JP5208727B2 - 画像投射装置、画像投射スクリーンおよび画像表示システム - Google Patents

画像投射装置、画像投射スクリーンおよび画像表示システム Download PDF

Info

Publication number
JP5208727B2
JP5208727B2 JP2008506263A JP2008506263A JP5208727B2 JP 5208727 B2 JP5208727 B2 JP 5208727B2 JP 2008506263 A JP2008506263 A JP 2008506263A JP 2008506263 A JP2008506263 A JP 2008506263A JP 5208727 B2 JP5208727 B2 JP 5208727B2
Authority
JP
Japan
Prior art keywords
signal
image
luminance
image projection
invisible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008506263A
Other languages
English (en)
Other versions
JPWO2007108387A1 (ja
Inventor
浩士 小尾
浩稔 冨田
章 黒塚
修 梶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008506263A priority Critical patent/JP5208727B2/ja
Publication of JPWO2007108387A1 publication Critical patent/JPWO2007108387A1/ja
Application granted granted Critical
Publication of JP5208727B2 publication Critical patent/JP5208727B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

本発明は、スクリーンに画像を表示する画像投射装置、スクリーン、およびそれらを備えた画像表示システムに関し、特に、画質向上技術に関する。
画像投射装置は、スクリーンに光を投射することでスクリーン上に画像を表示する。この表示された画像を高画質化するために、従来から画像投射装置およびスクリーンの改良が行われてきた。画像投射装置では、画像表示(変調)方式と変調素子の高効率化が図られている。画像投射スクリーンでは、高反射、高コントラストスクリーンが提案されている。
例えば、特許文献1は、特定の偏光成分の光を選択的に反射するコレステリック液晶構造を有する偏光選択反射層を備えた画像投射スクリーンを開示している。
また、特許文献2は、高屈折率の光学薄膜とそれよりも低い屈折率の光学薄膜とを交互に積層し、複数の特定波長域の光(R、G、B)に対して高反射特性を有する選択波長反射型画像投射スクリーンを開示している。
また、特許文献3は、光の3原色のうちの2色の光を発するレーザ光源と、励起光を発する励起光源レーザとを備えた画像投射装置と、励起光が残る一色に波長変換する蛍光物質を有する波長変換型画像投射スクリーンとを開示している。
また、特許文献4は、人間の目の比視感度が最も高い575nm付近の光を吸収する光吸収インキからなる光吸収層をスクリーン上に設け、投影画像のグレイバランスを崩さないことを図った反射型画像投射スクリーンを開示している。
特開2005−292423号公報 特開2005−202029号公報 特開2003−287802号公報 特開平6−82915号公報
スクリーンに黒色を表示する場合は、黒色を表示する部分に光を投射しないことで黒色を表している。しかしながら、この方式では、明るい外光の環境下では黒浮きしてしまい、十分なコントラストを確保することは出来なかった。
本発明は、上記課題を鑑みてなされたものであり、明るい外光の環境下でも黒浮きを抑えてコントラストを高めた画像投射装置、画像投射スクリーンおよび画像表示システムを提供することを目的とする。
本発明の画像投射装置は、可視光を出力する第1光源と不可視光を出力する第2光源とを備え、前記可視光および前記不可視光をスクリーンへ投射する画像投射装置であって、前記スクリーンは、前記不可視光が投射されることにより可視光の反射率、透過率および吸収率の少なくとも1つが変化する材料を有しており、前記画像投射装置は、前記可視光および前記不可視光の強度を画像信号に基づいて変調する変調部と、前記変調部を制御する制御部とをさらに備えることを特徴とする。
ある実施形態によれば、前記変調部は、前記画像信号に対応する輝度信号に基づいて前記不可視光の強度を変調する。
ある実施形態によれば、前記画像信号はRGB信号であり、前記制御部は、前記RGB信号を前記輝度信号へ変換する。
ある実施形態によれば、前記変調部は、前記画像信号に対応する輝度信号を反転させた輝度反転信号に基づいて前記不可視光の強度を変調する。
ある実施形態によれば、前記輝度反転信号を補正する補正部をさらに備える。
ある実施形態によれば、前記補正部は、前記輝度反転信号の輝度レベルの補正、前記輝度反転信号の所定の輝度レベル以下の部分を切り捨てる補正、前記輝度反転信号の所定の中間輝度レベルの部分を切り捨てる補正、およびガンマ補正の少なくとも1つを行う。
ある実施形態によれば、画像投射領域の照度を検出する照度検出部と、前記画像投射領域の温度を検出する温度検出部との少なくとも一方をさらに備え、前記補正部は、前記画像投射領域の照度および温度の少なくとも一方に基づいて前記輝度反転信号を補正する。
ある実施形態によれば、画像投射領域の照度を検出する照度検出部と、前記画像投射領域の温度を検出する温度検出部との少なくとも一方をさらに備え、前記制御部は、前記画像投射領域の照度および温度の少なくとも一方に基づいて、前記不可視光の照射エネルギーおよび照射時間の少なくとも一方を調整する。
ある実施形態によれば、前記第1および第2光源が出力した前記可視光および前記不可視光を反射して投射する反射面を有する走査部と、前記走査部を駆動する駆動部とをさらに備える。
ある実施形態によれば、前記スクリーンが有する前記材料はフォトクロミック化合物である。
ある実施形態によれば、前記フォトクロミック化合物は透明材料を含む。
ある実施形態によれば、前記フォトクロミック化合物は不透明材料を含む。
ある実施形態によれば、前記スクリーンの前記反射率、前記透過率および前記吸収率の少なくとも1つは、前記不可視光の照射エネルギーに応じて変化する。
ある実施形態によれば、前記スクリーンの前記反射率、前記透過率および前記吸収率の少なくとも1つは、前記不可視光の照射時間に応じて変化する。
ある実施形態によれば、前記スクリーンは、前記スクリーンの投射面および前記投射面の裏面の少なくとも1面に設けられた前記材料を有する。
本発明の画像表示システムは、前記画像投射装置と前記スクリーンとを備えることを特徴とする。
本発明のスクリーンは、不可視光が投射されることにより可視光の反射率、透過率および吸収率の少なくとも1つが変化する材料を有していることを特徴とする。
ある実施形態によれば、前記スクリーンが有する前記材料はフォトクロミック化合物である。
ある実施形態によれば、前記フォトクロミック化合物は透明材料を含む。
ある実施形態によれば、前記フォトクロミック化合物は不透明材料を含む。
ある実施形態によれば、前記スクリーンの前記反射率、前記透過率および前記吸収率の少なくとも1つは、前記不可視光の照射エネルギーに応じて変化する。
ある実施形態によれば、前記スクリーンの前記反射率、前記透過率および前記吸収率の少なくとも1つは、前記不可視光の照射時間に応じて変化する。
ある実施形態によれば、前記スクリーンは、前記スクリーンの投射面および前記投射面の裏面の少なくとも1面に設けられた前記材料を有する。
本発明によれば、画像投射装置は、可視光を出力する第1光源と不可視光を出力する第2光源とを備える。スクリーンは、不可視光が投射されることにより可視光の反射率、透過率および吸収率の少なくとも1つが変化する材料を有する。可視光および不可視光の強度を画像信号に基づいて変調してスクリーンへ投射することで、画像が表示される。スクリーン上の黒色を表示したい領域に不可視光を投射することで、その領域の特性が黒色表示に適した特性となるので、明るい外光の環境下でも黒浮きを抑えた高コントラストの画像表示を実現することができる。
ある実施形態によれば、スクリーンはフォトクロミック化合物を有する。フォトクロミック効果は、材料による光変調効果なので、高い信頼性があると共にメンテナンスフリーである。また、不透明のフォトクロミック化合物を用いた場合は、フォトクロミック化合物層が反射型画像投射スクリーン構造層も兼ねることができる。
また、ある実施形態によれば、光源は、キセノン、LED等のランプ光源や半導体光源である。不可視光も可視光と同様の画像信号に対応する輝度信号に基づいて変調される。例えば、不可視光は、輝度信号を反転させた輝度反転信号に基づいて変調される。これにより、画像表示に適切な強度の不可視光を投射することができる。
また、ある実施形態によれば、画像信号はRGB信号であり、RGB信号から輝度信号が変換生成される。このように様々な画像信号から輝度信号を得ることができる。
また、ある実施形態によれば、画像投射領域の照度および温度に応じて、輝度反転信号を補正したり、不可視光の照射エネルギーおよび照射時間を調整したりすることで、画像投射領域の状態に適した画像投射を行うことが出来る。
以下、図面を参照しながら本発明の実施形態を説明する。同様の構成要素には同様の参照符号を付し、同様の説明の繰り返しは省略する。
(実施形態1)
図1は、本発明の第1の実施形態による透過型画像投射スクリーン1を示す図である。図1(a)は、暗所で用いられるときの透過型画像投射スクリーン1を示している。図1(b)は、明所で用いられるときの透過型画像投射スクリーン1を示している。図1(c)は、不可視光を投射した状態の明所での透過型画像投射スクリーン1を示している。透過型画像投射スクリーン1は、例えば、リアプロジェクションテレビ用に使用される。
図2は、透過型画像投射スクリーン1のベース材料層を示す図である。図3は、図2に示した構造とは別の構造を有する透過型画像投射スクリーン1を示す図である。
図1を参照して、透過型画像投射スクリーン1は、ベース材料層2とフォトクロミック化合物層3とを備える。ベース材料層2は、例えば図2に示すようなフレネルレンズ7が形成された層と、レンチキュラーレンズ8が形成された層と、光吸収部9が形成された層とを重ねた構造を有している。
フォトクロミック化合物層3は透明材料を有しており、投射される可視光ビームを効率良く透過する。この例では、可視光は光の3原色であるレッド(R)、グリーン(G)、ブルー(B)の3種類の光であり、ここでは3原色まとめてRGB光とも呼ぶ。R光、G光、B光を組み合わせることで画像が形成される。なお、本発明で用いられる可視光はRGBに限定されず、シアン、マゼンダ、イエロー等の他の色の光であってもよい。
フォトクロミック化合物層3は、不可視光ビームである紫外光(UV光)ビームと反応して、可視光の反射率が低下して吸収率が増加する。透過型画像投射スクリーン1において、投射された画像を瞳4で観賞する側をスクリーン1の表側とする。可視光ビームと不可視光ビームは、例えば図1(a)に示すように、スクリーン1の裏側から投射される。
図1(a)を参照して、透過型画像投射スクリーン1上の黒色や黒色に近い暗い画像を表示しようとする箇所には、RGB光が照射されないかほとんど照射されないので、暗所では黒色や黒色に近い暗い画像が表示される。しかし、図1(b)に示すように、明所においては、スクリーン1の表側から入射する照明等の外光5の反射光(White)の影響により、RGB光が照射されない箇所の画像は黒浮きしてしまう。
図1(c)を参照して、RGB光とUV光が透過型画像投射スクリーン1に照射されると、UV光照射領域ではフォトクロミック化合物層3がUV光と反応して、可視光の反射率が低下して吸収率が増加する。UV光を照射する箇所を、黒色や黒色に近い暗い画像表示をしている画素に対応させると、その箇所に入射した外光5はフォトクロミック化合物層3で吸収されて外光5の反射光量が低下するので黒浮きを抑えられる。
このように、本実施形態によれば、外光5等によるスクリーンの黒浮きを抑え、明所でもコントラストを高めることができる。
なお、画像投射スクリーンの構造は上述した構造に限定されない。図2に示すレンチキュラーレンズ8が形成された層と光吸収部9が形成された層との2層の構造を、図3に示すように、フォトクロミック化合物層3で代用してもよい。レンチキュラーレンズ8が形成された層と光吸収部9が形成された層の2層の構造が不要になると、この構造層の作製やフレネルレンズ7との位置調整が不要となり、製造工程を簡略化することができる。
また、図1に示す透過型画像投射スクリーン1では、表側の1面のみにフォトクロミック化合物層3が設けられているが、裏側も含めた両面に設けてもよい。リアプロジェクションテレビの場合、テレビ筐体内から発生する画像表示ビーム以外の可視光(迷光)の存在は、投射画像のコントラストを低下させる原因となる。スクリーン1の裏側(筐体内部側)にもフォトクロミック化合物層3を設けることにより、迷光を吸収することが可能となる。
フォトクロミック化合物としては、例えば、スピロピラン化合物、スピロオキサジン化合物、フルギド化合物、ジアリールエテン化合物、アゾベンゼン化合物等がある。フォトクロミック化合物層は、これらのフォトクロミック化合物の少なくとも1種類と、フォトクロミック化合物を塗布または混合するためのバインダー樹脂とを備える。バインダー樹脂の材料としては、透明性に優れ、フォトクロミック化合物の反応に悪影響を及ぼさない材料を用いることが好ましい。
ここで、フォトクロミック化合物層の発色および消色の方法を説明する。フォトクロミック化合物は紫外光が照射されると発色し、可視光が照射されると消色する。消色用に用いられる可視光は、画像表示装置より投射される画像表示用の可視光である。ここでは、紫外光と可視光とを用いた発消色(光発消色)を説明するが、紫外光に代わりに赤外光が用いられてもよい。
黒色や暗い色の画像を表示する箇所(画素)には紫外光が照射され、フォトクロミック化合物層は照射光量に応じたグレースケール(黒)を表示する。その暗い箇所に可視光が照射されて明るくなり始めたら、フォトクロミック化合物層は消色する。
消色のタイミングは、フォトクロミック化合物層が消色する可視光の光量を所定量に設定することで制御できる。所定光量の可視光が照射されるまでグレースケール表示が維持される。また、グレースケール表示を維持させるためには、紫外光を定期的に照射させるか、または照射し続けることが望ましい。
グレースケール表示の方法としては、例えば、フォトクロミック化合物層が照射光量に応じて、シアン、イエロー、マゼンタを均等に発色させると、減法混色(シアン+イエロー+マゼンタ=黒)によりフォトクロミック化合物層の色が黒くなる。
また、フォトクロミック化合物層を熱で発色させ、光で消色してもよい。画像投射装置とスクリーンとの間で画像情報の共有化が可能な場合は、フォトクロミック化合物層に透明導電膜を重ねて、透明導電膜に通電して発熱させることでフォトクロミック化合物層を発色させることができる。消色は可視光の照射により行われる。この場合は、透明電極(透明導電膜+電極)がフォトクロミック化合物層の一面(表面または裏面)または両面に配置される。例えば、スピロピラン化合物は熱で発色する。
また、画像投射装置とスクリーンとの間で画像情報の共有が可能な場合は、エレクトロクロミック効果を利用してスクリーンを発消色させてもよい。
リア投射用のスクリーンの構成としては、例えば、次の(1)〜(8)に示す構成がある。
(1) ベース材料/フォトクロミック化合物層/不可視光吸収膜
(2) ベース材料/フォトクロミック化合物層/不可視光吸収膜/不可視光反射膜
(3) ベース材料/透明電極/フォトクロミック化合物層/不可視光吸収膜
(4) ベース材料/透明電極/フォトクロミック化合物層/不可視光吸収膜/不可視光反射膜
(5) ベース材料/フォトクロミック化合物層/透明電極/不可視光吸収膜
(6) ベース材料/フォトクロミック化合物層/透明電極/不可視光吸収膜/不可視光反射膜
(7) ベース材料/透明電極/フォトクロミック化合物層/透明電極/不可視光吸収膜
(8) ベース材料/透明電極/フォトクロミック化合物層/透明電極/不可視光吸収膜/不可視光反射膜
基本構成は(1)および(2)に示す構成である。(3)〜(8)に示す構成では、透明電極の位置が入れ替わっている。(3)〜(8)は、フォトクロミック化合物層が熱で発色して光で消色するスクリーン構成を示している。また、エレクトロクロミック効果を用いるスクリーン構成では、フォトクロミック化合物層がエレクトロクロミック化合物層に置き換わる。また、フォトクロミック効果とエレクトロクロミック効果の両方を併用するスクリーン構成を採用してもよい。
上記(1)に示すリア投射用のスクリーンの不可視光吸収膜の特性としては、画像投射装置からの不可視光および外光の不可視光を吸収する(透過しない)ことが必要であるので、画像投射装置からの不可視光と外光の不可視光の光量の高い方に合わせて適宜設計される。例えば、一般的な蛍光灯からの紫外光の光量が数十μW/cm2であり、晴天時のガラス越しの日光からの紫外光の光量が100μW/cm2以下(ガラスの厚さ、種類で大きく変わる)であること等を考慮して設計する。
上記(2)に示すリア投射用のスクリーンの不可視光吸収膜の特性は、画像投射装置からの不可視光を吸収する(透過しない)ことが必要であるので、画像投射装置からの不可視光の光量に合わせて適宜設計される。上記(2)に示すリア投射用のスクリーンの不可視反射膜の特性としては、外光の不可視光を反射する(透過しない)ことが必要であるので、外光の不可視光を全て反射する特性が好ましい。ただし、フォトクロミック化合物層でフォトクロミック効果がほとんど発生しない程度の光量は透過しても問題ない。
温度により特性が変化するフォトクロミック化合物の材料としては、スピロピラン化合物およびスピロオキサジン化合物等がある。
また、ジアリールエテン化合物は、光ディスクの記録材料に使用されており、光に対して非常に早く反応するので、動画の表示に向いている。また、静止画像表示では高速応答の必要がないので、反応が遅い材料を用いることもできる。
また、フォトクロミック化合物層3と反応する不可視光として、紫外光以外に近赤外光や近紫外光を用いてもよい。
また、フォトクロミック化合物層3がフィルム等で保護されて容易に持ち運び可能な形態になると、既に設置済みの透過型画像投射スクリーンに重ね合わせたり、透過型画像投射スクリーンとして代用されるすりガラス、拡散シート、あるいは拡散シートが貼られた透明で表面が滑らかなガラス等に重ね合わせたりすることも可能である。
また、フォトクロミック化合物が容易に塗布できる材料である場合は、スプレーでの塗布や液体にして塗ることも可能である。
(実施形態2)
図4は、本発明の第2の実施形態による反射型画像投射スクリーン11を示す図である。図4(a)は、暗所で用いられるときの反射型画像投射スクリーン11を示している。図4(b)は、明所で用いられるときの反射型画像投射スクリーン11を示している。図4(c)は、不可視光を投射した状態の明所での反射型画像投射スクリーン11を示している。反射型画像投射スクリーン11は、例えば、プロジェクター用として使用される。
図4を参照して、反射型画像投射スクリーン11は、ベース材料層12とフォトクロミック化合物層13とを備える。ベース材料層12は、例えば、表面が凹凸構造で色が白色のプロジェクター用スクリーン構造を有している。フォトクロミック化合物層13は透明材料を有しており、可視光ビームを効率良く透過する。フォトクロミック化合物層13は、不可視光ビームである紫外光(UV光)ビームと反応して、可視光の透過率が低下して吸収率が増加する。反射型画像投射スクリーン11において、投射された画像を瞳4で観賞する側をスクリーン11の表側とする。RGB光とUV光は、スクリーン11の表側から投射される。
図4(a)を参照して、反射型画像投射スクリーン11上の黒色や黒色に近い暗い画像を表示しようとする箇所には、RGB光が照射されないかほとんど照射されないので、暗所では黒色や黒色に近い暗い画像が表示される。しかし、図4(b)に示すように、明所においては、スクリーン11の表側から入射する外光5の反射光(White)の影響により、RGB光が照射されない箇所の画像は黒浮きしてしまう。
図4(c)を参照して、RGB光とUV光が反射型画像投射スクリーン11に照射されると、UV光照射領域ではフォトクロミック化合物層13がUV光と反応して、可視光の透過率が低下して吸収率が増加する。UV光を照射する箇所を、黒色や黒色に近い暗い画像表示をしている画素に対応させると、その箇所に入射した外光5は、フォトクロミック化合物層13で吸収されて、外光5の反射光量が低下するので黒浮きを抑えられる。
このように、本実施形態によれば、外光5等によるスクリーンの黒浮きを抑え、明所でもコントラストを高めることができる。
なお、画像投射スクリーンの構造は上述した構造に限定されない。一面(表面)はスクリーンからの反射光の輝度を重視した白色のスクリーン面で、もう一面(裏面)は画像のコントラストを高めることを重視した灰色のスクリーン面である両面反射型画像投射スクリーンがある。本発明によれば、一面のスクリーン面が、輝度重視型スクリーンとコントラスト重視型スクリーンの両方を担うことができるので、用途に応じたスクリーン特性の切り替えが容易である。
フロント投射用のスクリーン構成としては、例えば、次の(1)〜(4)に示す構成がある。
(1) ベース材料/フォトクロミック化合物層/不可視光吸収膜
(2) ベース材料/透明電極/フォトクロミック化合物層/不可視光吸収膜
(3) ベース材料/フォトクロミック化合物層/透明電極/不可視光吸収膜
(4) ベース材料/透明電極/フォトクロミック化合物層/透明電極/不可視光吸収膜
基本構成は(1)に示す構成である。(2)〜(4)に示す構成では、透明電極の位置が入れ替わっている。(2)〜(4)に示す構成は、フォトクロミック化合物層が熱で発色して光で消色するスクリーン構成を示している。
フロント投射用のスクリーンの不可視光吸収膜に閾値を設定し、画像投射装置はその閾値以上の不可視光を投射する。その閾値は、画像投射装置から投射される不可視光が不可視光吸収膜を透過することで得られるフォトクロミック効果との関係から適宜決められる。
また、フォトクロミック化合物層13と反応する不可視光として、紫外光以外に近赤外光または近紫外光を用いてもよい。
また、フォトクロミック化合物層13がフィルム等で保護されて容易に持ち運び可能な形態になると、既に設置済みの反射型画像投射スクリーンに重ね合わせたり、反射型画像投射スクリーンとして代用され得るホワイトボードや表面が滑らかな壁等に重ね合わせたりすることも可能である。
また、フォトクロミック化合物が容易に塗布できる材料である場合は、スプレーでの塗布や液体にして塗ることも可能である。
(実施形態3)
図5は、本発明の第3の実施形態による反射型画像投射スクリーン14を示す図である。図5(a)は、暗所で用いられるときの反射型画像投射スクリーン14を示している。図5(b)は、明所で用いられるときの反射型画像投射スクリーン14を示している。図5(c)は、不可視光を投射した状態の明所での反射型画像投射スクリーンを示している。反射型画像投射スクリーン14は、例えば、プロジェクター用として使用される。
図5を参照して、反射型画像投射スクリーン14は、ベース材料層15とフォトクロミック化合物層16とを備える。ベース材料層15の色は例えば黒色である。フォトクロミック化合物層16は不透明材料を有しており、表面が凹凸構造で色が白色のプロジェクター用スクリーン構造を有している。可視光ビームは、フォトクロミック化合物層16で効率良く反射される。フォトクロミック化合物層16は、不可視光ビームである紫外光(UV光)ビームと反応して、可視光の反射率が低下して透過率が増加する。反射型画像投射スクリーン14において、投射された画像を瞳4で観賞する側をスクリーン14の表側とする。RGB光とUV光は、スクリーン14の表側から投射される。
図5(a)を参照して、反射型画像投射スクリーン14上の黒色や黒色に近い暗い画像を表示しようとする箇所には、RGB光が照射されないかほとんど照射されないので、暗所では黒色や黒色に近い暗い画像が表現される。しかし、図5(b)に示すように、明所においては、スクリーン14の表側から入射する外光5の反射光(White)の影響により、RGB光が照射されない箇所の画像は黒浮きしてしまう。
図5(c)を参照して、RGB光とUV光が反射型画像投射スクリーン14に照射されると、UV光照射領域ではフォトクロミック化合物層16がUV光と反応して、可視光の反射率が低下して透過率が増加する。UV光を照射する箇所を、画像表示の黒色や黒色に近い暗い画像表示をしている画素に対応させると、その箇所に入射した外光5は、フォトクロミック化合物層16を透過し、ベース材料15で反射される。ベース材料15は黒色なので、入射光はほとんど吸収されてその箇所では黒色が表示され、黒浮きが抑えられる。
このように、本実施形態によれば、外光5等によるスクリーンの黒浮きを抑え、明所でもコントラストを高めることができる。
また、フォトクロミック化合物層16と反応する不可視光として、紫外光以外に、近赤外光または近紫外光ビームを用いてもよい。
また、ベース材料層の色は灰色でもよく、黒色に限定されない。
また、フォトクロミック化合物層16がフィルム等で保護されて容易に持ち運び可能な形態になると、既に設置済みのコントラスト重視型の反射型画像投射スクリーンに重ね合わせたり、反射型画像投射スクリーンとして代用され得る黒板や表面が滑らかで色が暗く模様や色むらがほとんどない壁等に重ね合わせたりすることも可能である。
また、フォトクロミック化合物が容易に塗布できる材料である場合は、スプレーでの塗布や液体にして塗ることも可能である。
(実施形態4)
次に、本発明の実施形態による画像表示システムを説明する。図6は、本実施形態の画像表示システムを示す図である。画像表示システムは、画像投射装置100と画像投射スクリーン36とを備える。
図7は、制御部29が実行する信号処理フローを示す図である。図8は、画像信号28の輝度信号37と、その輝度信号37を反転処理して生成した輝度反転信号38とを示す図である。
図6を参照して、画像投射装置100は、可視光源21と、コリメートレンズ22と、Rフィルター31と、Gフィルター32と、Bフィルター33と、可視光源用空間変調素子23と、ダイクロイックプリズム24と、不可視光源25と、不可視光源用空間変調素子34と、ビームスプリッター26と、投射レンズ27と、制御部29と、空間変調素子駆動部30とを備える。
制御部29は、可視光源用制御部29aと不可視光源用制御部29bとを備える。空間変調素子駆動部30は、可視光源用空間変調素子駆動部30aと不可視光源用空間変調素子駆動部30bとを備える。
可視光源21は可視光を出力し、不可視光源25は不可視光を出力する。空間変調素子23、34および空間変調素子駆動部30は、可視光および不可視光の強度を画像信号に基づいて変調する。空間変調素子23、34および空間変調素子駆動部30をまとめて変調部と呼んでもよい。画像信号に基づいて制御部29が空間変調素子駆動部30の動作を制御することで、空間変調素子23および34は、可視光および不可視光の強度を変調する。
RGBに対応した3つの可視光源21から放射された可視光ビームは、それぞれに対応したコリメートレンズ22によって絞り込まれ、Rフィルター31、Gフィルター32およびBフィルター33を透過して、RGBそれぞれの光ビームが得られる。RGBの各光ビームは、可視光源用空間変調素子23(例えば透過型液晶素子)で変調され、ダイクロイックプリズム24で合成される。不可視光源25から放射された不可視光ビームは、コリメートレンズ22によって絞り込まれ、不可視光源用空間変調素子34(例えば透過型液晶素子)で変調され、ダイクロイックプリズム24で合成された可視光ビームとビームスプリッター26で合成されて投射ビームとなり、投射レンズ27から画像投射スクリーン36上に投射され、投射領域35に画像を形成する。
表示しようとする画像を示す画像信号28は、制御部29aおよび29bに入力される。制御部29aおよび29bは、画像信号28に応じた制御信号を空間変調素子駆動部30aおよび30bに出力する。制御信号に応じて空間変調素子駆動部30aおよび30bが空間変調素子23および34を駆動することで、空間変調素子23は可視光ビームに対して画像信号に応じた強度変調を行い、空間変調素子34は不可視光ビームに対して画像信号28に応じた強度変調を行う。
不可視光源用制御部29bは、画像信号28の輝度信号を反転した輝度反転信号を生成し、制御信号として不可視光源用空間変調素子駆動部30bに出力する。
図7(a)の信号処理フローを参照して、可視光源用制御部29aの信号処理を説明する。
画像信号28が一般的なNTSC(National Television System Committee)方式の映像(ビデオ)信号の場合は、輝度信号と色差信号(R−輝度信号、B−輝度信号)と音声信号が得られる。輝度信号はRGB信号を所定の比率で足し合わせることで求めることができ、
輝度信号=0.299*R+0.587*G+0.114*B (式1)
で与えられる。また、各色差信号は、
R−輝度信号=0.701*R−0.587*G−0.114*B (式2)
B−輝度信号=−0.299*R−0.587*G+0.886*B (式3)
で与えられる。制御部29aは(式1)〜(式3)に応じたRGB信号変換処理を行い、RGB信号が得られる。このRGB信号を可視光源用変調素子駆動部30aに入力する。
また、画像信号28がRGB信号の場合は、このRGB信号を可視光源用変調素子駆動部30aに入力する。
次に、図7(b)の信号処理フローを参照して、不可視光源用制御部29bの信号処理を説明する。
画像信号28が一般的なNTSC方式のビデオ信号の場合は、輝度信号と色差信号と音声信号が得られる。制御部29bは、この輝度信号37に輝度反転信号処理を行い輝度反転信号が得られる。この輝度反転信号を不可視光源用変調素子駆動部30bに入力する。
また、画像信号28がRGB信号の場合は、このRGB信号にも輝度信号が含まれており、RGB信号を(式1)に示す所定の比率で足し合わせることで輝度信号37を得ることができる。この輝度信号37を反転処理して輝度反転信号が得られる。この輝度反転信号を不可視光源用変調素子駆動部30bに入力する。
図8を参照して、輝度信号37と輝度反転信号38を説明する。
図8(a)は輝度信号37を示している。ある制御時間範囲内(図8(a)の横軸に示す範囲内)における輝度信号37を、0〜255までの階調レベル(輝度レベル)で表現している。
図8(b)は、ある制御時間範囲内における輝度反転信号38を示している。輝度反転信号38は、輝度信号37を反転処理して得られた信号である。
画像投射スクリーン36(図6)は、例えば図4に示す構成要素を備える。
画像投射スクリーン36は、画像投射装置100の投射光を反射して画像を表示するベース材料層12と、ベース材料層12表面に設けられた透明材料を含むフォトクロミック化合物層13とを備える。
画像投射装置100より投射される可視光ビームはベース材料層12で反射されて画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。
この画像投射装置100と画像投射スクリーン36との組み合わせにより、画像表示システムが構築される。
フォトクロミック化合物層の不可視光に対する発色と可視光に対する消色が適切な応答時間および発消色レベルとなるように、不可視光および可視光の強度(照射エネルギー)および照射時間が調整されることが望ましい。図7(b)を参照して、制御部29bは、表示しようとする画像に対応する輝度信号とその前後の輝度信号とを記憶するとともにそれらの輝度信号同士を比較する(輝度信号比較処理)。比較した結果、ある表示箇所について所定の時間以上にわたって暗い表示が続く場合は、不可視光ビームの強度を強くすると共に照射時間を長くする。また、ある表示箇所について暗い表示が短時間である場合は、不可視光ビームの強度を弱くすると共に照射時間を短くする。
このように、画像投射装置100が可視光源21以外に不可視光源25を備え、不可視光ビームが可視光ビームと合成されて画像投射スクリーン36に投射される。ベース材料層12は可視光ビームに応じた画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。この可視光の透過率を低下させて吸収率を増加させる箇所を、黒色や黒色に近い暗い画像表示をしている画素に対応させる。この箇所に入射した外光5はフォトクロミック化合物層13で吸収されるので、外光5等によるスクリーンの黒浮きを抑えコントラストを高めた画像表示システムが得られる。
なお、光ビーム変調用の空間変調素子としては、透過型液晶素子の他に、反射型液晶素子を用いてもよいし、デジタルミラーデバイス(DMD)と呼ばれる光学素子を用いてもよい。デジタルミラーデバイスは、マトリックス状に配置した微小ミラーをデジタル的に傾けることにより画像を表示する。
また、画像投射装置100が備える光学系の構成は一例であり、光源の数や、コリメートレンズおよびプリズム等の各構成要素は様々に設定される。
また、フォトクロミック化合物層13と反応する不可視光として、紫外光以外に近赤外光または近紫外光を用いてもよい。
(実施形態5)
図9は、本発明の実施形態5による画像表示システムを示す図である。図10は、制御部39が実行する信号処理フローを示す図である。図11は、補正前の輝度反転信号と補正後の輝度反転信号を示す図である。
図12は、輝度反転信号の一部を切捨てる補正処理を示す図である。図13は、輝度反転信号の中間階調レベル部分を切捨てる補正処理を示す図である。図14は、輝度反転信号に対するガンマ補正処理を示す図である。
図9に示す画像投射装置101は、以下に説明する要素を備える。
複数の光源21から放射された可視光ビームは、それぞれに対応したコリメートレンズ22によって絞り込まれ、Rフィルター31、Gフィルター32およびBフィルター33を透過して、RGBそれぞれの光ビームが得られる。RGBの各ビームは、可視光源用空間変調素子23で変調され、ダイクロイックプリズム24で合成される。不可視光源25から放射された不可視光ビームは、コリメートレンズ22によって絞り込まれ、不可視光ビーム空間変調素子34で変調され、ダイクロイックプリズム24で合成された可視光ビームと光ビームスプリッター26で合成され投射ビームとなり、投射レンズ27から画像投射スクリーン36上に投射され、投射領域35に画像を形成する。
画像投射装置101が備える制御部39は、可視光源用制御部39aと不可視光源用制御部39bとを備える。表示しようとする画像を示す画像信号28は、制御部39aおよび39bに入力される。制御部39aおよび39bは、画像信号28に応じた制御信号を空間変調素子駆動部30aおよび30bに出力する。制御信号に応じて空間変調素子駆動部30aおよび30bが空間変調素子23および34を駆動することで、空間変調素子23は可視光ビームに対して画像信号に応じた強度変調を行い、空間変調素子34は不可視光ビームに対して画像信号28に応じた強度変調を行う。
不可視光源用制御部39bは、画像信号28の輝度信号を反転した輝度反転信号を生成し、制御信号として不可視光源用空間変調素子駆動部30bに出力する。
画像投射装置101は、照度検出器40と温度検出器41とを備える。照度検出器40は、画像投射領域35を含む画像投射スクリーン36周辺の照度を検出して、検出照度を示す照度検出信号を不可視光源用制御部39bに入力する。
温度検出器41は、画像投射領域35を含む画像投射スクリーン36周辺の温度を検出して、検出温度を示す温度検出信号を不可視光源用制御部39bに入力する。
照度検出器40または温度検出器41の照度または温度の検出は、画像投射装置101の電源投入時、画像を投射する前、画像投射中のうちの少なくとも1つのタイミングで行われる。
可視光源用制御部39aの信号処理フローは、図7(a)に示す可視光源用制御部29aの信号処理フローと同様である。画像信号28が、一般的なNTSC方式のビデオ信号の場合は、輝度信号と色差信号(R−輝度信号、B−輝度信号)と音声信号が得られる。輝度信号はRGB信号を所定の比率で足し合わせることで求めることができ、(式1)で表される。また、各色差信号は(式2)および(式3)で表される。(式1)〜(式3)に応じたRGB信号変換処理を行い、RGB信号が得られる。このRGB信号を可視光源用変調素子駆動部30aに入力する。
また、画像信号28がRGB信号の場合は、このRGB信号を可視光源用変調素子駆動部30aに入力する。
図10の信号処理フローを参照して、不可視光源用制御部39bの信号処理を説明する。
不可視光源用制御部39bが実行する動作のうちの輝度信号反転処理までは、図7(b)を参照して説明した輝度信号反転処理までの動作と同様である。画像信号28が、一般的なNTSC方式のビデオ信号の場合は、輝度信号37が得られるので、この輝度信号37を反転処理して輝度反転信号が得られる。
また、画像信号28がRGB信号の場合は、このRGB信号にも輝度信号が含まれており、RGB信号を(式1)に示す所定の比率で足し合わせることで輝度信号37を得ることができる。この輝度信号37を反転処理して輝度反転信号が得られる。
図8(a)は輝度信号37を示しており、図8(b)は輝度反転信号38を示している。
不可視光源用制御部39bは、輝度反転信号補正部42を備える。輝度反転信号38は、輝度反転信号補正部42に入力され、階調レベルの補正処理が行われ、空間変調素子34を駆動する輝度反転信号が得られる。この輝度反転信号を不可視光源用変調素子駆動部30bに入力する。輝度反転信号補正部42が実行する補正処理を図11を参照して説明する。
図11は、ある制御時間範囲内での階調レベル(輝度レベル)補正を行うときの、補正前の輝度反転信号と補正後の輝度反転信号を示している。点線部が階調レベル補正前の輝度反転信号38で、実線部が階調レベル補正後の輝度反転信号38aである。照度検出器40によって検出される照度に応じて、階調レベルを一定に低下させている。
照度検出器40が出力した照度検出信号は、輝度反転信号補正部42に入力され、空間変調素子34を駆動するための輝度反転信号の輝度レベル(階調レベル)の補正が、照度検出信号に応じて行われる。
温度検出器41が出力した温度検出信号は、輝度反転信号補正部42に入力され、空間変調素子34を駆動するための輝度反転信号の輝度レベル(階調レベル)の補正が、温度検出信号に応じて行われる。
なお、画像投射スクリーン36(図9)は、例えば、図4に示す構成要素を備える。
画像投射スクリーン36は、ベース材料層12と、ベース材料層12表面に設けられた透明材料を含むフォトクロミック化合物層13とを備える。
画像投射装置101より投射される可視光ビームは、ベース材料層12で反射されて画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。
画像投射装置101と画像投射スクリーン36との組み合わせにより、画像表示システムが構築される。
フォトクロミック化合物層の不可視光に対する発色と可視光に対する消色が適切な応答時間および発消色レベルとなるように、不可視光および可視光の強度および照射時間が調整されることが望ましい。図10を参照して、制御部39bは、表示しようとする画像に対応する輝度信号とその前後の輝度信号とを記憶するとともにそれらの輝度信号同士を比較する(輝度信号比較処理)。比較した結果、ある表示箇所について所定の時間以上にわたって暗い表示が続く場合は、不可視光ビームの強度を強くすると共に照射時間を長くする。また、ある表示箇所について暗い表示が短時間である場合は、不可視光ビームの強度を弱くすると共に照射時間を短くする。
このように、画像投射装置101が可視光源21以外に不可視光源25を備え、不可視光ビームが可視光ビームと合成されて画像投射スクリーン36に投射される。ベース材料層12は可視光ビームに応じた画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。この可視光の透過率を低下させて吸収率を増加させる箇所を、黒色や黒色に近い暗い画像表示をしている画素に対応させる。この箇所に入射した外光5はこのフォトクロミック化合物層13で吸収されるので、外光5等によるスクリーンの黒浮きを抑えコントラストを高めた画像表示システムが得られる。さらに、本実施形態では、装置の外部環境に応じて、輝度反転信号補正部42が輝度反転信号38を適切に補正することで、さらにスクリーンの黒浮きを抑えコントラストを高めることができる。
なお、光ビーム変調用の空間変調素子としては、透過型液晶素子の他に、反射型液晶素子を用いてもよいし、デジタルミラーデバイス(DMD)と呼ばれる光学素子を用いてもよい。
また、画像投射装置101が備える光学系の構成は一例であり、光源の数や、コリメートレンズおよびプリズム等の構成要素は様々に設定される。
また、フォトクロミック化合物層13と反応する不可視光として、紫外光以外に近赤外光または近紫外光を用いてもよい。
また、階調レベル(輝度レベル)補正において、階調レベルを一定レベル低下させている補正は一例であり、投射領域35を含む画像投射スクリーン36周辺の明るさに応じて階調レベルの補正を行うので、階調レベルを一定に上昇させることもある。
また、輝度反転信号の補正としては、輝度反転信号の所定の輝度レベル以下を切り捨てる補正、所定の中間の輝度レベルのみ切り捨てる補正、階調レベルを超えて輝度レベルまたは輝度中間位置を補正するガンマ補正などがある。輝度反転信号補正部42が実行する補正処理を図12〜図14を参照して説明する。
図12は、ある制御時間範囲内での、輝度反転信号の所定の階調レベル(輝度レベル)以下の部分を切り捨てる補正処理を示している。一点鎖線が所定の階調レベルを示している。点線部は補正前の輝度反転信号38を示し、実線部は補正後の輝度反転信号38aを示している。所定の階調レベル以下の部分は切り捨てられるので、輝度反転信号38aにより強度変調された不可視光ビームは、画像の黒色や黒色に近い暗い画像に対応した画素にのみ投射され、可視光の透過率を低下させて吸収率を増加させることができる。
図13は、ある制御時間範囲内での、輝度反転信号の所定の中間階調レベル(輝度レベル)を切り捨てる補正処理を示している。一点鎖線で挟まれた階調レベルが所定の中間階調レベルである。点線部は補正前の輝度反転信号38を示し、実線部は補正後の輝度反転信号38aを示している。所定の中間階調レベルの部分は切り捨てられるので、輝度反転信号38aにより強度変調された不可視光ビームは、所定の中間階調レベルの画素に対応した箇所に投射されないので、画像の中間階調の輝度低下を抑えることができる。
図14は、ある制御時間範囲内での、輝度反転信号の輝度中間位置を補正するガンマ補正処理を示している。点線部は補正前の輝度反転信号38を示し、実線部は補正後の輝度反転信号38aを示している。階調レベル(輝度レベル)の中心以上(階調レベル128以上)の部分は、階調レベルを上昇させ、階調レベルの中心以下(階調レベル127以下)の部分は、階調レベルを低下させる。特に中心付近の階調レベルの上昇または低下の度合いを大きくする。これにより、不可視光ビームにおける可視光の中間階調の輝度低下を緩和することができる。
また、温度変化により階調レベルを上昇させるか低下させるかは、フォトクロミック化合物層の温度特性により異なるので、その特性に合わせて設定する。
また、画像の投射領域35を含む画像投射スクリーン36周辺の照度または温度に応じた不可視光ビームの照射時間の調整は、不可視光ビームを変調させる信号のデューティーを変更することで可能である。
また、照度検出器40または温度検出器41が画像投射装置101に搭載されていなくてもよい。輝度反転信号補正部42の補正は、投射画像を確認しながらの自動補正や手動補正として行われてもよい。
(実施形態6)
図15は、本発明の実施形態6による画像表示システムを示す図である。図16は、制御部60が実行する信号処理フローを示す図である。図17は、走査部56よって走査されるレーザ光のビームスポット軌跡64と走査部56の駆動波形を示す図である。
図15を参照して、画像投射装置102は、レーザ光を投射して画像を表示するレーザプロジェクタである。画像投射装置102は、可視光源51と、コリメートレンズ52と、ダイクロイックプリズム53と、不可視光源54と、ビームスプリッター55と、走査部56と、開口部58と、制御部60と、光源変調回路61と、駆動部62とを備える。走査部56は、光源51および54が出力した可視光および不可視光を反射して投射する反射面を有する。駆動部62は、レーザ光を走査させるように走査部56を駆動する。
制御部29は、可視光源用制御部60aと不可視光源用制御部60bとを備える。光源変調回路61は、可視光源用光源変調回路61aと不可視光源用光源変調回路61bとを備える。なお、光源51、54および変調回路61をまとめて変調部と呼んでもよい。
RGBに対応した3つの可視光源51から放射された可視光ビームは、それぞれに対応したコリメートレンズ52によって絞り込まれ、ダイクロイックプリズム53で合成される。不可視光源54から放射された不可視光ビームは、コリメートレンズ52によって絞り込まれ、合成された可視光ビームとビームスプリッター55で合成されて1本の投射ビーム57となる。光ビーム57は、走査部56のミラー面で反射されて、開口58から画像投射スクリーン66上に投射され、2次元に走査されて投射領域65を形成する。
表示しようとする画像を示す画像信号59は、制御部60aおよび60bに入力される。制御部60aおよび60bは、画像信号59に応じた制御信号を光源変調回路61aおよび61bに出力する。制御信号に応じて光源変調回路61aおよび61bは、可視光源51および不可視光源54が出射する光の強度を変調する。
可視光源用制御部60aは、画像信号59の輝度信号を制御信号として可視光源用光源変調回路61aに出力する。不可視光源用制御部60bは、画像信号59の輝度信号を反転した輝度反転信号を生成し、制御信号として不可視光源用光源変調回路61bに出力する。
図16(a)を参照して、可視光源用制御部60aの信号処理フローは、図7(a)に示す信号処理フローと同様である。画像信号59が、一般的なNTSC方式のビデオ信号の場合は、輝度信号と色差信号(R−輝度信号、B−輝度信号)と音声信号が得られる。輝度信号はRGB信号を所定の比率で足し合わせることで求めることができ、(式1)で表される。また、各色差信号は、(式2)および(式3)で表される。(式1)〜(式3)に応じたRGB信号変換処理を行い、RGB信号が得られる。このRGB信号を可視光源用光源変調回路61aに入力する。
また、画像信号59がRGB信号の場合は、このRGB信号を可視光源用光源変調回路61aに入力する。
図16(b)を参照して、不可視光源用制御部60bの信号処理フローは、図7(b)に示す信号処理フローと同様である。画像信号59が、一般的なNTSC方式のビデオ信号の場合は、輝度信号と色差信号と音声信号が得られる。得られた輝度信号37を輝度反転処理して輝度反転信号が得られる。この輝度反転信号を不可視光用光源変調回路61bに入力する。
また、画像信号59がRGB信号の場合は、このRGB信号にも輝度信号が含まれており、RGB信号を(式1)に示す所定の比率で足し合わせることで輝度信号37を得ることができる。この輝度信号37を反転処理して輝度反転信号が得られる。
図8(a)は輝度信号37を示しており、図8(b)は輝度反転信号38を示している。
フォトクロミック化合物層の不可視光に対する発色と可視光に対する消色が適切な応答時間および発消色レベルとなるように、不可視光および可視光の強度および照射時間が調整されることが望ましい。図16(b)を参照して、制御部60bは、表示しようとする画像に対応する輝度信号とその前後の輝度信号とを記憶するとともにそれらの輝度信号同士を比較する(輝度信号比較処理)。比較した結果、ある表示箇所について所定の時間以上にわたって暗い表示が続く場合は、不可視光ビームの強度を強くすると共に照射時間を長くする。また、ある表示箇所について暗い表示が短時間である場合は、不可視光ビームの強度を弱くすると共に照射時間を短くする。
図15を参照して、走査部56によって走査された投射ビーム57は、投射領域65にビームスポット軌跡64を描く。光ビームの走査方式には以下のようなものが考えられる。
図17は、各走査方式のビームスポット軌跡64と、水平方向(H)および垂直方向(V)の駆動信号波形を示す。
図17(a)は、リニアラスタ走査方式を示しており、水平方向および垂直方向ともにリニアな駆動信号波形を示す。ポリゴンミラー素子を使用する場合はこの走査方式を採用する。水平方向は駆動周波数が高いので、回動ミラーを高速でリニアに駆動するのは通常困難である。投射領域65の左端から右端への走査中のビームスポット軌跡64が得られ、実線で表示されている。投射領域65の右端から左端、また下から上へ戻る期間は、光源を点灯せずにミラーだけが戻るブランク期間であり、点線で表示されている。水平方向(H)および垂直方向(V)の駆動信号波形の実線と点線の関係は、ビームスポット軌跡64(実線)とブランク期間(点線)との関係に対応している。
図17(b)は、共振ラスタ走査方式を示しており、回動ミラーの共振動作で光ビームは水平方向に走査される。共振駆動では、回動ミラーをリニアに駆動する場合に比べて比較的小さな力で大きな振幅が得られる。垂直方向は周波数が低いのでガルバノミラーをリニアに駆動することが可能である。
また、共振駆動ではミラーの動作がサイン波状になり、水平方向を片道走査しているので、水平ブランク期間が長くなり、光源の点灯時間が半分になる。光ビームは投射領域65の左端から右端へ走査され、投射領域65内の実線部がビームスポット軌跡64として得られ、投射領域65以外では光源を点灯しないブランク期間となっており点線で表示されている。水平方向(H)および垂直方向(V)の駆動信号波形の実線と点線の関係は、ビームスポット軌跡64(実線)とブランク期間(点線)との関係に対応している。
図17(c)は、水平方向では往復走査をする共振ラスタ走査方式を示している。往復走査をすれば、駆動周波数が半分でよいので駆動しやすい。また図17(b)に示す方式に比べて、光源の点灯時間が倍になるので効率が良い。ただし、走査線が厳密には平行でないので、垂直駆動信号波形をステップ状に補正して走査線を平行化する必要がある。光ビームは投射領域65の左端から右端へ走査され、投射領域65内の実線部がビームスポット軌跡64として得られ、投射領域65以外では光源を点灯しないブランク期間となっており点線で表示されている。水平方向(H)および垂直方向(V)の駆動信号波形の実線と点線の関係は、ビームスポット軌跡64(実線)とブランク期間(点線)との関係に対応している。
なお、画像投射スクリーン66(図15)は、例えば図4に示す構成要素を備える。
画像投射スクリーン66は、ベース材料層12と、ベース材料層12表面に設けられた透明材料を含むフォトクロミック化合物層13とを備える。
画像投射装置102より照射される可視光ビームは、ベース材料層12で反射されて画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。
画像投射装置102と画像投射スクリーン66との組み合わせにより、画像表示システムが構築される。
このように、画像投射装置102が可視光源51以外に不可視光源54を備え、不可視光ビームが可視光ビームと合成されて1本の光ビーム57となり、走査部26で画像投射スクリーン66に投射される。ベース材料層12は可視光ビームに応じた画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。この可視光の透過率を低下させて吸収率を増加させる箇所を、黒色や黒色に近い暗い画像表示をしている画素に対応させる。この箇所に入射した外光5は、このフォトクロミック化合物層13で吸収されるので、外光5等によるスクリーンの黒浮きを抑えコントラストを高めた画像表示システムが得られる。
また、走査部56としては、図15に示したような2軸の回動ミラー素子の他に、1軸の回動ミラー素子を2個使用した走査部でもよいし、2軸の回動のうちの1軸の回動は回転ポリゴンミラーで実現してもよい。また、2軸の回動のうちの1軸の回動は、グレーティングライトバルブ(GLV)と呼ばれる光学素子で実現してもよい。グレーティングライトバルブは、微小な短冊形状(マクロリボン)をアレイ状に並べ、回折現象を利用した素子である。
また、画像投射装置102が備える光学系の構成は一例であり、光源の数や、コリメートレンズおよびプリズム等の構成要素は様々に設定される。
また、フォトクロミック化合物層13と反応する不可視光として、紫外光以外に近赤外光または近紫外光を用いてもよい。
また、光ビームの走査により画像が表示される走査型の画像投射装置において、走査方向に沿った画素間で可視光ビームを点滅させている場合、可視光ビームが出力していない時に、不可視光ビームを出力させてもよい。不可視光ビームによりフォトクロミック化合物層13の反射率、透過率および吸収率の少なくとも1つを変化させることにより、外光5等によるスクリーンの黒浮きを抑え、コントラストを高めた画像表示システムが得られる。
(実施形態7)
図18は、本発明の実施形態7による画像表示システムを示す図である。図19は、画像投射装置103が備える制御部67が実行する信号処理フローを示す図である。
図18に示す画像投射装置103は、以下に説明する要素を備える。
RGBに対応した3つの可視光源51から放射された可視光ビームは、それぞれに対応したコリメートレンズ52によって絞り込まれ、ダイクロイックプリズム53で合成される。不可視光源54から放射された不可視光ビームは、コリメートレンズ52によって絞り込まれ、合成された可視光ビームとビームスプリッター55で合成されて1本の投射ビーム57となる。光ビーム57は、走査部56のミラー面で反射されて、開口58から画像投射スクリーン66上に投射され、2次元に走査されて投射領域65を形成する。
制御部67は、可視光源用制御部67aおよび不可視光源用制御部67bを備える。表示しようとする画像を示す画像信号59は、制御部67aおよび67bに入力される。制御部67aおよび67bは、画像信号59に応じた制御信号を可視光源用光源変調回路61aおよび不可視光源用変調回路61bに出力する。制御信号に応じて光源変調回路61aおよび61bは、可視光源51および不可視光源54が出射する光の強度を変調する。
可視光源用制御部67aは、画像信号59の輝度信号を制御信号として可視光源用変調回路61aに出力する。不可視光源用制御部67bは、画像信号59の輝度信号を反転した輝度反転信号を生成し、制御信号として不可視光源用変調回路61bに出力する。
画像投射装置103は、照度検出器68と温度検出器69とを備える。照度検出器68は、画像投射領域65を含む画像投射スクリーン66周辺の照度を検出して、検出照度を示す照度検出信号を不可視光源用制御部67bに入力する。
温度検出器69は、画像投射領域65を含む画像投射スクリーン66周辺の温度を検出して、検出温度を示す温度検出信号を不可視光源用制御部67bに入力する。
照度検出器68または温度検出器69の照度または温度の検出は、画像投射装置103の電源投入時、画像を投射する前、画像投射中のうちの少なくとも1つのタイミングで行われる。
可視光源用制御部67aの信号処理フローは、図7(a)に示す信号処理フローと同様である。画像信号59が、一般的なNTSC方式のビデオ信号の場合は、輝度信号と色差信号(R−輝度信号、B−輝度信号)と音声信号が得られる。輝度信号はRGB信号を所定の比率で足し合わせることで求めることができ、(式1)で表される。また、各色差信号は、(式2)または(式3)で表される。(式1)〜(式3)に応じたRGB信号変換処理を行い、RGB信号が得られる。このRGB信号を可視光源用光源変調回路61aに入力する。
また、画像信号59がRGB信号の場合は、このRGB信号を可視光源用光源変調回路61aに入力する。
図19の信号処理フローを参照して、不可視光源用制御部67bの信号処理を説明する。
不可視光源用制御部67bが実行する輝度信号反転処理までは、図7(b)を参照して説明した輝度信号反転処理までの動作と同様である。画像信号59が、一般的なNTSC方式のビデオ信号の場合は、輝度信号37が信号として得られるので、この輝度信号37を反転処理して輝度反転信号が得られる。
また、画像信号59がRGB信号の場合は、このRGB信号にも輝度信号が含まれており、RGB信号を(式1)に示す所定の比率で足し合わせることで輝度信号37を得ることができる。この輝度信号37を反転処理して輝度反転信号が得られる。
図8(a)は輝度信号37を示しており、図8(b)は輝度反転信号38を示している。
フォトクロミック化合物層の不可視光に対する発色と可視光に対する消色が適切な応答時間および発消色レベルとなるように、不可視光および可視光の強度および照射時間が調整されることが望ましい。図19を参照して、制御部67bは、表示しようとする画像に対応する輝度信号とその前後の輝度信号とを記憶するとともにそれらの輝度信号同士を比較する(輝度信号比較処理)。比較した結果、ある表示箇所について所定の時間以上にわたって暗い表示が続く場合は、不可視光ビームの強度を強くすると共に照射時間を長くする。また、ある表示箇所について暗い表示が短時間である場合は、不可視光ビームの強度を弱くすると共に照射時間を短くする。
不可視光源用制御部67bは、輝度反転信号補正部70を備える。輝度反転信号38は、輝度反転信号補正部70に入力され、階調レベルの補正処理が行われ、不可視光源25を駆動するための輝度反転信号が得られる。この輝度反転信号を不可視光源用光源変調回路61bに入力する。輝度反転信号補正部70が実行する補正処理を、図11を参照して説明する。
図11は、ある制御時間範囲内での階調レベル(輝度レベル)補正を行うときの、補正前の輝度反転信号と補正後の輝度反転信号を示している。点線部が階調レベル補正前の輝度反転信号38で、実線部が階調レベル補正後の輝度反転信号38aである。照度検出器68によって検出される照度に応じて、階調レベルを一定に低下させている。
照度検出器68が出力した照度検出信号は、輝度反転信号補正部70に入力され、光源変調回路61bを制御するための輝度反転信号の輝度レベル(階調レベル)の補正が、照度検出信号に応じて行われる。
温度検出器69が出力した温度検出信号は、輝度反転信号補正部70に入力され、光源変調回路61bを制御するための輝度反転信号の輝度レベル(階調レベル)の補正が、温度検出信号に応じて行われる。
図18を参照して、走査部56によって走査された投射ビーム57は、投射領域65にビームスポット軌跡64を描く。光ビームの走査方式には図17を参照して説明したような方式が考えられる。
図17(a)は、リニアラスタ走査方式を示しており、水平方向および垂直方向ともにリニアな駆動信号波形を示す。ポリゴンミラー素子を使用する場合はこの走査方式を採用する。水平方向は駆動周波数が高いので、回動ミラーを高速でリニアに駆動するのは通常困難である。投射領域65の左端から右端への走査中のビームスポット軌跡64が得られ、実線で表示されている。投射領域65の右端から左端、また下から上へ戻る期間は、光源を点灯せずにミラーだけが戻るブランク期間であり、点線で表示されている。水平方向(H)および垂直方向(V)の駆動信号波形の実線と点線の関係は、ビームスポット軌跡64(実線)とブランク期間(点線)との関係に対応している。
図17(b)は、共振ラスタ走査方式を示しており、回動ミラーの共振動作で光ビームは水平方向に走査される。共振駆動では、回動ミラーをリニアに駆動する場合に比べて比較的小さな力で大きな振幅が得られる。垂直方向は周波数が低いのでガルバノミラーをリニアに駆動することが可能である。
また、共振駆動ではミラーの動作がサイン波状になり、水平方向を片道走査しているので、水平ブランク期間が長くなり、光源の点灯時間が半分になる。光ビームは投射領域65の左端から右端へ走査され、投射領域65内の実線部がビームスポット軌跡64として得られ、投射領域65以外では光源を点灯しないブランク期間となっており点線で表示されている。水平方向(H)および垂直方向(V)の駆動信号波形の実線と点線の関係は、ビームスポット軌跡64(実線)とブランク期間(点線)との関係に対応している。
図17(c)は、水平方向では往復走査をする共振ラスタ走査方式を示している。往復走査をすれば、駆動周波数が半分でよいので駆動しやすい。また図17(b)に示す方式に比べて、光源の点灯時間が倍になるので効率が良い。ただし、走査線が厳密には平行でないので、垂直駆動信号波形をステップ状に補正して走査線を平行化する必要がある。光ビームは投射領域65の左端から右端へ走査され、投射領域65内の実線部がビームスポット軌跡64として得られ、投射領域65以外では光源を点灯しないブランク期間となっており点線で表示されている。水平方向(H)および垂直方向(V)の駆動信号波形の実線と点線の関係は、ビームスポット軌跡64(実線)とブランク期間(点線)との関係に対応している。
なお、画像投射スクリーン66(図18)は、例えば図4に示す構成要素を備える。
画像投射スクリーン66は、ベース材料層12と、ベース材料層12表面に設けられた透明材料を含むフォトクロミック化合物層13とを備える。
画像投射装置103より照射される可視光ビームは、ベース材料層12で反射されて画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。
画像投射装置103と画像投射スクリーン66との組み合わせにより、画像表示システムが構築される。
このように、画像投射装置103が可視光源51以外に不可視光源54を備え、不可視光ビームが可視光ビームと合成され1本の投射ビーム57となり、走査部26で画像投射スクリーン66に投射される。ベース材料層12は可視光ビームに応じた画像を表示し、不可視光ビームはフォトクロミック化合物層13と反応して可視光の透過率を低下させて吸収率を増加させる。この可視光の透過率を低下させて吸収率を増加させる箇所を、黒色や黒色に近い暗い画像表示をしている画素に対応させる。この箇所に入射した外光5は、このフォトクロミック化合物層13で吸収されるので、外光5等によるスクリーンの黒浮きを抑えコントラストを高めた画像表示システムが得られる。さらに、本実施形態では、装置の外部環境に応じて、輝度反転信号補正部70が輝度反転信号38を適切に補正することで、さらにスクリーンの黒浮きを抑えコントラストを高めることができる。
また、走査部56としては、図18に示したような2軸の回動ミラー素子のほかに、1軸の回動ミラー素子を2個使用した走査部でもよいし、2軸の回動のうちの1軸の回動は回転ポリゴンミラーで実現してもよい。また、2軸の回動のうちの1軸の回動は、グレーティングライトバルブ(GLV)と呼ばれる光学素子で実現してもよい。
また、画像投射装置103が備える光学系の構成は一例であり、光源の数や、コリメートレンズおよびプリズム等の構成要素は様々に設定される。
また、フォトクロミック化合物層13と反応する不可視光として、紫外光以外に近赤外光または近紫外光を用いてもよい。
また、階調レベル(輝度レベル)補正において、階調レベルを一定レベル低下させている補正例は一例であり、投射領域65を含む画像投射スクリーン66周辺の明るさに応じて階調レベルの補正を行うので、階調レベルを一定に上昇させることもある。
また、輝度反転信号の補正としては、上述したような、輝度反転信号の所定の輝度レベル以下を切り捨てる補正、所定の中間の輝度レベルのみ切り捨てる補正、階調レベルを超えて輝度レベルまたは輝度中間位置を補正するガンマ補正などがある。輝度反転信号補正部70が実行する補正処理を図12〜図14を参照して説明する。
図12は、ある制御時間範囲内での、輝度反転信号の所定の階調レベル(輝度レベル)以下の部分を切り捨てる補正処理を示している。一点鎖線が所定の階調レベルを示している。点線部は補正前の輝度反転信号38を示し、実線部は補正後の輝度反転信号38aを示している。所定の階調レベル以下の部分は切り捨てられるので、輝度反転信号38aにより強度変調された不可視光ビームは、画像の黒色や黒色に近い暗い画像に対応した画素にのみ投射され、可視光の透過率を低下させて吸収率を増加させることができる。
図13は、ある制御時間範囲内での、輝度反転信号の所定の中間階調レベル(輝度レベル)を切り捨てる補正処理を示している。一点鎖線で挟まれた階調レベルが所定の中間階調レベルである。点線部は補正前の輝度反転信号38を示し、実線部は補正後の輝度反転信号38aを示している。所定の中間階調レベルの部分は切り捨てられるので、輝度反転信号38aにより強度変調された不可視光ビームは、所定の中間階調レベルの画素に対応した箇所に投射されないので、画像の中間階調の輝度低下を抑えることができる。
図14は、ある制御時間範囲内での、輝度反転信号の輝度中間位置を補正するガンマ補正処理を示している。点線部は補正前の輝度反転信号38を示し、実線部は補正後の輝度反転信号38aを示している。階調レベル(輝度レベル)の中心以上(階調レベル128以上)の部分は、階調レベルを上昇させ、階調レベルの中心以下(階調レベル127以下)の部分は、階調レベルを低下させる。特に中心付近の階調レベルの上昇または低下の度合いを大きくする。これにより、不可視光ビームにおける可視光の中間階調の輝度低下を緩和することができる。
また、温度変化により階調レベルを上昇させるか低下させるかは、フォトクロミック化合物層の温度特性により異なるので、その特性に合わせて設定する。
また、画像の投射領域65を含む画像投射スクリーン66周辺の照度または温度に応じた不可視光ビームの照射時間の調整は、不可視光ビームを変調させる信号のデューティーを変更することで可能である。
また、照度検出器68または温度検出器69が画像投射装置103に搭載されていなくてもよい。輝度反転信号補正部70の補正は、投射画像を確認しながらの自動補正や手動補正として行われてもよい。
ここで、図7(b)、図10、図16(b)および図19を参照して説明した輝度信号比較処理について、図20を参照してさらに説明する。
図20(a)は輝度信号37を示している。図20(b)は輝度反転信号38を示している。図20(c)は不可視光ビームを照射するタイミング、照射時間、照射強度を示している。上述の説明では、輝度信号同士を比較して、ある表示箇所での暗い表示が続く時間を求めて、その時間に応じて不可視光ビームの強度と照射時間とを調整した。それに対し、図20(c)に示すように、ある表示箇所について所定の時間以上にわたって暗い表示が続く場合にのみ不可視光ビームを出力し、それ以外のときは出力しないようにしてもよい。これにより、フォトクロミック化合物自体の応答時間が要求される応答時間より遅い場合でも、目視上問題のないレベルでの黒表示を実現することができる。
また、光ビームの走査により画像が表示される走査型の画像投射装置において、可視光ビームを出力していない画素と画素との間で不可視光ビームを出力させてもよい。不可視光ビームによりフォトクロミック化合物層13の反射率、透過率および吸収率の少なくとも1つを変化させることにより、外光5等によるスクリーンの黒浮きを抑え、コントラストを高めた画像表示システムが得られる。
なお、本発明は動画表示のみならず静止画の表示にも適しており、周囲の照明を調整できない場所、例えば屋外、駅構内、地下街などでも、黒浮きを抑えた高コントラストの画像表示を実現することができる。
本発明は、プロジェクション方式でスクリーンに画像を表示する画像投射装置、画像が表示されるスクリーン、およびそれらを備えた画像表示システムの技術分野において特に有用である。
(a)から(c)は、本発明の実施形態1による透過型画像投射スクリーンを示す図である。 本発明の実施形態1による透過型画像投射スクリーンのベース材料層を示す図である。 本発明の実施形態1による透過型画像投射スクリーンを示す図である。 (a)から(c)は、本発明の実施形態2による反射型画像投射スクリーンを示す図である。 (a)から(c)は、本発明の実施形態3による反射型画像投射スクリーンを示す図である。 本発明の実施形態4による画像表示システムを示す図である。 (a)および(b)は、本発明の実施形態4による制御部の信号処理を示すフローチャートである。 (a)および(b)は、本発明の実施形態4による輝度信号および輝度反転信号を説明するための図である。 本発明の実施形態5による画像表示システムを示す図である。 本発明の実施形態5による制御部の信号処理を示すフローチャートである。 本発明の実施形態5による輝度反転信号の階調レベル補正を示す図である。 本発明の実施形態5による輝度反転信号の一部階調レベル切捨て補正を示す図である。 本発明の実施形態5による輝度反転信号の中間階調レベル切捨て補正を示す図である。 本発明の実施形態5による輝度反転信号のガンマ補正を示す図である。 本発明の実施形態6による画像表示システムを示す図である。 (a)および(b)は、本発明の実施形態6による制御部の信号処理を示すフローチャートである。 (a)から(c)は、本発明の実施形態6による走査方式を示す図である。 本発明の実施形態7による画像表示システムを示す図である。 本発明の実施形態7による制御部の信号処理を示すフローチャートである。 (a)から(c)は、本発明の実施形態7による不可視光を照射するタイミング、照射時間、照射強度を説明するための図である。
符号の説明
1 透過型画像投射スクリーン
2、12、15 ベース材料層
3、13、16 フォトクロミック化合物層
4 瞳
5 外光
7 フレネルレンズ
8 レンチキュラーレンズ
9 光吸光部
11、14 反射型画像投射スクリーン
21、51 可視光源
22、52 コリメートレンズ
23 可視光源用空間変調素子
24、53 ダイクロイックプリズム
25、54 不可視光源
26、55 ビームスプリッター
27 投射レンズ
28、59 画像信号
29、39、60、67 制御部
30 空間変調素子駆動部
31 Rフィルター
32 Gフィルター
33 Bフィルター
34 不可視光源用空間変調素子
35、65 投射領域
36、66 画像投射スクリーン
37 輝度信号
38 輝度反転信号
40、68 照度検出器
41、69 温度検出器
42、70 輝度反転信号補正部
56 走査部
57 投射ビーム
58 開口
61 光源変調回路
62 駆動部
63 角度変位信号
64 ビームスポット軌跡
100、101、102、103 画像投射装置

Claims (12)

  1. 可視光を出力する第1光源と不可視光を出力する第2光源とを備え、前記可視光および前記不可視光をスクリーンへ投射する画像投射装置であって、
    前記スクリーンは、前記不可視光が投射されることにより可視光の反射率、透過率および吸収率の少なくとも1つが変化する材料を有しており、
    前記画像投射装置は、
    前記可視光および前記不可視光の強度を画像信号に基づいて変調する変調部と、
    前記変調部を制御する制御部と
    をさらに備え、
    前記制御部は、可視光源用制御部と不可視光源用制御部とを有しており、
    前記不可視光源用制御部は、前記画像信号に対応する輝度信号を反転させた輝度反転信号を補正する補正部を有しており、
    前記補正部は、前記輝度反転信号の輝度レベルの補正、前記輝度反転信号の所定の輝度レベル以下の部分を切り捨てる補正、および前記輝度反転信号の中間輝度レベルの所定範囲の部分を切り捨てる補正の少なくとも1つを行い、
    画像投射領域の温度を検出する温度検出部をさらに備え、
    前記補正部は、前記画像投射領域の温度に基づいて前記輝度反転信号を補正する、画像投射装置。
  2. 可視光を出力する第1光源と不可視光を出力する第2光源とを備え、前記可視光および前記不可視光をスクリーンへ投射する画像投射装置であって、
    前記スクリーンは、前記不可視光が投射されることにより可視光の反射率、透過率および吸収率の少なくとも1つが変化する材料を有しており、
    前記画像投射装置は、
    前記可視光および前記不可視光の強度を画像信号に基づいて変調する変調部と、
    前記変調部を制御する制御部と
    をさらに備え、
    前記制御部は、可視光源用制御部と不可視光源用制御部とを有しており、
    前記不可視光源用制御部は、前記画像信号に対応する輝度信号を反転させた輝度反転信号を補正する補正部を有しており、
    前記補正部は、前記輝度反転信号の輝度レベルの補正、前記輝度反転信号の所定の輝度レベル以下の部分を切り捨てる補正、および前記輝度反転信号の中間輝度レベルの所定範囲の部分を切り捨てる補正の少なくとも1つを行い、
    画像投射領域の温度を検出する温度検出部をさらに備え、
    前記制御部は、前記画像投射領域の温度に基づいて前記不可視光の照射エネルギーおよび照射時間の少なくとも一方を調整する、画像投射装置。
  3. 前記変調部は、前記画像信号に対応する輝度信号に基づいて前記不可視光の強度を変調する、請求項1または2に記載の画像投射装置。
  4. 前記画像信号はRGB信号であり、
    前記制御部は、前記RGB信号を前記輝度信号へ変換する、請求項に記載の画像投射装置。
  5. 前記第1および第2光源が出力した前記可視光および前記不可視光を反射して投射する反射面を有する走査部と、
    前記走査部を駆動する駆動部と
    をさらに備える、請求項1または2に記載の画像投射装置。
  6. 前記スクリーンが有する前記材料はフォトクロミック化合物である、請求項1または2に記載の画像投射装置。
  7. 前記フォトクロミック化合物は透明材料を含む、請求項に記載の画像投射装置。
  8. 前記フォトクロミック化合物は不透明材料を含む、請求項に記載の画像投射装置。
  9. 前記スクリーンの前記反射率、前記透過率および前記吸収率の少なくとも1つは、前記不可視光の照射エネルギーに応じて変化する、請求項1または2に記載の画像投射装置。
  10. 前記スクリーンの前記反射率、前記透過率および前記吸収率の少なくとも1つは、前記不可視光の照射時間に応じて変化する、請求項1または2に記載の画像投射装置。
  11. 前記スクリーンは、前記スクリーンの投射面および前記投射面の裏面の少なくとも1面に設けられた前記材料を有する、請求項1または2に記載の画像投射装置。
  12. 請求項1から11のいずれかに記載の前記画像投射装置と、前記スクリーンとを備える、画像表示システム。
JP2008506263A 2006-03-16 2007-03-14 画像投射装置、画像投射スクリーンおよび画像表示システム Expired - Fee Related JP5208727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506263A JP5208727B2 (ja) 2006-03-16 2007-03-14 画像投射装置、画像投射スクリーンおよび画像表示システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006072321 2006-03-16
JP2006072321 2006-03-16
JP2008506263A JP5208727B2 (ja) 2006-03-16 2007-03-14 画像投射装置、画像投射スクリーンおよび画像表示システム
PCT/JP2007/055102 WO2007108387A1 (ja) 2006-03-16 2007-03-14 画像投射装置、画像投射スクリーンおよび画像表示システム

Publications (2)

Publication Number Publication Date
JPWO2007108387A1 JPWO2007108387A1 (ja) 2009-08-06
JP5208727B2 true JP5208727B2 (ja) 2013-06-12

Family

ID=38522417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008506263A Expired - Fee Related JP5208727B2 (ja) 2006-03-16 2007-03-14 画像投射装置、画像投射スクリーンおよび画像表示システム

Country Status (4)

Country Link
US (1) US7914154B2 (ja)
JP (1) JP5208727B2 (ja)
CN (1) CN101405651A (ja)
WO (1) WO2007108387A1 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246177B2 (en) * 2007-11-30 2012-08-21 Sanyo Electric Co., Ltd. Lighting unit and projection display apparatus
JP5223452B2 (ja) * 2008-05-20 2013-06-26 株式会社リコー プロジェクタ及び投影画像形成方法及び車両用ヘッドアップディスプレイ装置
US8840249B2 (en) * 2008-10-31 2014-09-23 Christie Digital Systems, Inc. Method, system and apparatus for projecting visible and non-visible images
FR2950982B1 (fr) * 2009-10-06 2017-05-19 Thales Sa Equipement de vision comportant une lampe optique a coefficient de transmission lumineuse commandee
JP5621237B2 (ja) * 2009-10-08 2014-11-12 セイコーエプソン株式会社 表示システム
JP2011175110A (ja) * 2010-02-24 2011-09-08 Seiko Epson Corp 画像形成装置および背面投影型表示装置
US8591042B1 (en) * 2010-03-19 2013-11-26 Prysm, Inc. Display systems for high contrast display applications
TWI448804B (zh) * 2010-08-20 2014-08-11 Delta Electronics Inc 光源系統及包含該光源系統之投影裝置
JP2013196252A (ja) * 2012-03-19 2013-09-30 Panasonic Corp タッチパネル
WO2013136358A1 (en) 2012-03-12 2013-09-19 Empire Technology Development Llc Holographic image reproduction mechanism using ultraviolet light
GB201209738D0 (en) * 2012-05-31 2012-07-18 Ge Healthcare Bio Sciences Ab Methods and apparatus for measuring the concentration of a substance in a solution
CN103576428B (zh) * 2012-08-02 2015-11-25 光宝科技股份有限公司 具有安全保护机制的激光投影***
US9132361B2 (en) 2013-05-07 2015-09-15 Disney Enterprises, Inc. Projectable masks
JP2015210348A (ja) * 2014-04-25 2015-11-24 株式会社日立エルジーデータストレージ 光源モジュールおよび映像投射装置
US20160050541A1 (en) * 2014-05-29 2016-02-18 Egypt-Japan University Of Science And Technology Fine-Grained Indoor Location-Based Social Network
CN104181766B (zh) * 2014-07-25 2017-09-26 京东方科技集团股份有限公司 一种车载显示装置
DE102014224552A1 (de) * 2014-12-01 2016-06-02 Robert Bosch Gmbh Projektionsvorrichtung und Verfahren zum pixelweisen Projizieren eines Bildes
WO2016179542A1 (en) * 2015-05-06 2016-11-10 Dolby Laboratories Licensing Corporation Thermal compensation in image projection
US9445065B1 (en) * 2015-08-12 2016-09-13 Disney Enterprises, Inc. Multiple light system blending
JP6816352B2 (ja) * 2015-10-08 2021-01-20 株式会社リコー 投影装置、投影システム及びプログラム
JP2018132671A (ja) * 2017-02-16 2018-08-23 ソニー株式会社 投射スクリーンおよび投射型表示装置
JP2018132670A (ja) 2017-02-16 2018-08-23 ソニー株式会社 投射スクリーンおよび投射型表示装置
CN106933019A (zh) * 2017-03-17 2017-07-07 赵征桥 一种光致变色投影屏
US10574953B2 (en) 2017-05-23 2020-02-25 Sony Corporation Transparent glass of polymer window pane as a projector screen
US10613428B2 (en) 2017-05-30 2020-04-07 Sony Corporation Wallpaper-based lenticular projection screen
US10429727B2 (en) 2017-06-06 2019-10-01 Sony Corporation Microfaceted projection screen
US10976886B2 (en) * 2017-06-23 2021-04-13 Samsung Electronics Co., Ltd. Display apparatus and displaying method thereof
US10795252B2 (en) * 2017-07-21 2020-10-06 Sony Corporation Multichromic filtering layer to enhance screen gain
US10634988B2 (en) 2017-08-01 2020-04-28 Sony Corporation Tile-based lenticular projection screen
CN107315255A (zh) * 2017-08-18 2017-11-03 四川龙华光电薄膜股份有限公司 抬头显示器的投影幕
CN109521634B (zh) * 2017-09-20 2020-12-08 中强光电股份有限公司 投影装置与投影***
CN109541882B (zh) * 2017-09-20 2021-09-28 中强光电股份有限公司 投影屏幕与投影***
EP3698541B1 (en) * 2017-10-19 2022-07-27 Signify Holding B.V. Enhanced white light for projection lighting
WO2019111627A1 (ja) * 2017-12-04 2019-06-13 ソニー株式会社 照明装置、およびプロジェクタ
US11609487B2 (en) 2018-03-30 2023-03-21 Sony Corporation Projection screen control method and projectioin-type display device
JP7052537B2 (ja) * 2018-05-02 2022-04-12 日産自動車株式会社 表示装置
JP7052538B2 (ja) * 2018-05-02 2022-04-12 日産自動車株式会社 表示装置および表示方法
JP7052539B2 (ja) * 2018-05-02 2022-04-12 日産自動車株式会社 表示装置
US11695904B2 (en) 2018-07-20 2023-07-04 Dai Nippon Printing Co., Ltd. Reflective screen and image display device
JP7395862B2 (ja) * 2019-04-11 2023-12-12 大日本印刷株式会社 反射スクリーン、映像表示装置
WO2020017403A1 (ja) * 2018-07-20 2020-01-23 ソニー株式会社 画像表示装置及び画像表示方法
JP7035989B2 (ja) * 2018-12-06 2022-03-15 株式会社Jvcケンウッド ディスプレイ装置、判別方法および照射方法
CN110456607A (zh) * 2019-07-05 2019-11-15 中影巴可(北京)电子有限公司 一种投影屏、投影***以及投影方法
US20230065240A1 (en) * 2021-08-25 2023-03-02 The United States of America As Represented By The Director Of The National Geospatial-Intelligence Method and apparatus for the display of volumetric solids using distributed photochromic compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197021A (ja) * 1992-01-17 1993-08-06 Nec Corp プロジェクター用スクリーン,プロジェクターの映写方法およびプロジェクター
JP2001209342A (ja) * 2000-01-24 2001-08-03 Matsushita Electric Ind Co Ltd 映像表示装置
JP2001296609A (ja) * 2000-03-22 2001-10-26 Hewlett Packard Co <Hp> 投射スクリーン
JP2005181731A (ja) * 2003-12-19 2005-07-07 Sharp Corp 映像投射装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682915A (ja) 1992-09-04 1994-03-25 Toppan Printing Co Ltd 反射型スクリーン
EP1139158A3 (en) 2000-03-22 2003-11-05 Hewlett-Packard Company Projection screen
JP4061940B2 (ja) 2002-03-27 2008-03-19 ソニー株式会社 画像表示装置
JP2005202029A (ja) 2004-01-14 2005-07-28 Sony Corp 反射型スクリーン
JP2005292423A (ja) 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 偏光選択反射シート並びにそれを備えた投影スクリーン及び投影システム
US7494230B2 (en) * 2005-06-23 2009-02-24 Hewlett-Packard Development Company, Lp Reflecting non-visible light off one or more mirrors
US7457035B2 (en) * 2005-08-19 2008-11-25 Hewlett-Packard Development Company, L.P. Composite light based adjustment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197021A (ja) * 1992-01-17 1993-08-06 Nec Corp プロジェクター用スクリーン,プロジェクターの映写方法およびプロジェクター
JP2001209342A (ja) * 2000-01-24 2001-08-03 Matsushita Electric Ind Co Ltd 映像表示装置
JP2001296609A (ja) * 2000-03-22 2001-10-26 Hewlett Packard Co <Hp> 投射スクリーン
JP2005181731A (ja) * 2003-12-19 2005-07-07 Sharp Corp 映像投射装置

Also Published As

Publication number Publication date
JPWO2007108387A1 (ja) 2009-08-06
US7914154B2 (en) 2011-03-29
WO2007108387A1 (ja) 2007-09-27
US20090091718A1 (en) 2009-04-09
CN101405651A (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
JP5208727B2 (ja) 画像投射装置、画像投射スクリーンおよび画像表示システム
US7586472B2 (en) Subtractive display
JP2017194689A (ja) 表示制御装置
WO2015020032A1 (ja) 画像表示装置
US8052286B2 (en) System and method for utilizing a scanning beam to display an image
JP2008310260A (ja) 画像投射方法及びこれに用いるスクリーン
JP2004523001A5 (ja)
US7988307B2 (en) Image display device
JPH09114397A (ja) ディスプレイデバイスおよびディスプレイ装置
JP5866936B2 (ja) 画像表示システム
US20080094583A1 (en) Non-visible light control of active screen optical properties
JP2018132670A (ja) 投射スクリーンおよび投射型表示装置
JP2015022251A (ja) 混色装置及び表示装置
US10218947B1 (en) Compensation for overlapping scan lines in a scanning-beam display system
JP7163706B2 (ja) 車両用ミラー
JP7063081B2 (ja) 表示装置および表示装置の制御方法
WO2006059480A1 (ja) レーザ光用スクリーン
WO2019188086A1 (ja) 投射スクリーンの制御方法および投射型表示装置
JP2004191839A (ja) プロジェクタ
US20030067457A1 (en) Reflective display device and electronic device
WO2007000887A1 (ja) 表示装置
KR100230008B1 (ko) 디포머블 미러 디바이스 프로젝터 및 이를 이용한 투사 방법
JP2007193242A (ja) 液晶表示装置
WO2014087876A1 (ja) 画像表示装置およびその駆動方法
KR970010393B1 (ko) 계조가변형 투과필터를 이용한 화상표시구동장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees