JP5218180B2 - Method for collecting sludge from flue gas wastewater - Google Patents

Method for collecting sludge from flue gas wastewater Download PDF

Info

Publication number
JP5218180B2
JP5218180B2 JP2009062297A JP2009062297A JP5218180B2 JP 5218180 B2 JP5218180 B2 JP 5218180B2 JP 2009062297 A JP2009062297 A JP 2009062297A JP 2009062297 A JP2009062297 A JP 2009062297A JP 5218180 B2 JP5218180 B2 JP 5218180B2
Authority
JP
Japan
Prior art keywords
flue gas
sludge
waste water
wastewater
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009062297A
Other languages
Japanese (ja)
Other versions
JP2010214268A (en
Inventor
祐基 丹羽
忠道 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009062297A priority Critical patent/JP5218180B2/en
Publication of JP2010214268A publication Critical patent/JP2010214268A/en
Application granted granted Critical
Publication of JP5218180B2 publication Critical patent/JP5218180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、産業活動等により発生する排煙を処理した排水である排煙処理排水、特に排煙から煤塵、NO、SO等を除去する際に発生する排煙処理排水から微細粒子を分離し、その際のスラッジを減量化すると共に安定した回収が可能となるスラッジの回収方法に関するものである。 The present invention, flue gas treatment waste water is waste water treated flue gas generated by industrial activities, in particular soot from the flue gas, NO X, the fine particles from the flue gas treatment wastewater generated in removing the SO X or the like The present invention relates to a sludge collecting method that separates, reduces sludge at that time, and enables stable collection.

従来、産業活動等により発生する排煙、特に焼却場、ボイラ等で発生する排煙は電気集塵器(EP)で排煙中の粒子・煤塵を除去し、一般的にアルカリ液等と接触させてNO、SO等のガス成分を捕捉するため、その排煙処理排水は懸濁物質濃度が低く、また懸濁している粒子は微細であるという特徴を有している。 Conventionally, flue gas generated by industrial activities, especially flue gas generated from incinerators, boilers, etc., removes particles and dust in the flue gas with an electric dust collector (EP), and generally comes in contact with alkaline liquids etc. is allowed to NO X, to capture gas components such as SO X, the flue gas treatment waste water has a feature that particles suspended solids concentration is low, and the suspension is fine.

このような微細な粒子を微量含有した排煙処理排水から微細粒子を分離除去する方法としては、フィルターでの膜分離等による方法が一般的である。しかし、このような方法では、排煙処理排水中の微細粒子は粒子径が小さいことから膜の目詰まり等による濾過効率の低下や微細粒子の高濃度化が困難という課題があった。   As a method for separating and removing fine particles from the flue gas treatment wastewater containing a small amount of such fine particles, a method by membrane separation with a filter is generally used. However, in such a method, since the fine particles in the smoke treatment waste water have a small particle size, there are problems that the filtration efficiency is lowered due to clogging of the membrane and the like, and it is difficult to increase the concentration of the fine particles.

また、膜への目詰まり等を防止する目的で、珪藻土等の濾過助剤の添加が行われてきたが、珪藻土等の添加は結果としてスラッジの増量を招き、該スラッジを処理する際のコストが増加するという課題があった。   In addition, filter aids such as diatomaceous earth have been added for the purpose of preventing clogging of the membrane, but the addition of diatomaceous earth results in an increase in sludge and the cost of processing the sludge. There has been a problem of increasing.

そして、排水中の微小粒子を巨大なフロックとして分離除去する凝集沈降法として凝集剤を添加する方法が知られており、排煙処理排水に高分子凝集剤を用い、スラッジを減量化する方法が提案されている(例えば特許文献1参照。)。   A method of adding a flocculant is known as a coagulation sedimentation method that separates and removes microparticles in wastewater as huge flocs, and a method of reducing sludge by using a polymer flocculant in flue gas wastewater. It has been proposed (see, for example, Patent Document 1).

特開2001−224906号公報(特許請求の範囲)JP 2001-224906 A (Claims)

しかし、特許文献1に提案の方法においては、排煙処理排水に高分子凝集剤を添加することにより、珪藻土等を用いる場合と比較してスラッジを減量化することについては可能ではあるものの、工業的な効率的運転等という点に関してはまだまだ課題を有するものであった。   However, in the method proposed in Patent Document 1, although it is possible to reduce sludge by adding a polymer flocculant to the flue gas treatment wastewater as compared with the case of using diatomaceous earth or the like, There were still problems with respect to efficient and efficient operation.

そこで、本発明は、排煙処理排水からスラッジを回収する際に、スラッジを減量化すると共に安定した回収が可能となるスラッジの回収方法を提供するものである。   Therefore, the present invention provides a sludge recovery method that reduces sludge and enables stable recovery when recovering sludge from flue gas wastewater.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、特定の工程を経たスラッジの回収方法とすることにより、排煙処理排水からスラッジを回収する際にスラッジの減量化が可能となると共に、安定したスラッジの回収が可能となるとなることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have made it possible to reduce the amount of sludge when recovering sludge from flue gas wastewater by using a sludge recovery method that has undergone a specific process. In addition, the present inventors have found that stable sludge can be recovered and have completed the present invention.

即ち、本発明は、少なくとも下記(I)〜(IV)工程を経ることを特徴とする排煙処理排水からのスラッジの回収方法に関するものである。
(I)工程;排煙処理排水にアニオン性高分子凝集剤を添加する工程。
(II)工程;(I)工程の後の排煙処理排水を濃縮沈降装置に移送し、沈降相を分離し、凝集混和槽へ移送する工程。
(III)工程;(II)工程の後の凝集混和槽にカチオン性高分子凝集剤及び排煙処理排水に対し0.5〜5倍容量の水を添加した後、撹拌を行い巨大フロックの形成を行う工程。
(IV)工程;(III)工程の後の巨大フロックを形成した排煙処理排水を脱水機に移送し、脱水を行った後スラッジを回収する工程。
That is, the present invention relates to a method for recovering sludge from smoke treatment wastewater, characterized in that it undergoes at least the following steps (I) to (IV).
(I) Step: A step of adding an anionic polymer flocculant to the smoke treatment waste water.
(II) Step: A step of transferring the smoke treatment waste water after the step (I) to a concentration and settling device, separating a settling phase, and transferring it to a coagulation mixing tank.
(III) Step; After adding 0.5 to 5 times the volume of water to the cationic polymer flocculant and the smoke treatment waste water in the flocculation and mixing tank after the step (II), stirring is performed to form a huge floc The process of performing.
(IV) Step; Step (III) A step of transferring the flue gas treatment waste water that has formed a huge flock after the step to a dehydrator and collecting the sludge after dehydration.

以下、本発明に関し詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のスラッジの回収方法は、少なくとも上記(I)〜(IV)工程を経る排煙処理排水からスラッジを回収する方法である。該回収方法を実施する際の好ましい一態様を図1に示す。ここで、a)はボイラ、b)はタービン、c)は発電機、d)は排煙脱硝装置、e)は電気集塵器、f)は排煙脱硫装置、g)は濃縮沈降装置、h)は凝集混和槽、i)は脱水機のそれぞれを示す。   The sludge recovery method of the present invention is a method of recovering sludge from smoke treatment wastewater that has passed through at least the steps (I) to (IV). A preferred embodiment for carrying out the recovery method is shown in FIG. Here, a) is a boiler, b) is a turbine, c) is a generator, d) is a flue gas denitration device, e) is an electrostatic precipitator, f) is a flue gas desulfurization device, g) is a concentration and settling device, h) is a coagulation mixing tank, and i) is a dehydrator.

本発明でいう排煙処理排水とは、排煙を処理した排水、更には排煙処理排水から生じる汚泥も含むものである。このような排煙処理排水とは、例えば焼却場、ボイラ等で発生する排煙から煤塵、NO,SO等のガス成分を除去する際に発生する排水および汚泥を挙げることができる。本発明の方法は、特に火力発電用大型ボイラ等で発生する排煙からd)で示す排煙脱硝装置にてNOを除去し、e)で示す電気集塵器(EP)で煤塵を除去した後、f)で示す排煙脱硫装置により水酸化マグネシウム水溶液に代表されるアルカリ液と接触させSOを除去する際に発生する排煙脱硫排水からのスラッジ回収に有効なものである。そして、特に微細粒子の凝集効率を高め、スラッジの回収効率、減量化に効率的であることから、該排煙処理排水における微細粒子濃度は、懸濁物質濃度として100〜10000mg/l、特に1500〜4000mg/lの範囲であることが好ましい。なお、この際の微細粒子濃度は、JIS K0102(工場排水試験方法)により測定すればよい。 The flue gas treated waste water as used in the present invention includes waste water that has been treated for flue gas, and also sludge generated from the flue gas treated waste water. Examples of such flue gas treatment waste water include waste water and sludge generated when removing gas components such as soot, NO x , and SO x from flue gas generated in an incinerator, a boiler, and the like. The method of the present invention, the NO X is removed by denitrification device described in d) from the flue gas, in particular generated in thermal power for a large boiler, removing dust in the electrostatic precipitator (EP) indicated by e) after, is effective in sludge recovery from flue gas desulfurization wastewater generated in removing the SO X is contacted with an alkaline solution typified by magnesium hydroxide aqueous solution by flue gas desulfurization apparatus shown in f). In particular, the fine particle concentration in the flue gas treatment wastewater is 100 to 10,000 mg / l, particularly 1500, as the suspended solids concentration, because the aggregation efficiency of fine particles is enhanced and the sludge recovery efficiency and efficiency are reduced. It is preferably in the range of ˜4000 mg / l. The fine particle concentration at this time may be measured according to JIS K0102 (factory drainage test method).

本発明における(I)工程は、該排煙処理排水をg)で示す濃縮沈降装置に移送する前に、排煙処理排水に対し、アニオン性高分子凝集剤を添加する工程であり、該添加方法としては、例えば別途混合槽を設け添加する方法、移送途中の配管より直接添加する方法等を挙げることが出来る。   The step (I) in the present invention is a step of adding an anionic polymer flocculant to the flue gas wastewater before transferring the flue gas wastewater to the concentration and sedimentation device shown in g). Examples of the method include a method of adding a separate mixing tank and adding, a method of adding directly from a pipe in the middle of transfer, and the like.

該アニオン性高分子凝集剤としては、一般的にアニオン性高分子凝集剤として知られているものを用いることが可能であり、例えばアクリル酸またはその塩の重合物、アクリル酸またはその塩とアクリルアミドとの共重合物、アクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩の共重合物、アクリル酸またはその塩とアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩の3元共重合物、ポリアクリルアミドの部分加水分解物等が挙げられ、特に優れた凝集効果を示すことからアクリルアミドとアクリル酸ナトリウム塩との共重合物、アクリル酸ナトリウム塩単独重合物であることが好ましく、該アニオン性高分子凝集剤は2種以上を併用してもよい。該アニオン性高分子凝集剤の分子量としては特に制限はなく、その中でも優れた凝集効果が得られることから分子量5000000〜20000000のアニオン性高分子凝集剤であることが好ましい。また、(I)工程における高分子凝集剤の添加量としては、凝集効果が発現される限りにおいて如何なる制限を受けるものではなく、特に優れた凝集効果と経済性が発現されることからアニオン性高分子凝集剤濃度が0.1〜1000mg/lとなるように添加することが好ましい。   As the anionic polymer flocculant, those generally known as anionic polymer flocculants can be used. For example, a polymer of acrylic acid or a salt thereof, acrylic acid or a salt thereof and acrylamide A copolymer of acrylamide and 2-acrylamido-2-methylpropanesulfonate, a terpolymer of acrylic acid or its salt and acrylamide and 2-acrylamido-2-methylpropanesulfonate, Examples include a partially hydrolyzed polyacrylamide and the like, and since it exhibits a particularly excellent aggregating effect, a copolymer of acrylamide and sodium acrylate, and a homopolymer of sodium acrylate are preferable. Two or more molecular flocculants may be used in combination. The molecular weight of the anionic polymer flocculant is not particularly limited, and among them, an anionic polymer flocculant having a molecular weight of 5,000,000 to 20,000,000 is preferable because an excellent aggregation effect is obtained. In addition, the amount of the polymer flocculant added in the step (I) is not limited as long as the aggregation effect is exhibited. It is preferable to add such that the molecular flocculant concentration is 0.1 to 1000 mg / l.

本発明における(II)工程は、(I)工程においてアニオン性高分子凝集剤を添加した排煙処理排水をg)で示す濃縮沈降装置に移送し、該濃縮沈降装置内で排煙処理排水を上澄み相と微細粒子が凝集沈降した沈降相の2相に相分離させた後に、微細粒子が濃縮された沈降相をh)で示す凝集混和槽へ移送する工程である。   In the step (II) of the present invention, the flue gas treatment wastewater to which the anionic polymer flocculant is added in the step (I) is transferred to the concentration and sedimentation device indicated by g), and the flue gas treatment wastewater is transferred in the concentration and sedimentation device. In this step, the supernatant phase and the precipitated phase in which fine particles are aggregated and settled are separated into two phases, and then the precipitated phase in which the fine particles are concentrated is transferred to an agglomeration and mixing tank indicated by h).

ここで、濃縮沈降装置としては、アニオン性高分子凝集剤を添加した排煙処理排水を上澄み相と微細粒子が凝集沈降した沈降相とに相分離することが可能な装置であれば如何なる装置を用いることも可能であり、工業的には例えばシックナーと称されることもある。また、該濃縮沈降装置により上澄み相と沈降相の分離を行う際には、特にスラッジの回収効率に優れ、安定運転が可能となることから沈降相の体積率が10〜20体積%となった時点で分離を行うことが好ましい。   Here, as the concentration and sedimentation device, any device can be used as long as it can phase-separate the exhaust gas treated with anionic polymer flocculant into a supernatant phase and a sedimented phase in which fine particles are aggregated and settled. It can also be used, and is sometimes referred to industrially as a thickener, for example. Further, when the supernatant phase and the sedimented phase are separated by the concentrated sedimentation apparatus, the volume fraction of the sedimented phase is 10 to 20% by volume because it is particularly excellent in sludge recovery efficiency and enables stable operation. It is preferable to carry out the separation at the time.

該沈降相は、凝集し濃縮された微細粒子をさらに巨大フロックとするために撹拌機を有するh)に示す凝集混和槽へ移送するものである。この移送の際には、特により巨大なフロックが形成されることからスラッジの回収効率に優れ、安定運転が可能な回収方法となることから、上記したアニオン性高分子凝集剤をさらに添加することも可能である。   The sedimentation phase is transferred to the agglomeration mixing tank shown in h) having a stirrer in order to further agglomerate and concentrate the fine particles into a giant floc. In this transfer, since a larger floc is formed, it is excellent in sludge recovery efficiency and becomes a recovery method capable of stable operation. Is also possible.

本発明における(III)工程は、(II)工程の後の凝集混和槽にカチオン性高分子凝集剤を添加し、撹拌を行うことにより巨大フロックを形成する工程である。   The step (III) in the present invention is a step of forming a giant floc by adding a cationic polymer flocculant to the agglomeration and mixing tank after the step (II) and stirring.

ここで、h)で示す凝集混和槽としては、撹拌を行うことが可能であれば如何なる装置をも用いることが可能である。撹拌を伴わない場合、微細粒子を巨大フロックとすることが困難となる。この際の巨大フロックは後の(IV)工程による脱水が容易となり、スラッジの回収効率に優れることから直径2mm以上とすることが好ましい。   Here, as the agglomeration mixing tank shown by h), any apparatus can be used as long as stirring can be performed. Without stirring, it becomes difficult to make the fine particles into giant flocs. In this case, it is preferable that the giant floc has a diameter of 2 mm or more because dehydration in the later step (IV) is facilitated and sludge recovery efficiency is excellent.

また、該カチオン性高分子凝集剤としては、一般的にカチオン性高分子凝集剤として知られているものを用いることが可能であり、例えばジメチルアミノエチル(メタ)アクリレートの3級及び/又は4級塩(例えば塩化メチル4級塩)の重合物、ジメチルアミノエチル(メタ)アクリレートの3級塩及び/又は4級塩(例えば塩化メチル4級塩)とアクリルアミドの共重合物、N−ビニルアクリルアミジン塩単位含有高分子凝集剤(例えば特開平05−192513号公報、特開平08−155500号公報、特開平08−243600号公報、特開平09−087323号公報に記載の高分子凝集剤)等のカチオン性高分子凝集剤などが挙げられ、その中でも特に優れた凝集効果を示すことからアクリルアミドとジメチルアミノエチルアクリレートの塩化メチル4級塩との共重合物であることが好ましく、該カチオン性高分子凝集剤は2種以上を併用してもよい。また、(III)工程における高分子凝集剤の添加量としては、凝集効果が発現される限りにおいて如何なる制限を受けるものではなく、特に優れた凝集効果と経済性が発現されることからカチオン性高分子凝集剤濃度が0.1〜1000mg/lとなるように添加することが好ましい。   Further, as the cationic polymer flocculant, those generally known as cationic polymer flocculants can be used, for example, dimethylaminoethyl (meth) acrylate tertiary and / or 4 Polymer of quaternary salt (for example, methyl chloride quaternary salt), dimethylaminoethyl (meth) acrylate tertiary salt and / or quaternary salt (for example, methyl chloride quaternary salt) and acrylamide copolymer, N-vinylacrylic Amidine salt unit-containing polymer flocculant (for example, polymer flocculants described in JP-A No. 05-192513, JP-A No. 08-155500, JP-A No. 08-243600, JP-A No. 09-087323) and the like Cationic polymer flocculants such as acrylamide and dimethylaminoethyl acetate are shown because of their particularly excellent aggregation effects. Is preferably a copolymer of methyl chloride quaternary salt of relations, the cation polymer flocculating agents may be used in combination of two or more. In addition, the amount of the polymer flocculant added in the step (III) is not subject to any limitation as long as the aggregating effect is manifested. It is preferable to add such that the molecular flocculant concentration is 0.1 to 1000 mg / l.

更に該(III)工程においては、濃縮後の排煙処理排水の濃度を調整することにより、凝集混和槽における巨大フロックの形成がより容易に行えることから、凝集混和槽における撹拌の際に水を添加することが好ましい。この際の水としては特に制限はなく、例えば工業用水、水道水、天然水、イオン交換水、蒸留水等を挙げることができる。また、その際の水の添加量としては、濃縮された排煙処理排水に対し0.5〜5倍容量、特に1.5〜3倍容量であることが好ましい。そして、該凝集混和槽においては、より巨大なフロックが効率よく形成されることから、5分間以上撹拌を行うことが好ましい。   Furthermore, in the step (III), by adjusting the concentration of the flue gas treatment waste water after concentration, it is possible to more easily form a huge floc in the coagulation mixing tank. It is preferable to add. There is no restriction | limiting in particular as water in this case, For example, industrial water, tap water, natural water, ion-exchange water, distilled water etc. can be mentioned. Moreover, as the addition amount of the water in that case, it is preferable that it is 0.5-5 times volume with respect to the concentrated flue-gas treatment waste_water | drain, especially 1.5-3 times volume. In the agglomeration and mixing tank, it is preferable to perform stirring for 5 minutes or more because a larger flock is efficiently formed.

本発明における(IV)工程は、(III)工程により巨大フロックを形成した排煙処理排水をi)で示す脱水機に移送し、脱水を行うことにより排煙処理排水中に含まれる微細粒子をスラッジとして回収する工程である。   In the step (IV) of the present invention, the flue gas treated wastewater that has formed a huge floc in the step (III) is transferred to the dehydrator shown in i), and the fine particles contained in the flue gas wastewater are removed by dehydration. It is a process of collecting as sludge.

この際の脱水機としては、巨大フロックを形成した排煙処理排水の脱水を行うことが可能であれば如何なる装置を用いることも可能であり、例えばベルトプレス型脱水機、スクリュープレス型脱水機、多重円盤型脱水機、遠心脱水機等を挙げることができ、その中でも脱水効率に優れ、スラッジに含有される水分量の低減化が可能でありスラッジの減量化に効果的であることからスクリュープレス型脱水機であることが好ましい。   As the dehydrator at this time, any device can be used as long as it is capable of dehydrating the flue gas processing waste water forming a huge floc, such as a belt press dehydrator, a screw press dehydrator, Multiple disk type dehydrators, centrifugal dehydrators, etc. can be mentioned, among them screw press because of its excellent dewatering efficiency, the ability to reduce the amount of water contained in sludge, and effective in reducing sludge A mold dehydrator is preferred.

なお、本発明の排煙処理排水からのスラッジの回収方法においては、該脱水機からの脱水液に少量のスラッジが混入する場合、該脱水液を(I)〜(III)工程の少なくとも1つの工程に供給、例えばg)で示す濃縮沈降装置に供給、することにより、再度凝集させることが可能となり、より効率的にスラッジの回収を行うことが可能となる。   In the method for recovering sludge from the smoke treatment waste water of the present invention, when a small amount of sludge is mixed in the dewatered liquid from the dehydrator, the dewatered liquid is added to at least one of the steps (I) to (III). By supplying it to the process, for example, supplying it to the concentration and sedimentation apparatus shown in g), it is possible to agglomerate again and to collect sludge more efficiently.

本発明の排煙処理排水からのスラッジの回収方法は、上記した少なくとも(I)〜(IV)工程を経るものであり、本発明の目的を逸脱しない限りにおいてさらに付加的工程を追加することも可能である。   The method for recovering sludge from the flue gas wastewater of the present invention undergoes at least the steps (I) to (IV) described above, and additional steps may be added without departing from the object of the present invention. Is possible.

本発明の回収方法により得られたスラッジは、通常の産業廃棄物と同様に処理することが可能であり、その際の含水率が低いことから産業廃棄物の排出量減量化の効果は大きいものである。また、基本的にはポリ塩化アルミニウム等に代表される無機凝集剤を用いる必要が無いことから、薬液に関するコストの低減化が可能となる。さらに、珪藻土をも用いる必要性もないことからスラッジの減量化も可能となり、産業廃棄物の排出量抑制化効果も大きいものである。   The sludge obtained by the recovery method of the present invention can be treated in the same manner as ordinary industrial waste, and the water content at that time is low, so the effect of reducing the amount of industrial waste discharged is great. It is. In addition, it is basically unnecessary to use an inorganic flocculant represented by polyaluminum chloride and the like, and thus the cost for chemicals can be reduced. Furthermore, since it is not necessary to use diatomaceous earth, sludge can be reduced, and the effect of suppressing industrial waste emission is great.

本発明は、産業活動等により発生する排煙を処理した排煙処理排水から微細粒子を分離したスラッジを減量化すると共に安定した回収を可能とするものであり、その工業的価値は高いものである。   The present invention is capable of reducing the amount of sludge from which fine particles are separated from the flue gas treated wastewater generated by industrial activities and the like, and enabling stable recovery, and its industrial value is high. is there.

;本発明の排煙処理排水からのスラッジの回収方法を行う際の一態様のフロー図。; Flow chart of one mode when carrying out the method of collecting sludge from the flue gas treatment waste water of the present invention.

排煙処理排水からのスラッジの回収は、図1に示すスラッジ回収フロー図に基づき実施した。   The sludge recovery from the flue gas wastewater was carried out based on the sludge recovery flowchart shown in FIG.

実施例1
火力発電所(ボイラ(a))から排出される排煙を脱硝(NO)処理(d))・電気集塵器(e))にて微細粒子・煤塵を除去した後に、f)で示される排煙脱硫装置にて排煙と水酸化マグネシウム水溶液とを接触して微細粒子・SOを捕捉した排煙処理排水(微細粒子の懸濁物濃度2500mg/l)とした。該排煙処理排水にアクリルアミド−アクリル酸ナトリウム塩共重合物であるアニオン性高分子凝集剤を濃度1mg/lとなるように添加し、g)で示す濃縮沈降装置に移送し、上澄み相と沈降相とに2相分離を行い、沈降相の比率が15体積%となった時点で沈降相である濃縮排煙処理排水をh)で示す凝集混和槽に移送した。
Example 1
After removing fine particles and soot from the thermal power plant (boiler (a)) with denitration (NO x ) treatment (d)) and electrostatic precipitator (e)), it is shown in f) was flue gas treatment waste water by contacting the flue gas with the magnesium hydroxide solution to capture fine particles · SO X (suspension concentration 2500 mg / l of fine particles) in flue gas desulfurization apparatus. An anionic polymer flocculant, which is an acrylamide-acrylic acid sodium salt copolymer, is added to the flue gas treatment waste water so as to have a concentration of 1 mg / l, transferred to the concentration and sedimentation device shown in g), and the supernatant phase and sedimentation. The phases were separated into two phases, and when the ratio of the sedimented phase reached 15% by volume, the concentrated flue gas wastewater that was the sedimented phase was transferred to a coagulation mixing tank indicated by h).

そして、凝集混和槽にて、アクリルアミド−ジメチルアミノエチルアクリレート塩化メチル4級塩共重合物であるカチオン性高分子凝集剤を濃度42.3mg/lとなるように添加すると共に工業用水を濃縮排煙処理排水に対し1倍容量添加し、6分30秒撹拌を行うことにより直径2〜3mmを有する巨大フロックを形成した排煙処理排水とし、i)で示すスクリュープレス型脱水機に移送し、脱水を行うことにより含水率38%のスラッジを回収した。また、その際の脱水は効率よく運転することが可能であった。なお、脱水液はg)で示す濃縮沈降装置に供給した。   Then, a cationic polymer flocculant, which is an acrylamide-dimethylaminoethyl acrylate methyl chloride quaternary salt copolymer, is added to a concentration of 42.3 mg / l in an agglomeration and mixing tank, and industrial water is concentrated and exhausted. Add 1 volume to the treated wastewater and stir for 6 minutes and 30 seconds to form a flue gas treated wastewater with a huge floc having a diameter of 2 to 3 mm, and transfer it to the screw press type dehydrator shown in i). The sludge having a water content of 38% was recovered. Further, the dehydration at that time could be operated efficiently. The dehydrated liquid was supplied to the concentration and sedimentation apparatus indicated by g).

実施例2
h)で示す凝集混和槽に移送する際に、濃縮排煙処理排水にアクリル酸ナトリウム塩重合物であるアニオン性高分子凝集剤を濃度30mg/lとなるように添加した以外は、実施例1と同様の方法より、スラッジを回収した。その際のスラッジの含水率は36%であり、また、その際の脱水は効率よく運転することが可能であった。
Example 2
Example 1 except that an anionic polymer flocculant, which is a sodium acrylate polymer, was added to the concentrated flue gas treatment waste water at a concentration of 30 mg / l when transferred to the flocculent mixing tank shown in h). The sludge was collected by the same method. The water content of the sludge at that time was 36%, and the dehydration at that time could be operated efficiently.

比較例1
h)で示す凝集混和槽でのアクリルアミド−ジメチルアミノエチルアクリレート塩化メチル4級塩共重合物であるカチオン性高分子凝集剤の添加を行わなかった以外は、実施例1と同様の方法により、スラッジの回収を試みたが凝集混和槽での巨大フロックの形成が不足しておりスクリュープレス型脱水機による脱水が非常に難しく、スラッジの含水率は50%と非常に高いものとなった。
Comparative Example 1
h) In the same manner as in Example 1 except that the cationic polymer flocculant, which is a copolymer of acrylamide-dimethylaminoethyl acrylate methyl chloride quaternary salt, was not added to the flocculent mixing tank shown in FIG. However, the formation of huge flocs in the coagulation mixing tank was insufficient, so that dehydration by a screw press type dehydrator was very difficult, and the moisture content of the sludge was as high as 50%.

a);ボイラ
b);タービン
c);発電機
d);排煙脱硝装置
e);電気集塵器
f);排煙脱硫装置
g);濃縮沈降装置
h);凝集混和槽
i);脱水機
Boiler b); Turbine c); Generator d); Flue gas denitration device e); Electric dust collector f); Flue gas desulfurization device g); Concentration sedimentation device h); Machine

Claims (6)

少なくとも下記(I)〜(IV)工程を経ることを特徴とする排煙処理排水からのスラッジの回収方法。
(I)工程;排煙処理排水にアニオン性高分子凝集剤を添加する工程。
(II)工程;(I)工程の後の排煙処理排水を濃縮沈降装置に移送し、沈降相を分離し、凝集混和槽へ移送する工程。
(III)工程;(II)工程の後の凝集混和槽にカチオン性高分子凝集剤及び排煙処理排水に対し0.5〜5倍容量の水を添加し、撹拌を行い巨大フロックの形成を行う工程。
(IV)工程;(III)工程の後の巨大フロックを形成した排煙処理排水を脱水機に移送し、脱水を行った後スラッジを回収する工程。
A method for recovering sludge from flue gas wastewater, which includes at least the following steps (I) to (IV).
(I) Step: A step of adding an anionic polymer flocculant to the smoke treatment waste water.
(II) Step: A step of transferring the smoke treatment waste water after the step (I) to a concentration and settling device, separating a settling phase, and transferring it to a coagulation mixing tank.
(III) Step; Add 0.5 to 5 times volume of water to the cationic polymer flocculant and flue gas treatment wastewater in the coagulation and mixing tank after step (II), and stir to form giant floc The process to perform.
(IV) Step; Step (III) A step of transferring the flue gas treatment waste water that has formed a huge flock after the step to a dehydrator and collecting the sludge after dehydration.
前記(I)工程における排煙処理排水が、懸濁物濃度として100〜10000mg/lの微細粒子を含む排煙処理排水であることを特徴とする請求項1に記載の排煙処理排水からのスラッジの回収方法。 The smoke treatment waste water in the step (I) is a smoke treatment waste water containing fine particles having a suspension concentration of 100 to 10000 mg / l. Sludge collection method. 前記(I)工程における排煙処理排水が、排煙を脱煤塵処理、脱NO処理、脱SO処理のそれぞれを行い発生した排煙処理排水であることを特徴とする請求項1又は2に記載の排煙処理排水からのスラッジの回収方法。 Wherein (I) flue gas treatment waste water in the step, flue gas de-dust treatment, de-NO X treatment, according to claim 1 or 2, characterized in that a flue gas treating wastewater was carried out occurs each de-SO X treatment Of sludge from the smoke treatment waste water described in 1. 前記(II)工程における濃縮沈降装置による分離は、排煙処理排水を上澄み相と沈降相の2相に相分離させた後、該沈降相の体積率が10〜20体積%となった時点で分離を行うものであることを特徴とする請求項1〜3のいずれかに記載の排煙処理排水からのスラッジの回収方法。 Once separation by concentrating settler in the (II) step, after 2-phase phase separation of the flue gas treatment and drainage supernatant phase settling phase, the volume ratio of the precipitated phase became 10-20 vol% The method for recovering sludge from the smoke treatment waste water according to any one of claims 1 to 3, wherein the sludge is separated . 前記(II)工程における沈降相の凝集混和槽への移送時に、さらにアニオン性高分子凝集剤を添加することを特徴とする請求項1〜4のいずれかに記載の排煙処理排水からのスラッジの回収方法。 The sludge from the flue gas treatment wastewater according to any one of claims 1 to 4, wherein an anionic polymer flocculant is further added at the time of transferring the precipitated phase to the coagulation mixing tank in the step (II). Recovery method. 前記(IV)工程で発生する脱水液を前記(I)工程〜(III)工程の少なくとも1つの工程に供給することを特徴とする請求項1〜5のいずれかに記載の排煙処理排水からのスラッジの回収方法。 The dehydrating liquid generated in the step (IV) is supplied to at least one of the steps (I) to (III), from the smoke treatment waste water according to any one of claims 1 to 5. Sludge collection method.
JP2009062297A 2009-03-16 2009-03-16 Method for collecting sludge from flue gas wastewater Expired - Fee Related JP5218180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062297A JP5218180B2 (en) 2009-03-16 2009-03-16 Method for collecting sludge from flue gas wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062297A JP5218180B2 (en) 2009-03-16 2009-03-16 Method for collecting sludge from flue gas wastewater

Publications (2)

Publication Number Publication Date
JP2010214268A JP2010214268A (en) 2010-09-30
JP5218180B2 true JP5218180B2 (en) 2013-06-26

Family

ID=42973696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062297A Expired - Fee Related JP5218180B2 (en) 2009-03-16 2009-03-16 Method for collecting sludge from flue gas wastewater

Country Status (1)

Country Link
JP (1) JP5218180B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135086B2 (en) * 2012-10-05 2017-05-31 栗田工業株式会社 Desulfurization wastewater treatment method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314693A (en) * 1976-07-28 1978-02-09 Nippon Kokan Kk <Nkk> Treating method for slurry in flue gas desulfurization process producing by-product gypsum
JPS56118717A (en) * 1980-02-22 1981-09-17 Mitsubishi Heavy Ind Ltd Treatment of waste gas
JPS62238000A (en) * 1986-04-09 1987-10-17 Mitsubishi Heavy Ind Ltd Treatment of sludge of waste water from waste gas desulfurizing process
JP2578112B2 (en) * 1987-04-30 1997-02-05 三菱重工業株式会社 Method for treating fluorine in flue gas desulfurization wastewater
JPH082437B2 (en) * 1989-12-28 1996-01-17 三谷セキサン株式会社 High concentration mud water treatment method and dehydrator
JP3353404B2 (en) * 1993-08-10 2002-12-03 石川島播磨重工業株式会社 Exhaust gas treatment equipment
JP3185959B2 (en) * 1993-10-05 2001-07-11 ハイモ株式会社 Organic sludge dewatering method
JPH10192899A (en) * 1997-01-09 1998-07-28 Hymo Corp Method for treating dredged sludge
JPH11267662A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Method of removing fluorine in waste water of flue gas desulfurization
JP2000202500A (en) * 1999-01-19 2000-07-25 Sony Corp Method for dehydrating organic sludge
JP2000325968A (en) * 1999-05-17 2000-11-28 Kurita Water Ind Ltd Treatment method of sludge from a wastewater treatment system for fluegas desulfurization
JP2001224906A (en) * 2000-02-17 2001-08-21 Tosoh Corp Method for reducing volume of sludge from wastewater after treatment of flue gas
JP4972827B2 (en) * 2001-05-23 2012-07-11 栗田工業株式会社 Treatment method of flue gas desulfurization waste water
JP2003275800A (en) * 2002-03-22 2003-09-30 Kurita Water Ind Ltd Method for treating organic sludge
JP2004325010A (en) * 2003-04-25 2004-11-18 Takashi Takeda Waste incineration method and its process
JP4811728B2 (en) * 2006-11-02 2011-11-09 清水建設株式会社 Slurry dewatering method and apparatus, and suspension processing system

Also Published As

Publication number Publication date
JP2010214268A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
WO2017133511A1 (en) Treatment apparatus and method for zero liquid discharge of desulfurization wastewater
CN205151986U (en) Zero discharge system of coal fired power plant wet flue gas desulfurization waste water
JP4791936B2 (en) Dyeing wastewater treatment method
JP2007061718A (en) Composite flocculant
JP4880656B2 (en) Water treatment apparatus and water treatment method
JP3550955B2 (en) Sludge treatment equipment
JP5118572B2 (en) Sewage treatment method
JP5218180B2 (en) Method for collecting sludge from flue gas wastewater
JP4253203B2 (en) How to remove fluorine from gypsum
CN209778559U (en) Contain salt effluent disposal system
JP4457027B2 (en) Disposal water treatment method
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP6738268B2 (en) Water treatment method and water treatment system
JPH11207146A (en) Method for recovering gypsum from flue gas desulfurization wastewater
JP5266296B2 (en) Organic sludge treatment method and treatment equipment
CN110342713B (en) Desulfurization waste water is from retrieval and utilization and zero release system
JP2001224906A (en) Method for reducing volume of sludge from wastewater after treatment of flue gas
JP4813081B2 (en) Livestock wastewater treatment method
JP3861268B2 (en) Thermal power plant wastewater treatment method
CN210855649U (en) Desulfurization waste water is from retrieval and utilization and zero discharge system
JP2991588B2 (en) Method for dewatering sludge containing calcium compound
JP2012081387A (en) Washing method of cyanide-contaminated soil
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP6723058B2 (en) Water treatment method and water treatment system
JP5656060B2 (en) Method for separating fine particles in soil and method for cleaning contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees