WO2014087876A1 - 画像表示装置およびその駆動方法 - Google Patents

画像表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2014087876A1
WO2014087876A1 PCT/JP2013/081712 JP2013081712W WO2014087876A1 WO 2014087876 A1 WO2014087876 A1 WO 2014087876A1 JP 2013081712 W JP2013081712 W JP 2013081712W WO 2014087876 A1 WO2014087876 A1 WO 2014087876A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
unit
color
display panel
Prior art date
Application number
PCT/JP2013/081712
Other languages
English (en)
French (fr)
Inventor
朋幸 石原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014087876A1 publication Critical patent/WO2014087876A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to an image display device, and more particularly to an image display device driven by a field sequential method and a driving method thereof.
  • the field sequential method is a light emitting diode (Light Emitting Diode: LED) or a cold cathode tube (Cold Cathode Fluorescent Lamp: CCFL) that emits backlight.
  • the elements are switched in order, and in synchronization with the switching, color data corresponding to the light color of each light-emitting element is sequentially given to the liquid crystal panel to control the transmission state of the liquid crystal panel, thereby adding on the observer's retina.
  • This is a method of mixing colors.
  • color display can be performed without forming a plurality of sub-pixels in one pixel, so that high resolution can be achieved.
  • the light from these light emitting elements can be used as they are, it is not necessary to form a color filter in each pixel, and the light use efficiency of each light emitting element is improved.
  • a technique related to such a field sequential method is disclosed in Japanese Unexamined Patent Publication No. 2000-122589, for example.
  • Japanese Unexamined Patent Application Publication No. 2010-91609 discloses a liquid crystal display device including a liquid crystal panel, a shutter film, a control unit, a light source, a case, and an observation object.
  • the light source and the observation object are provided inside the case.
  • the shutter film can be switched between a first state which is a transparent state and a second state which is an opaque state (a cloudy state) by the control unit. By controlling the state of the shutter film, image display and background transmission (observation object display) are possible.
  • FIG. 21 is a diagram illustrating the principle of occurrence of color breakup.
  • the vertical axis represents time
  • the horizontal axis represents the position on the screen.
  • an object of the present invention is to provide an image display device and a driving method thereof that can improve the efficiency of use of light source light and transmit the background while suppressing deterioration in display quality and increase in size.
  • a first aspect of the present invention divides one frame period of a given input signal into a plurality of subframe periods, and displays a color image corresponding to one of a plurality of colors for each subframe period.
  • An image display device for displaying A display panel for controlling the transmittance of incident light; A light source unit; Irradiation of at least a part of the light emitted from the light source unit, which is arranged facing the display panel, to the display panel and at least a part of the light incident from the main surface opposite to the side where the display panel is located
  • a light control unit capable of transmitting The light source unit controls the light control so that light of a color corresponding to one of a plurality of colors is emitted from the light control unit independently to each of the plurality of areas of the display panel for each subframe period. It is characterized by irradiating the part with light.
  • the light source unit includes a plurality of unit light sources respectively corresponding to the plurality of areas,
  • the unit light source is A light-emitting element group composed of a plurality of light-emitting elements respectively corresponding to a plurality of primary colors; And an optical element that defines an irradiation range of light from the light emitting element group.
  • the light source unit includes a plurality of unit light sources corresponding to each area and corresponding to a plurality of primary colors,
  • the unit light source corresponding to each primary color is A light emitting device corresponding to the primary color;
  • an optical element that defines an irradiation range of light from the light emitting element.
  • the light source unit further includes an arrangement table for arranging the unit light sources toward the display panel,
  • the irradiation range defined by the optical element of the unit light source is wider as the position of the unit light source is closer to the display panel,
  • the unit light source is arranged to be wider as it is closer to the display panel.
  • the light emitting element corresponding to each primary color can take an arbitrary light emitting state in each subframe period.
  • the light source unit is A reflection part that reflects light toward the light control part; Light corresponding to the plurality of areas so that light of a color corresponding to one of the plurality of colors is emitted from the light control unit independently to each of the plurality of areas of the display panel for each subframe period. And a light irradiating part for irradiating the reflecting part.
  • a seventh aspect of the present invention is the sixth aspect of the present invention.
  • the light irradiator is A color wheel for full color white light, And a digital micromirror device capable of switching for each area between an on state in which light from the color wheel is reflected and an off state in which the light is not reflected.
  • the display panel is a liquid crystal panel;
  • the digital micromirror device is turned on in a desired period after the transient response period of the liquid crystal panel in each subframe period.
  • a ninth aspect of the present invention is the eighth aspect of the present invention,
  • the color wheel blocks the white light during a transient response period of the liquid crystal panel.
  • the light source unit emits light to the light control unit so that light of different colors can be emitted from the light control unit independently to each of the plurality of areas of the display panel for each subframe period. It is characterized by irradiating.
  • the light source unit irradiates light to a main surface of the light control unit opposite to a side where the display panel is located.
  • the light source unit irradiates light to a main surface of the light control unit on the side where the display panel is located.
  • a display panel that controls the transmittance of incident light, a light source unit, and the display that is disposed to face the display panel and at least part of the light emitted from the light source unit.
  • a light control unit capable of irradiating the panel and transmitting at least part of light incident from the main surface opposite to the side on which the display panel is located, and includes a plurality of frame periods of a given input signal.
  • a method of driving an image display device that displays a color image by dividing a subframe period and displaying a color corresponding to any of a plurality of colors for each subframe period
  • the light control unit is configured such that the display panel is divided into a plurality of areas, and light of a color corresponding to any of a plurality of colors is emitted from the light control unit independently to each area for each subframe period.
  • the step of irradiating light is provided.
  • a field sequential type image display device that does not require a color filter
  • light of a color corresponding to one of a plurality of colors is independently provided in each area of the display panel for each subframe period. Irradiated. For this reason, display of a desired color can be performed for each area to suppress color breakup. Thereby, the utilization efficiency of light source light (light from the light source unit) can be increased and the deterioration of display quality can be suppressed.
  • a light control unit capable of irradiating at least part of the display panel with light source light and transmitting at least part of light indicating background (hereinafter referred to as “background light”) faces the display panel that does not require a color filter. Provided. Therefore, image display and background transmission can be performed by appropriately controlling the transmittance of incident light in the display panel. In addition, since a case for preventing light source light from leaking to the surroundings is unnecessary, an increase in the size of the image display device can be suppressed.
  • a unit light source including a light emitting element group composed of a plurality of light emitting elements and an optical element that defines an irradiation range of light from the light emitting element group corresponds to one area. For this reason, the same light emitting element group can be used in each unit light source. Thereby, for example, the power consumption of the light emitting element group can be made uniform.
  • a plurality of unit light sources respectively corresponding to a plurality of primary colors correspond to one area.
  • Each unit light source includes a light emitting element corresponding to one primary color and an optical element that defines an irradiation range of light from the light emitting element. Since one light emitting element corresponds to one optical element, for example, when the size of the light emitting element is large, defocusing of the optical element can be suppressed as compared with the second aspect of the present invention.
  • the irradiation range determined by the optical element is wider, and as the unit light source is closer to the display panel, the arrangement interval of the plurality of unit light sources is wider. Independent light irradiation to each area can be performed reliably.
  • the light emitting element corresponding to each primary color can take any light emission state in each subframe period, a desired color obtained by mixing the primary colors in each subframe period. Is emitted to the area of the display panel. For example, in an area where an image is to be displayed, by setting the transmittance of a pixel of a desired color to be relatively high in a subframe period in which the light source light of the desired color is irradiated, color breakup can be reliably suppressed. However, a mixed color display of a plurality of patterns can be performed.
  • the light corresponding to a plurality of areas is reflected by the reflecting portion, so that independent light irradiation to each area can be reliably performed.
  • the light source light of a desired color is irradiated to the area of the display panel. For this reason, there can exist an effect similar to the 5th aspect of this invention.
  • a color wheel and a digital micromirror device capable of switching between an on state and an off state for each area are used.
  • the light source light of a desired color is reliably irradiated to the area of the display panel in each subframe period.
  • the light source light of the desired color can be reliably transmitted in each subframe period. Can be realized.
  • the color wheel blocks white light during the transient response period of the liquid crystal panel, it is possible to more reliably realize light source light of a desired color in each subframe period.
  • the tenth aspect of the present invention it is possible to irradiate different areas with light sources of different colors, so that color breakup can be more reliably performed according to the image to be displayed.
  • the light control unit can be directly irradiated with the light source light, and the same effect as in the first aspect of the present invention can be achieved.
  • the same effect as that of the first aspect of the present invention can be achieved by irradiating the light control unit with the light source light via the display panel.
  • the same effect as in the first aspect of the present invention can be achieved.
  • FIG. 1 is a block diagram illustrating a configuration of an image display device according to a first embodiment of the present invention. It is a figure which shows the structure of the liquid crystal panel shown in FIG. It is a side view which shows the structure of the light source part shown in FIG. It is a top view which shows the structure of the light source part shown in FIG. It is a figure which shows the structure of the unit light source shown to FIG. 3 and FIG. It is a figure for demonstrating the correspondence of the area of the liquid crystal panel in the said 1st Embodiment, and a pixel formation part. It is a side view for demonstrating arrangement
  • FIG. 10 is an enlarged view of the area of interest shown in FIG. 9. It is a figure which shows an example of the color component ratio of each color shown in FIG. It is a figure which shows the structure of the frame period in the said 1st Embodiment. It is a figure which shows the color of each pixel of an attention area. It is a side view for demonstrating arrangement
  • FIG. 1 is a block diagram showing a configuration of an image display apparatus 10 according to the first embodiment of the present invention.
  • the image display device 10 includes a display control circuit 11, a panel drive circuit 12, a light source drive circuit 13, a liquid crystal panel 14, a transparent scattering plate 15, and a light source unit 16.
  • the liquid crystal panel 14 corresponds to a display panel
  • the transparent scattering plate 15 corresponds to a light control unit.
  • the image display device 10 displays an image on the liquid crystal panel 14 by a field sequential method.
  • the field sequential method the color of the light source light is sequentially switched, and data of each color is given to the liquid crystal panel 14 in synchronization with the switching to control the transmission state.
  • the field sequential method in the present embodiment is different from the conventional field sequential method in that additive color mixing using subframes having the same color on the entire screen is not performed.
  • color display can be performed without forming a plurality of subpixels in one pixel as in the conventional field sequential method, so that high resolution can be achieved. Further, it is not necessary to form a color filter in each pixel, and the transmittance of ambient light from the back of the display is improved, so that a transparent display can be configured.
  • the display control circuit 11 receives an input signal IN from the outside, and controls the panel drive circuit 12 and the light source drive circuit 13 based on the input signal IN. More specifically, the display control circuit 11 gives a panel control signal PS for controlling the panel drive circuit 12 to the panel drive circuit 12, and supplies a light source control signal LS for controlling the light source drive circuit 13 to the light source drive circuit 13. To give.
  • the display control circuit 11 includes a subframe image generation unit 21 for converting a frame image indicated by the input signal IN into a subframe image. In other words, the display control circuit 11 divides one frame period of the input signal IN into a plurality of subframe periods by the subframe image generation unit 21.
  • Each of the panel control signal PS and the light source control signal LS includes a signal related to the subframe image generated by the subframe image generation unit 21, various timing signals, and the like.
  • the panel drive circuit 12 drives the liquid crystal panel 14 based on the received panel control signal PS.
  • the light source driving circuit 13 drives the light source unit 16 based on the received light source control signal LS.
  • FIG. 2 is a diagram showing the configuration of the liquid crystal panel 14 shown in FIG.
  • the liquid crystal panel 14 includes a plurality of signal lines SL, a plurality of scanning lines GL, and a plurality of pixel forming portions 141 arranged in a matrix corresponding to the intersections of the plurality of signal lines SL and the plurality of scanning lines GL. Contains.
  • the liquid crystal panel 14 is driven by the panel drive circuit 12 to control the transmittance of incident light in each pixel forming portion 141 (hereinafter, also referred to as “the transmittance of the pixel forming portion 141”).
  • the display method of the liquid crystal panel 14 in the present embodiment may be either a normally black method or a normally white method.
  • the transparent scattering plate 15 is a scattering plate (also referred to as a diffusion plate) whose transparency is increased by suppressing the density of the scatterers.
  • the transparent scattering plate 15 irradiates the liquid crystal panel 14 with the light source light emitted from the light source unit 16, and receives light (corresponding to background light) incident from the main surface opposite to the side where the liquid crystal panel 14 is located. It is comprised so that it can permeate
  • the positional relationship among the transparent scattering plate 15, the liquid crystal panel 14, and the light source unit 16 will be described later.
  • the liquid crystal panel 14 and the transparent scattering plate 15 may be collectively referred to as a “screen portion”.
  • FIG. 3 is a side view of the light source unit 16 shown in FIG.
  • FIG. 4 is a top view of the light source unit 16 shown in FIG.
  • the light source unit 16 includes a plurality of unit light sources 17 and an arrangement table 18 for arranging the plurality of unit light sources 17 toward the screen unit.
  • the liquid crystal panel 14 is divided into a plurality of areas, and a plurality of unit light sources 17 are arranged corresponding to the plurality of areas, respectively. The division of the liquid crystal panel 14 into a plurality of areas will be described later.
  • FIG. 5 is a diagram showing the configuration of the unit light source 17 shown in FIG. 3 and FIG.
  • the unit light source 17 includes a light-emitting element set 171 composed of three light-emitting elements that respectively emit R (red), G (green), and B (blue) light, and a lens that determines an irradiation range of light from the light-emitting element set 171. (Optical element) 173.
  • the light emitting element is, for example, an LED, but may be a CCFL or the like.
  • a light emitting element that emits R light is referred to as an “R light emitting element” and is denoted by reference numeral 172r.
  • a light-emitting element that emits G light is referred to as a “G light-emitting element” and is denoted by reference numeral 172 g.
  • a light-emitting element that emits B light is referred to as a “B light-emitting element” and is denoted by reference numeral 172b.
  • the light emitting element set 171 light emission that emits light of other primary colors instead of the R, G, B light emitting elements 172r, 172g, 172b or together with at least a part of the R, G, B light emitting elements 172r, 172g, 172b.
  • An element may be used.
  • FIG. 6 is a diagram for explaining a correspondence relationship between the area 31 of the liquid crystal panel 14 and the pixel forming portion 141 in the present embodiment.
  • the liquid crystal panel 14 is logically divided into a plurality of areas 31 instead of physically.
  • One area 31 includes a plurality of pixel forming portions 141, and one unit light source 17 corresponds thereto.
  • Such division of the liquid crystal panel 14 into a plurality of areas 31 is performed by the display control circuit 11 based on the input signal IN.
  • the display control circuit 11 divides the liquid crystal panel 14 into a plurality of areas 31 by dividing the frame image indicated by the input signal IN or the subframe image obtained by the subframe image generation unit 21. .
  • the number of areas 31 (hereinafter referred to as “the number of divisions”) is stored in advance in a memory provided inside or outside the display control circuit 11 and is read and used as appropriate.
  • the division number may be obtained by the display control circuit 11 based on the frame image indicated by the input signal IN or the subframe image obtained by the subframe image generation unit 21.
  • the light source control signal LS generated by the display control circuit 11 further includes color data of each pixel in each area 31, for example. Then, the light source unit 16 performs light irradiation independently on each area 31 based on the color data of each pixel in each area 31.
  • FIG. 7 is a side view for explaining the arrangement of the screen unit (the liquid crystal panel 14 and the transparent scattering plate 15) and the light source unit 16 in the present embodiment.
  • FIG. 8 is a top view for explaining the arrangement of the screen unit and the light source unit 16 in the present embodiment.
  • the left side of the figure is the front (refers to the surface on which the viewer of the image displayed on the liquid crystal panel 14 is present).
  • the transparent scattering plate 15 is disposed on the back surface (referred to as a surface opposite to the front surface) of the liquid crystal panel 14 so as to face the liquid crystal panel 14.
  • An air layer or the like may be provided between the liquid crystal panel 14 and the transparent scattering plate 15.
  • the light source unit 16 is disposed obliquely below the back side of the screen unit.
  • the installation method of a screen part and the light source part 16 is not specifically limited.
  • a support part for supporting the screen part may be provided below the screen part.
  • the arrangement interval of the plurality of unit light sources 17 is wider as it is closer to the screen portion.
  • the light irradiation range of the light emitting element set 171 defined by the lens 173 is wider as the position of the unit light source 17 including them is closer to the screen portion.
  • the light source unit 16 can irradiate the transparent scattering plate 15 with light source light so that light is irradiated from the transparent scattering plate 15 independently to each area 31 of the liquid crystal panel 14. ing.
  • the light source unit 16 irradiates the transparent scattering plate 15 with light source light so that the area 31 of the liquid crystal panel 14 is irradiated with light from the transparent scattering plate 15. May be irradiated.
  • the surface on which the plurality of unit light sources 17 are disposed hereinafter referred to as “arrangement surface” and the main surface of the screen portion form an acute angle.
  • the transparent scattering plate 15 is irradiated with light source light from the back surface (the main surface opposite to the side where the liquid crystal panel 14 is located).
  • the light source light applied to the transparent scattering plate 15 is scattered by the transparent scattering plate 15.
  • a component of the scattered light source light toward the liquid crystal panel 14 is irradiated to the liquid crystal panel 14.
  • a part of the light source light applied to the transparent scattering plate 15 passes through the transparent scattering plate 15, but the light source light is applied from an oblique lower side on the back side of the screen portion to an oblique upper side on the front side of the screen portion. Therefore, the light source light transmitted through the transparent scattering plate 15 does not affect the display (see FIG. 7).
  • the angle formed by the arrangement surface of the arrangement table 18 and the screen portion is close to 90 ° within the range in which the transparent scattering plate 15 can be irradiated with the light source light. desirable.
  • background light is incident on the transparent scattering plate 15 from the back side.
  • the background light incident on the transparent scattering plate 15 is irradiated to the liquid crystal panel 14 by being transmitted.
  • a part of the background light incident on the transparent scattering plate 15 is scattered by the transparent scattering plate 15, but the density of scatterers of the transparent scattering plate 15 is suppressed as described above. For this reason, the influence of the scattering of the background light by the transparent scattering plate 15 on the visual recognition of the background is small.
  • image display portion a portion where an image is to be displayed (hereinafter referred to as “image display portion”) and a portion where an image is not displayed (hereinafter referred to as “image non-display portion”) on the liquid crystal panel 14 are input to the input signal IN by the display control circuit 11.
  • image display portion displays an image based on the light source light by appropriately controlling the transmittance.
  • the background light is also incident on the image display unit.
  • the luminance of the light source light to be relatively high, the influence of the background light incident on the image display unit on the image display can be suppressed. . Note that it is possible to intentionally set the luminance of the light source light to be low and display the image with a background watermark.
  • the background light transmitted through the transparent scattering plate 15 is further transmitted by setting the transmittance to be relatively high. In this way, the background is transmitted.
  • the image non-display portion may be set for each area 31 or for each pixel.
  • the light source unit 16 is arranged so as not to overlap the screen unit in the horizontal direction so that the back of the screen unit does not block the background light. According to such an arrangement, background transmission can be performed more reliably.
  • FIG. 9 is a diagram illustrating an example of a display image in the present embodiment.
  • Each rectangular block in FIG. 9 corresponds to the area 31.
  • attention is focused on an area surrounded by a thick line (hereinafter referred to as “focused area” and indicated by reference numeral 32).
  • FIG. 10 is an enlarged view of the area of interest 32 shown in FIG.
  • the image of the target area 32 portion (hereinafter referred to as “target area image”) includes first to fourth colors ⁇ , ⁇ , ⁇ , and ⁇ .
  • Each of the first to fourth colors ⁇ , ⁇ , ⁇ , and ⁇ is realized by a desired color component ratio of R, G, and B. Note that the number of colors and the types of colors included differ for each area 31. However, there may be two or more areas 31 having the same number of colors and the same kind of color.
  • FIG. 11 is a diagram showing an example of the color component ratio of each of the first to fourth colors ⁇ , ⁇ , ⁇ , and ⁇ .
  • the color component ratio indicates a relative relationship between the sizes of the R component, the G component, and the B component, and does not indicate the size (component value) of each color component. Therefore, in the example shown in FIG. 11, the R component of the first color ⁇ is not necessarily larger than the R component of the second color ⁇ .
  • FIG. 12 is a diagram showing the configuration of the frame period in the present embodiment.
  • one frame period is composed of four subframe periods (first to fourth subframe periods).
  • the light emitting elements of the respective colors included in the unit light source 17 can take an arbitrary state. For this reason, only the light emitting element of any one of R, G, and B may be lit, or the light emitting elements of a plurality of colors may be lit. Also, the R, G, and B light emitting elements 172r, 172g, and 172b may have different light emission intensities. Therefore, the light source unit 16 can independently irradiate each area 31 of the liquid crystal panel 14 with light source light of a color realized with a desired color component ratio in each subframe period.
  • FIG. 13 is a diagram showing the color of each pixel in the area of interest 32.
  • the area of interest 32 includes 25 pixels (5 in the X-axis direction and 5 in the Y-axis direction).
  • the first to fourth colors ⁇ , ⁇ , ⁇ , and ⁇ are required for the attention area image.
  • the positions of the pixels of each color in FIG. 13 and the pixels of each color in FIG. 10 do not match.
  • the target area 32 is irradiated with light source light of the first to fourth colors ⁇ , ⁇ , ⁇ , and ⁇ in the first to fourth subframe periods, respectively.
  • the pixel formation portion 141 where the pixel of the first color ⁇ is to be formed is set to a transmissive state (which means a state with relatively high transmittance), and other colors
  • the pixel forming portion 141 that should form the pixel is set in a shielding state (a state in which the transmittance is zero or a state close to zero).
  • the pixel formation unit 141 that should form pixels of the second color ⁇ is set in a transmissive state, and the pixel formation unit 141 that should form pixels of other colors is set in a shielding state.
  • the pixel formation unit 141 that should form pixels of the third color ⁇ is set in a transmissive state, and the pixel formation unit 141 that should form pixels of other colors is set in a shielding state.
  • the pixel formation unit 141 that should form the pixels of the fourth color ⁇ is set to the transmissive state, and the pixel formation unit 141 that should form the pixels of the other colors is set to the shielding state. . In this manner, a frame image composed of the first to fourth colors ⁇ , ⁇ , ⁇ , ⁇ is realized in one frame period.
  • the type of color of the light source light and the order of the colors in the first to fourth subframe periods differ from one area 31 to another. Further, in each area 31, when the required number of colors is smaller than the number of subframe periods, the color components of R, G, B, for example, are equal except in the subframe period for displaying the necessary colors. As described above, the light emitting elements of the respective colors may be turned on.
  • unit light source 17 including a light emitting element set 171 including R, G, B light emitting elements 172r, 172g, and 172b and a lens 173 that defines an irradiation range of light from the light emitting element set 171. Corresponds to the area. For this reason, the same light emitting element group 171 can be used in each unit light source 17. Thereby, for example, the power consumption of the light emitting element group 171 can be made uniform.
  • the unit light source 17 As the unit light source 17 is closer to the screen portion, the light irradiation range of the light emitting element group 171 determined by the lens 173 becomes wider, and as the unit light source is closer to the screen portion, the arrangement of the plurality of unit light sources 17 is arranged. Since the interval is wide, independent light irradiation to each area 31 can be performed more reliably.
  • FIG. 14 is a side view for explaining the arrangement of the screen unit (the liquid crystal panel 14 and the transparent scattering plate 15) and the light source unit 16 in the present embodiment.
  • FIG. 15 is a top view for explaining the arrangement of the screen unit and the light source unit 16 in the present embodiment.
  • the left side of the figure is the front as in FIGS. 7 and 8 described above.
  • the transparent scattering plate 15 is disposed on the back side of the liquid crystal panel 14 so as to face the liquid crystal panel 14.
  • the light source unit 16 is disposed obliquely below the front side of the screen unit.
  • the transparent scattering plate 15 is irradiated with light source light from the front through the liquid crystal panel 14. For this reason, the light source light irradiated to the transparent scattering plate 15 is scattered by the transparent scattering plate 15, and the component of the scattered light source light toward the liquid crystal panel 14 is irradiated to the liquid crystal panel 14.
  • the light source unit 16 since the light source unit 16 is disposed obliquely below the front side of the screen unit, the influence of the light source light transmitted through the transparent scattering plate 15 on the display is affected. Can be reliably suppressed.
  • the background transmission is the same as that in the first embodiment, and a description thereof will be omitted.
  • the transparent scattering plate 15 can be irradiated with the light source light via the liquid crystal panel 14, and the same effect as the first embodiment can be obtained.
  • the transparent scattering plate 15 is used as the light control unit.
  • a half mirror may be used instead of the transparent scattering plate 15.
  • half of the light source light irradiated to the half mirror meaning that the light amount is half
  • the liquid crystal panel 14 is irradiated. Therefore, the same effect as when the transparent scattering plate 15 is used can be obtained.
  • FIG. 16 is a diagram showing a configuration of the unit light source 17 in the third embodiment of the present invention.
  • the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • three unit light sources 17 respectively corresponding to R, G, and B correspond to one area 31.
  • the unit light source 17 corresponding to R is referred to as “R unit light source” and is represented by reference numeral 17r.
  • the unit light source 17 corresponding to G is referred to as a “G unit light source” and is represented by reference numeral 17g.
  • the unit light source 17 corresponding to B is referred to as a “B unit light source” and is represented by reference numeral 17b.
  • the unit light sources 17 corresponding to other primary colors may be used in place of the R, G, B unit light sources 17r, 17g, 17b or together with at least a part of the R, G, B unit light sources 17r, 17g, 17b. good.
  • FIG. 16 illustrates the R unit light source 17r among the R, G, B unit light sources 17r, 17g, and 17b.
  • the R unit light source 17r includes an R light emitting element 172r and a lens 173 that defines an irradiation range of light from the R light emitting element 172r.
  • the G and B unit light sources 17g and 17b have the same configuration as that of the R unit light source 17r except that the primary colors are different, and thus the description thereof is omitted.
  • FIG. 17 is a diagram for explaining light irradiation from the R, G, B unit light sources 17r, 17g, and 17b to the area 31 in the present embodiment.
  • Each of the R, G, B unit light sources 17r, 17g, 17b irradiates the corresponding area 31 with light. Since the state of each color light emitting element in each subframe period is the same as that in the first embodiment, the description thereof is omitted.
  • the arrangement of the unit light sources 17 in this embodiment is basically the same as that in the first and second embodiments.
  • the R, G, B unit light sources 17r, 17g, and 17b corresponding to each area 31 may be arranged side by side in a direction (vertical direction in FIG. 8 or FIG. 15) orthogonal to the thickness direction of the screen portion. May be arranged side by side in the thickness direction (lateral direction in FIG. 8 or FIG. 15).
  • positioning of the screen part and the light source part 16 in this embodiment you may employ
  • one area 31 corresponds to the R, G, B unit light sources 17r, 17g, and 17b.
  • Each of the R, G, B unit light sources 17r, 17g, 17b includes a light emitting element and a lens 173 corresponding to the primary color. Since one light emitting element and one lens 173 correspond to each other, for example, when the size of the light emitting element is large, it is possible to suppress the defocus of the lens 173 compared to the first and second embodiments.
  • FIG. 18 is a side view for explaining the arrangement of the screen unit (the liquid crystal panel 14 and the transparent scattering plate 15) and the light source unit 16 in the fourth embodiment of the present invention.
  • FIG. 19 is a top perspective view of the light source unit 16 shown in FIG. In FIGS. 18 and 19, it is assumed that the left side of the figure is the front surface as in FIGS. 7 and 8 described above.
  • the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the transparent scattering plate 15 is disposed on the back side of the liquid crystal panel 14 so as to face the liquid crystal panel 14.
  • the light source unit 16 is disposed below the screen unit.
  • a support portion 19 for supporting the screen portion is provided between the light source portion 16 and the screen portion.
  • the support portion 19 is not essential, and the positional relationship between the light source portion 16 and the screen portion in the present embodiment may be realized by other methods.
  • the light source unit 16 includes a lamp 41, a color wheel 42, a condenser lens 43, a digital micromirror device (DMD) 44, a projection lens 45, and a rising mirror 46.
  • the lamp 41, the color wheel 42, the condenser lens 43, the DMD 44, and the projection lens 45 realize a light irradiation unit
  • the rising mirror 46 realizes a reflection unit.
  • the lamp 41 is a lamp that emits white light, for example, a halogen lamp.
  • White light emitted from the lamp 41 is made full color by the color wheel 42, collected by the condenser lens 43, and then irradiated to the DMD 44.
  • the color wheel 42 rotates based on a desired frequency in order to switch R, G, and B light at high speed and irradiate the DMD 44 via the condenser lens 43.
  • R light emitting element, G light emitting element, and B light emitting element that can switch the light emitting state in a time division manner are used instead of the halogen lamp and color wheel 42. You may do it.
  • the light irradiated on the DMD 44 is irradiated on the projection lens 45 by being reflected by the DMD 44 when the DMD 44 is in the ON state.
  • the light irradiated on the DMD 44 is absorbed inside and is not irradiated on the projection lens 45.
  • the DMD 44 can switch between the on state and the off state for each area 31.
  • the desired color component ratio of R, G, B as in the first embodiment is adjusted for each area 31 by adjusting the ON / OFF state period of the DMD 44 for each area 31.
  • each subframe period it can be realized in a time division manner. In this way, by appropriately setting the lighting time ratio of each primary color for each area 31, it is possible to realize light source light of a desired color in each subframe period. A further description of the operation in one subframe period in the present embodiment will be described later.
  • the projection lens 45 irradiates the mirror 46 with the light emitted from the plurality of DMDs 44. Since the raising mirror 46 is arranged toward the screen portion as shown in FIG. 18, the light emitted from the projection lens 45 is applied to the transparent scattering plate 15 as light source light.
  • the light source unit 16 in the present embodiment has the same configuration as that of a digital light processing (DLP) projector.
  • the light source unit 16 may have the same configuration as other projectors such as a liquid crystal display (LCD) projector.
  • LCD liquid crystal display
  • the operation of transmitting and scattering light source light by the transparent scattering plate 15 is the same as in the first and second embodiments.
  • FIG. 20 is a diagram for explaining the operation in one subframe period in the present embodiment.
  • FIG. 20 shows the transmitted light color of the color wheel 42 and the state of the DMD 44 in one subframe period.
  • One subframe period is divided into a transient response period of the liquid crystal panel 14 (hereinafter referred to as “liquid crystal transient response period”) and a period after the end of the transient response period of the liquid crystal panel 14 (hereinafter referred to as “liquid crystal response completion period”).
  • liquid crystal transient response period the transmittance of the pixel formation portion 141 of the liquid crystal panel 14 changes toward a desired value
  • the transmittance of the pixel formation portion 141 becomes a desired value.
  • the color wheel 42 blocks white light from the lamp 41 during the liquid crystal transient response period (it can also be said that the transmitted light color is black (K)), and R, G during the liquid crystal response completion period. , B are sequentially applied to the DMD 44.
  • the color order of the light applied to the DMD 44 is not particularly limited.
  • the DMD 44 maintains an off state during the liquid crystal transient response period, and turns on during a desired period during the liquid crystal response completion period. In this way, light source light of a desired color is realized.
  • FIG. 20 illustrates an implementation example of the first color ⁇ described above.
  • the light emitting unit (the lamp 41, the color wheel 42, the condensing lens 43, the DMD 44, and the projection lens 45) irradiates the rising mirror 46 with the light source light corresponding to the plurality of areas 31, By reflecting the light source light corresponding to the plurality of areas 31 toward the transparent scattering plate 15 to the rising mirror 46, it corresponds to one of a plurality of colors for each subframe period as in the first embodiment.
  • the color light source light is irradiated to each of the areas 31 of the liquid crystal panel 14 independently. In this way, the same effects as those of the first embodiment can be obtained.
  • the color wheel 42 and the DMD 44 that can be switched between the on state and the off state for each area 31 are used.
  • the light source light of a desired color is reliably irradiated to the area 31 in each subframe period.
  • the lighting time ratio of each primary color can be appropriately set in consideration of the liquid crystal transient response period, so that the light source light of a desired color can be reliably realized in each subframe period. it can.
  • the color wheel 42 blocks the white light from the lamp 41 during the liquid crystal transient response period, the light source light of a desired color can be more reliably realized in each subframe period. .
  • the image display in this embodiment and the image display by the conventional projector differ in the following points. That is, if an image is projected from a conventional projector onto a general screen at a close distance, focusing becomes difficult and display quality is deteriorated.
  • the image is not projected from the light source unit 16 but is irradiated with the light source light, and the image is displayed by performing the transmittance control on the liquid crystal panel 14. There is no need to do. For this reason, in this embodiment, even if the light source unit 16 is arranged at a close distance of the screen unit, the display quality is not deteriorated.
  • the image display device 10 only needs to be configured to suppress color breakup by irradiating each area 31 with light source light independently, and a desired color can be obtained in each subframe period. It is not essential to irradiate the light source light.
  • a polymer dispersed liquid crystal (Polymer Dispersed Liquid Crystal: PDLC) panel may be used instead of the transparent scattering plate 15.
  • the PDLC panel when the image is displayed, the PDLC panel is set in a scattering state, and when the background is transmitted, the PDLC panel is set in a transmissive state, whereby image display and background transmission can be performed with higher quality.
  • a part of the PDLC panel may be in a scattering state, and the remaining part may be in a transmissive state.
  • the PDLC panel functions as a light control unit that irradiates part of the light source light onto the liquid crystal panel 14 and transmits part of the background light.
  • the number of unit light sources 17 may be made larger than the number of areas 31 and two or more unit light sources 17 may correspond to one area 31.
  • the lens 173 instead of the lens 173, another optical element that can determine the irradiation range of light from the light emitting element set 171 (light emitting element) may be used.
  • the transparent scattering plate 15 may be irradiated with light source light via the liquid crystal panel 14.
  • a half mirror or the like may be used instead of the transparent scattering plate 15.
  • the light source unit 16 may be disposed obliquely above the screen unit rear side. Moreover, in the said 2nd Embodiment, you may make it arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 表示品位の低下およびサイズの増大を抑制しつつ、光源光の利用効率を高め且つ背景を透過することができる画像表示装置を提供する。 画像表示装置は、液晶パネル(14)と、液晶パネル(14)に対向する透明散乱板(15)と、液晶パネル(14)および透明散乱板(15)の背面側斜め下方に位置する光源部(16)とを含む。光源部(16)は、液晶パネル(14)の複数のエリアにそれぞれ対応する複数の単位光源(17)を含む。透明散乱板(15)の背面から入射した光源光は散乱されて液晶パネル(14)に照射される。また、透明散乱板(15)の背面から入射した背景光は透過されて液晶パネル(14)に照射される。画像表示部では、透過率が適切に制御されることにより、光源光に基づいて画像が表示される。画像非表示部では、透過率が比較的高く設定されることにより、背景が透過される。

Description

画像表示装置およびその駆動方法
 本発明は、画像表示装置に関し、特に、フィールドシーケンシャル方式で駆動される画像表示装置およびその駆動方法に関する。
 近年、カラー画像を表示する画像表示装置の駆動方式の1つとして、フィールドシーケンシャル方式の開発が進められている。フィールドシーケンシャル方式は、バックライト光となる赤色(R)、緑色(G)、および青色(B)の発光ダイオード(Light Emitting Diode:LED)や冷陰極管(Cold Cathode Fluorescent Lamp:CCFL)などの発光素子を順に切り換えると共に、その切り換えと同期して液晶パネルに各発光素子の光の色に対応する色のデータを順に与えて液晶パネルの透過状態を制御することによって、観察者の網膜上で加法混色を行う方式である。フィールドシーケンシャル方式によれば、1つの画素に複数の副画素を形成することなくカラー表示ができるので、高解像度化が可能になる。また、これらの発光素子からの光をそのまま利用することができるので、各画素にカラーフィルタを形成する必要がなくなり、各発光素子の光の利用効率が向上する。このようなフィールドシーケンシャル方式に関する技術は、例えば日本の特開2000-122589号公報などに開示されている。
 また、近年、画像表示を行うと共に背景の透過が可能な画像表示装置の開発が進められている。例えば、日本の特開2010-91609号公報には、液晶パネル、シャッタフィルム、制御部、光源、ケース、および観察物体などを備えた液晶表示装置が開示されている。光源および観察物体はケース内部に設けられている。シャッタフィルムは、透明な状態である第1状態と、不透明な状態(白濁した状態)である第2状態とを制御部によって切り替え可能となっている。シャッタフィルムの状態を制御することにより、画像表示および背景透過(観察物体の表示)が可能となる。
日本の特開2000-122589号公報 日本の特開2010-91609号公報 日本の特許第4586332号公報
 ところで、日本の特開2010-91609号公報に開示された構成において、カラー表示を行うためには、液晶パネルにカラーフィルタを設けるか、またはフィールドシーケンシャル方式の駆動を行う必要がある。しかし、液晶パネルにカラーフィルタを設けるとすると、各発光素子の光の利用効率が低下し、また、背景を充分に透過することができない。なお、第1状態と第2状態とを切り替え可能なシャッタフィルムとカラーフィルタとを使用した構成は、例えば日本の特許第4586332号公報に開示されている。このような構成においても、日本の特開2010-91609号公報に開示された構成でカラーフィルタを設けた場合と同様の問題が生じ得る。また、日本の特開2010-91609号公報に開示された構成では、ケース内部で光源からの光(以下「光源光」という。)が拡散するので、フィールドシーケンシャル方式の駆動を行うとすると、画面全体で同じ色の表示を行うことになる。フィールドシーケンシャル方式においては、画面全体で色を切り替えると色割れが生じやすいことが知られている。図21は、色割れの発生原理を示す図である。図21のA部において、縦軸は時間を表し、横軸は画面上の位置を表す。一般に、表示画面内を物体が移動したとき、観測者の視線は物体を追随して物体の移動方向に移動する。例えば図21に示す例では、白色物体が表示画面内を左から右へ移動したとき、観測者の視線は斜め矢印方向に移動する。一方、1フレーム期間内では、R,G,Bのそれぞれのサブフレーム画像において物体の位置は同じである。このため、図21のB部に示すように、網膜に映る映像には色割れが発生する。以上のように、日本の特開2010-91609号公報に開示された構成でフィールドシーケンシャル方式の駆動を行うと、表示品位が低下する。さらに、日本の特開2010-91609号公報に開示された構成では、光源光を周囲に漏らさないために上記ケースが必要になるので、画像表示装置のサイズが増大する。
 そこで、本発明は、表示品位の低下およびサイズの増大を抑制しつつ、光源光の利用効率を高め且つ背景を透過することができる画像表示装置およびその駆動方法を提供することを目的とする。
 本発明の第1の局面は、与えられた入力信号の1フレーム期間を複数のサブフレーム期間に分割し、サブフレーム期間毎に複数色のいずれかに対応した色の表示を行うことによりカラー画像を表示する画像表示装置であって、
 入射した光の透過率を制御する表示パネルと、
 光源部と、
 前記表示パネルに対向して配置され、前記光源部が出射した光の少なくとも一部の前記表示パネルへの照射および前記表示パネルが位置する側と反対側の主面から入射した光の少なくとも一部の透過が可能な光制御部とを備え、
 前記光源部は、前記サブフレーム期間毎に複数色のいずれかに対応した色の光が前記表示パネルの複数のエリアのそれぞれに独立して前記光制御部から照射されるように、前記光制御部に光を照射することを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記光源部は、前記複数のエリアにそれぞれ対応した複数の単位光源を含み、
 前記単位光源は、
  複数の原色にそれぞれ対応した複数の発光素子からなる発光素子組と、
  前記発光素子組からの光の照射範囲を定める光学素子とを含むことを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記光源部は、各エリアに対応すると共に、複数の原色にそれぞれ対応した複数の単位光源を含み、
 各原色に対応した単位光源は、
  当該原色に対応した発光素子と、
  前記発光素子からの光の照射範囲を定める光学素子とを含むことを特徴とする。
 本発明の第4の局面は、本発明の第2の局面または第3の局面において、
 前記光源部は、前記単位光源を前記表示パネルに向けて配置するための配置台をさらに含み、
 前記単位光源の前記光学素子が定める前記照射範囲は、当該単位光源の位置が前記表示パネルに近いほど広く、
 前記単位光源の配置間隔は、前記表示パネルに近いほど広いことを特徴とする。
 本発明の第5の局面は、本発明の第2の局面または第3の局面において、
 各原色に対応した発光素子は、各サブフレーム期間で任意の発光状態を取り得ることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記光源部は、
  前記光制御部に向けて光を反射する反射部と、
  前記サブフレーム期間毎に複数色のいずれかに対応した色の光が前記表示パネルの複数のエリアのそれぞれに独立して前記光制御部から照射されるように、前記複数のエリアに対応する光を前記反射部に照射する光照射部とを含むことを特徴とする。
 本発明の第7の局面は、本発明の第6の局面において、
 前記光照射部は、
  白色光をフルカラー化するためのカラーホイールと、
  前記カラーホイールからの光を反射するオン状態と当該光を反射しないオフ状態とを前記エリア毎に切り替え可能なデジタルマイクロミラーデバイスとを含むことを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記表示パネルは液晶パネルであり、
 前記デジタルマイクロミラーデバイスは、各サブフレーム期間において、前記液晶パネルの過渡応答期間終了後の所望の期間にオン状態になることを特徴とする。
 本発明の第9の局面は、本発明の第8の局面において、
 前記カラーホイールは、前記液晶パネルの過渡応答期間において前記白色光を遮断することを特徴とする。
 本発明の第10の局面は、本発明の第1の局面において、
 前記光源部は、前記サブフレーム期間毎に、異なるエリアに異なる色の光が前記表示パネルの複数のエリアのそれぞれに独立して前記光制御部から照射可能なように、前記光制御部に光を照射することを特徴とする。
 本発明の第11の局面は、本発明の第1の局面において、
 前記光源部は、前記表示パネルが位置する側と反対側の前記光制御部の主面に光を照射することを特徴とする。
 本発明の第12の局面は、本発明の第1の局面において、
 前記光源部は、前記表示パネルが位置する側の前記光制御部の主面に光を照射することを特徴とする。
 本発明の第13の局面は、入射した光の透過率を制御する表示パネルと、光源部と、前記表示パネルに対向して配置され、前記光源部が出射した光の少なくとも一部の前記表示パネルへの照射および前記表示パネルが位置する側と反対側の主面から入射した光の少なくとも一部の透過が可能な光制御部とを含み、与えられた入力信号の1フレーム期間を複数のサブフレーム期間に分割し、サブフレーム期間毎に複数色のいずれかに対応した色の表示を行うことによりカラー画像を表示する画像表示装置の駆動方法であって、
 前記表示パネルを複数のエリアに分割し、前記サブフレーム期間毎に複数色のいずれかに対応した色の光が各エリアに独立して前記光制御部から照射されるように、前記光制御部に光を照射するステップを備えることを特徴とする。
 本発明の第1の局面によれば、カラーフィルタ不要のフィールドシーケンシャル方式の画像表示装置において、サブフレーム期間毎に複数色のいずれかに対応した色の光が表示パネルの各エリアに独立して照射される。このため、所望の色の表示をエリア毎に行って色割れを抑制することができる。これにより、光源光(光源部からの光)の利用効率を高め且つ表示品位の低下を抑制することができる。また、光源光の少なくとも一部の表示パネルへの照射および背景を示す光(以下「背景光」という。)の少なくとも一部の透過が可能な光制御部がカラーフィルタ不要の表示パネルに対向して設けられる。したがって、表示パネルにおいて入射光の透過率を適切に制御することにより、画像表示および背景透過を行うことができる。また、光源光を周囲に漏らさないためのケースが不要であるので、画像表示装置のサイズの増大を抑制することができる。
 本発明の第2の局面によれば、複数の発光素子からなる発光素子組および当該発光素子組からの光の照射範囲を定める光学素子を含む単位光源が1つのエリアに対応する。このため、各単位光源において同様の発光素子組を使用することができる。これにより、例えば発光素子組の消費電力の均一化などを図ることができる。
 本発明の第3の局面によれば、1つのエリアに、複数の原色にそれぞれ対応した複数の単位光源が対応する。各単位光源は、1つの原色に対応した発光素子および当該発光素子からの光の照射範囲を定める光学素子を含む。1つの発光素子と1つの光学素子とが対応しているので、例えば発光素子サイズが大きい場合、本発明の第2の局面に比べて、光学素子の焦点ずれを抑制することができる。
 本発明の第4の局面によれば、単位光源が表示パネルに近い位置にあるほど光学素子の定める照射範囲が広くなると共に、表示パネルに近いほど複数の単位光源の配置間隔が広くなるので、各エリアへの独立した光照射を確実に行うことができる。
 本発明の第5の局面によれば、各原色に対応した発光素子が各サブフレーム期間で任意の発光状態を取り得るので、各サブフレーム期間で、原色を混色して得られた所望の色の光源光が表示パネルのエリアに照射される。例えば、画像を表示すべきエリアにおいて、所望の色の画素の透過率を、当該所望の色の光源光が照射されるサブフレーム期間で比較的高く設定することにより、色割れを確実に抑制しつつ、複数パターンの混色表示を行うことができる。
 本発明の第6の局面によれば、複数のエリアに対応する光を反射部に反射させることにより、各エリアへの独立した光照射を確実に行うことができる。各サブフレーム期間で、所望の色の光源光が表示パネルのエリアに照射される。このため、本発明の第5の局面と同様の効果を奏することができる。
 本発明の第7の局面によれば、カラーホイールと、エリア毎にオン状態とオフ状態とを切り替え可能なデジタルマイクロミラーデバイスとが使用される。エリア毎に各原色の点灯時間比率を適切に設定することにより、各サブフレーム期間で、所望の色の光源光が表示パネルのエリアに確実に照射される。
 本発明の第8の局面によれば、液晶パネルの過渡応答期間を考慮しつつ、各原色の点灯時間比率を適切に設定できるので、各サブフレーム期間で、所望の色の光源光を確実に実現することができる。
 本発明の第9の局面によれば、液晶パネルの過渡応答期間においてカラーホイールが白色光を遮断するので、各サブフレーム期間で、所望の色の光源光をより確実に実現することができる。
 本発明の第10の局面によれば、異なるエリアに異なる色の光源光が照射可能となるので、表示すべき画像に応じて色割れをより確実に行うことができる。
 本発明の第11の局面によれば、光制御部に光源光を直接照射して、本発明の第1の局面と同様の効果を奏することができる。
 本発明の第12の局面によれば、表示パネルを介して光制御部に光源光を照射して、本発明の第1の局面と同様の効果を奏することができる。
 本発明の第13の局面によれば、画像表示装置の駆動方法において、本発明の第1の局面と同様の効果を奏することができる。
本発明の第1の実施形態に係る画像表示装置の構成を示すブロック図である。 図1に示す液晶パネルの構成を示す図である。 図1に示す光源部の構成を示す側面図である。 図1に示す光源部の構成を示す上面図である。 図3および図4に示す単位光源の構成を示す図である。 上記第1の実施形態における液晶パネルのエリアと画素形成部との対応関係を説明するための図である。 上記第1の実施形態における液晶パネル、透明散乱板、および光源部の配置を説明するための側面図である。 上記第1の実施形態における液晶パネル、透明散乱板、および光源部の配置を説明するための上面図である。 表示画像の一例を示す図である。 図9に示す着目エリアの拡大図である。 図10に示す各色の色成分比の一例を示す図である。 上記第1の実施形態におけるフレーム期間の構成を示す図である。 着目エリアの各画素の色を示す図である。 本発明の第2の実施形態における液晶パネル、透明散乱板、および光源部の配置を説明するための側面図である。 上記第2の実施形態における液晶パネル、透明散乱板、および光源部の配置を説明するための上面図である。 本発明の第3の実施形態における単位光源の構成を示す図である。 上記第3の実施形態における単位光源からエリアへの光照射を説明するための図である。 本発明の第4の実施形態における液晶パネル、透明散乱板、および光源部の配置を説明するための側面図である。 図18に示す光源部の上面透視図である。 上記第4の実施形態における1サブフレーム期間の動作を説明するための図である。 色割れの発生原理を説明するための図である。
 以下、添付図面を参照しながら、本発明の第1~第4の実施形態について説明する。
 <1.第1の実施形態>
 <1.1 全体構成>
 図1は、本発明の第1の実施形態に係る画像表示装置10の構成を示すブロック図である。画像表示装置10は、表示制御回路11、パネル駆動回路12、光源駆動回路13、液晶パネル14、透明散乱板15、および光源部16を含んでいる。本実施形態では、液晶パネル14は表示パネルに相当し、透明散乱板15は光制御部に相当する。
 画像表示装置10は、フィールドシーケンシャル方式で液晶パネル14に画像を表示する。フィールドシーケンシャル方式では、光源光の色が順に切り替わると共に、その切り替わりと同期して液晶パネル14に各色のデータが与えられて透過状態が制御される。ただし、本実施形態におけるフィールドシーケンシャル方式は、従来のフィールドシーケンシャル方式と異なり、画面全体が同一色であるサブフレームを用いた加法混色は行われない。本実施形態におけるフィールドシーケンシャル方式の説明は後述するが、従来のフィールドシーケンシャル方式と同様に1つの画素に複数の副画素を形成することなくカラー表示ができるので、高解像度化が可能になる。また、各画素にカラーフィルタを形成する必要がなくなり、ディスプレイ背面からの環境光の透過率が向上するので、透明ディスプレイを構成することができる。
 表示制御回路11は、外部から入力信号INを受け取り、当該入力信号INに基づいてパネル駆動回路12および光源駆動回路13を制御する。より詳細には、表示制御回路11は、パネル駆動回路12を制御するためのパネル制御信号PSをパネル駆動回路12に与え、光源駆動回路13を制御するための光源制御信号LSを光源駆動回路13に与える。表示制御回路11は、入力信号INが示すフレーム画像をサブフレーム画像に変換するためのサブフレーム画像生成部21を含んでいる。言い換えると、表示制御回路11は、サブフレーム画像生成部21によって入力信号INの1フレーム期間を複数のサブフレーム期間に分割する。パネル制御信号PSおよび光源制御信号LSのそれぞれには、サブフレーム画像生成部21で生成されたサブフレーム画像に関する信号および各種タイミング信号などが含まれている。パネル駆動回路12は、受け取ったパネル制御信号PSに基づいて液晶パネル14を駆動する。光源駆動回路13は、受け取った光源制御信号LSに基づいて光源部16を駆動する。
 図2は、図1に示す液晶パネル14の構成を示す図である。液晶パネル14は、複数の信号線SLと、複数の走査線GLと、複数の信号線SLおよび複数の走査線GLの交差点に対応してマトリクス状に配置された複数の画素形成部141とを含んでいる。液晶パネル14は、パネル駆動回路12によって駆動されることにより各画素形成部141における入射光の透過率(以下「画素形成部141の透過率」という場合がある。)を制御する。なお、本実施形態における液晶パネル14の表示方式は、ノーマリブラック方式およびノーマリホワイト方式のいずれであっても良い。
 透明散乱板15は、散乱子の密度を抑えることで透明度を高めた散乱板(拡散板ともいう。)である。透明散乱板15は、光源部16が出射した光源光を液晶パネル14に照射し、また、液晶パネル14が位置する側と反対側の主面から入射した光(背景光に相当する。)を透過することができるように構成されている。このように、透明散乱板15は、散乱および透過の双方を行うことができる。なお、透明散乱板15、液晶パネル14、および光源部16の位置関係は後述する。以下では、液晶パネル14および透明散乱板15を合わせて「スクリーン部」という場合がある。
 図3は、図1に示す光源部16の側面図である。図4は、図1に示す光源部16の上面図である。光源部16は、図3および図4に示すように、複数の単位光源17と、複数の単位光源17をスクリーン部に向けて配置するための配置台18とを含んでいる。本実施形態では、液晶パネル14は複数のエリアに分割され、それらの複数のエリアにそれぞれ対応して複数の単位光源17が配置されている。なお、液晶パネル14の複数のエリアへの分割については後述する。
 図5は、図3および図4に示す単位光源17の構成を示す図である。単位光源17は、R(赤)、G(緑)およびB(青)の光をそれぞれ発する3個の発光素子からなる発光素子組171と、発光素子組171からの光の照射範囲を定めるレンズ(光学素子)173とを含んでいる。発光素子は、例えばLEDであるが、CCFLなどでも良い。以下では、Rの光を発する発光素子のことを「R発光素子」といい、符号172rで表す。また、Gの光を発する発光素子のことを「G発光素子」といい、符号172gで表す。また、Bの光を発する発光素子のことを「B発光素子」といい、符号172bで表す。なお、発光素子組171において、R,G,B発光素子172r,172g,172bに代えてまたはR,G,B発光素子172r,172g,172bの少なくとも一部と共に、他の原色の光を発する発光素子を使用するようにしても良い。
 図6は、本実施形態における液晶パネル14のエリア31と画素形成部141との対応関係を説明するための図である。本実施形態において、液晶パネル14は、物理的にではなく論理的に複数のエリア31に分割される。1つのエリア31には、複数の画素形成部141が含まれ、1つの単位光源17が対応している。このような液晶パネル14の複数のエリア31への分割は、表示制御回路11によって入力信号INに基づいて行われる。表示制御回路11は、具体的には、入力信号INが示すフレーム画像またはサブフレーム画像生成部21によって得られるサブフレーム画像を分割することにより、液晶パネル14の複数のエリア31への分割を行う。ここで、エリア31の数(以下「分割数」という。)は、例えば、表示制御回路11の内部または外部に設けられたメモリに予め保持され、適宜読み出されて利用される。あるいは、分割数は、入力信号INが示すフレーム画像またはサブフレーム画像生成部21によって得られるサブフレーム画像に基づいて表示制御回路11によって求めるようにしても良い。表示制御回路11によって生成される光源制御信号LSには、例えば、各エリア31における各画素の色データがさらに含まれる。そして、光源部16は、各エリア31における各画素の色データに基づいて、各エリア31に独立して光照射を行う。
 <1.2 スクリーン部および光源部の配置>
 図7は、本実施形態におけるスクリーン部(液晶パネル14および透明散乱板15)および光源部16の配置を説明するための側面図である。図8は、本実施形態におけるスクリーン部および光源部16の配置を説明するための上面図である。図7および図8において、図の左側が正面(液晶パネル14に表示された画像の観察者が存在する側の面をいう。)であるとする。図7および図8に示すように、透明散乱板15は、液晶パネル14の背面(正面と反対側の面をいう。)側に、液晶パネル14に対向して配置されている。液晶パネル14と透明散乱板15との間には空気層などが設けられていても良い。光源部16は、スクリーン部の背面側の斜め下方に配置されている。なお、スクリーン部および光源部16の設置方法は特に限定されるものではない。例えば、スクリーン部の下方に、当該スクリーン部を支えるための支持部などが設けられていても良い。
 図7および図8に示すように、複数の単位光源17の配置間隔は、スクリーン部に近いほど広くなっている。また、レンズ173が定める発光素子組171の光の照射範囲は、それらを含む単位光源17の位置がスクリーン部に近いほど広くなっている。このような構成により、光源部16は、液晶パネル14の各エリア31に独立して透明散乱板15から光が照射されるように、透明散乱板15に光源光を照射することが可能になっている。以下では、光源部16が、液晶パネル14のエリア31に透明散乱板15から光が照射されるように透明散乱板15に光源光を照射することを、「液晶パネル14のエリア31に光源光を照射する」という場合がある。また、図7に示すように、配置台18において複数の単位光源17が配置される面(以下「配置面」という。)とスクリーン部の主面とは鋭角を成している。
 透明散乱板15には、その背面(液晶パネル14が位置する側と反対側の主面)から光源光が照射される。透明散乱板15に照射された光源光は、透明散乱板15により散乱される。散乱された光源光のうちの液晶パネル14へ向かう成分が液晶パネル14に照射される。なお、透明散乱板15に照射された光源光の一部が透明散乱板15を透過するが、光源光は、スクリーン部背面側の斜め下方からスクリーン部正面側の斜め上方に向かって照射されるので、透明散乱板15を透過する光源光は表示に影響を与えない(図7を参照)。このような方向への光源光の照射を実現するために、配置台18の配置面とスクリーン部との成す角は、透明散乱板15に光源光を照射できる範囲内で90°に近いことが望ましい。
 また、透明散乱板15には、その背面から背景光が入射する。透明散乱板15に入射した背景光は透過することにより液晶パネル14に照射される。なお、透明散乱板15に入射した背景光の一部が透明散乱板15により散乱されるが、上述のように透明散乱板15の散乱子の密度は抑えられている。このため、透明散乱板15による背景光の散乱が背景の視認に与える影響は小さい。
 ところで、液晶パネル14において画像を表示すべき部分(以下「画像表示部」という。)および画像を表示しない部分(以下「画像非表示部」という。)は、表示制御回路11によって入力信号INに基づいて設定される。画像表示部では、透過率が適切に制御されることにより、光源光に基づいて画像が表示される。このとき、画像表示部には背景光も入射されるが、光源光の輝度を比較的高く設定することにより、背景光の画像表示部への入射が画像表示に与える影響を抑制することができる。なお、光源光の輝度を意図的に低く設定して、画像に背景を透かした表示を行うことも可能である。画像非表示部では、透過率が比較的高く設定されることにより、透明散乱板15を透過した背景光がさらに透過する。このようにして、背景が透過される。なお、画像非表示部は、エリア31毎に設定しても良く、画素毎に設定しても良い。ところで、スクリーン部の背面に背景光を遮るものをなくすべく、水平方向において、光源部16はスクリーン部に重複しないように配置されることが望ましい。このような配置によれば、背景透過をより確実に行うことができる。
 <1.3 動作>
 図9は、本実施形態における表示画像の一例を示す図である。図9における各矩形ブロックはエリア31に対応する。以下では、太線で囲われたエリア(以下「着目エリア」といい、符号32で表す。)に着目する。図10は、図9に示す着目エリア32の拡大図である。表示画像のうち、着目エリア32部分の画像(以下「着目エリア画像」という。)は、第1~第4色α,β,γ,δを含んでいるとする。第1~第4色α,β,γ,δのそれぞれは、R,G,Bの所望の色成分比によって実現される。なお、含まれる色数および色の種類は、エリア31毎に異なっている。ただし、含まれる色数および色の種類が同一のエリア31が2以上存在していても良い。
 図11は、第1~第4色α,β,γ,δのそれぞれの色成分比の一例を示す図である。なお、色成分比は、R成分、G成分、およびB成分の大きさの相対的な関係を示すものであって、各色成分の大きさ(成分値)を示すものではない。したがって、図11に示す例において、必ずしも第2色βのR成分よりも第1色αのR成分の方が大きいわけではない。
 図12は、本実施形態におけるフレーム期間の構成を示す図である。本実施形態では、1フレーム期間は4つのサブフレーム期間(第1~第4サブフレーム期間)で構成される。各サブフレーム期間において、単位光源17に含まれる各色の発光素子は任意の状態を取り得る。このため、R,G,Bのうちのいずれか1色の発光素子のみが点灯状態になることもあれば、複数色の発光素子が点灯状態になることもある。また、R,G,B発光素子172r,172g,172bで互いに発光強度が異なることもある。したがって、光源部16は、各サブフレーム期間において、所望の色成分比で実現される色の光源光を液晶パネル14の各エリア31に独立して照射することができる。
 図13は、着目エリア32内の各画素の色を示す図である。ここでは、着目エリア32に25個(X軸方向に5個、Y軸方向に5個)の画素が含まれているものとする。上述のように、着目エリア画像には第1~第4色α,β,γ,δが必要とされる。例えば、(X,Y)=(1,1)の画素の色は第1色αであり、(X,Y)=(3,2)の画素の色は第2色βであり、(X,Y)=(2,5)の画素の色は第3色γであり、(X,Y)=(5,5)の画素の色は第4色δである。なお、図示の便宜上、図13における各色の画素と図10における各色の画素との位置が一致しない点に留意されたい。
 着目エリア32には、第1~第4サブフレーム期間にそれぞれ第1~第4色α,β,γ,δの光源光が照射されるとする。このような条件の下、第1サブフレーム期間では、第1色αの画素を形成すべき画素形成部141は透過状態(透過率が比較的高い状態をいう。)に設定され、他の色の画素を形成すべき画素形成部141は遮蔽状態(透過率がゼロの状態またはゼロに近い状態をいう。)に設定される。また、第2サブフレーム期間では、第2色βの画素を形成すべき画素形成部141は透過状態に設定され、他の色の画素を形成すべき画素形成部141は遮蔽状態に設定される。また、第3サブフレーム期間では、第3色γの画素を形成すべき画素形成部141は透過状態に設定され、他の色の画素を形成すべき画素形成部141は遮蔽状態に設定される。また、第4サブフレーム期間では、第4色δの画素を形成すべき画素形成部141は透過状態に設定され、他の色の画素を形成すべき画素形成部141は遮蔽状態に設定される。このようにして、1フレーム期間において、第1~第4色α,β,γ,δからなるフレーム画像が実現される。
 なお、第1~第4サブフレーム期間における光源光の色の種類および色の順番はエリア31毎に異なる。また、各エリア31において、サブフレーム期間数よりも必要な色数が少ない場合には、必要な色の表示を行うためのサブフレーム期間以外では、例えばR,G,Bの色成分が等しくなるように各色の発光素子を点灯させても良い。
 <1.4 効果>
 本実施形態によれば、カラーフィルタ不要のフィールドシーケンシャル方式の画像表示装置10において、サブフレーム期間毎に複数色のいずれかに対応した色の光源光が液晶パネル14の各エリア31に独立して照射される。また、R,G,B発光素子172r,172g,172bが各サブフレーム期間で任意の発光状態を取り得るので、各サブフレーム期間で混色表示を行うことにより所望の色の光源光が照射される。このため、各エリア31において、所望の色の画素を形成すべき画素形成部141を、当該所望の色の光源光が当該エリア31に照射されるサブフレーム期間で透過状態に設定することにより、色割れを確実に抑制しつつ、複数パターンの混色表示(第1~第4色α,β,γ,δ)を行うことができる。また、透明散乱板15がカラーフィルタ不要の液晶パネル14に対向して設けられるので、液晶パネル14において入射光の透過率を適切に制御することにより、画像表示および背景透過を行うことができる。また、光源光を周囲に漏らさないためのケースが不要であるので、画像表示装置10のサイズの増大を抑制することができる。
 また、本実施形態によれば、R,G,B発光素子172r,172g,172bからなる発光素子組171および発光素子組171からの光の照射範囲を定めるレンズ173を含む単位光源17が1つのエリアに対応する。このため、各単位光源17において同様の発光素子組171を使用することができる。これにより、例えば発光素子組171の消費電力の均一化などを図ることができる。また、このような構成において、単位光源17がスクリーン部に近い位置にあるほどレンズ173が定める発光素子組171の光の照射範囲が広くなると共に、スクリーン部に近いほど複数の単位光源17の配置間隔が広くなるので、各エリア31への独立した光照射をより確実に行うことができる。
 <2.第2の実施形態>
 <2.1 スクリーン部および光源部の配置>
 図14は、本実施形態におけるスクリーン部(液晶パネル14および透明散乱板15)および光源部16の配置を説明するための側面図である。図15は、本実施形態におけるスクリーン部および光源部16の配置を説明するための上面図である。図14および図15では、上述の図7および図8と同様に図の左側が正面であるとする。本実施形態の構成要素のうち上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。上記第1の実施形態と同様に、本実施形態では、透明散乱板15が液晶パネル14の背面側に、液晶パネル14に対向して配置されている。光源部16は、スクリーン部の正面側の斜め下方に配置されている。
 透明散乱板15には、その正面から液晶パネル14を介して光源光が照射される。このため、透明散乱板15に照射された光源光が透明散乱板15により散乱され、散乱された光源光のうちの液晶パネル14へ向かう成分が液晶パネル14に照射される。なお、上記第1の実施形態と異なり、本実施形態では、光源部16がスクリーン部の正面側の斜め下方に配置されているので、透明散乱板15を透過した光源光が与える表示への影響を確実に抑制することができる。なお、背景の透過については、上記第1の実施形態と同様であるので、説明を省略する。
 <2.2 効果>
 本実施形態によれば、液晶パネル14を介して透明散乱板15に光源光を照射して、上記第1の実施形態と同様の効果を奏することができる。
 なお、本実施形態では、光制御部として透明散乱板15を使用するとして説明したが、透明散乱板15に代えて例えばハーフミラーを使用しても良い。これにより、ハーフミラーに照射された光源光の半分(光量が半分であることを意味する。)が液晶パネル14に照射され、ハーフミラーに入射した背景光の半分(光量が半分であることを意味する。)が透過して液晶パネル14に照射される。したがって、透明散乱板15を使用した場合と同様の効果が得られる。また、ハーフミラーに限らず、透過率と反射率とが異なる他のミラーガラスを使用しても良い。
 <3.第3の実施形態>
 <3.1 単位光源の構成>
 図16は、本発明の第3の実施形態における単位光源17の構成を示す図である。本実施形態の構成要素のうち上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。本実施形態では、上記第1の実施形態と異なり、R,G,Bにそれぞれ対応した3個の単位光源17が1つのエリア31に対応している。以下では、Rに対応した単位光源17のことを「R単位光源」といい、符号17rで表す。また、Gに対応した単位光源17のことを「G単位光源」といい、符号17gで表す。また、Bに対応した単位光源17のことを「B単位光源」といい、符号17bで表す。なお、R,G,B単位光源17r,17g,17bに代えてまたはR,G,B単位光源17r,17g,17bの少なくとも一部と共に、他の原色に対応した単位光源17を使用しても良い。図16では、R,G,B単位光源17r,17g,17bのうちのR単位光源17rを図示している。R単位光源17rは、R発光素子172rとR発光素子172rからの光の照射範囲を定めるレンズ173とを含んでいる。なお、G,B単位光源17g,17bは、原色が異なることを除きR単位光源17rと同様の構成であるので、説明を省略する。
 図17は、本実施形態におけるR,G,B単位光源17r,17g,17bからエリア31への光照射を説明するための図である。R,G,B単位光源17r,17g,17bのそれぞれは、対応するエリア31に光を照射する。各サブフレーム期間における各色の発光素子の状態は、上記第1の実施形態と同様であるので、説明を省略する。
 本実施形態における単位光源17の配置は、上記第1,第2の実施形態と基本的に同様である。各エリア31に対応するR,G,B単位光源17r,17g,17bは、スクリーン部の厚み方向と直交する方向(図8または図15における縦方向)に並べて配置されていても良く、スクリーン部の厚み方向(図8または図15における横方向)に並べて配置されていても良い。なお、本実施形態におけるスクリーン部および光源部16の配置は、上記第1,第2の実施形態のいずれのものを採用しても良い。
 <3.2 効果>
 本実施形態によれば、1つのエリア31に、R,G,B単位光源17r,17g,17bが対応する。R,G,B単位光源17r,17g,17bのそれぞれは、当該原色に対応した発光素子およびレンズ173を含む。1つの発光素子と1つのレンズ173とが対応しているので、例えば発光素子サイズが大きい場合、上記第1,第2の実施形態に比べて、レンズ173の焦点ずれを抑制することができる。
 <4.第4の実施形態>
 <4.1 スクリーン部および光源部の配置>
 図18は、本発明の第4の実施形態におけるスクリーン部(液晶パネル14および透明散乱板15)および光源部16の配置を説明するための側面図である。図19は、図18に示す光源部16の上面透視図である。図18および図19では、上述の図7および図8と同様に図の左側が正面であるとする。本実施形態の構成要素のうち上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。上記第1の実施形態と同様に、本実施形態では、透明散乱板15が液晶パネル14の背面側に、液晶パネル14に対向して配置されている。光源部16は、スクリーン部の下方に配置されている。光源部16とスクリーン部との間には、スクリーン部を支えるための支持部19が設けられている。ただし、支持部19は必須ではなく、他の手法によって本実施形態における光源部16とスクリーン部との位置関係を実現しても良い。
 図19に示すように、光源部16は、ランプ41、カラーホイール42、集光レンズ43、デジタルマイクロミラーデバイス(Digital Micromirror Device:DMD)44、投影レンズ45、および立ち上げミラー46を含んでいる。本実施形態では、ランプ41、カラーホイール42、集光レンズ43、DMD44、および投影レンズ45により光照射部が実現され、立ち上げミラー46により反射部が実現されている。
 ランプ41は、白色光を発するランプであり、例えばハロゲンランプである。ランプ41から発せられた白色光は、カラーホイール42によってフルカラー化され、集光レンズ43によって集光された後、DMD44に照射される。なお、カラーホイール42は、R,G,Bの光を高速で切り替えて集光レンズ43を介してDMD44に照射するために、所望の周波数に基づいて回転する。なお、R,G,Bの光をDMD44に照射するために、ハロゲンランプおよびカラーホイール42に代えて、時分割で発光状態を切り替え可能なR発光素子、G発光素子、およびB発光素子を使用しても良い。
 DMD44に照射された光は、DMD44がオン状態であるときにはDMD44によって反射されることにより投影レンズ45に照射される。DMD44がオフ状態であるときには、DMD44に照射された光は内部に吸収されて投影レンズ45に照射されない。DMD44は、このようなオン状態とオフ状態との切り替えをエリア31毎に可能となっている。本実施形態では、DMD44のオン状態/オフ状態の期間をエリア31毎に調整することによって、上記第1の実施形態のようなR,G,Bの所望の色成分比を、エリア31毎に、各サブフレーム期間において時分割的に実現することができる。このようにして、エリア31毎に各原色の点灯時間比率を適切に設定することにより、各サブフレーム期間で所望の色の光源光を実現することができる。なお、本実施形態における1サブフレーム期間の動作のさらなる説明については後述する。
 投影レンズ45は、複数のDMD44から照射された光を立ち上げミラー46に照射する。立ち上げミラー46は、図18に示すようにスクリーン部に向けて配置されているので、投影レンズ45から照射された光は、光源光として透明散乱板15に照射される。
 このように、本実施形態における光源部16は、デジタル・ライト・プロセッシング(Digital Light Processing:DLP)プロジェクタと同様の構成である。なお、光源部16は、他のプロジェクタ、例えば液晶ディスプレイ(Liquid Crystal Display:LCD)プロジェクタなどと同様の構成でも良い。なお、透明散乱板15による光源光の透過および散乱の動作は、上記第1,第2の実施形態と同様である。
 <4.2 動作>
 図20は、本実施形態における1サブフレーム期間の動作を説明するための図である。図20では、1サブフレーム期間におけるカラーホイール42の透過光色とDMD44の状態とを示している。1サブフレーム期間は、液晶パネル14の過渡応答期間(以下「液晶過渡応答期間」という。)と液晶パネル14の過渡応答期間終了後の期間(以下「液晶応答完了期間」という。)とに分けられるものとする。液晶過渡応答期間では液晶パネル14の画素形成部141の透過率が所望の値に向かって変化し、液晶応答完了期間では当該画素形成部141の透過率が所望の値となっている。
 図20に示すように、カラーホイール42は、液晶過渡応答期間ではランプ41からの白色光を遮断し(透過光色が黒(K)であるとも言える。)、液晶応答完了期間ではR,G,Bの光をDMD44に順次照射する。なお、DMD44に照射する光の色順は特に限定されるものではない。また、DMD44は、液晶過渡応答期間ではオフ状態を維持し、液晶応答完了期間では所望の期間にオン状態になる。このようにして、所望の色の光源光が実現される。なお、図20では、上述の第1色αの実現例を示している。
 <4.3 効果>
 本実施形態によれば、光照射部(ランプ41、カラーホイール42、集光レンズ43、DMD44、および投影レンズ45)によって、複数のエリア31に対応する光源光を立ち上げミラー46に照射し、複数のエリア31に対応する光源光を透明散乱板15に向けて立ち上げミラー46に反射させることにより、上記第1の実施形態と同様に、サブフレーム期間毎に複数色のいずれかに対応した色の光源光が液晶パネル14の各エリア31のそれぞれに独立して照射される。このようにして、上記第1の実施形態と同様の効果を奏することができる。
 また、本実施形態によれば、カラーホイール42と、エリア31毎にオン状態とオフ状態とを切り替え可能なDMD44とが使用される。エリア31毎に各原色の点灯時間比率を適切に設定することにより、各サブフレーム期間で、所望の色の光源光がエリア31に確実に照射される。
 また、本実施形態によれば、液晶過渡応答期間を考慮しつつ、各原色の点灯時間比率を適切に設定できるので、各サブフレーム期間で、所望の色の光源光を確実に実現することができる。
 また、本実施形態によれば、液晶過渡応答期間においてカラーホイール42がランプ41からの白色光を遮断するので、各サブフレーム期間で、所望の色の光源光をより確実に実現することができる。
 ところで、本実施形態における光源部16の構成は、従来のプロジェクタと同様であるが、本実施形態における画像表示と従来のプロジェクタによる画像表示とは次の点で異なる。すなわち、従来のプロジェクタから、一般的なスクリーンに至近距離で画像を投影するとピント合わせが困難となり、表示品位が低下する。これに対して、本実施形態では、光源部16から画像が投影されるのではなく光源光が照射され、液晶パネル14で透過率制御を行うことによって画像が表示されるので、ピント合わせを考慮する必要がない。このため、本実施形態では、スクリーン部の至近距離に光源部16を配置したとしても、表示品位は低下しない。
 <5.その他>
 本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、各実施形態において、画像表示装置10は、各エリア31に独立して光源光を照射することにより色割れを抑制できるように構成されていれば良く、各サブフレーム期間で所望の色の光源光の照射を行うことが必須ではない。
 また、各実施形態において、透明散乱板15に代えて高分子分散型液晶(Polymer Dispersed Liquid Crystal:PDLC)パネルが使用されても良い。この場合、画像表示時にはPDLCパネルを散乱状態にし、背景透過時にはPDLCパネルを透過状態にすることにより、画像表示および背景透過をより高品質で行うことができる。また、PDLCパネルの一部分を散乱状態にし、残りの部分を透過状態にしても良い。これにより、液晶パネル14の一部分での画像表示および残りの部分で背景透過を高品質で行うことができる。この場合、PDLCパネルは、光源光の一部を液晶パネル14に照射すると共に、背景光の一部を透過する光制御部として機能する。
 また、上記第1,第2の実施形態において、単位光源17の数をエリア31の数よりも多くすると共に、1つのエリア31に2つ以上の単位光源17を対応させても良い。
 また、上記第1~第3の実施形態において、レンズ173に代えて、発光素子組171(発光素子)からの光の照射範囲を定めることができる他の光学素子を使用しても良い。
 また、上記第4の実施形態において、上記第2の実施形態と同様に、液晶パネル14を介して透明散乱板15に光源光を照射するようにしても良い。この場合、透明散乱板15に代えてハーフミラーなどを使用しても良い。
 また、上記第1の実施形態において、スクリーン部背面側の斜め上方に光源部16を配置するようにしても良い。また、上記第2の実施形態において、スクリーン部正面側の斜め上方に光源部16を配置するようにしても良い。また、上記第4の実施形態において、スクリーン部の下方に光源部16を配置するようにしても良い。
10…画像表示装置
11…表示制御回路
12…パネル駆動回路
13…光源駆動回路
14…液晶パネル(表示パネル)
15…透明散乱板(光制御部)
16…光源部
17…単位光源
18…配置台
31…エリア
41…ランプ
42…カラーホイール
43…集光レンズ
44…DMD
45…投影レンズ
46…立ち上げミラー(反射部)
141…画素形成部
171…発光素子組
172…発光素子
173…レンズ(光学素子)
IN…入力信号

Claims (13)

  1.  与えられた入力信号の1フレーム期間を複数のサブフレーム期間に分割し、サブフレーム期間毎に複数色のいずれかに対応した色の表示を行うことによりカラー画像を表示する画像表示装置であって、
     入射した光の透過率を制御する表示パネルと、
     光源部と、
     前記表示パネルに対向して配置され、前記光源部が出射した光の少なくとも一部の前記表示パネルへの照射および前記表示パネルが位置する側と反対側の主面から入射した光の少なくとも一部の透過が可能な光制御部とを備え、
     前記光源部は、前記サブフレーム期間毎に複数色のいずれかに対応した色の光が前記表示パネルの複数のエリアのそれぞれに独立して前記光制御部から照射されるように、前記光制御部に光を照射することを特徴とする、画像表示装置。
  2.  前記光源部は、前記複数のエリアにそれぞれ対応した複数の単位光源を含み、
     前記単位光源は、
      複数の原色にそれぞれ対応した複数の発光素子からなる発光素子組と、
      前記発光素子組からの光の照射範囲を定める光学素子とを含むことを特徴とする、請求項1に記載の画像表示装置。
  3.  前記光源部は、各エリアに対応すると共に、複数の原色にそれぞれ対応した複数の単位光源を含み、
     各原色に対応した単位光源は、
      当該原色に対応した発光素子と、
      前記発光素子からの光の照射範囲を定める光学素子とを含むことを特徴とする、請求項1に記載の画像表示装置。
  4.  前記光源部は、前記単位光源を前記表示パネルに向けて配置するための配置台をさらに含み、
     前記単位光源の前記光学素子が定める前記照射範囲は、当該単位光源の位置が前記表示パネルに近いほど広く、
     前記単位光源の配置間隔は、前記表示パネルに近いほど広いことを特徴とする、請求項2または3に記載の画像表示装置。
  5.  各原色に対応した発光素子は、各サブフレーム期間で任意の発光状態を取り得ることを特徴とする、請求項2または3に記載の画像表示装置。
  6.  前記光源部は、
      前記光制御部に向けて光を反射する反射部と、
      前記サブフレーム期間毎に複数色のいずれかに対応した色の光が前記表示パネルの複数のエリアのそれぞれに独立して前記光制御部から照射されるように、前記複数のエリアに対応する光を前記反射部に照射する光照射部とを含むことを特徴とする、請求項1に記載の画像表示装置。
  7.  前記光照射部は、
      白色光をフルカラー化するためのカラーホイールと、
      前記カラーホイールからの光を反射するオン状態と当該光を反射しないオフ状態とを前記エリア毎に切り替え可能なデジタルマイクロミラーデバイスとを含むことを特徴とする、請求項6に記載の画像表示装置。
  8.  前記表示パネルは液晶パネルであり、
     前記デジタルマイクロミラーデバイスは、各サブフレーム期間において、前記液晶パネルの過渡応答期間終了後の所望の期間にオン状態になることを特徴とする、請求項7に記載の画像表示装置。
  9.  前記カラーホイールは、前記液晶パネルの過渡応答期間において前記白色光を遮断することを特徴とする、請求項8に記載の画像表示装置。
  10.  前記光源部は、前記サブフレーム期間毎に、異なるエリアに異なる色の光が前記表示パネルの複数のエリアのそれぞれに独立して前記光制御部から照射可能なように、前記光制御部に光を照射することを特徴とする、請求項1に記載の画像表示装置。
  11.  前記光源部は、前記表示パネルが位置する側と反対側の前記光制御部の主面に光を照射することを特徴とする、請求項1に記載の画像表示装置。
  12.  前記光源部は、前記表示パネルが位置する側の前記光制御部の主面に光を照射することを特徴とする、請求項1に記載の画像表示装置。
  13.  入射した光の透過率を制御する表示パネルと、光源部と、前記表示パネルに対向して配置され、前記光源部が出射した光の少なくとも一部の前記表示パネルへの照射および前記表示パネルが位置する側と反対側の主面から入射した光の少なくとも一部の透過が可能な光制御部とを含み、与えられた入力信号の1フレーム期間を複数のサブフレーム期間に分割し、サブフレーム期間毎に複数色のいずれかに対応した色の表示を行うことによりカラー画像を表示する画像表示装置の駆動方法であって、
     前記表示パネルを複数のエリアに分割し、前記サブフレーム期間毎に複数色のいずれかに対応した色の光が各エリアに独立して前記光制御部から照射されるように、前記光制御部に光を照射するステップを備えることを特徴とする、駆動方法。
PCT/JP2013/081712 2012-12-04 2013-11-26 画像表示装置およびその駆動方法 WO2014087876A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265726 2012-12-04
JP2012-265726 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087876A1 true WO2014087876A1 (ja) 2014-06-12

Family

ID=50883297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081712 WO2014087876A1 (ja) 2012-12-04 2013-11-26 画像表示装置およびその駆動方法

Country Status (1)

Country Link
WO (1) WO2014087876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104340A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 表示装置及びその駆動方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098489A (ja) * 1998-09-22 2000-04-07 Fuji Xerox Co Ltd 映像投影装置
JP2000122589A (ja) * 1998-10-13 2000-04-28 Fuji Xerox Co Ltd 映像表示装置
JP2004523001A (ja) * 2001-02-27 2004-07-29 ザ ユニバーシティ オブ ブリティッシュ コロンビア 高ダイナミック・レンジ表示装置
WO2008047862A1 (fr) * 2006-10-19 2008-04-24 Sharp Kabushiki Kaisha Dispositif de commande de diodes électroluminescentes, dispositif d'éclairage et dispositif d'affichage
WO2011104979A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 画像表示装置
WO2012157554A1 (ja) * 2011-05-18 2012-11-22 シャープ株式会社 画像表示装置および画像表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098489A (ja) * 1998-09-22 2000-04-07 Fuji Xerox Co Ltd 映像投影装置
JP2000122589A (ja) * 1998-10-13 2000-04-28 Fuji Xerox Co Ltd 映像表示装置
JP2004523001A (ja) * 2001-02-27 2004-07-29 ザ ユニバーシティ オブ ブリティッシュ コロンビア 高ダイナミック・レンジ表示装置
WO2008047862A1 (fr) * 2006-10-19 2008-04-24 Sharp Kabushiki Kaisha Dispositif de commande de diodes électroluminescentes, dispositif d'éclairage et dispositif d'affichage
WO2011104979A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 画像表示装置
WO2012157554A1 (ja) * 2011-05-18 2012-11-22 シャープ株式会社 画像表示装置および画像表示方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104340A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 表示装置及びその駆動方法

Similar Documents

Publication Publication Date Title
JP5863972B2 (ja) 画像表示装置およびその駆動方法
US9224323B2 (en) Systems and methods for increasing spatial or temporal resolution for dual modulated display systems
WO2015174276A1 (ja) 画像表示装置
US7988307B2 (en) Image display device
JP5436050B2 (ja) 立体映像表示装置
CN108663883A (zh) 一种投影显示***
WO2014054522A1 (ja) 画像表示装置およびその駆動方法
US9620044B2 (en) Image display device and drive method therefor
CN101118343A (zh) 具有暗化面板的显示装置、暗化面板驱动装置及控制方法
JP5845684B2 (ja) プロジェクター
JP2013076956A (ja) 画像表示システムおよび制御装置
CN101256741A (zh) 图像显示装置和调整其亮度的方法
US20200396425A1 (en) Projection system and image modulation method
JP2018200384A (ja) 虚像表示装置
WO2013073428A1 (ja) 表示装置
WO2014087876A1 (ja) 画像表示装置およびその駆動方法
US11561441B2 (en) Display apparatus including a plurality of display panels, and method of controlling thereof
JP4552412B2 (ja) プロジェクタシステムとその駆動方法
US20070252794A1 (en) Image display apparatus
JP5708104B2 (ja) 表示装置及びプロジェクター
JP2005057457A (ja) 画像投影装置および画像投影方法
JP2006295584A (ja) マルチプロジェクションディスプレイ
JP2008176140A (ja) プロジェクタおよび投写調整方法
US9829744B2 (en) High performance seamless light emitting diode illuminated display
JP2013037317A (ja) 映像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP