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687975B2 (en) * 2001-03-09 2004-02-10 Hyper Tech Research Inc. Method for manufacturing MgB2 intermetallic superconductor wires
US7018954B2 (en) * 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
JP4481584B2 (ja) * 2003-04-11 2010-06-16 株式会社日立製作所 複合シースMgB2超電導線材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103716A1 (fr) * 2001-06-15 2002-12-27 Hitachi, Ltd. Materiau de fil supraconducteur et son procede de preparation, aimant supraconducteur comprenant ce dernier
JP2003331670A (ja) * 2002-05-16 2003-11-21 National Institute For Materials Science MgB2超伝導線材の作製方法
JP2004111237A (ja) * 2002-09-19 2004-04-08 National Institute For Materials Science MgB2超伝導線材とその製造方法
JP2005129412A (ja) * 2003-10-24 2005-05-19 National Institute For Materials Science MgB2超電導線材とその製造方法。
JP2005310600A (ja) * 2004-04-22 2005-11-04 Tokyo Wire Works Ltd MgB2線材の製造方法
JP2006143500A (ja) * 2004-11-17 2006-06-08 Yokohama National Univ ナノ微粒子含有MgB2系高温超伝導体、及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012053385; 松本明善,藤井宏樹,畠山秀夫,北口仁,熊倉浩明: 'PIT法による線材開発-高Jc線材の開発-' 低温工学 Vol.38,No.11, 20031125, p.609-614 *
JPN7012004180; H.Kumakura,H.Kitaguchi,A.Matsumoto,and H.Hatakeyama: 'Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors' APPLIED PHYSICS LETTERS Vol.84,No.18, 20030420, p.3669-3671, AIP *
JPN7012004181; S.X.Dou, S.Soltanian, J.Horvat, X.L.Wang, S.H.Zhou, M.Ionescu, and H.K.Liu: 'Enhancement of the critical current density and flux pinning of MgB2 superconcuctor by nanoparticle' APPLIED PHYSICS LETTERS Vol.81,No.18, 20021028, p.3419-3421, AIP *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759269B1 (ko) * 2015-11-30 2017-07-19 한국기초과학지원연구원 고온초전도마그넷을 위한 지역절연권선 및 그 제조방법

Also Published As

Publication number Publication date
US20090156410A1 (en) 2009-06-18
WO2007049623A1 (ja) 2007-05-03
JPWO2007049623A1 (ja) 2009-04-30
US8173579B2 (en) 2012-05-08

Similar Documents

Publication Publication Date Title
JP5229868B2 (ja) MgB2超伝導線材の製造方法
Ma et al. Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route
Hur et al. Fabrication of high-performance MgB2 wires by an internal Mg diffusion process
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
Togano et al. Fabrication of seven-core multi-filamentary MgB2 wires with high critical current density by an internal Mg diffusion process
JP5626658B2 (ja) 鉄系超電導線材とその製造方法
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
US9224937B2 (en) Precursor of MgB2 superconducting wire, and method for producing the same
Kumakura Development of high performance MgB2 tapes and wires
JP4055375B2 (ja) 超電導線材とその作製方法及びそれを用いた超電導マグネット
Rafieazad et al. Review on magnesium diboride (MgB2) as excellent superconductor: Effects of the production techniques on the superconducting properties
JP2008066168A (ja) MgB2超伝導線材及びその製造法
Krinitsina et al. MgB 2-Based Superconductors: Structure and Properties
Qi et al. Superconductivity in Ir-doped LaFe 1− x Ir x AsO
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
Choi et al. Overview of MgB2 wires fabricated by Sam Dong Co., Ltd.
Sharma Practical Magnesium Diboride (MgB2) Superconductor
JP3728504B2 (ja) MgB2超伝導線材の作製方法
Yamada et al. Superconducting Properties and Structure of In-Situ MgB $ _ {2} $ Tapes With SiC and TiC Addition Prepared by Hot Pressing
JP4193194B2 (ja) Nb3Sn超伝導線材の製造方法
Liu et al. Improved Superconducting Properties for Multifilament Graphene-Coated Nb Addition MgB 2 Wires by an Internal Mg Diffusion Process
Miryala Development of MgB2 Superconducting Super-Magnets: Its Utilization towards Sustainable Development Goals
Hur et al. High Critical Current Density ${\rm MgB} _ {2}/{\rm Fe} $ Multicore Wires Fabricated by an Internal Mg Diffusion Process
Viljamaa et al. Comparison on Effects of ${\rm B} _ {4}{\rm C} $, ${\rm Al} _ {2}{\rm O} _ {3} $, and SiC Doping on Performance of ${\rm MgB} _ {2} $ Conductors
Tachikawa et al. High-field performance and structure of (Nb, Ta)/sub 3/Sn superconductors produced by Ta-Sn core

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees