JP4880656B2 - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP4880656B2
JP4880656B2 JP2008254305A JP2008254305A JP4880656B2 JP 4880656 B2 JP4880656 B2 JP 4880656B2 JP 2008254305 A JP2008254305 A JP 2008254305A JP 2008254305 A JP2008254305 A JP 2008254305A JP 4880656 B2 JP4880656 B2 JP 4880656B2
Authority
JP
Japan
Prior art keywords
water
treatment
fluorine
treated
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008254305A
Other languages
Japanese (ja)
Other versions
JP2010082546A (en
Inventor
実 冨田
仁治 鎌田
理一 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008254305A priority Critical patent/JP4880656B2/en
Priority to TW98133013A priority patent/TW201012761A/en
Publication of JP2010082546A publication Critical patent/JP2010082546A/en
Application granted granted Critical
Publication of JP4880656B2 publication Critical patent/JP4880656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、フッ素を含むフッ素含有被処理水を処理する水処理装置および水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method for treating fluorine-containing treated water containing fluorine.

従来、半導体デバイス製造工程、液晶パネル製造工程、太陽電池製造工程などから排出されるフッ素含有排水は、フッ素を除去された後に放流されていた。近年、工業用水、水道水、井水などの取水量制限、また排水放流量の制限などがあり、フッ素含有排水から脱塩水を回収する必要性が高まっている。   Conventionally, fluorine-containing wastewater discharged from a semiconductor device manufacturing process, a liquid crystal panel manufacturing process, a solar cell manufacturing process, and the like has been discharged after the fluorine is removed. In recent years, there has been a restriction on the intake amount of industrial water, tap water, well water, and the like, and a restriction on the discharge amount of drainage, and the need for recovering desalted water from fluorine-containing wastewater has been increasing.

フッ素含有排水からのフッ素の除去のために、例えばカルシウム反応槽、凝集反応槽、凝集槽、沈殿槽などを含む凝集沈殿装置を用いた凝集沈殿法が多く使用されている。凝集沈殿法では、カルシウム反応槽においてフッ素含有排水とカルシウム剤とを反応させてフッ化カルシウムを生成させ、凝集反応槽においてアルミニウム系凝集剤、鉄系凝集剤などの凝集剤を添加してpH調整を行いフロック化させる。凝集槽において高分子凝集剤を添加してフロックを成長させ、沈殿槽で沈殿分離させる。この凝集沈殿処理水を原水として、逆浸透膜(RO膜)やイオン交換樹脂などを用いた脱塩装置で脱塩水を回収することが可能である。   In order to remove fluorine from fluorine-containing wastewater, a coagulation sedimentation method using a coagulation sedimentation apparatus including, for example, a calcium reaction tank, an aggregation reaction tank, an aggregation tank, and a precipitation tank is often used. In the coagulation precipitation method, calcium fluoride is generated by reacting fluorine-containing wastewater and calcium agent in a calcium reaction tank, and pH adjustment is performed by adding coagulants such as aluminum coagulants and iron coagulants in the coagulation reaction tank. To make it flock. A polymer flocculant is added in the coagulation tank to grow flocs, and the precipitate is separated in the precipitation tank. Using this agglomerated sedimentation treated water as raw water, it is possible to recover the desalted water using a desalting apparatus using a reverse osmosis membrane (RO membrane) or an ion exchange resin.

また、フッ素含有排水中のフッ素を処理する方法として、特許文献1には、固体粒子が充填された流動床式晶析槽内においてフッ素含有排水とカルシウム剤とを反応させて生成するフッ化カルシウムを固体粒子の表面に晶析させる晶析工程、晶析工程から排出される処理水を濾過する濾過工程、濾過工程から排出される処理水中に残存するフッ素成分を吸着除去する吸着工程、および、吸着工程から排出される処理水中から塩類を除去して脱塩水を回収する逆浸透膜モジュールからなる脱塩工程を含む方法が記載されている。   As a method for treating fluorine in fluorine-containing wastewater, Patent Document 1 discloses calcium fluoride produced by reacting fluorine-containing wastewater with a calcium agent in a fluidized bed crystallization tank filled with solid particles. A crystallization step of crystallizing the surface of the solid particles, a filtration step of filtering the treated water discharged from the crystallization step, an adsorption step of adsorbing and removing fluorine components remaining in the treated water discharged from the filtration step, and A method is described that includes a desalting step comprising a reverse osmosis membrane module that removes salts from the treated water discharged from the adsorption step and collects the desalted water.

特開2001−96281号公報JP 2001-96281 A

カルシウム剤を用いた通常の凝集沈澱処理では汚泥が大量に発生し、発生した汚泥が産業廃棄物となる。最近は産業廃棄物の最終処分場が逼迫しており、処分費用が高騰し脱塩水回収費用も上がっている。また、カルシウム剤を用いた凝集沈澱処理で発生する凝集沈澱処理水には比較的高濃度のカルシウム、フッ素などが含まれており、逆浸透膜やイオン交換樹脂などによる処理でそれらが濃縮されてスケールが発生するため、回収率が低く、逆浸透膜やイオン交換樹脂などの再生頻度の増加などが必要であり、効率的ではない。凝集沈澱処理水にはフッ素含有排水自身や添加した凝集剤などに含まれる無機塩類も含まれ、これらもスケール発生の要因となる。   In ordinary coagulation sedimentation treatment using a calcium agent, a large amount of sludge is generated, and the generated sludge becomes industrial waste. Recently, the final disposal site for industrial waste has become tight, disposal costs have soared, and the cost of recovering desalted water has also increased. In addition, the coagulation sedimentation water generated by the coagulation sedimentation treatment using a calcium agent contains a relatively high concentration of calcium, fluorine, etc., and these are concentrated by treatment with a reverse osmosis membrane or ion exchange resin. Since scale is generated, the recovery rate is low, and it is necessary to increase the regeneration frequency of reverse osmosis membranes and ion exchange resins, which is not efficient. The coagulated precipitation treated water includes inorganic salts contained in the fluorine-containing wastewater itself and the added coagulant, and these also cause scale generation.

また、特許文献1の方法でも、晶析処理水中にカルシウム、フッ素などが含まれており、吸着工程から排出される処理水中に比較的高濃度のカルシウム、微量のフッ素などが残留するため、逆浸透膜においてスケールが発生してしまい、やはり効率的ではない。   In the method of Patent Document 1, calcium, fluorine, and the like are contained in the crystallization treated water, and relatively high concentrations of calcium, trace amounts of fluorine, etc. remain in the treated water discharged from the adsorption process. Scale is generated in the osmotic membrane, which is also not efficient.

本発明は、フッ素を含むフッ素含有被処理水から水を効率的に回収することができる水処理装置および水処理方法である。   The present invention is a water treatment apparatus and a water treatment method capable of efficiently recovering water from fluorine-containing treated water containing fluorine.

本発明は、フッ素を含む被処理水を処理する水処理装置であって、フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離手段と、前記第一の凝集分離処理を行った第一凝集分離処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離手段と、前記第二の凝集分離処理を行った第二凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理手段と、前記フッ素吸着処理を行ったフッ素吸着処理水を逆浸透膜で処理する逆浸透膜処理手段と、を備える水処理装置である。   The present invention is a water treatment apparatus for treating water to be treated containing fluorine, the first coagulation separation means for performing a first coagulation separation process by adding a calcium agent to the water to be treated containing fluorine, A second aggregating / separating means for performing a second aggregating / separating process by adding a carbonate-containing agent to the first aggregating / separating water subjected to the aggregating / separating process; Fluorine adsorption treatment means for performing the fluorine adsorption treatment by contacting the coagulation separation treated water with the fluorine adsorbent, and a reverse osmosis membrane treatment means for treating the fluorine adsorption treated water subjected to the fluorine adsorption treatment with a reverse osmosis membrane. It is a water treatment device.

また、本発明は、フッ素を含む被処理水を処理する水処理装置であって、フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離手段と、前記第一の凝集分離処理を行った第一凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理手段と、前記フッ素吸着処理を行ったフッ素吸着処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離手段と、前記第二の凝集分離処理を行った第二凝集分離処理水を逆浸透膜で処理する逆浸透膜処理手段と、を備える水処理装置である。   Further, the present invention is a water treatment apparatus for treating the water to be treated containing fluorine, the first coagulation separation means for adding the calcium agent to the water to be treated containing fluorine and performing the first coagulation separation process, Fluorine adsorption treatment means for performing fluorine adsorption treatment by contacting the first coagulation / separation treated water subjected to the first aggregation separation treatment with a fluorine adsorbent; A second flocculating / separating means for performing a second flocculating / separating treatment by adding an agent, and a reverse osmosis membrane treating means for treating the second flocculated / separated water subjected to the second flocculating / separating treatment with a reverse osmosis membrane; It is a water treatment apparatus provided with.

また、前記水処理装置において、前記第一凝集分離手段の前段側に、フッ素を含む被処理水を晶析処理する晶析処理手段を備えることが好ましい。   In the water treatment apparatus, it is preferable that a crystallization treatment means for crystallization treatment of water to be treated containing fluorine is provided on the front side of the first coagulation separation means.

また、本発明は、フッ素を含む被処理水を処理する水処理方法であって、フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離工程と、前記第一の凝集分離処理を行った第一凝集分離処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離工程と、前記第二の凝集分離処理を行った第二凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理工程と、前記フッ素吸着処理を行ったフッ素吸着処理水を逆浸透膜で処理する逆浸透膜処理工程と、を含む水処理方法である。   Further, the present invention is a water treatment method for treating the water to be treated containing fluorine, and a first coagulation separation process for performing a first coagulation separation process by adding a calcium agent to the water to be treated containing fluorine, A second agglomeration separation process in which a carbonate-containing agent is added to the first agglomeration separation process water that has been subjected to the first agglomeration separation process and a second agglomeration separation process is performed, and the second agglomeration separation process is performed. A fluorine adsorption treatment step of contacting the second agglomeration separation treated water with a fluorine adsorbent to perform a fluorine adsorption treatment; a reverse osmosis membrane treatment step of treating the fluorine adsorption treated water subjected to the fluorine adsorption treatment with a reverse osmosis membrane; Is a water treatment method.

また、本発明は、フッ素を含む被処理水を処理する水処理方法であって、フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離工程と、前記第一の凝集分離処理を行った第一凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理工程と、前記フッ素吸着処理を行ったフッ素吸着処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離工程と、前記第二の凝集分離処理を行った第二凝集分離処理水を逆浸透膜で処理する逆浸透膜処理工程と、を含む水処理方法である。   Further, the present invention is a water treatment method for treating the water to be treated containing fluorine, and a first coagulation separation process for performing a first coagulation separation process by adding a calcium agent to the water to be treated containing fluorine, Fluorine adsorption treatment process in which the first flocculation separation treatment water subjected to the first flocculation separation treatment is brought into contact with a fluorine adsorbent to perform fluorine adsorption treatment, and the fluorine adsorption treatment water subjected to the fluorine adsorption treatment contains carbonate. A second flocculation separation step of performing a second flocculation separation treatment by adding an agent, a reverse osmosis membrane treatment step of treating the second flocculation separation treatment water subjected to the second flocculation separation treatment with a reverse osmosis membrane, Is a water treatment method.

また、前記水処理方法における前記第一凝集分離工程の前段において、フッ素を含む被処理水を晶析処理する晶析処理工程を含むことが好ましい。   Moreover, it is preferable to include the crystallization process process of crystallizing the to-be-processed water containing a fluorine in the front | former stage of said 1st agglomeration separation process in the said water treatment method.

本発明では、フッ素含有被処理水にカルシウム剤を添加して第一の凝集分離処理を行い、次に炭酸塩含有剤を添加して第二の凝集分離処理を行い、さらにフッ素吸着剤に接触してフッ素吸着処理を行った後、逆浸透膜で処理することにより、フッ素を含むフッ素含有被処理水から水を効率的に回収することが可能な水処理装置および水処理方法を提供することができる。   In the present invention, the calcium agent is added to the fluorine-containing water to be treated to perform the first coagulation separation treatment, and then the carbonate-containing agent is added to perform the second coagulation separation treatment, and further contacted with the fluorine adsorbent. A water treatment apparatus and a water treatment method capable of efficiently recovering water from fluorine-containing treated water containing fluorine by treating with a reverse osmosis membrane after performing a fluorine adsorption treatment Can do.

また、本発明では、フッ素含有被処理水にカルシウム剤を添加して第一の凝集分離処理を行い、次にフッ素吸着剤に接触してフッ素吸着処理を行い、さらに炭酸塩含有剤を添加して第二の凝集分離処理を行った後、逆浸透膜で処理することにより、フッ素を含むフッ素含有被処理水から水を効率的に回収することが可能な水処理装置および水処理方法を提供することができる。   Further, in the present invention, a calcium agent is added to the fluorine-containing water to be treated to perform the first coagulation separation treatment, then the fluorine adsorption treatment is performed by contacting the fluorine adsorbent, and the carbonate-containing agent is further added. A water treatment apparatus and a water treatment method capable of efficiently recovering water from fluorine-containing treated water containing fluorine by treating with a reverse osmosis membrane after performing the second coagulation separation treatment can do.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

フッ素含有被処理水中のフッ素を処理する方法として、消石灰、塩化カルシウムなどのカルシウム剤を添加してフッ化カルシウム(CaF)を析出させて、次にポリ塩化アルミニウム(PAC)、硫酸バンドなどの凝集剤を添加して析出したフッ化カルシウムを凝集させ、さらに高分子凝集剤を添加して凝集分離処理を行うと、この凝集分離処理水にはフッ素が例えば5〜20mg/L程度、カルシウムが例えば100〜1000mg/L程度残留するため、このまま逆浸透膜で水回収を行うと濃縮水側でフッ化カルシウム、硫酸カルシウム(CaSO)などのスケールが発生することがある。 As a method of treating fluorine in the fluorine-containing treated water, a calcium agent such as slaked lime or calcium chloride is added to precipitate calcium fluoride (CaF 2 ), and then polyaluminum chloride (PAC), sulfate band, etc. When the precipitated calcium fluoride is agglomerated by adding a flocculant, and further a polymer flocculant is added and agglomeration separation treatment is performed, the agglomeration separation treatment water contains fluorine, for example, about 5 to 20 mg / L, and calcium. For example, about 100 to 1000 mg / L remains, and when water is recovered with a reverse osmosis membrane as it is, scales such as calcium fluoride and calcium sulfate (CaSO 4 ) may be generated on the concentrated water side.

そこで本発明者らは、この凝集分離処理水中に残留するフッ素、カルシウムをさらに除去するために、炭酸塩含有剤を添加し、処理水中からカルシウムを炭酸カルシウム(CaCO)として析出させ、次に処理水に塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)などの凝集剤を添加して析出した炭酸カルシウムを凝集させ、さらに高分子凝集剤を添加して凝集分離を行う第二の凝集分離処理、および、フッ素吸着剤に接触させるフッ素吸着処理を行うと、フッ素およびカルシウムの濃度が低減し、逆浸透膜処理においてスケールが発生しにくく、水回収率が向上することを見出した。これら第二の凝集分離処理およびフッ素吸着処理の順序はどちらが先でもよい。 Therefore, the present inventors added a carbonate-containing agent to further remove fluorine and calcium remaining in the coagulation / separation treated water, and precipitated calcium as calcium carbonate (CaCO 3 ) from the treated water. Aggregating calcium carbonate by adding an aggregating agent such as ferric chloride (FeCl 3 ) or ferric sulfate (Fe 2 (SO 4 ) 3 ) to the treated water, and adding a polymer aggregating agent When the second agglomeration separation process that performs agglomeration separation and the fluorine adsorption process in contact with the fluorine adsorbent are performed, the concentration of fluorine and calcium is reduced, scale is less likely to occur in the reverse osmosis membrane treatment, and the water recovery rate is increased. I found it to improve. Either of the second aggregating and separating processes and the order of the fluorine adsorption process may be performed first.

本発明の実施形態に係る水処理装置の一例の概略構成を図1に示し、その構成について説明する。水処理装置1は、第一凝集分離手段である第一凝集分離装置10と、第二凝集分離手段である第二凝集分離装置12と、フッ素吸着処理手段であるフッ素吸着処理装置14と、逆浸透膜処理手段である逆浸透膜処理装置16とを備える。   FIG. 1 shows a schematic configuration of an example of a water treatment apparatus according to an embodiment of the present invention, and the configuration will be described. The water treatment apparatus 1 includes a first flocculating / separating device 10 that is a first flocculating / separating device, a second flocculating / separating device 12 that is a second flocculating / separating device, a fluorine adsorption processing device 14 that is a fluorine adsorbing / processing device, And a reverse osmosis membrane treatment device 16 as osmosis membrane treatment means.

図1の水処理装置1において、第一凝集分離装置10の出口と第二凝集分離装置12の入口、第二凝集分離装置12の出口とフッ素吸着処理装置14の入口、フッ素吸着処理装置14の出口と逆浸透膜処理装置16の入口とがそれぞれ配管などにより接続されている。   In the water treatment device 1 of FIG. 1, the outlet of the first flocculation separation device 10 and the inlet of the second flocculation separation device 12, the outlet of the second flocculation separation device 12 and the inlet of the fluorine adsorption treatment device 14, and the fluorine adsorption treatment device 14 The outlet and the inlet of the reverse osmosis membrane treatment device 16 are connected to each other by piping or the like.

第一凝集分離装置10の構成の一例を図2に示す。第一凝集分離装置10は、カルシウム反応槽20と、凝集反応槽22と、凝集槽24と、沈殿槽26とを備える。第一凝集分離装置10において、カルシウム反応槽20の出口と凝集反応槽22の入口、凝集反応槽22の出口と凝集槽24の入口、凝集槽24の出口と沈殿槽26の入口とがそれぞれ配管などにより接続されている。図2に示す第一凝集分離装置10の構成は一例であって、これに限定されるものではない。   An example of the configuration of the first aggregating and separating apparatus 10 is shown in FIG. The first aggregating / separating apparatus 10 includes a calcium reaction tank 20, an agglomeration reaction tank 22, an agglomeration tank 24, and a precipitation tank 26. In the first flocculation / separation apparatus 10, the outlet of the calcium reaction tank 20 and the inlet of the flocculation reaction tank 22, the outlet of the flocculation reaction tank 22 and the inlet of the flocculation tank 24, and the outlet of the flocculation tank 24 and the inlet of the precipitation tank 26 are respectively piped. It is connected by such as. The configuration of the first aggregating and separating apparatus 10 shown in FIG. 2 is an example, and the present invention is not limited to this.

また、第二凝集分離装置12の構成の一例を図3に示す。第二凝集分離装置12は、炭酸塩反応槽30と、凝集反応槽32と、凝集槽34と、沈殿槽36とを備える。第二凝集分離装置12において、炭酸塩反応槽30の出口と凝集反応槽32の入口、凝集反応槽32の出口と凝集槽34の入口、凝集槽34の出口と沈殿槽36の入口とがそれぞれ配管などにより接続されている。図3に示す第二凝集分離装置12の構成は一例であって、これに限定されるものではない。   An example of the configuration of the second aggregating and separating apparatus 12 is shown in FIG. The second flocculating / separating device 12 includes a carbonate reaction tank 30, a flocculation reaction tank 32, a flocculation tank 34, and a precipitation tank 36. In the second flocculation / separation apparatus 12, the outlet of the carbonate reaction tank 30 and the inlet of the flocculation reaction tank 32, the outlet of the flocculation reaction tank 32 and the inlet of the flocculation tank 34, and the outlet of the flocculation tank 34 and the inlet of the precipitation tank 36, respectively. Connected by piping. The configuration of the second aggregating and separating apparatus 12 shown in FIG. 3 is an example, and the present invention is not limited to this.

本実施形態に係る水処理方法および水処理装置1の動作について説明する。   The operation of the water treatment method and the water treatment apparatus 1 according to this embodiment will be described.

図1の水処理装置1において、フッ素を含むフッ素含有被処理水は、まずカルシウム剤添加による第一凝集分離装置10で処理され(第一凝集分離工程)、生成されるフッ化カルシウム含有汚泥は系外に排出される。次に、第一凝集分離処理水は、炭酸塩含有剤添加による第二凝集分離装置12で処理され(第二凝集分離工程)、生成される炭酸カルシウム含有汚泥は系外に排出される。第二凝集分離処理水は、フッ素吸着処理装置14でフッ素吸着剤に接触され、フッ素が除去される(フッ素吸着処理工程)。その後、フッ素吸着処理水は、逆浸透膜処理16で逆浸透膜処理され(逆浸透膜処理工程)、透過水および濃縮水は系外に排出され、透過水は脱塩水として回収される。   In the water treatment device 1 of FIG. 1, fluorine-containing water to be treated containing fluorine is first treated by a first coagulation separation device 10 by adding a calcium agent (first coagulation separation step), and the calcium fluoride-containing sludge produced is It is discharged out of the system. Next, the first flocculation / separation treated water is treated by the second flocculation / separation device 12 by adding a carbonate-containing agent (second flocculation / separation step), and the generated calcium carbonate-containing sludge is discharged out of the system. The second agglomerated separation treated water is contacted with the fluorine adsorbent by the fluorine adsorption treatment device 14 to remove fluorine (fluorine adsorption treatment step). Thereafter, the fluorine adsorption treated water is subjected to a reverse osmosis membrane treatment in the reverse osmosis membrane treatment 16 (reverse osmosis membrane treatment step), the permeated water and the concentrated water are discharged out of the system, and the permeated water is recovered as demineralized water.

<第一凝集分離工程>
第一凝集分離装置10では、図2に示すように、フッ素含有被処理水はカルシウム反応槽20に送液され、ここで撹拌羽根を備えた撹拌装置などにより撹拌されながら、カルシウム化合物を含むカルシウム剤が添加される。フッ素含有被処理水に含まれるフッ素とカルシウム剤に含まれるカルシウム化合物との反応により、フッ化カルシウム(CaF)が生成される。
<First aggregation separation process>
In the first aggregating and separating apparatus 10, as shown in FIG. 2, the fluorine-containing water to be treated is fed to the calcium reaction tank 20, where calcium containing a calcium compound is stirred while being stirred by a stirring apparatus equipped with stirring blades. Agent is added. Calcium fluoride (CaF 2 ) is generated by a reaction between fluorine contained in the fluorine-containing treated water and a calcium compound contained in the calcium agent.

カルシウム化合物としては、水酸化カルシウム(消石灰、Ca(OH))、塩化カルシウム(CaCl)、炭酸カルシウム(CaCO)などが挙げられる。 Examples of calcium compounds include calcium hydroxide (slaked lime, Ca (OH) 2 ), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), and the like.

カルシウム剤は、処理水中に残留するカルシウム濃度が100〜1,000mg/Lになるように添加されることが好ましく、300〜700mg/Lになるように添加されることがさらに好ましい。   The calcium agent is preferably added so that the concentration of calcium remaining in the treated water is 100 to 1,000 mg / L, and more preferably 300 to 700 mg / L.

カルシウム反応槽20における反応pHは、好ましくは3〜12の範囲、より好ましくは4〜11の範囲に維持される。pH調整のために酸、アルカリなどのpH調整剤が添加されてもよい。   The reaction pH in the calcium reaction tank 20 is preferably maintained in the range of 3-12, more preferably in the range of 4-11. In order to adjust the pH, a pH adjusting agent such as acid or alkali may be added.

pH調整剤としては、硫酸、塩酸、硝酸などの酸、水酸化ナトリウム、水酸化カリウムなどのアルカリが用いられる。   As the pH adjuster, acids such as sulfuric acid, hydrochloric acid and nitric acid, and alkalis such as sodium hydroxide and potassium hydroxide are used.

フッ化カルシウムを含む処理水は、カルシウム反応槽20から凝集反応槽22へ送液され、ここで撹拌羽根を備えた撹拌装置などにより撹拌されながら、無機凝集剤が添加され、凝集物が生成される。   The treated water containing calcium fluoride is fed from the calcium reaction tank 20 to the agglomeration reaction tank 22, where an inorganic flocculant is added while being agitated by a stirrer equipped with a stirring blade, and aggregates are generated. The

無機凝集剤としては、ポリ塩化アルミニウム(PAC)、硫酸バンドなどのアルミニウム系凝集剤、塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)などの鉄系凝集剤などが挙げられ、通常はポリ塩化アルミニウムなどのアルミニウム系凝集剤が用いられるが、無機凝集剤を添加しなくてもよい。 Examples of inorganic flocculants include aluminum flocculants such as polyaluminum chloride (PAC) and sulfuric acid bands, and iron flocculants such as ferric chloride (FeCl 3 ) and ferric sulfate (Fe 2 (SO 4 ) 3 ). In general, an aluminum flocculant such as polyaluminum chloride is used, but an inorganic flocculant may not be added.

凝集反応槽22における反応pHは、好ましくは5〜8.5の範囲、より好ましくは6〜7.5の範囲に維持される。pH調整のために酸、アルカリなどのpH調整剤が添加されてもよい。   The reaction pH in the aggregation reaction tank 22 is preferably maintained in the range of 5 to 8.5, more preferably in the range of 6 to 7.5. In order to adjust the pH, a pH adjusting agent such as acid or alkali may be added.

凝集物を含む処理水は、凝集反応槽22から凝集槽24へ送液され、ここで撹拌羽根を備えた撹拌装置などにより撹拌されながら、高分子凝集剤が添加される。この高分子凝集剤は、不溶化物の凝集性を高め、その後段の固液分離性を向上させるために添加されるが、高分子凝集剤を添加しなくてもよい。   The treated water containing the agglomerate is fed from the agglomeration reaction tank 22 to the agglomeration tank 24 where the polymer flocculant is added while being agitated by a stirrer equipped with a stirring blade. This polymer flocculant is added in order to increase the aggregability of the insolubilized material and improve the solid-liquid separation property in the subsequent stage, but the polymer flocculant may not be added.

高分子凝集剤としては、例えば、ポリアクリルアミド系などのノニオン性、アニオン性あるいは両性の高分子凝集剤を用いることができる。   As the polymer flocculant, for example, nonionic, anionic or amphoteric polymer flocculants such as polyacrylamide can be used.

凝集物を含む処理水は、凝集槽24から沈殿槽26へ送液され、固液分離が行われる。撹拌羽根を備えた撹拌装置などにより緩速で撹拌されながら、沈殿処理による上澄液としての第一凝集分離処理水が第二凝集分離装置12へ送液されるとともに、沈殿分離されたフッ化カルシウム含有汚泥の少なくとも一部は系外へ排出される。   The treated water containing the aggregate is sent from the aggregation tank 24 to the precipitation tank 26, and solid-liquid separation is performed. While being agitated at a low speed by an agitator equipped with a stirring blade, the first agglomerated separation treated water as a supernatant by the precipitation treatment is fed to the second agglomeration separation device 12 and the precipitated and separated fluoride At least a part of the calcium-containing sludge is discharged out of the system.

固液分離の方法としては、膜分離、加圧浮上分離、沈降分離などが挙げられるが、特に限定するものではない。   Examples of the solid-liquid separation method include membrane separation, pressurized flotation separation, and sedimentation separation, but are not particularly limited.

フッ化カルシウム含有汚泥の少なくとも一部は返送汚泥としてポンプなどによりカルシウム反応槽20または凝集反応槽22に返送されてもよい。また、図4に示すように、返送汚泥にアルカリ剤とカルシウム剤とを加えて汚泥に含まれるアルミニウムなどを溶解して再生させる汚泥再生槽28を設け、返送汚泥をカルシウム反応槽20へと導入してもよい。これにより、汚泥の接触効率を上げ、凝集反応槽22における無機凝集剤の添加量を大幅に削減することが可能になる。よって、第一凝集分離処理水のフッ素濃度が下がり、後段の処理が効率的となる。また汚泥発生量が少なく、汚泥処理費用が低くなる効果がある。   At least a part of the calcium fluoride-containing sludge may be returned to the calcium reaction tank 20 or the agglomeration reaction tank 22 by a pump or the like as return sludge. Further, as shown in FIG. 4, a sludge regeneration tank 28 is provided in which alkali agent and calcium agent are added to the returned sludge to dissolve and regenerate aluminum contained in the sludge, and the returned sludge is introduced into the calcium reaction tank 20. May be. Thereby, the contact efficiency of sludge can be raised and the amount of inorganic flocculant added in the agglomeration reaction tank 22 can be greatly reduced. Therefore, the fluorine concentration of the first coagulation / separation treated water decreases, and the subsequent treatment becomes efficient. In addition, the amount of sludge generation is small and the sludge treatment cost is reduced.

アルカリ剤には消石灰、水酸化ナトリウムなどが用いられ、カルシウム剤には消石灰、塩化カルシウムなどが用いられる。   Slaked lime, sodium hydroxide or the like is used as the alkaline agent, and slaked lime or calcium chloride is used as the calcium agent.

フッ素含有被処理水中のフッ素濃度が例えば10〜300mg/L程度である場合、この第一凝集分離処理水にはフッ素を例えば5〜20mg/L程度、カルシウムを例えば100〜1000mg/L程度に低減することができる。   When the fluorine concentration in the fluorine-containing treated water is, for example, about 10 to 300 mg / L, the first coagulation separation treated water is reduced to fluorine, for example, about 5 to 20 mg / L, and calcium, for example, to about 100 to 1000 mg / L. can do.

<第二凝集分離工程>
第二凝集分離装置12では、図3に示すように、第一凝集分離処理水は炭酸塩反応槽30に送液され、ここで撹拌羽根を備えた撹拌装置などにより撹拌されながら、炭酸塩を含む炭酸塩含有剤が添加される。第一凝集分離処理水に含まれるカルシウムと炭酸塩含有剤に含まれる炭酸塩との反応により、炭酸カルシウム(CaCO)が生成される。
<Second aggregation separation step>
In the second flocculating / separating device 12, as shown in FIG. 3, the first flocculated / separated water is sent to the carbonate reaction tank 30, where the carbonate is stirred while being stirred by a stirring device equipped with a stirring blade. A carbonate containing agent is added. Calcium carbonate (CaCO 3 ) is generated by a reaction between calcium contained in the first agglomerated separation treated water and carbonate contained in the carbonate-containing agent.

炭酸塩としては、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)などが挙げられる。 Examples of the carbonate include sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO 3 ).

炭酸塩含有剤は、第一凝集分離処理水中に含まれるカルシウム1molに対して、COが1〜2mol添加されることが好ましく、1.1〜1.5mol添加されることがより好ましい。 Carbonate-containing agent to calcium 1mol contained in the first coagulation and separation process water, it is preferred that the CO 3 is added 1 to 2 mol, and more preferably added 1.1~1.5Mol.

炭酸塩反応槽30における反応pHは、好ましくは7〜11の範囲、より好ましくは8〜10の範囲に維持される。pH調整のために酸、アルカリなどのpH調整剤が添加されてもよい。   The reaction pH in the carbonate reaction tank 30 is preferably maintained in the range of 7 to 11, more preferably in the range of 8 to 10. In order to adjust the pH, a pH adjusting agent such as acid or alkali may be added.

炭酸カルシウムを含む処理水は、炭酸塩反応槽30から凝集反応槽32へ送液され、ここで撹拌羽根を備えた撹拌装置などにより撹拌されながら、無機凝集剤が添加され、凝集物が生成される。   The treated water containing calcium carbonate is fed from the carbonate reaction tank 30 to the agglomeration reaction tank 32, where an inorganic flocculant is added while being agitated by a stirrer equipped with a stirring blade, and agglomerates are generated. The

無機凝集剤としては、ポリ塩化アルミニウム(PAC)、硫酸バンドなどのアルミニウム系凝集剤、塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)などの鉄系凝集剤などが挙げられ、通常は塩化第二鉄(FeCl)などの鉄系凝集剤が用いられるが、無機凝集剤を添加しなくてもよい。 Examples of inorganic flocculants include aluminum flocculants such as polyaluminum chloride (PAC) and sulfuric acid bands, and iron flocculants such as ferric chloride (FeCl 3 ) and ferric sulfate (Fe 2 (SO 4 ) 3 ). Usually, an iron-based flocculant such as ferric chloride (FeCl 3 ) is used, but an inorganic flocculant may not be added.

凝集反応槽32における反応pHは、好ましくは7〜11の範囲、より好ましくは8〜10の範囲に維持される。pH調整のために酸、アルカリなどのpH調整剤が添加されてもよい。   The reaction pH in the aggregation reaction tank 32 is preferably maintained in the range of 7 to 11, more preferably in the range of 8 to 10. In order to adjust the pH, a pH adjusting agent such as acid or alkali may be added.

凝集物を含む処理水は、凝集反応槽32から凝集槽34へ送液され、ここで撹拌羽根を備えた撹拌装置などにより撹拌されながら、高分子凝集剤が添加されるが、高分子凝集剤を添加しなくてもよい。   The treated water containing the agglomerate is fed from the agglomeration reaction tank 32 to the agglomeration tank 34, where the polymer flocculant is added while being stirred by a stirrer equipped with a stirring blade. May not be added.

凝集物を含む処理水は、凝集槽34から沈殿槽36へ送液され、固液分離が行われる。撹拌羽根を備えた撹拌装置などにより緩速で撹拌されながら、沈殿処理による上澄液としての第二凝集分離処理水がフッ素吸着処理装置14へ送液されるとともに、沈殿分離された炭酸カルシウム含有汚泥の少なくとも一部は系外へ排出される。炭酸カルシウム含有汚泥の少なくとも一部は返送汚泥としてポンプなどにより炭酸塩反応槽30に返送されてもよい。この固液分離の方法としては、膜分離、加圧浮上分離、沈降分離などが挙げられるが、特に限定するものではない。   The treated water containing the aggregate is sent from the aggregation tank 34 to the precipitation tank 36, where solid-liquid separation is performed. While being agitated at a low speed by a stirrer equipped with a stirring blade, etc., the second agglomerated separation treated water as the supernatant liquid by the precipitation treatment is fed to the fluorine adsorption treatment device 14 and the precipitated calcium carbonate is contained. At least part of the sludge is discharged outside the system. At least a part of the calcium carbonate-containing sludge may be returned to the carbonate reaction tank 30 by a pump or the like as return sludge. Examples of the solid-liquid separation method include membrane separation, pressurized flotation separation, and sedimentation separation, but are not particularly limited.

第一凝集分離処理水中のカルシウム濃度が例えば100〜1000mg/L程度である場合、この第二凝集分離処理水にはカルシウムを例えば1〜50mg/L程度に低減することができる。これにより、後段の逆浸透膜処理において、フッ化カルシウム、硫酸カルシウムなどのスケールが発生しにくくなり、水回収率を向上することができる。   When the calcium concentration in the first agglomerated separation treated water is, for example, about 100 to 1000 mg / L, calcium can be reduced to, for example, about 1 to 50 mg / L in the second agglomerated separation treated water. This makes it difficult for scales such as calcium fluoride and calcium sulfate to be generated in the subsequent reverse osmosis membrane treatment, thus improving the water recovery rate.

<フッ素吸着処理工程>
第二凝集分離処理水は、図1のフッ素吸着処理装置14でフッ素吸着剤に接触され、フッ素が除去される。フッ素吸着剤を用いたフッ素の吸着除去処理は、第二凝集分離処理水をフッ素吸着剤と接触させること、例えば、フッ素吸着剤が充填された反応槽に第二凝集分離処理水を通水することにより行われる。
<Fluorine adsorption treatment process>
The second agglomerated separation treated water is contacted with the fluorine adsorbent by the fluorine adsorption treatment device 14 of FIG. 1 to remove fluorine. Fluorine adsorption / removal treatment using a fluorine adsorbent involves bringing the second agglomerated separation treated water into contact with the fluorine adsorbent, for example, passing the second agglomerated separated treated water into a reaction tank filled with the fluorine adsorbent. Is done.

反応槽への第二凝集分離処理水の通水方法としては任意の態様が可能であり、上向流および下向流のいずれであってもよいが、好ましくは上向流である。   Any mode is possible as a method for passing the second coagulation separation treated water to the reaction tank, and any of an upward flow and a downward flow may be used, but an upward flow is preferable.

反応槽に第二凝集分離処理水を通水する態様は、固定床でも流動床でもよいが、反応槽内でのpHをなるべく均一にするなどの点から流動床が好ましい。反応槽内でフッ素吸着剤を流動させる態様は特に限定されないが、例えば、反応槽下部から第二凝集分離処理水を上向流で導入して流動状態にする態様、撹拌装置などにより反応槽内を撹拌する態様などが挙げられる。反応槽には、反応塔、反応容器なども含まれる。反応槽にはフッ素吸着剤が充填されるが、フッ素吸着剤の充填方法、充填量は特に限定されない。   The second coagulation / separation-treated water may be passed through the reaction tank in either a fixed bed or a fluidized bed, but a fluidized bed is preferable from the viewpoint of making the pH in the reaction tank as uniform as possible. The mode in which the fluorine adsorbent flows in the reaction tank is not particularly limited. For example, the second coagulation separation treatment water is introduced from the lower part of the reaction tank in an upward flow to be in a fluid state, and the reaction tank is stirred by a stirring device. And the like. The reaction tank includes a reaction tower and a reaction vessel. Although the reaction vessel is filled with a fluorine adsorbent, the filling method and the filling amount of the fluorine adsorbent are not particularly limited.

フッ素の吸着処理において、反応槽内のpHを3〜5の範囲に維持することが好ましく、3〜4の範囲に維持することがより好ましい。フッ素吸着剤のフッ素吸着能などの点から、反応槽内はpH5以下であるのが好ましく、フッ素吸着剤の劣化を防止するなどの点から、反応槽内はpH3以上であるのが好ましい。反応槽内のpHを3〜5の範囲に維持することにより、フッ素吸着剤のフッ素吸着能を高い状態に維持することができ、反応槽におけるフッ素吸着処理効率を向上させることができる。また、反応槽におけるフッ素吸着処理効率が向上することにより、フッ素吸着剤の使用量を低減できる。また、フッ素吸着剤再生のための再生薬品の量が低減し、効率的な処理が可能である。   In the fluorine adsorption treatment, the pH in the reaction vessel is preferably maintained in the range of 3 to 5, and more preferably in the range of 3 to 4. The inside of the reaction vessel is preferably at a pH of 5 or less from the viewpoint of the fluorine adsorbing ability of the fluorine adsorbent, and the inside of the reaction vessel is preferably at a pH of 3 or more from the viewpoint of preventing deterioration of the fluorine adsorbent. By maintaining the pH in the reaction vessel in the range of 3 to 5, the fluorine adsorption ability of the fluorine adsorbent can be maintained in a high state, and the fluorine adsorption treatment efficiency in the reaction vessel can be improved. Moreover, the use amount of the fluorine adsorbent can be reduced by improving the fluorine adsorption efficiency in the reaction tank. In addition, the amount of regenerative chemicals for regenerating the fluorine adsorbent is reduced, and efficient treatment is possible.

反応槽内のpHの維持は、例えば、第二凝集分離処理水のpHおよび反応槽内のpHのうち少なくとも1つに応じて、酸、アルカリなどのpH調整剤を第二凝集分離処理水および反応槽内のうち少なくとも1つに添加することにより行われる。   The maintenance of the pH in the reaction vessel may be performed by, for example, adding a pH adjusting agent such as an acid or an alkali to the second agglomeration separation treatment water and the pH according to at least one of the pH in the second agglomeration separation treatment water and the pH in the reaction vessel. It is carried out by adding to at least one of the reaction vessels.

フッ素吸着剤としては、フッ素を吸着できるものであれば、任意の材質から構成することができ、特に限定されない。例えば、金属元素を、金属、および金属酸化物などの化合物のうち少なくとも1つとして、母体上に吸着または担持した吸着剤であってもよい。この場合にフッ素吸着剤に含まれる金属元素としては、フッ素を吸着できる金属元素であればよく特に限定されないが、好ましくは、ハフニウム、チタン、ジルコニウム、鉄、アルミニウム、および、セリウムなどのランタノイド類などが挙げられ、ジルコニウムが好ましい。また、フッ素吸着剤の母体としては、上記金属元素を担持、吸着などできるものであれば特に限定されるものではない。   The fluorine adsorbent can be made of any material as long as it can adsorb fluorine, and is not particularly limited. For example, the adsorbent may be an adsorbent that adsorbs or carries a metal element on a base material as at least one of a metal and a compound such as a metal oxide. In this case, the metal element contained in the fluorine adsorbent is not particularly limited as long as it is a metal element capable of adsorbing fluorine. Preferably, lanthanoids such as hafnium, titanium, zirconium, iron, aluminum, and cerium are used. Zirconium is preferred. Further, the base of the fluorine adsorbent is not particularly limited as long as it can support and adsorb the metal element.

金属元素を含むフッ素吸着剤においては、含まれる金属および金属酸化物などの化合物のうち少なくとも1つが被処理水中のフッ素と錯化化合物を形成することにより、フッ素を吸着するものと考えられる。フッ素吸着剤としては、任意の、市販のフッ素吸着剤を使用してもよく、例えば、ジルコニウム系フッ素吸着剤などのIV族元素系フッ素吸着剤、セリウム系フッ素吸着剤、活性アルミナなどのアルミニウム系フッ素吸着剤が挙げられる。これらのうち、再生利用が可能であるなどの点から、ジルコニウム系フッ素吸着剤が好ましい。   In a fluorine adsorbent containing a metal element, it is considered that at least one of compounds contained such as metal and metal oxide forms a complexing compound with fluorine in the water to be treated, thereby adsorbing fluorine. As the fluorine adsorbent, any commercially available fluorine adsorbent may be used. For example, a group IV element fluorine adsorbent such as a zirconium-based fluorine adsorbent, a cerium-based fluorine adsorbent, an aluminum type such as activated alumina, etc. Fluorine adsorbent is mentioned. Of these, zirconium-based fluorine adsorbents are preferable because they can be recycled.

また、例えば、チタン、ジルコニウムおよびスズなどの含水亜鉄酸塩の少なくとも1つと、分子中に塩化ビニリデン単量体に由来するジクロロエチレン構造を有する重合体とを含有する組成物を硬化させて得られる吸着剤;チタン、ジルコニウムおよびスズなどの含水亜鉄酸塩の少なくとも1つと、チタン、ジルコニウム、スズおよび鉄などの水和酸化物の少なくとも1つと、分子中に塩化ビニリデン単量体に由来するジクロロエチレン構造を有する重合体とを含有する組成物を硬化させて得られる吸着剤などが挙げられる。これらのうち、再生利用が可能であるなどの点から、ジルコニウムの含水亜鉄酸塩と、分子中に塩化ビニリデン単量体に由来するジクロロエチレン構造を有する重合体とを含有する組成物を硬化させて得られる吸着剤、および、ジルコニウムの含水亜鉄酸塩と、ジルコニウムの水和酸化物と、分子中に塩化ビニリデン単量体に由来するジクロロエチレン構造を有する重合体とを含有する組成物を硬化させて得られる吸着剤が好ましい。   Further, for example, it is obtained by curing a composition containing at least one of hydrous ferrites such as titanium, zirconium and tin and a polymer having a dichloroethylene structure derived from a vinylidene chloride monomer in the molecule. Adsorbent: at least one hydrous ferrite such as titanium, zirconium and tin, at least one hydrated oxide such as titanium, zirconium, tin and iron and dichloroethylene derived from vinylidene chloride monomer in the molecule Examples thereof include an adsorbent obtained by curing a composition containing a polymer having a structure. Among these, a composition containing a hydrous ferrite of zirconium and a polymer having a dichloroethylene structure derived from a vinylidene chloride monomer in the molecule is cured from the viewpoint that it can be recycled. A composition containing an adsorbent obtained in this manner, a hydrous ferrite of zirconium, a hydrated oxide of zirconium, and a polymer having a dichloroethylene structure derived from a vinylidene chloride monomer in the molecule The adsorbent obtained by making it preferable is preferable.

分子中に塩化ビニリデン単量体に由来するジクロロエチレン構造を有する重合体としては、例えば、塩化ビニリデンの単独重合体、塩化ビニリデンと他の重合性単量体との共重合体などが挙げられる。塩化ビニリデン共重合体における他の重合性単量体としては、公知のものがいずれも使用できるが、例えば、塩化ビニル、酢酸ビニル、アルキルビニルエーテルなどのビニル化合物、アクロニトリル、アクリル酸、アクリル酸ハライド、アクリル酸エステル、メタクリル酸、メタクリル酸エステルなどのアクリル化合物、メタクリル化合物などが挙げられる。これらの重合性単量体は、任意に組み合わせて用いることができる。   Examples of the polymer having a dichloroethylene structure derived from a vinylidene chloride monomer in the molecule include a homopolymer of vinylidene chloride and a copolymer of vinylidene chloride and other polymerizable monomers. As the other polymerizable monomer in the vinylidene chloride copolymer, any known monomer can be used. For example, vinyl compounds such as vinyl chloride, vinyl acetate, alkyl vinyl ether, acrylonitrile, acrylic acid, acrylic acid halide , Acrylic compounds such as acrylic ester, methacrylic acid and methacrylic ester, and methacrylic compounds. These polymerizable monomers can be used in any combination.

フッ素吸着剤によるフッ素除去により、フッ素吸着処理水中のフッ素を例えば0.1〜2mg/L程度に低減することができる。これにより、後段の逆浸透膜処理において、フッ化カルシウムなどのフッ素由来のスケールが発生しにくくなり、水回収率を向上することができる。特に、炭酸塩含有剤添加による第二の凝集分離処理とフッ素吸着処理とを組み合わせているため、フッ素吸着処理水中のフッ素が例えば2mg/L程度残留していても、後段の逆浸透膜処理において、スケールが発生しにくくなり、水回収率を向上することができる。   By removing fluorine with the fluorine adsorbent, fluorine in the fluorine adsorption treated water can be reduced to, for example, about 0.1 to 2 mg / L. As a result, in the subsequent reverse osmosis membrane treatment, scale derived from fluorine such as calcium fluoride is hardly generated, and the water recovery rate can be improved. In particular, since the second agglomeration and separation treatment by adding a carbonate-containing agent and the fluorine adsorption treatment are combined, even if fluorine in the fluorine adsorption treatment water remains, for example, about 2 mg / L, the reverse osmosis membrane treatment in the latter stage Scales are less likely to occur and the water recovery rate can be improved.

なお、フッ素吸着処理装置14においてフッ素吸着剤を再生する再生処理を行った場合は、その再生排水は、第一凝集分離装置10で処理してもよい。   In addition, when the regeneration process which reproduces | regenerates a fluorine adsorbent in the fluorine adsorption processing apparatus 14 is performed, you may process the regeneration waste_water | drain with the 1st aggregation separation apparatus 10. FIG.

<逆浸透膜処理工程>
フッ素吸着処理水は、図1の逆浸透膜処理16で逆浸透膜処理され、逆浸透膜を透過した透過水と、不純物が濃縮された濃縮水とが得られる。透過水および濃縮水は系外に排出され、透過水は脱塩水として回収される。得られる透過水のフッ素濃度は例えば0.001〜0.5mg/L程度、カルシウム濃度は例えば0.01〜0.5mg/L程度である。
<Reverse osmosis membrane treatment process>
The fluorine adsorption treated water is subjected to a reverse osmosis membrane treatment by the reverse osmosis membrane treatment 16 of FIG. The permeated water and concentrated water are discharged out of the system, and the permeated water is recovered as demineralized water. The resulting permeated water has a fluorine concentration of, for example, about 0.001 to 0.5 mg / L, and a calcium concentration of, for example, about 0.01 to 0.5 mg / L.

濃縮水は適切な処理を行い、河川、湖沼、海域、公共下水道などに放流してもよい。また、濃縮水を、蒸発濃縮装置などでさらに濃縮したり、乾燥機などで乾燥してスラッジ化してもよい。   Concentrated water may be appropriately treated and discharged into rivers, lakes, marine areas, public sewers, etc. Further, the concentrated water may be further concentrated with an evaporative concentration device or the like, or dried with a dryer or the like to form sludge.

本実施形態に係る水処理方法により処理することにより、濃縮水中の汚濁成分濃度が低くなり、放流するための処理や蒸発濃縮、乾燥などが容易になる利点がある。   By performing the treatment using the water treatment method according to the present embodiment, there is an advantage that the concentration of pollutant components in the concentrated water is reduced and the treatment for discharging, evaporating concentration, drying, and the like are facilitated.

逆浸透膜の形態としては、スパイラル型、中空糸型、管型、平膜型などが挙げられる。また、逆浸透膜の材質としては、ポリアミド系、ポリイミド系、酢酸セルロースなどのセルロース系などが挙げられる。   Examples of the form of the reverse osmosis membrane include a spiral type, a hollow fiber type, a tube type, and a flat membrane type. Moreover, as a material of a reverse osmosis membrane, polyamide type, a polyimide type, cellulose types, such as a cellulose acetate, etc. are mentioned.

逆浸透膜処理におけるpHは、スケール発生防止などの点から、pH3〜7の範囲であることが好ましく、pH5〜7の範囲であることがより好ましい。   The pH in the reverse osmosis membrane treatment is preferably in the range of pH 3 to 7 and more preferably in the range of pH 5 to 7 from the viewpoint of preventing scale generation.

本発明の実施形態に係る水処理装置の他の例の概略構成を図5に示す。図5の水処理装置3において、第一凝集分離装置10の出口とフッ素吸着処理装置14の入口、フッ素吸着処理装置14の出口と第二凝集分離装置12の入口、第二凝集分離装置12の出口と逆浸透膜処理装置16の入口とがそれぞれ配管などにより接続されている。   The schematic structure of the other example of the water treatment apparatus which concerns on embodiment of this invention is shown in FIG. In the water treatment device 3 of FIG. 5, the outlet of the first coagulation separation device 10 and the inlet of the fluorine adsorption treatment device 14, the outlet of the fluorine adsorption treatment device 14 and the inlet of the second coagulation separation device 12, The outlet and the inlet of the reverse osmosis membrane treatment device 16 are connected to each other by piping or the like.

図5の水処理装置3において、フッ素を含むフッ素含有被処理水は、まずカルシウム剤添加による第一凝集分離装置10で処理され(第一凝集分離工程)、生成されるフッ化カルシウム含有汚泥は系外に排出される。次に、第一凝集分離処理水は、フッ素吸着処理装置14でフッ素吸着剤に接触され、フッ素が除去される(フッ素吸着処理工程)。フッ素吸着処理水は、炭酸塩含有剤添加による第二凝集分離装置12で処理され(第二凝集分離工程)、生成される炭酸カルシウム含有汚泥は系外に排出される。第二凝集分離処理水は、その後、逆浸透膜処理16で逆浸透膜処理され(逆浸透膜処理工程)、透過水および濃縮水は系外に排出され、透過水は脱塩水として回収される。   In the water treatment device 3 of FIG. 5, fluorine-containing water to be treated containing fluorine is first treated by the first flocculating / separating device 10 by adding a calcium agent (first flocculating / separating step). It is discharged out of the system. Next, the first agglomeration separation treated water is contacted with the fluorine adsorbent by the fluorine adsorption treatment device 14 to remove fluorine (fluorine adsorption treatment step). The fluorine adsorption treated water is treated by the second flocculating / separating device 12 by adding a carbonate-containing agent (second flocculating / separating step), and the generated calcium carbonate-containing sludge is discharged out of the system. The second agglomerated separation treated water is then subjected to a reverse osmosis membrane treatment in the reverse osmosis membrane treatment 16 (reverse osmosis membrane treatment step), the permeated water and the concentrated water are discharged out of the system, and the permeated water is recovered as demineralized water. .

図1に示す処理方法に対して、フッ素吸着処理工程と第二凝集分離工程の順序が、フッ素吸着処理工程が先であることにより、第二凝集分離工程におけるカルシウム除去で発生する炭酸カルシウム含有汚泥中のフッ素の含有率が少なくなり、第二凝集分離工程で発生する汚泥の有効利用が可能になる。   With respect to the treatment method shown in FIG. 1, the order of the fluorine adsorption treatment step and the second agglomeration separation step is that the fluorine adsorption treatment step is first, so that the calcium carbonate-containing sludge generated by the calcium removal in the second agglomeration separation step. The content rate of fluorine in the inside is reduced, and the sludge generated in the second coagulation / separation step can be effectively used.

第二凝集分離工程におけるカルシウム除去では、炭酸カルシウムが発生する際に、被処理水に含有されるフッ素もフッ化カルシウムとして除去されるので、炭酸カルシウム含有汚泥にはフッ素が含まれてしまう場合がある。第二凝集分離工程の前にフッ素を吸着処理することにより、炭酸カルシウム含有汚泥中のフッ素の含有率が低くなる。   In the calcium removal in the second flocculation and separation step, when calcium carbonate is generated, fluorine contained in the water to be treated is also removed as calcium fluoride, so the calcium carbonate-containing sludge may contain fluorine. is there. By adsorbing fluorine before the second aggregating and separating step, the fluorine content in the calcium carbonate-containing sludge is lowered.

図1のように、フッ素吸着処理工程と第二凝集分離工程の順序が、第二凝集分離工程が先である場合には、第一凝集分離工程からの第一凝集分離処理水中のSS性のフッ素などを含むフロックを第二凝集分離工程で除去できる効果、フッ素吸着処理水のpHは通常、酸性(例えばpH3〜5)であるため、逆浸透膜処理でのスケールが発生しにくい効果などが期待できるが、第二凝集分離工程から発生する炭酸カルシウム含有汚泥にフッ素が含まれてしまう場合がある。一方、フッ素吸着処理工程が先の場合、第二凝集分離工程から発生する炭酸カルシウム含有汚泥にはフッ素はほとんど含まれておらず、再利用が可能である。   As shown in FIG. 1, when the order of the fluorine adsorption treatment step and the second agglomeration separation step is first, the SS property in the first agglomeration separation treatment water from the first agglomeration separation step is first. The effect of removing flocs containing fluorine and the like in the second aggregating and separating step, and the pH of fluorine adsorption treated water is usually acidic (for example, pH 3 to 5). Although it can be expected, fluorine may be contained in the calcium carbonate-containing sludge generated from the second aggregating and separating step. On the other hand, when the fluorine adsorption treatment step is first, the calcium carbonate-containing sludge generated from the second flocculation separation step contains almost no fluorine and can be reused.

本発明の実施形態に係る水処理装置の他の例の概略構成を図6、図7に示す。図6の水処理装置5、図7の水処理装置7はそれぞれ、第一凝集分離装置10と、第二凝集分離装置12と、フッ素吸着処理装置14と、逆浸透膜処理装置16とに加えて、第一凝集分離装置10の前段側に、晶析処理手段である晶析処理装置18をさらに備える。   The schematic structure of the other example of the water treatment apparatus which concerns on embodiment of this invention is shown in FIG. 6, FIG. The water treatment device 5 in FIG. 6 and the water treatment device 7 in FIG. 7 are in addition to the first flocculation separation device 10, the second flocculation separation device 12, the fluorine adsorption treatment device 14, and the reverse osmosis membrane treatment device 16, respectively. In addition, a crystallization treatment device 18 which is a crystallization treatment means is further provided on the upstream side of the first aggregating and separating device 10.

図6の水処理装置5において、晶析処理装置18の出口と第一凝集分離装置10の入口、第一凝集分離装置10の出口と第二凝集分離装置12の入口、第二凝集分離装置12の出口とフッ素吸着処理装置14の入口、フッ素吸着処理装置14の出口と逆浸透膜処理装置16の入口とがそれぞれ配管などにより接続されている。   In the water treatment device 5 of FIG. 6, the outlet of the crystallization treatment device 18 and the inlet of the first flocculation separation device 10, the outlet of the first flocculation separation device 10 and the inlet of the second flocculation separation device 12, and the second flocculation separation device 12. And the inlet of the fluorine adsorption processing device 14, and the outlet of the fluorine adsorption processing device 14 and the inlet of the reverse osmosis membrane processing device 16 are connected by a pipe or the like.

また、図7の水処理装置7において、晶析処理装置18の出口と第一凝集分離装置10の入口、第一凝集分離装置10の出口とフッ素吸着処理装置14の入口、フッ素吸着処理装置14の出口と第二凝集分離装置12の入口、第二凝集分離装置12の出口と逆浸透膜処理装置16の入口とがそれぞれ配管などにより接続されている。   Further, in the water treatment device 7 of FIG. 7, the outlet of the crystallization treatment device 18 and the inlet of the first flocculation separation device 10, the outlet of the first flocculation separation device 10 and the inlet of the fluorine adsorption treatment device 14, and the fluorine adsorption treatment device 14. And the inlet of the second flocculating / separating device 12, and the outlet of the second flocculating / separating device 12 and the inlet of the reverse osmosis membrane treatment device 16 are connected by a pipe or the like.

図6の水処理装置5、図7の水処理装置7において、フッ素を含むフッ素含有被処理水は、フッ素とカルシウムを含有する固体粒子を充填した反応槽に、フッ素含有被処理水をカルシウム剤とともに導入して、固体粒子上にフッ化カルシウムを析出させる晶析法による晶析処理装置18で処理される(晶析処理工程)。晶析処理された晶析処理水は、その後、第一凝集分離装置10へ送液され、図6の水処理装置5では図1の水処理装置1と、図7の水処理装置7では図5の水処理装置3と、同様の処理が行われる。   In the water treatment device 5 in FIG. 6 and the water treatment device 7 in FIG. 7, the fluorine-containing treated water containing fluorine is obtained by adding the fluorine-containing treated water to a reaction tank filled with solid particles containing fluorine and calcium. In addition, it is treated by a crystallization treatment apparatus 18 by a crystallization method for precipitating calcium fluoride on solid particles (crystallization treatment step). The crystallized water subjected to the crystallization treatment is then sent to the first coagulation / separation device 10. In the water treatment device 5 of FIG. 6, the water treatment device 1 of FIG. 1 and the water treatment device 7 of FIG. The same treatment as that of the water treatment device 3 of No. 5 is performed.

<晶析処理工程>
図8に晶析処理装置18の構成の一例を示す。晶析処理装置18は、フッ素含有被処理水中のフッ素成分を晶析させるための反応槽40を備える。フッ素含有被処理水は、流入配管42から反応槽40へ送液される。カルシウム剤はカルシウム剤添加配管44を通して反応槽40に供給される。固体粒子が流動している晶析部46において、フッ素含有被処理水に含まれるフッ素とカルシウム剤に含まれるカルシウム化合物との反応により生成するフッ化カルシウムの晶析が固体粒子上で起こり、被処理水中のフッ素が除去され、晶析処理水は晶析処理水配管48を通して排出される。必要に応じて、反応部を流動させるためや、晶析に適したフッ素濃度、カルシウム濃度とするために、循環配管50を通して晶析処理水の少なくとも一部を反応槽40の下部に循環してもよい。晶析後の固体粒子などは引抜配管52から回収される。
<Crystal treatment process>
FIG. 8 shows an example of the configuration of the crystallization treatment apparatus 18. The crystallization treatment apparatus 18 includes a reaction tank 40 for crystallization of a fluorine component in the fluorine-containing treated water. The fluorine-containing treated water is sent from the inflow pipe 42 to the reaction tank 40. The calcium agent is supplied to the reaction tank 40 through the calcium agent addition pipe 44. In the crystallization part 46 in which the solid particles are flowing, crystallization of calcium fluoride generated by the reaction of fluorine contained in the fluorine-containing water to be treated and calcium compound contained in the calcium agent occurs on the solid particles. The fluorine in the treated water is removed, and the crystallization treated water is discharged through the crystallization treated water pipe 48. If necessary, at least a part of the crystallization treated water is circulated to the lower part of the reaction tank 40 through the circulation pipe 50 in order to flow the reaction part and to obtain a fluorine concentration and a calcium concentration suitable for crystallization. Also good. The solid particles after crystallization are collected from the drawing pipe 52.

フッ素含有被処理水中のフッ素濃度が例えば20mg/L以上の場合には、フッ素含有被処理水をあらかじめ晶析法による晶析処理装置18で処理し、その晶析処理水をカルシウム剤添加による第一凝集分離装置10で処理することにより、第一凝集分離装置10から発生するフッ化カルシウム含有汚泥の量を削減できるほか、晶析処理装置18で回収したフッ化カルシウムを人工蛍石として再利用することが可能である。また、この場合、第一凝集分離処理水はフッ化カルシウム回収を行わない場合と比較して、処理水中のフッ素濃度が低く、吸着処理において再生頻度の低減、吸着剤交換量の削減ができる点においても効率的である。晶析処理水に含まれる微細な粒子が砂ろ過などで除去することが困難である場合は、第一凝集分離装置10で凝集処理することができる点においても効率的である。晶析法による晶析処理装置18で処理する場合、フッ素吸着処理装置14の再生排水は晶析処理装置18の原水であるフッ素含有被処理水と混合させず、第一凝集分離装置10の原水である晶析処理水と混合する方が好ましい。その理由は再生排水中にフッ素吸着剤由来の成分が含まれ、晶析処理装置18で回収する人工蛍石の純度が下がるためである。   When the fluorine concentration in the fluorine-containing water to be treated is, for example, 20 mg / L or more, the fluorine-containing water to be treated is treated in advance by the crystallization treatment apparatus 18 using a crystallization method, and the crystallization treatment water is added by a calcium agent addition. In addition to reducing the amount of calcium fluoride-containing sludge generated from the first flocculating / separating device 10 by processing with the one flocculating / separating device 10, the calcium fluoride recovered by the crystallization processing device 18 is reused as artificial fluorite. Is possible. Further, in this case, the first coagulation separation treated water has a lower fluorine concentration in the treated water than when calcium fluoride is not recovered, and can reduce the regeneration frequency and the adsorbent exchange amount in the adsorption treatment. Is also efficient. In the case where it is difficult to remove fine particles contained in the crystallization water by sand filtration or the like, it is also efficient in that the agglomeration treatment can be performed by the first agglomeration separator 10. When processing by the crystallization processing apparatus 18 by the crystallization method, the regeneration waste water of the fluorine adsorption processing apparatus 14 is not mixed with the fluorine-containing treated water that is the raw water of the crystallization processing apparatus 18, but the raw water of the first coagulation separation apparatus 10. It is preferable to mix with the crystallization treatment water. The reason is that the component derived from the fluorine adsorbent is contained in the recycled waste water, and the purity of the artificial fluorite recovered by the crystallization treatment device 18 is lowered.

このように、フッ素含有被処理水を、まず晶析反応を利用してフッ化カルシウムの結晶として取り出せば、このフッ化カルシウムの結晶を人工蛍石として再利用でき、さらに資源の有効利用が可能になる。   Thus, if the fluorine-containing water to be treated is first taken out as a calcium fluoride crystal using a crystallization reaction, the calcium fluoride crystal can be reused as an artificial fluorite, and further effective use of resources is possible. become.

したがって、晶析処理装置18を備えることにより、フッ素を含むフッ素含有被処理水から水を効率的に回収可能であるとともに、水処理で発生する汚泥の発生量を少なくし、さらに被処理水中の成分を有効利用できる。   Therefore, by providing the crystallization treatment device 18, water can be efficiently recovered from the fluorine-containing treated water containing fluorine, the amount of sludge generated in the water treatment is reduced, and further, Ingredients can be used effectively.

晶析処理に用いられるカルシウム剤は、カルシウム化合物を含み、カルシウム化合物としては、水酸化カルシウム(消石灰、Ca(OH))、塩化カルシウム(CaCl)、炭酸カルシウム(CaCO)などが挙げられる。 The calcium agent used for the crystallization treatment includes a calcium compound, and examples of the calcium compound include calcium hydroxide (slaked lime, Ca (OH) 2 ), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), and the like. .

反応槽40内に充填する固体粒子としては、その表面に、生成したフッ化カルシウムの結晶を析出させることができるものであればよく、特に制限はない。フッ素とカルシウムを含有する粒子(例えば、蛍石)が一般的であるが、必ずしもフッ素とカルシウムを含有する必要はなく、砂や活性炭などの微細粒子が用いられる場合もある。   The solid particles to be filled in the reaction vessel 40 may be any solid particles that can precipitate the generated calcium fluoride crystals on the surface thereof, and are not particularly limited. Particles containing fluorine and calcium (for example, fluorite) are common, but it is not always necessary to contain fluorine and calcium, and fine particles such as sand and activated carbon may be used.

反応槽40としては、固体粒子を充填し、フッ素とカルシウム化合物との反応による晶析反応を行うことができるものであればよく特に制限はない。例えば、フッ素含有被処理水を反応槽の下部から導入し、固体粒子を流動化させながら上向流で通水し処理を行う流動床式の反応槽の他に、反応槽内に撹拌羽根などの撹拌装置を設置し、撹拌装置により反応槽内を撹拌して固体粒子を流動させる撹拌式の反応槽などが挙げられる。   The reaction vessel 40 is not particularly limited as long as it is filled with solid particles and can perform a crystallization reaction by a reaction between fluorine and a calcium compound. For example, in addition to a fluidized bed type reaction vessel that introduces fluorine-containing water to be treated from the lower part of the reaction vessel and flows the solid particles in an upward flow while fluidizing the particles, a stirring blade or the like is provided in the reaction vessel. And a stirring-type reaction tank in which solid particles are fluidized by stirring the inside of the reaction tank with the stirring apparatus.

固液分離手段としては、例えば、砂ろ過装置などが例示されるがこれに限定されるものではなく、沈殿分離、膜処理などの手段でもよく、反応槽40から排出されるSS成分を固液分離できるものであればよい。   Examples of the solid-liquid separation means include, but are not limited to, a sand filtration device, and may be means such as precipitation separation and membrane treatment. The SS component discharged from the reaction vessel 40 is solid-liquid. Any material that can be separated is acceptable.

晶析反応において、pH2〜11の条件下でフッ化カルシウムを析出させることが好ましく、微細粒子生成抑制などの点からpH2〜3の条件下でフッ化カルシウムを析出させることがより好ましい。フッ化カルシウムの生成反応に伴ってpHが変化する場合は、反応槽40にpH調整剤を添加してpHを調整してもよい。   In the crystallization reaction, it is preferable to precipitate calcium fluoride under the conditions of pH 2 to 11, and it is more preferable to precipitate calcium fluoride under the conditions of pH 2 to 3 from the viewpoint of suppressing fine particle formation. When pH changes with calcium fluoride production reaction, a pH adjusting agent may be added to the reaction tank 40 to adjust the pH.

本実施形態に係る水処理方法における各処理工程の間には、フッ素含有被処理水中に含まれる汚濁物質の種類、量などに応じて、その他の処理工程を含んでもよい。例えば、被処理水中に浮遊物質が含まれる場合には、晶析処理装置18での処理が不安定になるので、晶析処理装置18の前段で浮遊物質を除去するろ過工程を含んでもよい。被処理水中の塩濃度、フッ素濃度が低い場合には、ろ過処理、軟化処理を行い、逆浸透膜処理装置で脱塩水を得た後、その濃縮水を晶析処理装置18で処理してもよい。また、被処理水中にBOD成分や窒素成分が含まれる場合には、逆浸透膜処理の前段で生物処理、凝集処理、ろ過処理などを行うことによって、逆浸透膜処理でのバイオファウリングが抑えられるとともに、逆浸透膜処理での濃縮水中の汚濁成分濃度が低くなり、放流するための処理や蒸発濃縮、乾燥などが容易になる利点がある。   Between each treatment process in the water treatment method according to the present embodiment, other treatment processes may be included depending on the type and amount of the pollutant contained in the fluorine-containing treated water. For example, when suspended matter is contained in the water to be treated, the treatment in the crystallization treatment device 18 becomes unstable, and therefore, a filtration step for removing the suspended matter in the previous stage of the crystallization treatment device 18 may be included. When the salt concentration and fluorine concentration in the water to be treated are low, filtration treatment and softening treatment are performed, and after obtaining desalted water with a reverse osmosis membrane treatment device, the concentrated water may be treated with the crystallization treatment device 18. Good. In addition, when BOD components and nitrogen components are contained in the water to be treated, biofouling in reverse osmosis membrane treatment is suppressed by performing biological treatment, aggregation treatment, filtration treatment, etc. before the reverse osmosis membrane treatment. In addition, the concentration of pollutant components in the concentrated water in the reverse osmosis membrane treatment is reduced, and there is an advantage that treatment for discharging, evaporation concentration, drying, and the like are facilitated.

また、逆浸透膜処理の前段でフッ素吸着処理水または第二凝集分離処理水の脱炭酸処理を行うことによって、さらに濃縮倍率を上げることができたり、よりスケールの発生を防ぐことができる。脱炭酸処理には、脱炭酸塔での処理などが用いられる。脱炭酸塔は、塔内に充填された充填材表面を、pHを好ましくは4〜6の範囲、より好ましくは4.5〜5.5の範囲に調節した被処理水が水滴状に流され、真空手段または曝気手段によって水中の炭酸を放出させる装置である。   Further, by performing the decarboxylation treatment of the fluorine adsorption treated water or the second coagulation separation treated water before the reverse osmosis membrane treatment, it is possible to further increase the concentration factor or to prevent the generation of scale. For the decarboxylation treatment, treatment in a decarboxylation tower or the like is used. In the decarboxylation tower, water to be treated whose pH is adjusted to a range of preferably 4 to 6, more preferably 4.5 to 5.5 on the surface of the packing material packed in the tower is made to flow in the form of water droplets. , A device for releasing carbonic acid in water by vacuum means or aeration means.

本実施形態に係る水処理装置および水処理方法の処理対象となるフッ素含有被処理水としてはフッ素を含むものであればよく特に限定はされないが、例えば、半導体デバイス製造工程、液晶パネル製造工程、太陽電池製造工程などから排出されるフッ素含有排水などが挙げられる。本実施形態に係る、フッ素含有被処理水から脱塩水を回収する水処理装置および水処理方法は、半導体デバイス製造工程、液晶パネル製造工程、太陽電池製造工程などから排出されるフッ素含有排水などから、逆浸透膜により効率よく脱塩水として回収するのに極めて有効であり、系外に排出される産業廃棄物の削減が可能である。   The fluorine-containing treated water to be treated by the water treatment apparatus and the water treatment method according to the present embodiment is not particularly limited as long as it contains fluorine. For example, a semiconductor device production process, a liquid crystal panel production process, Examples include fluorine-containing wastewater discharged from solar cell manufacturing processes and the like. A water treatment apparatus and a water treatment method for recovering demineralized water from fluorine-containing treated water according to the present embodiment include fluorine-containing wastewater discharged from a semiconductor device manufacturing process, a liquid crystal panel manufacturing process, a solar cell manufacturing process, and the like. It is extremely effective for efficiently recovering as desalinated water with a reverse osmosis membrane, and it is possible to reduce industrial waste discharged outside the system.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(フッ素含有被処理水の調製)
フッ素濃度として200mg/Lのフッ化水素(HF)を含むフッ素含有排水を、中和槽(10m、滞留時間10分)で水酸化ナトリウムを用いてpH6.0〜7.0に調整した水を、砂ろ過器(LV=10m/hで通水)で処理し、これを軟化器(イオン交換樹脂:ローム&ハース社製Amberjet1020(強酸性イオン交換樹脂)、SV=20m/m/h)で軟化処理を行った。その後、RO膜分離装置(RO膜:オルガノ(株)製OFR−420WJ8(スパイラル型超低圧膜)、供給水60m/h、透過水40m/h、濃縮水20m/h)で透過水を脱塩水として回収する一方、濃縮水を得て、この濃縮水を以下の実施例および比較例でフッ素含有被処理水として用いた。
(Preparation of fluorine-containing treated water)
Water in which fluorine-containing wastewater containing 200 mg / L of hydrogen fluoride (HF) as a fluorine concentration was adjusted to pH 6.0 to 7.0 using sodium hydroxide in a neutralization tank (10 m 3 , residence time 10 minutes). Is treated with a sand filter (water is passed at LV = 10 m / h), and this is softened (ion exchange resin: Amberjet 1020 (strongly acidic ion exchange resin) manufactured by Rohm & Haas, SV = 20 m 3 / m 3 / The softening process was performed in h). Thereafter, permeated water with RO membrane separation device (RO membrane: OFR-420WJ8 (spiral type ultra-low pressure membrane) manufactured by Organo Corporation, feed water 60 m 3 / h, permeate 40 m 3 / h, concentrated water 20 m 3 / h). Was recovered as desalted water, while concentrated water was obtained, and this concentrated water was used as fluorine-containing treated water in the following Examples and Comparative Examples.

(実施例1〜4)
上記濃縮水をフッ素含有被処理水として、図1(実施例1)、図5(実施例2)、図6(実施例3)、図7(実施例4)に示す水処理装置および水処理方法で処理を行い、約2ヶ月間運転を行った。各装置の仕様および各処理部の流量は以下の通りとした。
(Examples 1-4)
The concentrated water is treated with fluorine, and the water treatment apparatus and water treatment shown in FIG. 1 (Example 1), FIG. 5 (Example 2), FIG. 6 (Example 3), and FIG. 7 (Example 4) are used. The process was performed and the operation was performed for about 2 months. The specifications of each device and the flow rate of each processing unit were as follows.

[各装置の仕様および各処理部の流量]
<晶析処理装置>
オルガノ(株)製「エコクリスタ」を使用
流動床式反応槽(pH6):反応槽の直径2,600mm
カルシウム剤(塩化カルシウム)を残留カルシウム濃度が300mg/Lとなるように添加
固体粒子(蛍石)を反応槽に充填
[Specifications of each device and flow rate of each processing unit]
<Crystal processing equipment>
“Eco-Crysta” manufactured by Organo Co., Ltd. is used Fluidized bed reaction tank (pH 6): Diameter of reaction tank 2,600 mm
Add calcium agent (calcium chloride) so that the residual calcium concentration is 300 mg / L
Filling the reaction tank with solid particles (fluorite)

<第一凝集分離装置>
カルシウム反応槽(pH10):消石灰を処理水残留Caが300mg/Lになるように理論量添加
凝集反応槽(pH7):ポリ塩化アルミニウム(PAC)を300mg/L添加
凝集槽:「オルフロックOA−23(ポリアクリルアミド系、弱アニオン性高分子凝集剤)」を2mg/L添加
汚泥再生槽(pH10):消石灰をpH10になるまで添加
汚泥返送率:原水基準で10容積%をカルシウム反応槽へ返送
沈殿槽:水面積負荷2m/hで沈降分離
<First agglomeration separator>
Calcium reaction tank (pH 10): theoretical amount of slaked lime added so that residual Ca of treated water is 300 mg / L. Coagulation reaction tank (pH 7): 300 mg / L of polyaluminum chloride (PAC) added. Coagulation tank: “Olflock OA- 23 (polyacrylamide type, weak anionic polymer flocculant) "2 mg / L added Sludge regeneration tank (pH 10): Slaked lime added until pH 10 Sludge return rate: 10 vol% returned to calcium reaction tank based on raw water standard Sedimentation tank: sedimentation separation with water area load of 2m / h

<第二凝集分離装置>
炭酸塩反応槽(pH10):炭酸ナトリウムをpH10になるまで添加
凝集反応槽(pH10):塩化第二鉄を500mg/L添加
凝集槽:「オルフロックOA−23(ポリアクリルアミド系、弱アニオン性高分子凝集剤)」を2mg/L添加
沈殿槽:水面積負荷1m/hで沈降分離
<Second aggregating and separating apparatus>
Carbonate reaction tank (pH 10): Sodium carbonate is added until pH 10 Coagulation reaction tank (pH 10): Ferric chloride is added at 500 mg / L Coagulation tank: “Olflock OA-23 (polyacrylamide, weak anionic high Addition of 2 mg / L of molecular flocculant) Precipitation tank: Settling separation with water area load of 1 m / h

<フッ素吸着処理装置>
フッ素吸着塔(流動床式)にオルガノ(株)製「オルライト−F(ジルコニウムの含水亜鉄酸塩および水和酸化物と、塩化ビニリデン単量体に由来するジクロロエチレン構造を有する重合体とを含有する組成物を硬化させたもの)」を充填
通水量:LV25m/hで通水(原水基準)
<Fluorine adsorption treatment device>
Fluorite adsorption tower (fluidized bed type) “Orlite-F (hydrous ferrite of zirconium and hydrated oxide and polymer having dichloroethylene structure derived from vinylidene chloride monomer” manufactured by Organo Corp. Filled with a cured composition)) Water flow rate: LV 25 m / h, water flow (raw water standard)

<逆浸透膜処理装置>
RO膜:オルガノ(株)製「OFR−420WJ8(スパイラル型超低圧膜)」
供給水:20m/h
透過水:16m/h
濃縮水:4m/h
<Reverse osmosis membrane treatment equipment>
RO membrane: “OFR-420WJ8 (spiral type ultra-low pressure membrane)” manufactured by Organo Corporation
Supply water: 20m 3 / h
Permeated water: 16m 3 / h
Concentrated water: 4 m 3 / h

各処理水のフッ素含有量(mg/L)、カルシウム含有量(mg/L)およびpHを表1に示す。また、逆浸透膜装置の透過水量の変化(透過水量/初期透過水量)を図9に示す。図9からわかるように、約2ヶ月間運転しても、実施例1〜4のいずれの処理でもRO膜での透過水量の低下はほとんど見られなかった。   Table 1 shows the fluorine content (mg / L), calcium content (mg / L), and pH of each treated water. Moreover, the change (permeated water amount / initial permeated water amount) of the permeated water amount of the reverse osmosis membrane device is shown in FIG. As can be seen from FIG. 9, even if the operation was performed for about 2 months, almost no decrease in the amount of permeated water in the RO membrane was observed in any of the treatments of Examples 1 to 4.

Figure 0004880656
Figure 0004880656

第一凝集分離処理で発生する汚泥の発生量(m/day)および晶析処理で回収された人工蛍石の発生量(m/day)を図10に、第一凝集分離処理で発生する汚泥(乾燥)の発生量(kg−dry/day)および晶析処理で回収された人工蛍石(乾燥)の発生量(kg−dry/day)を図11に示す。第一凝集分離処理で発生する汚泥量は、実施例1,2で約600kg−dry/dayであったが、第一凝集分離処理の前に晶析処理を行った実施例3,4では、約10kg−dry/dayとなった。また、実施例3,4の晶析処理で回収された人工蛍石は、約590kg−dry/dayであり、そのCaF含有率は90重量%以上と高かった。 The amount of sludge generated in the first agglomeration separation process (m 3 / day) and the amount of artificial fluorite recovered in the crystallization process (m 3 / day) are generated in FIG. FIG. 11 shows the amount of sludge (dry) generated (kg-dry / day) and the amount of artificial fluorite (dry) recovered by crystallization treatment (kg-dry / day). The amount of sludge generated in the first flocculation / separation process was about 600 kg-dry / day in Examples 1 and 2, but in Examples 3 and 4 where the crystallization process was performed before the first flocculation / separation process, It became about 10 kg-dry / day. Moreover, the artificial fluorite recovered by the crystallization treatment of Examples 3 and 4 was about 590 kg-dry / day, and the CaF 2 content was as high as 90% by weight or more.

第二凝集分離処理で発生する汚泥中のフッ素含有量(重量%)を図12に示す。第二凝集分離処理で発生する汚泥中のフッ素濃度は、実施例1では約11重量%、実施例3では約5重量%であったが、第二凝集分離処理の前にフッ素吸着処理を行った実施例2,4では1重量%未満であった。   FIG. 12 shows the fluorine content (% by weight) in the sludge generated in the second coagulation / separation process. The fluorine concentration in the sludge generated in the second flocculation / separation treatment was about 11% by weight in Example 1 and about 5% by weight in Example 3, but the fluorine adsorption treatment was performed before the second flocculation / separation treatment. In Examples 2 and 4, it was less than 1% by weight.

(比較例1)
実施例1の装置において、フッ素吸着処理装置を用いずに実施例1と同様にして処理を行った。結果を図9〜図12に示す。比較例1では、図9からわかるように、約2週間で透過水量の低下が見られた。また、RO膜表面のスケールからはCaFが検出された。
(Comparative Example 1)
In the apparatus of Example 1, the treatment was performed in the same manner as in Example 1 without using the fluorine adsorption treatment apparatus. The results are shown in FIGS. In Comparative Example 1, as can be seen from FIG. 9, a decrease in the amount of permeated water was observed in about 2 weeks. CaF 2 was detected from the scale of the RO membrane surface.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of the water treatment equipment concerning the embodiment of the present invention. 本発明の実施形態に係る水処理装置における第一凝集分離装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the 1st coagulation separation apparatus in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における第二凝集分離装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the 2nd aggregation / separation apparatus in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における第一凝集分離装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the 1st coagulation separation apparatus in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における晶析処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the crystallization processing apparatus in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施例および比較例における逆浸透膜装置の透過水量の変化を示す図である。It is a figure which shows the change of the permeated water amount of the reverse osmosis membrane apparatus in the Example and comparative example of this invention. 本発明の実施例および比較例における第一凝集分離処理で発生する汚泥の発生量(m/day)および晶析処理で回収された人工蛍石の発生量(m/day)を示す図である。Shows the amount of generated sludge generated in the first coagulation and separation process in the examples and comparative examples of the present invention (m 3 / day) and the generation amount of recovered artificial fluorite in crystallization treatment (m 3 / day) It is. 本発明の実施例および比較例における第一凝集分離処理で発生する汚泥(乾燥)の発生量(kg−dry/day)および晶析処理で回収された人工蛍石(乾燥)の発生量(kg−dry/day)を示す図である。Generation amount (kg-dry / day) of sludge (dry) generated in the first coagulation separation process in Examples and Comparative Examples of the present invention and generation amount of artificial fluorite (dry) recovered by crystallization process (kg) It is a figure which shows -dry / day). 本発明の実施例および比較例における第二凝集分離処理で発生する汚泥中のフッ素含有量(重量%)を示す図である。It is a figure which shows the fluorine content (weight%) in the sludge generate | occur | produced by the 2nd aggregation separation process in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1,3,5,7 水処理装置、10 第一凝集分離装置、12 第二凝集分離装置、14 フッ素吸着処理装置、16 逆浸透膜処理装置、18 晶析処理装置、20 カルシウム反応槽、22,32 凝集反応槽、24,34 凝集槽、26,36 沈殿槽、28 汚泥再生槽、30 炭酸塩反応槽、40 反応槽、42 流入配管、44 カルシウム剤添加配管、46 晶析部、48 晶析処理水配管、50 循環配管、52 引抜配管。   1, 3, 5, 7 Water treatment device, 10 First coagulation separation device, 12 Second coagulation separation device, 14 Fluorine adsorption treatment device, 16 Reverse osmosis membrane treatment device, 18 Crystallization treatment device, 20 Calcium reaction tank, 22 , 32 Coagulation reaction tank, 24, 34 Coagulation tank, 26, 36 Precipitation tank, 28 Sludge regeneration tank, 30 Carbonate reaction tank, 40 Reaction tank, 42 Inflow pipe, 44 Calcium agent addition pipe, 46 Crystallization part, 48 crystals Analysis water piping, 50 circulation piping, 52 extraction piping.

Claims (6)

フッ素を含む被処理水を処理する水処理装置であって、
フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離手段と、
前記第一の凝集分離処理を行った第一凝集分離処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離手段と、
前記第二の凝集分離処理を行った第二凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理手段と、
前記フッ素吸着処理を行ったフッ素吸着処理水を逆浸透膜で処理する逆浸透膜処理手段と、
を備えることを特徴とする水処理装置。
A water treatment apparatus for treating water to be treated containing fluorine,
A first aggregating and separating means for performing a first aggregating and separating treatment by adding a calcium agent to water to be treated containing fluorine;
A second flocculating / separating means for adding a carbonate-containing agent to the first flocculating / separating water subjected to the first flocculating / separating treatment and performing a second flocculating / separating treatment;
Fluorine adsorption treatment means for performing the fluorine adsorption treatment by contacting the second agglomeration separation treated water subjected to the second agglomeration separation treatment with the fluorine adsorbent;
A reverse osmosis membrane treatment means for treating the fluorine adsorption treated water subjected to the fluorine adsorption treatment with a reverse osmosis membrane;
A water treatment apparatus comprising:
フッ素を含む被処理水を処理する水処理装置であって、
フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離手段と、
前記第一の凝集分離処理を行った第一凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理手段と、
前記フッ素吸着処理を行ったフッ素吸着処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離手段と、
前記第二の凝集分離処理を行った第二凝集分離処理水を逆浸透膜で処理する逆浸透膜処理手段と、
を備えることを特徴とする水処理装置。
A water treatment apparatus for treating water to be treated containing fluorine,
A first aggregating and separating means for performing a first aggregating and separating treatment by adding a calcium agent to water to be treated containing fluorine;
Fluorine adsorption treatment means for performing fluorine adsorption treatment by contacting the first agglomeration separation treated water subjected to the first aggregation separation treatment with a fluorine adsorbent;
A second flocculating / separating means for performing a second flocculating / separating process by adding a carbonate-containing agent to the fluorine-adsorbing treated water.
A reverse osmosis membrane treatment means for treating the second agglomeration separation treated water subjected to the second agglomeration separation treatment with a reverse osmosis membrane;
A water treatment apparatus comprising:
請求項1または2に記載の水処理装置であって、
前記第一凝集分離手段の前段側に、フッ素を含む被処理水を晶析処理する晶析処理手段を備えることを特徴とする水処理装置。
The water treatment device according to claim 1 or 2,
A water treatment apparatus, comprising a crystallization treatment means for crystallization treatment of water to be treated containing fluorine on the front side of the first aggregating and separating means.
フッ素を含む被処理水を処理する水処理方法であって、
フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離工程と、
前記第一の凝集分離処理を行った第一凝集分離処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離工程と、
前記第二の凝集分離処理を行った第二凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理工程と、
前記フッ素吸着処理を行ったフッ素吸着処理水を逆浸透膜で処理する逆浸透膜処理工程と、
を含むことを特徴とする水処理方法。
A water treatment method for treating water to be treated containing fluorine,
A first aggregating and separating step of performing a first aggregating and separating process by adding a calcium agent to water to be treated containing fluorine;
A second agglomeration separation step of adding a carbonate-containing agent to the first agglomeration separation treated water subjected to the first agglomeration separation treatment and performing a second agglomeration separation treatment;
A fluorine adsorption treatment step in which the second agglomeration separation treatment water subjected to the second agglomeration separation treatment is brought into contact with a fluorine adsorbent to perform a fluorine adsorption treatment;
A reverse osmosis membrane treatment step of treating the fluorine adsorption treated water subjected to the fluorine adsorption treatment with a reverse osmosis membrane;
A water treatment method comprising:
フッ素を含む被処理水を処理する水処理方法であって、
フッ素を含む被処理水にカルシウム剤を添加して第一の凝集分離処理を行う第一凝集分離工程と、
前記第一の凝集分離処理を行った第一凝集分離処理水をフッ素吸着剤に接触してフッ素吸着処理を行うフッ素吸着処理工程と、
前記フッ素吸着処理を行ったフッ素吸着処理水に炭酸塩含有剤を添加して第二の凝集分離処理を行う第二凝集分離工程と、
前記第二の凝集分離処理を行った第二凝集分離処理水を逆浸透膜で処理する逆浸透膜処理工程と、
を含むことを特徴とする水処理方法。
A water treatment method for treating water to be treated containing fluorine,
A first aggregating and separating step of performing a first aggregating and separating process by adding a calcium agent to water to be treated containing fluorine;
A fluorine adsorption treatment step in which the first agglomeration separation treatment water subjected to the first agglomeration separation treatment is brought into contact with a fluorine adsorbent to perform a fluorine adsorption treatment;
A second agglomeration separation step of adding a carbonate-containing agent to the fluorine adsorption treated water subjected to the fluorine adsorption treatment and performing a second agglomeration separation treatment;
A reverse osmosis membrane treatment step of treating the second agglomeration separation treated water subjected to the second agglomeration separation treatment with a reverse osmosis membrane;
A water treatment method comprising:
請求項4または5に記載の水処理方法であって、
前記第一凝集分離工程の前段において、フッ素を含む被処理水を晶析処理する晶析処理工程を含むことを特徴とする水処理方法。
The water treatment method according to claim 4 or 5,
The water treatment method characterized by including the crystallization process process of crystallizing the to-be-processed water containing a fluorine in the front | former stage of said 1st coagulation separation process.
JP2008254305A 2008-09-30 2008-09-30 Water treatment apparatus and water treatment method Active JP4880656B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008254305A JP4880656B2 (en) 2008-09-30 2008-09-30 Water treatment apparatus and water treatment method
TW98133013A TW201012761A (en) 2008-09-30 2009-09-29 Device and method for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254305A JP4880656B2 (en) 2008-09-30 2008-09-30 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2010082546A JP2010082546A (en) 2010-04-15
JP4880656B2 true JP4880656B2 (en) 2012-02-22

Family

ID=42247035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254305A Active JP4880656B2 (en) 2008-09-30 2008-09-30 Water treatment apparatus and water treatment method

Country Status (2)

Country Link
JP (1) JP4880656B2 (en)
TW (1) TW201012761A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644236B2 (en) * 2010-07-28 2014-12-24 栗田工業株式会社 Fluorine-containing water treatment method
CN101973656B (en) * 2010-10-25 2012-11-07 中国市政工程中南设计研究总院 Defluorinating process and device of domestic drinking water of villages and towns
JP5692278B2 (en) * 2013-04-25 2015-04-01 栗田工業株式会社 Method and apparatus for treating fluoride-containing water
SG11201609957RA (en) * 2014-06-26 2017-01-27 Kurita Water Ind Ltd Method and device for treating fluoride-containing water
TWI639561B (en) * 2014-07-02 2018-11-01 栗田工業股份有限公司 Fluoride-containing water treatment method and treatment device
CN106659979A (en) * 2014-09-03 2017-05-10 三菱重工业株式会社 Water treatment device and operating method for water treatment device
JP6395844B2 (en) * 2014-09-03 2018-09-26 三菱重工エンジニアリング株式会社 Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
JP2019122943A (en) * 2018-01-19 2019-07-25 オルガノ株式会社 Water treatment method and water treatment equipment
CN112794493B (en) * 2020-12-23 2022-09-23 北京赛诺水务科技有限公司 System and method for reducing scaling in softening treatment of reverse osmosis concentrated brine caustic soda/lime soda ash
JP7460004B1 (en) 2023-03-27 2024-04-02 栗田工業株式会社 Fluorine-containing wastewater treatment equipment and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085761A (en) * 1996-09-13 1998-04-07 Japan Organo Co Ltd Method and apparatus for treating drainage containing fluorine
JPH11165179A (en) * 1997-12-03 1999-06-22 Kurita Water Ind Ltd Method for treating fluorine-containing water
JP4110604B2 (en) * 1998-02-05 2008-07-02 栗田工業株式会社 Fluorine-containing water treatment method
JP2001096281A (en) * 1999-09-29 2001-04-10 Nippon Rensui Co Ltd Method of recovering desalted water from fluorine- containing waste water
JP4139600B2 (en) * 2002-02-06 2008-08-27 オルガノ株式会社 Treatment method of wastewater containing fluorine
JP4350078B2 (en) * 2004-10-08 2009-10-21 住友金属鉱山エンジニアリング株式会社 Treatment method for fluorine-containing wastewater
JP2006218354A (en) * 2005-02-08 2006-08-24 Kurita Water Ind Ltd Method for treating fluorine-containing waste water

Also Published As

Publication number Publication date
TW201012761A (en) 2010-04-01
JP2010082546A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4880656B2 (en) Water treatment apparatus and water treatment method
KR20130115785A (en) Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater
CN105800846A (en) Method used for reverse osmosis concentrated water treatment and zero discharge, and apparatus thereof
WO2004087586A1 (en) Process for treating concentrated salt solutions containing doc
CN105347574A (en) Fluoride removal method of graphite purification waste water and processing system
JP4380825B2 (en) Fluorine-containing water treatment method
CN110759570A (en) Treatment method and treatment system for dye intermediate wastewater
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
JPH0592187A (en) Treatment of fluorine-containing water
JP2005118608A (en) Water treatment method
CN111233208A (en) Desulfurization waste water resource recovery system
JP3319053B2 (en) Treatment method for fluoride-containing water
JP2003305458A (en) Method for treating fluorine-containing waste water
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP2020058963A (en) Water treatment device and water treatment method
CN215559437U (en) Wastewater treatment system
CN211896410U (en) Desulfurization waste water resource recovery system
CN215559636U (en) Wastewater treatment system
JP3373033B2 (en) How to remove phosphorus from water
JP2019051450A (en) Method and device of treating silica-containing water
JP2007098270A (en) Method and apparatus for producing pure water
JP5665002B2 (en) Treatment method for fluorine-containing wastewater
CN113277653A (en) Desulfurization wastewater treatment system and method
JP7108392B2 (en) Silica-containing water treatment apparatus and treatment method
JP3622407B2 (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250