JP5218958B2 - Carbon nanotube synthesis using quasicrystalline catalyst - Google Patents

Carbon nanotube synthesis using quasicrystalline catalyst Download PDF

Info

Publication number
JP5218958B2
JP5218958B2 JP2008015209A JP2008015209A JP5218958B2 JP 5218958 B2 JP5218958 B2 JP 5218958B2 JP 2008015209 A JP2008015209 A JP 2008015209A JP 2008015209 A JP2008015209 A JP 2008015209A JP 5218958 B2 JP5218958 B2 JP 5218958B2
Authority
JP
Japan
Prior art keywords
substrate
quasicrystalline
catalyst
cnt
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008015209A
Other languages
Japanese (ja)
Other versions
JP2009173497A (en
Inventor
和夫 梶原
浩一 畑
英樹 佐藤
祥吾 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2008015209A priority Critical patent/JP5218958B2/en
Publication of JP2009173497A publication Critical patent/JP2009173497A/en
Application granted granted Critical
Publication of JP5218958B2 publication Critical patent/JP5218958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、所定の電子的性質を有するカーボンナノチューブ(CNT)の選択的合成法に関わり、具体的には金属的特性を有するCNT、特にアームチェア型CNTを、基板上に選択的に合成するために用いる合金触媒種に関わる。   The present invention relates to a method for selectively synthesizing carbon nanotubes (CNT) having predetermined electronic properties, and specifically, CNTs having metallic characteristics, particularly armchair CNTs, are selectively synthesized on a substrate. It relates to the alloy catalyst species used for this purpose.

CNTを薄型平面ディスプレイや大規模集積回路など、電子デバイス分野に応用する試みが国内および海外で活発に行われている。このようなCNTの電子デバイスへの応用に際しては、ガラスやシリコン等の基板上に、所定の特性を有するCNTを所定の場所に所定の長さだけ合成する方法が必須である。CNTの代表的応用例として、電界放出型表示装置(Field Emission Display:FED)用陰極、次世代大規模集積回路(Large Scale
Integration:LSI)用層間配線材、走査トンネル顕微鏡/原子間力顕微鏡用探針、Micro Electro
Mechanical Systems (MEMS)デバイス、リチウムイオン電池用負極材、燃料電池、塗料用導電性フィラー等がある。
Attempts to apply CNTs to the field of electronic devices such as thin flat displays and large-scale integrated circuits have been actively conducted in Japan and overseas. When such CNTs are applied to electronic devices, a method of synthesizing CNTs having predetermined characteristics on a substrate such as glass or silicon in a predetermined place for a predetermined length is essential. Typical applications of CNT include cathodes for field emission display (FED), next generation large scale integrated circuits (Large Scale)
Integration: Interlayer wiring materials for LSI), scanning tunneling microscope / atomic force microscope probe, Micro Electro
There are mechanical systems (MEMS) devices, anode materials for lithium ion batteries, fuel cells, conductive fillers for paints, and the like.

現在、CNT合成法には、アーク放電法、レーザーアブレーション法、触媒を用いた化学気相成長(Chemical Vapor Deposition:CVD)法、の何れかが使われている。しかし、一般にデバイス用途に応じて最適なCNTの仕様は異なり、したがってCNTのデバイス特性を支配する、a) 直径、b) 長さ、c) カイラリティ(螺旋度)の、3要素を制御したCNT合成法を確立することが要求される。 Currently, any one of an arc discharge method, a laser ablation method, and a chemical vapor deposition (CVD) method using a catalyst is used for the CNT synthesis method. However, in general, the optimal CNT specifications differ depending on the device application, and therefore CNT synthesis is controlled by three elements: a) diameter, b) length, and c) chirality (helicality), which govern the device characteristics of CNT. It is required to establish a law.

現在、CNTの直径に関しては、用いる触媒金属微粒子の直径や反応炉内温度を制御することにより、人為的に直径分布を制御することが可能である。長さに関しても、CNTの成長速度を制御することで、長さ分布を制御することが可能である。しかし、CNTが金属的であるか半導体的であるかという電子的特性の最も支配的な要因であるカイラリティについては、その制御を試みたいくつかの報告がなされているのみであり、一般にその制御は困難であることが知られている。 At present, regarding the diameter of the CNT, it is possible to artificially control the diameter distribution by controlling the diameter of the catalyst metal fine particles to be used and the temperature in the reaction furnace. Regarding the length, it is possible to control the length distribution by controlling the growth rate of the CNTs. However, regarding the chirality, which is the most dominant factor in the electronic properties of whether CNTs are metallic or semiconducting, there are only a few reports that have attempted to control them. Is known to be difficult.

CNT構造を示すカイラリティは、カイラルベクトル
C = n a1
+ m a2 の指数 (n, m) で表され、(n, n) をアームチェア型、 (n, 0) をジグザグ型、それ以外の (n, m) をカイラル型の、3種類に分類されている。ここで、a1, a2はグラフェンシートの単位格子ベクトルを表している。また、それぞれのカイラリティに応じて、金属的または半導体的性質を示すことが、理論的にも実験的にも証明されている (非特許文献1)。
The chirality indicating the CNT structure is a chiral vector
C = na 1
+ Ma 2 index (n, m), (n, n) is an armchair type, (n, 0) is a zigzag type, and other (n, m) is a chiral type. Has been. Here, a 1 and a 2 represent unit cell vectors of the graphene sheet. In addition, it has been proved theoretically and experimentally that it exhibits metallic or semiconducting properties depending on the chirality (Non-patent Document 1).

現在のところ、ジグザク型CNTの合成に関しては、楠らによるSiC表面分解法により2層ないし3層のジグザグ型CNTが、SiC単結晶基板上に選択的に形成されると報告されている (非特許文献2)。しかし、ジグザグ型CNTは、その3分の1が金属的、3分の2が半導体的であるので、所定の電子的特性を有するCNTを得ることは困難であり、また、ガラスやシリコン等の任意の基板上に形成することは不可能である。さらにロジウム/パラジウム合金触媒を用いたレーザーアブレーション法(非特許文献3)や白金触媒を用いたアルコール触媒CVD法によるCNTのカイラリティ選択性が議論されている(非特許文献4)が、いずれもカイラル型について述べられており、ジグザグ型と同様にその3分の1が金属的、3分の2が半導体的であり、その特性制御には至っていない。 At present, regarding the synthesis of zigzag CNTs, it has been reported that 2 to 3 zigzag CNTs are selectively formed on a SiC single crystal substrate by the SiC surface decomposition method (1). Patent Document 2). However, zigzag CNTs are one-third metallic and two-third semiconducting, making it difficult to obtain CNTs with predetermined electronic properties, such as glass and silicon. It is impossible to form on an arbitrary substrate. Furthermore, the chirality selectivity of CNTs by the laser ablation method using a rhodium / palladium alloy catalyst (Non-patent Document 3) and the alcohol-catalyzed CVD method using a platinum catalyst has been discussed (Non-Patent Document 4). As with the zigzag type, one third is metallic and two third is semiconducting, and its characteristic control has not been achieved.

R. Saito, G. Dresselhaus,M.S. Dresselhaus, Chapter 3. Structure of a Single-Wall Carbon Nanotube,Chapter 4. Electronic Structure of Single-Wall Nanotubes, “PhysicalProperties of Carbon Nanotubes”, Imperial College Press, Singapore, p.35-58, p.59-72 (1998).R. Saito, G. Dresselhaus, MS Dresselhaus, Chapter 3.Structure of a Single-Wall Carbon Nanotube, Chapter 4.Electronic Structure of Single-Wall Nanotubes, “Physical Properties of Carbon Nanotubes”, Imperial College Press, Singapore, p.35 -58, p.59-72 (1998). 楠 美智子、鈴木敏之、本庄千鶴、「SiC結晶表面に形成された高配向ナノチューブの構造選択性」、日本結晶学会誌,Vol.30,No.4 (2003) p.42-47.Michiko Tsuji, Toshiyuki Suzuki, Chizuru Honjo, “Structural Selectivity of Highly Oriented Nanotubes Formed on SiC Crystal Surface”, Journal of the Crystallographic Society of Japan, Vol.30, No.4 (2003) p.42-47. Y. Tsuruoka, S. Suzuki, T.Okazaki, H. Kataura, Y. Achiba, “Toward the selective production of SWNT with asingle chiral index”, 第31回フラーレン・ナノチューブ総合シンポジウム講演要旨集, 2P-28, p.143(July 12-14, 2006).Y. Tsuruoka, S. Suzuki, T. Okazaki, H. Kataura, Y. Achiba, “Toward the selective production of SWNT with asingle chiral index”, Proceedings of the 31st Fullerene and Nanotube Symposium, 2P-28, p. .143 (July 12-14, 2006). K. Urata, S. Suzuki, H.Nagasawa, H. Kataura, Y. Achiba, “The effect of a platinum catalyst on theformation of SWNTs with narrow diameter distribution by alcohol-CCVD method”, 第31回フラーレン・ナノチューブ総合シンポジウム講演要旨集, 1P-30, p.88 (July 12-14,2006).K. Urata, S. Suzuki, H. Nagasawa, H. Kataura, Y. Achiba, “The effect of a platinum catalyst on theformation of SWNTs with narrow diameter distribution by alcohol-CCVD method”, 31st Fullerene and Nanotube Symposium Abstracts of Lectures, 1P-30, p.88 (July 12-14,2006).

上述のようにCNTを基板上に直接合成する触媒CVD法で、CNTのカイラリティを制御すること、特に金属的性質を示すアームチェア型CNTを選択的に合成することは極めて困難である。そこで、本発明の目的は、ガラスやシリコン基板上に、電界放出用陰極材およびLSI用層間配線材などの用途として最適な金属的性質を有する、アームチェア型(本発明では金属的性質を有するニアアームチェア型を含める)CNTを選択的に合成する方法を提供することにある。 As described above, it is extremely difficult to control the chirality of CNTs, particularly to selectively synthesize armchair CNTs exhibiting metallic properties, by the catalytic CVD method in which CNTs are directly synthesized on the substrate. Therefore, an object of the present invention is to provide an armchair type (which has metallic properties in the present invention) having optimum metallic properties for applications such as field emission cathode materials and LSI interlayer wiring materials on a glass or silicon substrate. It is to provide a method for selectively synthesizing CNTs (including a near armchair type).

本発明者らは上記の課題を解決するため、準結晶組成を有するアルミニウム合金微粒子を触媒として用いる触媒CVD法を考案し、本発明に至った。 In order to solve the above-mentioned problems, the present inventors have devised a catalytic CVD method using aluminum alloy fine particles having a quasicrystalline composition as a catalyst, and have reached the present invention.

本発明は、前記触媒用合金が、5回対称性を有する正20面体構造の準結晶組成から成る、アルミニウムと銅及び、鉄、ルテニウム、オスミウムの3種のうち何れか1種からなる金属を構成成分とする3元アルミニウム合金である。ここで、準結晶組成を有するアルミニウム合金としては、Al 62 Cu 25.5 TM 12.5 (TM=Fe, Ru, Os), Al70Pd20TM10
(TM=V, Cr, Mn, Fe,Co, Mo, Ru, W, Re, Os) の何れを選択してもよいが、Al 62 Cu 25.5 TM 12.5 が、実用的には最も望ましい。5回対称性を有する正20面体構造の準結晶合金を触媒とする目的は、準結晶合金微粒子がCNTキャップ部の5員環合成のシーズとして作用し、アームチェア型CNTの合成を優先的に促進する効果をもたらすためである。
In the present invention, the catalyst alloy comprises a metal composed of any one of three types of aluminum, copper, iron, ruthenium, and osmium, having a quasicrystalline composition having a icosahedral structure having fivefold symmetry. It is a ternary aluminum alloy as a constituent component. Here, as an aluminum alloy having a quasicrystalline composition, Al 62 Cu 25.5 TM 12.5 (TM = Fe, Ru, Os), Al 70 Pd 20 TM 10
Any of (TM = V, Cr, Mn, Fe, Co, Mo, Ru, W, Re, Os) may be selected, but Al 62 Cu 25.5 TM 12.5 is most preferable in practical use. The purpose of catalyzing the icosahedral quasicrystal alloy with 5-fold symmetry is that the quasicrystalline alloy particles act as seeds for the 5-membered ring synthesis of the CNT cap part, giving priority to synthesis of armchair CNTs This is to bring about a promoting effect.

すなわち本発明は、CNT合成時に触媒として作用する金属種として準結晶組成から成るアルミニウム合金薄膜を基板上に堆積し、それを熱処理することにより正20面体構造の準結晶相を有する合金微粒子を形成して、その合金微粒子を触媒として用いる触媒CVD法により、アームチェア型CNTを選択的に基板上に合成する方法である。 That is, according to the present invention, an aluminum alloy thin film having a quasicrystalline composition is deposited on a substrate as a metal species that acts as a catalyst at the time of CNT synthesis, and alloy fine particles having a quasicrystalline phase having a icosahedral structure are formed by heat treatment. Then, the armchair type CNT is selectively synthesized on the substrate by the catalytic CVD method using the alloy fine particles as a catalyst.

アルミニウム合金薄膜を得るには、予め準結晶組成のアルミニウム合金ターゲットを作製し、それを蒸着源として基板上に蒸着するか、又は、それぞれの単体金属を蒸着源として順次蒸着した後に、熱処理を加えて合金化してもよい。 In order to obtain an aluminum alloy thin film, an aluminum alloy target having a quasicrystalline composition is prepared in advance and vapor-deposited on a substrate as a vapor deposition source, or after each single metal is vapor-deposited sequentially as a vapor deposition source, heat treatment is applied. And may be alloyed.

また、基板上に準結晶合金薄膜を予めリソグラフィー法を用いてパターニングしておくことにより、基板上の所定の位置に、触媒CVD法により、アームチェア型CNTを選択的に基板上に合成することが出来る。 Further, by patterning a quasicrystalline alloy thin film on the substrate in advance using a lithography method, an armchair CNT can be selectively synthesized on the substrate by a catalytic CVD method at a predetermined position on the substrate. I can do it.

本発明により、ガラスやシリコン基板上の所定の場所に、優れた金属的特性を有するアームチェア型から成るCNTを選択的に合成することを可能にして、該CNTを応用したFED用陰極、次世代LSI用層間配線材等の電子的特性を向上させ、再現性の良い優れたデバイス特性を得ることが期待できる。   According to the present invention, it is possible to selectively synthesize an CNT made of an armchair type having excellent metallic characteristics at a predetermined place on a glass or silicon substrate, and to apply an FED cathode using the CNT, It can be expected to improve electronic characteristics of interlayer wiring materials for generation LSIs and to obtain excellent device characteristics with good reproducibility.

以下に本発明の実施形態を具体的に説明する。
CNTを直接合成させる基板としては、一般に平滑なガラス基板やシリコン単結晶を用いることが好ましい。
Embodiments of the present invention will be specifically described below.
As a substrate for directly synthesizing CNTs, it is generally preferable to use a smooth glass substrate or a silicon single crystal.

次に、上記基板上にSiO2やAl2O3等を、電子ビーム蒸着法やスパッタリング法等によってその膜厚が5 nm〜500 nmとなるように堆積し、下地層を形成する。この目的は、次工程で堆積する準結晶合金薄膜と基板とのアロイ化反応を防止するためである。 Next, SiO 2 , Al 2 O 3 or the like is deposited on the substrate by an electron beam evaporation method, a sputtering method, or the like so as to have a film thickness of 5 nm to 500 nm, thereby forming a base layer. The purpose is to prevent an alloying reaction between the quasicrystalline alloy thin film deposited in the next step and the substrate.

次工程として、正20面体構造の準結晶組成比から成る、アルミニウムに銅及び、鉄、ルテニウム、オスミウムの何れか1種からなる金属を添加したアルミニウム3元合金薄膜を、電子ビーム蒸着法やスパッタリング法等により、その膜厚が1 nm〜100 nmとなるように堆積する。 As the next step, an aluminum ternary alloy thin film composed of a quasicrystal composition ratio of an icosahedral structure and made by adding copper and a metal of any one of iron, ruthenium, and osmium to an electron beam evaporation method or sputtering. It deposits so that the film thickness may become 1 nm-100 nm by a method etc.

次に、上記基板を350〜550℃で熱処理し、堆積した合金薄膜を、安定な準結晶相から成る微粒子構造に変える。合金薄膜を微粒子化する目的は、準結晶合金に触媒活性を付与するためと、次工程で合成されるCNTの直径分布を触媒微粒子の直径により制御するためである。 Next, the substrate is heat treated at 350 to 550 ° C., and the deposited alloy thin film is changed to a fine particle structure composed of a stable quasicrystalline phase. The purpose of making the alloy thin film fine is to impart catalytic activity to the quasicrystalline alloy and to control the diameter distribution of the CNT synthesized in the next step by the diameter of the catalyst fine particles.

以上のように、安定な準結晶相から成る合金微粒子を形成した基板上に、CNTを合成する。CNTの合成方法として、一般にアーク放電法、レーザーアブレーション法、触媒CVD法等が用いられ、本発明においては基板上に直接合成できる触媒CVD法が最適である。触媒CVD法として、熱CVD法、光CVD法、プラズマCVD法等が用いられるが、本発明においては結晶性の比較的優れたCNTの得られる熱CVD法が最適である。 As described above, CNTs are synthesized on the substrate on which alloy fine particles composed of a stable quasicrystalline phase are formed. Generally, an arc discharge method, a laser ablation method, a catalytic CVD method or the like is used as a CNT synthesis method. In the present invention, a catalytic CVD method that can be directly synthesized on a substrate is optimal. As the catalytic CVD method, a thermal CVD method, a photo CVD method, a plasma CVD method, or the like is used. In the present invention, a thermal CVD method capable of obtaining a CNT having relatively excellent crystallinity is optimal.

以下に本発明の好適な一実施の形態を実施例によって説明するが、本発明の技術的範囲は下記の実施形態によって限定されるものでなく、その要旨を変更することなく様々に改変して実施することができる。 Preferred embodiments of the present invention will be described below by way of examples. However, the technical scope of the present invention is not limited by the following embodiments, and various modifications can be made without changing the gist thereof. Can be implemented.

1)基板として10 mm×10 mm×0.5 mmtの形状のシリコン単結晶
(100) ウェーハを用いた。
2)上記基板上に、下地膜としてSiO2をスパッタリング法により、Ar 圧力 4.2×10-1 Pa、放電電力 300 Wの条件下で膜厚 50 nmの薄膜を堆積した。

3)次に、上記SiO2下地膜を付けた基板上に、完全な準結晶組成比になるようにAl (2.1 nm)/ Cu (0.6 nm)/Fe (0.3
nm)を、それぞれの膜厚を±0.01
nmの精度で、順々に電子ビーム蒸着法により、全膜厚3
nmの積層薄膜を堆積した。

4)次に、触媒活性工程として、CNT合成に用いる反応炉内で、温度
450℃、時間 30分、Ar雰囲気の条件下で熱処理を施した。この熱処理で、正20面体構造の準結晶組成から成るAl62Cu25.5Fe12.5合金微粒子を形成させた。
1) 10 mm x 10 mm x 0.5 mm t- shaped silicon single crystal as substrate
(100) A wafer was used.
2) A thin film having a thickness of 50 nm was deposited on the above substrate by sputtering using SiO 2 as an underlying film under the conditions of Ar pressure 4.2 × 10 −1 Pa and discharge power 300 W.

3) Next, Al (2.1 nm) / Cu (0.6 nm) / Fe (0.3 (0.3 nm)) is formed on the substrate with the SiO 2 base film so as to obtain a complete quasicrystalline composition ratio.
nm) for each film thickness ± 0.01
Thickness of 3 nm by electron beam evaporation in order with accuracy of nm
A laminated thin film of nm was deposited.

4) Next, in the reactor used for CNT synthesis as a catalyst activation step, the temperature
Heat treatment was performed at 450 ° C. for 30 minutes under Ar atmosphere. By this heat treatment, Al 62 Cu 25.5 Fe 12.5 alloy fine particles having a quasicrystalline composition having a regular icosahedron structure were formed.

CNTの合成方法としてアルコール触媒CVD法を用い、温度 700℃、保持時間 5分、供給ガス C2H5OH、流量
200 sccm、圧力 5.3×103 Pa の条件下でCNTを合成した。
Alcohol-catalyzed CVD is used as the synthesis method of CNT, temperature is 700 ° C, holding time is 5 minutes, supply gas C 2 H 5 OH, flow
CNTs were synthesized under the conditions of 200 sccm and pressure 5.3 × 10 3 Pa.

上記の条件で合成したCNTは、基板上に垂直方向に配列した、長さL =〜2.6 μmのCNT膜が得られた。Si/SiO2基板上に垂直方向に配列して合成したCNT膜の断面走査電子顕微鏡像を図1に示す。また、層数は単層〜3層、直径
1 nm〜5 nmに広く分布を持ったCNTが得られた。合成したCNT膜から採取したCNTバンドルの高分解能透過電子顕微鏡像を図2に示す。
The CNT synthesized under the above conditions yielded a CNT film having a length L = ˜2.6 μm arranged in the vertical direction on the substrate. FIG. 1 shows a cross-sectional scanning electron microscope image of a CNT film synthesized by arranging in a vertical direction on a Si / SiO 2 substrate. Also, the number of layers is single to 3 layers, diameter
CNTs with a wide distribution from 1 nm to 5 nm were obtained. A high-resolution transmission electron microscope image of the CNT bundle collected from the synthesized CNT film is shown in FIG.

現在、カイラリティの指数付けに関しては、共鳴ラマン散乱(Resonance
Raman Scattering:RRS)法、蛍光分光法、走査トンネル顕微鏡法等が用いられる。本発明においては、金属的および半導体的性質を有する、合成したすべてのCNTのカイラリティ分布を判定するために、基板上に合成したCNTを直接測定可能なRRS法が最適である(非特許文献5)。
Currently, regarding the indexing of chirality, resonance Raman scattering (Resonance
Raman Scattering (RRS) method, fluorescence spectroscopy, scanning tunneling microscopy, etc. are used. In the present invention, in order to determine the chirality distribution of all synthesized CNTs having metallic and semiconducting properties, the RRS method capable of directly measuring the synthesized CNTs on the substrate is optimal (Non-Patent Document 5). ).

A. Jorio, R. Saito, J.H.Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus,“Structural (n, m) Determination of Isolated Single-Wall CarbonNanotubes by Resonant Raman Scattering”, Physical Review Letters,Vol.86, No.6, p.1118-1121 (2001).A. Jorio, R. Saito, JHHafner, CM Lieber, M. Hunter, T. McClure, G. Dresselhaus, MS Dresselhaus, “Structural (n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering”, Physical Review Letters, Vol.86, No.6, p.1118-1121 (2001).

次に、RRS法により、上記の条件で合成したCNTのラジアルブリージングモードのラマンスペクトルと、そのカイラリティを指数付けした結果を図3に示す。比較のために、アルコール触媒CVD法で一般に触媒として用いられる下地層Al (2 nm)/触媒層Co (1 nm)により合成したCNT膜について、同様にそのカイラリティを指数付けした結果を図4に示す。ここで測定条件は、He-Neレーザーによる励起波長 632.8 nm、出力 0.06 mW、レーザービーム径 〜1 μmφとした。 Next, FIG. 3 shows the result of indexing the Raman spectrum of the radial breathing mode of CNT synthesized under the above conditions and its chirality by the RRS method. For comparison, FIG. 4 shows the result of indexing the chirality of a CNT film synthesized with an underlayer Al (2 nm) / catalyst layer Co (1 nm) generally used as a catalyst in an alcohol catalyst CVD method. Show. The measurement conditions here were an excitation wavelength of 632.8 nm with a He-Ne laser, an output of 0.06 mW, and a laser beam diameter of 1 μmφ.

図3より、本発明における準結晶を触媒とした場合、金属的なナノチューブが分布の80%を超えており、中でも金属的なEM 11遷移エネルギーを有する(9, 9), (10, 10),
(11, 11)等のアームチェア型、および(11,
8), (12, 9)等のニアアームチェア型のカイラリティが極めて選択的に得られた。これに対して、図4より、通常用いられる遷移金属の一種であるコバルトを触媒とした場合、全体の3分の1が金属的、3分の2が半導体的なランダムなカイラリティ分布を示しており、特に金属的なEM 11遷移エネルギーを有するスペクトルの中にアームチェア型は全く検出されず、逆に(18, 0)のジグザク型や(12, 1)等のニアジグザク型が得られた。これらの実験事実より、本発明の有効性が実証された。
From FIG. 3, when the quasicrystal in the present invention is used as a catalyst, the metallic nanotubes exceed 80% of the distribution, and among them, (9, 9), (10, 10) having metallic E M 11 transition energy. ),
Armchair type such as (11, 11), and (11,
Near armchair-type chirality such as 8), (12, 9) was obtained very selectively. On the other hand, FIG. 4 shows that when cobalt, which is a kind of transition metal that is normally used, is used as a catalyst, one-third of the total is metallic and two-thirds is a semiconductor-like random chirality distribution. In particular, no armchair type was detected in the spectrum having metallic E M 11 transition energy, and a zigzag type of (18, 0) or a near zigzag type of (12, 1) was obtained. . These experimental facts proved the effectiveness of the present invention.

シリコン基板上に垂直に配列して合成したCNT膜の断面走査電子顕微鏡写真である。2 is a cross-sectional scanning electron micrograph of a CNT film synthesized vertically arranged on a silicon substrate. 合成したCNT膜から採取したCNTバンドルの高分解能透過電子顕微鏡写真である。2 is a high-resolution transmission electron micrograph of a CNT bundle collected from a synthesized CNT film. 準結晶触媒を用いて合成したCNT膜の、共鳴ラマン散乱法により指数付けしたカイラリティ分布図である。It is a chirality distribution map indexed by a resonance Raman scattering method of a CNT film synthesized using a quasicrystalline catalyst. 比較のため、通常のコバルト触媒を用いて合成したCNT膜の、共鳴ラマン散乱法により指数付けしたカイラリティ分布図である。For comparison, it is a chirality distribution chart indexed by a resonance Raman scattering method of a CNT film synthesized using a normal cobalt catalyst.

Claims (4)

5回対称性を有する正20面体構造の準結晶組成から成る、アルミニウムと銅及び、鉄、ルテニウム、オスミウムの3種のうち何れか1種からなる金属を触媒用合金として、化学気相成長法により基板上にカーボンナノチューブを合成する方法。 Chemical vapor deposition method using a metal composed of any one of three types of aluminum, copper, and iron, ruthenium, and osmium having a icosahedral structure having a five-fold symmetry as a catalyst alloy. A method for synthesizing carbon nanotubes on a substrate. 前記載のアルミニウム合金を、物理気相成長法により基板上に薄膜状に堆積し、5回対称性を有する正20面体構造の準結晶合金薄膜を得ることを特徴とする、請求項1に記載の化学気相成長法により基板上にカーボンナノチューブを合成する方法The aluminum alloy before described, and deposited as a thin film on a substrate by physical vapor deposition, characterized by Rukoto give quasicrystalline alloy thin film of icosahedral structure having a 5-fold symmetry, in claim 1 A method of synthesizing carbon nanotubes on a substrate by the chemical vapor deposition method described . 前記アルミニウム、銅、及び鉄、ルテニウム、オスミウムの3種のうち何れか1種を、物理気相成長法により基板上に順次堆積した後、熱処理を加えることにより、5回対称性を有する正20面体構造の準結晶合金薄膜を得ることを特徴とする、請求項1に記載の化学気相成長法により基板上にカーボンナノチューブを合成する方法The aluminum, copper, and iron, ruthenium, and osmium are deposited on the substrate sequentially by any one of the three kinds of aluminum, copper, ruthenium, and osmium, and then subjected to a heat treatment, thereby forming a positive 20-fold symmetry. A method for synthesizing carbon nanotubes on a substrate by chemical vapor deposition according to claim 1, wherein a quasicrystalline alloy thin film having a planar structure is obtained. 前記準結晶合金薄膜をリソグラフィー法を用いて基板上にパターニングすることにより、基板上の所定の位置にカーボンナノチューブを合成することを特徴とする請求項1〜3の何れか一項に記載の化学気相成長法により基板上にカーボンナノチューブを合成する方法 The chemistry according to any one of claims 1 to 3 , wherein carbon nanotubes are synthesized at predetermined positions on the substrate by patterning the quasicrystalline alloy thin film on the substrate using a lithography method. A method of synthesizing carbon nanotubes on a substrate by vapor deposition .
JP2008015209A 2008-01-25 2008-01-25 Carbon nanotube synthesis using quasicrystalline catalyst Expired - Fee Related JP5218958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015209A JP5218958B2 (en) 2008-01-25 2008-01-25 Carbon nanotube synthesis using quasicrystalline catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015209A JP5218958B2 (en) 2008-01-25 2008-01-25 Carbon nanotube synthesis using quasicrystalline catalyst

Publications (2)

Publication Number Publication Date
JP2009173497A JP2009173497A (en) 2009-08-06
JP5218958B2 true JP5218958B2 (en) 2013-06-26

Family

ID=41029031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015209A Expired - Fee Related JP5218958B2 (en) 2008-01-25 2008-01-25 Carbon nanotube synthesis using quasicrystalline catalyst

Country Status (1)

Country Link
JP (1) JP5218958B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5590858B2 (en) * 2009-10-28 2014-09-17 ニッタ株式会社 Method for producing magnetic metal catalyst fine particle-formed substrate
JP5636337B2 (en) * 2011-06-22 2014-12-03 株式会社デンソー Method for producing carbon nanotube film
JP5906109B2 (en) * 2012-03-23 2016-04-20 ビジョン開発株式会社 Method for producing filamentous or sheet-like carbon nanotubes
JP2020197544A (en) * 2020-09-17 2020-12-10 国立大学法人鳥取大学 Adsorber and analyzer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279624A (en) * 2004-03-27 2005-10-13 Osaka Prefecture Catalyst, method and apparatus for producing carbon nanotube
JP5187193B2 (en) * 2006-03-16 2013-04-24 富士通株式会社 Carbon nanotube structure, carbon nanotube production method, electrical functional device, carbon nanotube growth catalyst fine particles
JP4850900B2 (en) * 2006-03-23 2012-01-11 富士通株式会社 Method for producing carbon nanotubes

Also Published As

Publication number Publication date
JP2009173497A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
Ren et al. Aligned carbon nanotubes: physics, concepts, fabrication and devices
JP4811712B2 (en) Carbon nanotube bulk structure and manufacturing method thereof
Purohit et al. Carbon nanotubes and their growth methods
Pumera et al. Graphane and hydrogenated graphene
Sridhar et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes
TWI360522B (en) Oriented carbon nanotube bulk aggregate and manufa
EP1948562B1 (en) Carbon nanotubes functionalized with fullerenes
JP4915826B2 (en) Application of carbon nanotubes
US20170096338A1 (en) Nanotube-nanohorn complex and method of manufacturing the same
WO2006052009A1 (en) Carbon nanotube aggregate and process for producing the same
JP2006015342A (en) Method for manufacturing catalyst base for carbon nanotubes production, and method for manufacturing carbon nanotubes using this catalyst base formation method
JP2017019718A (en) Manufacturing method of carbon nano-tube
JP5218958B2 (en) Carbon nanotube synthesis using quasicrystalline catalyst
JP2005277096A (en) Semiconductor interconnection constituted by use of metal film containing carbon nanotube and its manufacturing method, and method of manufacturing metal film containing carbon nanotube
JP2003277029A (en) Carbon nanotube and method for manufacturing the same
Ramirez et al. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition
US20080203884A1 (en) Field emission cathode and method for fabricating same
Rajesh et al. Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition
Maruyama Carbon nanotube growth mechanisms
JP6476759B2 (en) Method of manufacturing aligned carbon nanotube assembly
JP2004018342A (en) Carbon nanotube, its producing method and catalyst for producing carbon nanotube
Zhao et al. A temperature window for ethanol chemical vapor deposition of a carbon nanotube array catalyzed by Co particles
Yadav et al. Flame synthesis of carbon nanotubes using camphor and its characterization
JP5099331B2 (en) Nanocarbon material composite, method for producing the same, and electron-emitting device using the same
JP5508215B2 (en) Method for producing substrate for forming carbon nanostructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees