WO2019111627A1 - 照明装置、およびプロジェクタ - Google Patents

照明装置、およびプロジェクタ Download PDF

Info

Publication number
WO2019111627A1
WO2019111627A1 PCT/JP2018/041519 JP2018041519W WO2019111627A1 WO 2019111627 A1 WO2019111627 A1 WO 2019111627A1 JP 2018041519 W JP2018041519 W JP 2018041519W WO 2019111627 A1 WO2019111627 A1 WO 2019111627A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
intensity distribution
light
illumination
fluorescence emission
Prior art date
Application number
PCT/JP2018/041519
Other languages
English (en)
French (fr)
Inventor
出志 小林
佐藤 能久
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/766,911 priority Critical patent/US11156849B2/en
Publication of WO2019111627A1 publication Critical patent/WO2019111627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • H04N9/3126Driving therefor for spatial light modulators in series
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present disclosure relates to an illumination device that generates illumination light, and a projector that projects an image based on the illumination light.
  • An illumination device includes an excitation light source that emits excitation light, a phosphor portion having a fluorescence emission surface that emits fluorescence when excitation light is incident, and a portion between the excitation light source and the phosphor portion
  • An excitation light intensity distribution generator for changing the intensity distribution of excitation light so that the intensity distribution of excitation light approaches a desired excitation light intensity distribution on a fluorescence emission surface, and light by fluorescence emission from a phosphor portion
  • an illumination optical system that generates illumination light to be emitted to the image display element based on the above.
  • a projector includes an illumination device, an image display element that intensity-modulates illumination light from the illumination device to generate a projection image, and a projection image generated by the image display element on a projection surface.
  • the illumination apparatus includes an excitation light source that emits excitation light, a phosphor portion having a fluorescence emission surface that emits fluorescence when the excitation light is incident, and a projection optical system that projects light, and a portion between the excitation light source and the phosphor portion
  • An excitation light intensity distribution generator for changing the intensity distribution of excitation light so that the intensity distribution of excitation light approaches a desired excitation light intensity distribution on a fluorescence emission surface, and light by fluorescence emission from a phosphor portion
  • an illumination optical system that generates illumination light to be emitted to the image display element based on the above.
  • the excitation light intensity distribution generating unit provided between the excitation light source and the phosphor unit excites light having a desired excitation light intensity distribution on the fluorescence emission surface
  • the intensity distribution of the excitation light changes so as to approach the intensity distribution.
  • Illumination light to be emitted to the image display element is generated based on light by fluorescence emission generated by excitation light having a desired excitation light intensity distribution.
  • a general projector is configured to irradiate uniform illumination light to a spatial light intensity modulation element as an image display element to perform light intensity modulation to generate an image, and project the generated image onto a screen through a projection lens. Things are known.
  • a spatial light intensity modulation element a liquid crystal display panel, a DMD (Digital Micro-mirror Device), a MEMS (Micro Electro Mechanical Systems), or the like is used.
  • the light intensity modulation element modulates the intensity of the light emitted from the light source according to the image signal, and the illumination light of the intensity distribution according to the image signal is used as the image display element
  • the image display element There is a method to irradiate.
  • this method can make the dark part of the projection image darker, it is difficult to make the bright part of the projection image brighter.
  • a technique for enhancing the dynamic range of a projected image for example, light from a laser light source is phase-modulated according to an image signal by an optical phase modulation element, and illumination light of phase distribution according to the image signal is irradiated to the image display element. There is a method.
  • the bright part of the projected image can be made brighter to increase the dynamic range.
  • this method uses a laser light source, laser-specific speckles are generated. For this reason, in order to remove a speckle, the fall and cost increase of illumination efficiency will arise.
  • FIG. 1 shows an outline of a lighting device 100 and a projector 101 according to a first embodiment of the present disclosure.
  • the projector 101 includes an illumination device 100, an image display element 51, and a projection lens 53.
  • the image display element 51 is a light intensity modulation element that intensity-modulates the illumination light from the illumination device 100 to generate a projection image.
  • the image display element 51 is configured of, for example, a liquid crystal display panel, a DMD, or a MEMS.
  • the projection lens 53 is a projection optical system including a plurality of lenses, and projects the projection image generated by the image display element 51 on a projection surface such as the screen 50.
  • the illumination device 100 includes an excitation light source 31, an excitation light intensity distribution generation unit 10, a phosphor unit 20, and an illumination optical system 40.
  • the excitation light source 31 includes, for example, a laser light source (LD: Laser Diode), and emits excitation light for exciting the phosphor of the phosphor portion 20.
  • a laser light source LD: Laser Diode
  • an LED Light Emitting Diode
  • the phosphor portion 20 has a fluorescence emission surface that emits fluorescence when the excitation light emitted from the excitation light source 31 is incident.
  • the phosphor unit 20 is configured of, for example, a rotating phosphor wheel, as described later. Further, the phosphor portion 20 may be a fixed phosphor portion.
  • the illumination optical system 40 generates illumination light to be irradiated to the image display element 51 based on the light of the fluorescent light emitted from the phosphor unit 20.
  • the excitation light intensity distribution generator 10 is provided between the excitation light source 31 and the phosphor portion 20.
  • the excitation light intensity distribution generation unit 10 changes the intensity distribution of excitation light so that the intensity distribution of excitation light emitted from the excitation light source 31 approaches the desired excitation light intensity distribution on the fluorescence emission surface of the phosphor unit 20 .
  • the excitation light intensity distribution generator 10 includes an optical phase modulation element that modulates the phase of the excitation light.
  • the optical phase modulation element may be an SLM (Spatial Light Modulator) or the like.
  • the excitation light intensity distribution generation unit 10 may include a light beam angle modulation device for changing the light beam angle of the excitation light as described later, instead of the light phase modulation device.
  • the desired excitation light intensity distribution is determined based on the image signal as described later. More specifically, the desired illumination light intensity distribution to be irradiated to the image display element 51 is determined based on the image signal, and the desired fluorescence emission intensity by fluorescence is obtained based on the determined desired illumination light intensity distribution. Find the distribution. Furthermore, a desired excitation light intensity distribution is determined based on the determined desired fluorescence emission intensity distribution.
  • the excitation light intensity distribution generator 10 changes the intensity distribution of the excitation light emitted from the excitation light source 31 so as to obtain the desired fluorescence emission intensity distribution back-calculated from the above-described desired illumination light intensity distribution.
  • the image display element 51 is irradiated with illumination light having a desired illumination light intensity distribution, and the dynamic range of the projection image can be increased.
  • the display method of the projector performing color display is roughly classified into a single-panel method using only one image display element 51 (image display panel) and each of R (red), G (green) and B (blue). There is a three-plate system provided with an image display panel.
  • FIG. 2 shows an outline of an optical system of the projector 101A according to the first specific example.
  • the projector 101A is configured to perform full-color display in a time-division system using a single image display element 51.
  • the projector 101A includes an excitation light source 31W that emits excitation light.
  • the projector 101A includes an excitation optical system 12, an optical phase modulation element 11, a phosphor wheel 21, and an illumination optical system 40 in order from the excitation light source 31W side to the image display element 51 side.
  • the projector 101A further includes a drive control unit 70 that controls the excitation light source 31W, the light phase modulation element 11, and the image display element 51 based on the image signal Vin.
  • the excitation light source 31W is, for example, a laser light source that emits white light as excitation light.
  • the excitation optical system 12 and the optical phase modulation element 11 constitute an excitation light intensity distribution generation unit 10.
  • the light phase modulation element 11 is configured of, for example, a transmission type phase modulation liquid crystal panel.
  • the illumination optical system 40 is, for example, a critical illumination system.
  • the phosphor wheel 21 constitutes a phosphor portion 20.
  • the phosphor wheel 21 has a red fluorescence emission surface 22R, a green fluorescence emission surface 22G, and a blue fluorescence emission surface 22B.
  • the red fluorescent light emitting surface 22R contains a red phosphor, and emits fluorescent light in red when the excitation light from the excitation light source 31W is incident through the excitation light intensity distribution generation unit 10.
  • the green fluorescent light emitting surface 22G contains a green phosphor, and emits fluorescent light in green by the excitation light from the excitation light source 31W being incident through the excitation light intensity distribution generator 10.
  • the blue fluorescent light emitting surface 22 B contains a blue phosphor, and emits fluorescent light in blue when the excitation light from the excitation light source 31 W is incident via the excitation light intensity distribution generator 10.
  • excitation light is applied to each of the red fluorescence emission surface 22R, the green fluorescence emission surface 22G, and the blue fluorescence emission surface 22B in a time-division manner.
  • each of red light, green light and blue light due to fluorescence is emitted in time division.
  • the optical phase modulation element 11 changes the intensity distribution of excitation light in a time division manner so that the intensity distribution of excitation light approaches a desired excitation light intensity distribution for each color. Thereby, each color light of the desired fluorescence emission intensity distribution by fluorescence is emitted from the phosphor wheel 21 by time division. As a result, the illumination light of each color of the desired illumination light intensity distribution is irradiated to the image display element 51 via the illumination optical system 40 in a time division manner.
  • the image display element 51 generates a projection image of each color in a time division manner with respect to the illumination light of each color in synchronization with the timing when each color light is irradiated.
  • a projected image of each color of red light, green light, and blue light is emitted toward the projection lens 53.
  • the projection lens 53 projects the projection image of each color on a projection surface such as the screen 50 in a time division manner.
  • FIG. 3 shows an outline of an optical system of a projector 101B according to a second specific example.
  • the projector 101B is configured to perform full-color display using three image display elements 51 of R, G, and B.
  • the projector 101B includes, as three image display elements 51, an image display element for red (spatial light intensity modulator for red) 51R, an image display element for green (spatial light intensity modulator for green) G, and an image for blue And a display element (a spatial light intensity modulation element for blue) 51B.
  • the projector 101B includes an excitation light source 31B that emits excitation light.
  • the projector 101B includes an excitation optical system 12, an optical phase modulation element 11, a phosphor portion 20, and an illumination optical system 40 in order from the excitation light source 31B side to the image display element 51 side.
  • the projector 101B includes a drive control unit 70 that controls the excitation light source 31B, the light phase modulation element 11, and the image display element 51 based on the image signal Vin, substantially the same as the projector 101A of FIG. ing.
  • the excitation light source 31B is, for example, a laser light source that emits blue light as excitation light.
  • the projector 101 ⁇ / b> B includes a phosphor wheel 21 ⁇ / b> A as the phosphor unit 20.
  • the phosphor wheel 21A has a fluorescent light emitting surface 22 containing, for example, YAG phosphor, and emits fluorescent light yellow when the excitation light from the excitation light source 31B is incident through the excitation light intensity distribution generator 10. From the phosphor wheel 21A, yellow light by fluorescence emission and blue light by blue excitation light diffused and transmitted by the fluorescence emission surface 22 are emitted. Yellow light includes red light and green light.
  • the projector 101B includes a color separation unit 41, a reflection mirror 42R, and a reflection mirror 42B provided between the light phase modulation element 11 and the phosphor unit 20.
  • the projector 101B includes, as the illumination optical system 40, a red illumination optical system 40R, a green illumination optical system 40G, and a blue illumination optical system 40B.
  • the red illumination optical system 40R, the green illumination optical system 40G, and the blue illumination optical system 40B is, for example, a critical illumination system.
  • the projector 101B includes a reflection mirror 43R and a reflection mirror 43B provided between the illumination optical system 40 and the image display element 51.
  • the color separation unit 41 separates yellow light and blue light emitted from the phosphor wheel 21A into red light, green light, and blue light.
  • a reflection mirror 42R, a red illumination optical system 40R, a reflection mirror 43R, and a red image display element 51R are sequentially provided on the optical path of the red light separated by the color separation unit 41.
  • a green illumination optical system 40G and a green image display element G are provided in order.
  • a reflection mirror 42B, a blue illumination optical system 40B, a reflection mirror 43B, and a blue image display element 51B are sequentially provided on the optical path of the blue light separated by the color separation unit 41.
  • the optical phase modulation element 11 changes the intensity distribution of excitation light so that the intensity distribution of excitation light approaches a desired excitation light intensity distribution.
  • light of a desired fluorescence emission intensity distribution due to fluorescence is emitted from the phosphor wheel 21A.
  • illumination light of each color of a desired illumination light intensity distribution is irradiated to each of the image display element for red 51R, the image display element for green G, and the image display element for blue 51B through the illumination optical system 40. Ru.
  • the image display element for red 51R, the image display element for green G, and the image display element for blue 51B each generate a projection image of each color for illumination light of each color.
  • the projected images of the respective colors of red light, green light and blue light are color synthesized by a color synthesis optical system (not shown) and emitted toward the projection lens 53.
  • the projection lens 53 projects the color-combined projection image on a projection surface such as the screen 50.
  • FIG. 4 shows an outline of an optical system of a projector 101C according to a third example.
  • the projector 101C is configured to perform full-color display using the three image display elements 51 of R, G, and B.
  • the projector 101C includes, as three image display elements 51, an image display element for red (spatial light intensity modulator for red) 51R, an image display element for green (spatial light intensity modulator for green) G, and an image for blue And a display element (a spatial light intensity modulation element for blue) 51B.
  • the projector 101C includes an excitation light source 31W that emits excitation light.
  • the projector 101C includes an excitation optical system 12, an optical phase modulation element 11, a phosphor portion 20, and an illumination optical system 40 in order from the excitation light source 31W to the image display element 51 side.
  • the projector 101C includes a drive control unit 70 that controls the excitation light source 31W, the optical phase modulation element 11, and the image display element 51 based on the image signal Vin, substantially the same as the projector 101A of FIG. ing.
  • the excitation light source 31W is, for example, a laser light source that emits white light as excitation light.
  • the projector 101C includes, as the phosphor portion 20, a red phosphor portion 21R, a green phosphor portion 21G, and a blue phosphor portion 21B.
  • the red phosphor portion 21R, the green phosphor portion 21G, and the blue phosphor portion 21B are each fixedly disposed.
  • the red phosphor portion 21R has a fluorescence emission surface including a red phosphor, and emits fluorescence light in red when the excitation light from the excitation light source 31W is incident via the excitation light intensity distribution generator 10.
  • the green fluorescent light emitting surface 22G contains a green phosphor, and emits fluorescent light in green by the excitation light from the excitation light source 31W being incident through the excitation light intensity distribution generator 10.
  • the blue fluorescent light emitting surface 22 B contains a blue phosphor, and emits fluorescent light in blue when the excitation light from the excitation light source 31 W is incident via the excitation light intensity distribution generator 10.
  • the projector 101C includes a branching optical system 44, a reflection mirror 45R, and a reflection mirror 45B provided between the light phase modulation element 11 and the phosphor unit 20.
  • the projector 101C includes, as the illumination optical system 40, a red illumination optical system 40R, a green illumination optical system 40G, and a blue illumination optical system 40B.
  • Each of the red illumination optical system 40R, the green illumination optical system 40G, and the blue illumination optical system 40B is, for example, a critical illumination system.
  • the projector 101C also includes a reflection mirror 43R and a reflection mirror 43B provided between the illumination optical system 40 and the image display element 51.
  • the projector 101C includes a branching optical system 44, a reflection mirror 45R, and a reflection mirror 45B provided between the light phase modulation element 11 and the phosphor unit 20.
  • the branching optical system 44 branches the optical path of the excitation light from the excitation light source 31 W incident through the excitation light intensity distribution generator 10 into three.
  • the reflection mirror 45R On the first optical path branched by the branching optical system 44, the reflection mirror 45R, the red phosphor part 21R, the red illumination optical system 40R, the reflection mirror 43R, and the red image display element 51R in this order , Is provided.
  • the reflecting mirror 45B On the second optical path branched by the branching optical system 44, the reflecting mirror 45B, the blue phosphor portion 21B, the blue illumination optical system 40B, the reflecting mirror 43B, and the blue image display element 51B are in order , Is provided.
  • the green-use phosphor part 21R, the green-use illumination optical system 40G, and the green-use image display element 51G are provided in order.
  • the optical phase modulation element 11 changes the intensity distribution of excitation light so that the intensity distribution of excitation light approaches a desired excitation light intensity distribution.
  • light of a desired fluorescence emission intensity distribution due to fluorescence is emitted from the phosphor portion 20.
  • illumination light of each color of a desired illumination light intensity distribution is irradiated to each of the image display element for red 51R, the image display element for green G, and the image display element for blue 51B through the illumination optical system 40. Ru.
  • the image display element for red 51R, the image display element for green G, and the image display element for blue 51B each generate a projection image of each color for illumination light of each color.
  • the projected images of the respective colors of red light, green light and blue light are color synthesized by a color synthesis optical system (not shown) and emitted toward the projection lens 53.
  • the projection lens 53 projects the color-combined projection image on a projection surface such as the screen 50.
  • FIG. 5 shows an outline of an optical system of a projector 101D according to a fourth example.
  • the illumination optical system 40 is disposed on the light path after color separation by the color separation unit 41.
  • the illumination optical system 40 is disposed also on the light path before the illumination optical system 40 is color-separated by the color separation unit 41.
  • the other configuration may be the same as that of the projector 101B of FIG.
  • the illumination optical system 40 on the light path after color separation by the color separation unit 41 is omitted from the configuration of the projector 101D illustrated in FIG. 5, and the light path before the color separation by the color separation unit 41 is performed.
  • the illumination optical system 40 may be disposed only on the
  • FIG. 6 shows an outline of an optical system of a projector 101E according to a fifth example.
  • the projector 101E shown in FIG. 6 uses an excitation light source 31B that emits blue light as excitation light, instead of the excitation light source 31W in the projector 101A shown in FIG.
  • the excitation light source 31B is, for example, a laser light source that emits blue light having a wavelength of about 440 nm to about 470 nm.
  • the projector 101E shown in FIG. 6 is provided with a blue light emitting surface 22B 'instead of the blue fluorescent light emitting surface 22B of the phosphor wheel 21 in the projector 101A shown in FIG.
  • the blue light emitting surface 22B ' is a diffused light emitting surface using a diffusing material for diffusing blue light from the excitation light source 31B instead of the blue phosphor.
  • the other configuration may be similar to that of the projector 101A of FIG.
  • FIG. 7 shows an outline of an optical system of a projector 101F according to a sixth example.
  • the projector 101F shown in FIG. 7 includes a red light source 31R in addition to the excitation light source 31B in the projector 101B shown in FIG.
  • the excitation light source 31B emits blue light as excitation light.
  • the red light source 31R emits red light.
  • the excitation light source 31B is, for example, a laser light source that emits blue light having a wavelength of about 440 nm to about 470 nm.
  • the red light source 31R is, for example, a laser light source that emits red light having a wavelength of about 620 nm to about 650 nm.
  • red light may be insufficient only by the combination of the excitation light source 31B emitting blue light and the fluorescent light emitting surface 22.
  • by adding the red light source 31R it is possible to compensate for the red component which is insufficient only by the fluorescence emission. This makes it possible to obtain a wider color gamut projection image.
  • the other configuration may be the same as that of the projector 101B of FIG.
  • the reflective image display device may be a reflective liquid crystal display panel, a DMD, a MEMS, or the like.
  • optical phase modulation element 11 may be used.
  • light phase modulation is performed on each of the first to third light paths for each color of the red phosphor portion 21R, the green phosphor portion 21G, and the blue phosphor portion 21B.
  • the element 11 may be disposed to change the intensity distribution of the excitation light for each of the colors R, G, and B.
  • FIG. 8 shows an example of the configuration of the main part of a lighting device using the light beam angle modulation element 13.
  • FIG. 9 shows a specific configuration example of the light beam angle modulation element 13.
  • FIGS. 2 to 7 shows the configuration example using the light phase modulation element 11 in the excitation light intensity distribution generation unit 10, it is shown in FIGS. 8 and 9 instead of the light phase modulation element 11.
  • the light beam angle modulation element 13 may be used.
  • FIG. 8 shows a configuration example in which the light beam angle modulation element 13 is disposed, for example, between an excitation light source 31B emitting blue light and a phosphor wheel 21A having a fluorescent light emitting surface 22 for converting blue light into yellow light.
  • the configuration of the optical system to which the light beam angle modulation element 13 is applied is not limited to this example.
  • the light beam angle modulation element 13 is configured to include a mirror array composed of a plurality of micro mirrors 14. Further, the light beam angle modulation element 13 includes a plurality of piezoelectric elements 15 for adjusting the angles of the plurality of micro mirrors 14. Thereby, the incident angle of the excitation light with respect to the fluorescence light emission surface 22 can be changed.
  • the light beam angle modulation element 13 is controlled by the drive control unit 70 based on the image signal Vin, substantially the same as the projector 101A of FIG.
  • the drive control unit 70 controls the plurality of piezoelectric elements 15 to change the intensity distribution of the excitation light in the fluorescence emission surface 22 so that the intensity distribution of the excitation light in the fluorescence emission surface 22 approaches the desired excitation light intensity distribution.
  • FIG. 10 shows a first configuration example of the illumination optical system 40.
  • FIG. 11 shows a second configuration example of the illumination optical system 40.
  • 10 and 11 show a configuration example using a phosphor wheel 21A having a fluorescent light emitting surface 22 for converting blue light into yellow light as the phosphor portion 20, but the configuration of the phosphor portion 20 Is not limited to this example.
  • FIG. 10 shows a configuration example of the illumination optical system 40 in the case of using the image display element 54 configured by MEMS.
  • an imaging optical system 46 as shown in FIG. 10 is used as the illumination optical system 40.
  • FIG. 11 shows a configuration example of the illumination optical system 40 in the case of using the image display element 55 configured by a liquid crystal display element.
  • the illumination optical system 40 for example, as shown in FIG. 11, a PS (polarization) conversion element 49 is provided between the condensing lens 47 and the condensing lens 48. Use the arranged optical system.
  • the phosphor of the phosphor portion 20 may be, for example, CASN or SCASN.
  • CASN or SCASN is a phosphor that emits red light using blue light as excitation light.
  • a Ce: YAG phosphor, a Ce: LAG phosphor, a sialon (SiALON) phosphor or the like may be used as a phosphor emitting yellow light using blue light as excitation light.
  • the phosphor of the phosphor portion 20 may be a quantum dot phosphor or the like.
  • FIG. 12 shows a first specific example of the configuration of the phosphor portion 20. As shown in FIG. 12
  • the fluorescent light emitting surface has a binderless particle accumulation structure.
  • the phosphor portion 120A has, for example, a structure in which particulate water glass 123 or the like in which the phosphor 122 is dispersed is accumulated on a wheel base 121 made of aluminum.
  • the air layer 124 void
  • the phosphor portion 120A having such a particle accumulation structure the spread of fluorescence emission with respect to the excitation light can be minimized. Thereby, in the image display element 51, sharper illumination light intensity distribution can be obtained, and the quality of a projection image can be improved. Further, since the decrease in the intensity of the illumination light at the edge portion of the image display element 51 can also be reduced, the utilization efficiency of the illumination light in the illumination optical system 40 can be enhanced.
  • FIG. 13 shows a second specific example of the configuration of the phosphor portion 20. As shown in FIG. 13
  • the fluorescent light emitting surface of the fluorescent substance part 120B shown in FIG. 13 has a resin binder structure.
  • the fluorescent substance part 120B is made into the structure which laminated
  • FIG. 14 shows a third specific example of the configuration of the phosphor portion 20. As shown in FIG. 14
  • the fluorescent substance part 120C shown in FIG. 14 is made into the structure which laminated
  • FIG. 15 shows an example of the relationship between the excitation light intensity distribution of the excitation light incident on the phosphor portion 20 and the fluorescence emission intensity distribution by the fluorescence emission in the phosphor portion 20.
  • the fluorescence emission intensity distribution is shaped such that the beam cross section is expanded in the width direction with respect to the excitation light intensity distribution.
  • the width of this expansion is determined by the light emission characteristics of the phosphor portion 20.
  • the light emission characteristics of the phosphor portion 20 are determined by the structure of the fluorescent light emitting surface of the phosphor portion 20. For example, as described above, in the phosphor portion 120B having the resin binder structure, the beam cross section is easily expanded as compared with the phosphor portion 120A having the particle accumulation structure.
  • the drive control unit 70 may be an operation unit that obtains a desired excitation light intensity distribution based on the image signal Vin.
  • FIG. 16 illustrates an example of calculation until the drive control unit 70 as the calculation unit obtains a desired excitation light intensity distribution from a desired illumination light intensity distribution based on the image signal Vin.
  • the drive control unit 70 obtains a desired illumination light intensity distribution to be irradiated to the image display element 51 based on the image signal Vin, and also performs desired fluorescence emission by fluorescence based on the obtained desired illumination light intensity distribution. Find the intensity distribution. Furthermore, the drive control unit 70 obtains a desired excitation light intensity distribution based on the obtained desired fluorescence emission intensity distribution.
  • the drive control unit 70 sets a desired intensity of illumination light relative to the intensity distribution of light due to fluorescence emission determined based on the determined desired illumination light intensity distribution and the optical characteristics of the illumination optical system.
  • the fluorescence emission intensity distribution is determined.
  • the drive control unit 70 changes the intensity distribution of light due to fluorescence with respect to the intensity distribution of excitation light determined based on the desired fluorescence intensity distribution and the emission characteristics of the fluorescence emission surface (see FIG. 15). Based on the desired excitation light intensity distribution is determined.
  • FIG. 17 shows a configuration example including the illumination device according to the first embodiment and the control system of the projector.
  • the projector 101G includes an image signal output device 60, a display pattern calculation circuit 61, a phase modulation pattern calculation circuit 62, a phase modulation element drive circuit 63, and a light intensity modulation element drive circuit 64.
  • the projector 101G includes an optical phase modulation element 11, an excitation light source 31, a beam shaping optical system 32, an image display element 51, a polarization separation element (PBS) 52, and a projection lens 53.
  • the projector 101G further includes a half mirror 131, a focusing optical system 132, a phosphor wheel 121 as the phosphor unit 20, an illumination optical system 140, a PS (polarization) conversion element 141, and a reflection mirror 142. Have.
  • the excitation light source 31 is, for example, a laser light source.
  • the beam shaping optical system 32 is an excitation optical system that irradiates the light phase modulation element 11 with the excitation light emitted from the excitation light source 31.
  • the optical phase modulation element 11 is formed of, for example, a spatial light phase modulation element such as an SLM.
  • the optical phase modulation element 11 changes the intensity distribution of excitation light so that the intensity distribution of excitation light approaches a desired excitation light intensity distribution.
  • the phosphor wheel 121 has a reflective fluorescent light emitting surface. Excitation light of a desired excitation light intensity distribution generated by the light phase modulation element 11 is irradiated to the fluorescence emission surface of the phosphor wheel 121 through the half mirror 131 and the condensing optical system 132. As a result, from the phosphor wheel 121, light of a desired fluorescence emission intensity distribution due to fluorescence is emitted. As a result, the illumination light of desired illumination light intensity distribution is irradiated to the image display element 51 via the illumination optical system 140, the PS conversion element 141, the reflection mirror 142, and the polarization separation element 52.
  • the image signal output device 60 outputs the image signal Vin to the display pattern calculation circuit 61 and the phase modulation pattern calculation circuit 62.
  • the phase modulation pattern calculation circuit 62 calculates the phase modulation pattern in the optical phase modulation element 11 based on the image signal Vin.
  • the phase modulation pattern in the optical phase modulation element 11 is a pattern that reproduces the desired excitation light intensity distribution described in FIG. 15 and FIG. 16 described above.
  • the drive control unit 70 has been described as an operation unit for obtaining a desired excitation light intensity distribution, but in this case the phase modulation pattern calculation circuit 62 is a desired one. It functions as an arithmetic unit that obtains the excitation light intensity distribution.
  • the phase modulation pattern calculation circuit 62 calculates the phase modulation pattern by, for example, FFT (Fast Fourier Transform) calculation. Further, the phase modulation pattern calculation circuit 62 outputs the illumination light intensity modulation pattern signal to the display pattern calculation circuit 61.
  • the illumination light intensity modulation pattern signal represents information of a desired illumination light intensity distribution obtained based on the image signal Vin.
  • the phase modulation element drive circuit 63 drives the optical phase modulation element 11 so as to display the phase modulation pattern calculated by the phase modulation pattern calculation circuit 62.
  • the display pattern calculation circuit 61 calculates an intensity modulation pattern for generating an image to be displayed by the image display device 51 based on the image signal Vin. At this time, an intensity modulation pattern is calculated in consideration of information of a desired illumination light intensity distribution by the light phase modulation element 11.
  • the light intensity modulation element drive circuit 64 drives the image display element 51 so as to generate the intensity modulation pattern calculated by the display pattern calculation circuit 61.
  • the polarization separation element 52 transmits the first polarization component of the incident light and reflects the second polarization component orthogonal to the first polarization component.
  • the illumination light of the desired illumination light intensity distribution described above is irradiated to the image display element 51 via the polarization separation element 52.
  • the image display element 51 performs intensity modulation on the illumination light based on the intensity modulation pattern calculated by the display pattern calculation circuit 61 to generate a projection image. As described above, since the information of the desired illumination light intensity distribution is added to the intensity modulation pattern calculated by the display pattern calculation circuit 61, the image display element 51 outputs the original image signal Vin as a result. A projected image to be reproduced is generated.
  • the projection image generated by the image display element 51 is emitted by the polarization separation element 52 toward the projection lens 53.
  • the projection lens 53 is a projection optical system including a plurality of lenses, and projects the projection image generated by the image display element 51 on a projection surface such as the screen 50.
  • the illumination light is generated based on the light by the fluorescence emission generated by the excitation light of the desired excitation light intensity distribution, so that the speckle is reduced and desired. It becomes possible to obtain illumination light intensity distribution.
  • the dynamic range of the projection image can be efficiently enhanced.
  • speckle peculiar to the laser is generated.
  • the light emitted from the laser light source is used as excitation light to generate a desired illumination light intensity distribution by fluorescence emission, so speckleless substantially becomes and the image quality of the projected image is excellent.
  • FIG. 18 schematically illustrates an example of a configuration of a main part of a control system of a lighting device and a projector according to a second embodiment of the present disclosure.
  • FIG. 19 schematically illustrates an example of the control operation of the main part of the illumination device and the projector according to the second embodiment.
  • the projector according to the second embodiment includes a temperature detection unit that detects the temperature of at least one of the excitation light source 31 and the phosphor unit 20.
  • a temperature detection unit that detects the temperature of at least one of the excitation light source 31 and the phosphor unit 20.
  • an excitation light source temperature detection unit 151 and a phosphor temperature detection unit 152 are provided as a temperature detection unit.
  • the projector according to the second embodiment may further include a cooling unit that cools at least one of the excitation light source 31 and the fluorescent light emitting surface of the phosphor unit 20.
  • a cooling unit that cools at least one of the excitation light source 31 and the fluorescent light emitting surface of the phosphor unit 20.
  • an excitation light source cooling unit 153 for cooling the excitation light source 31 and a phosphor cooling unit 154 for cooling the fluorescence emission surface of the phosphor unit 20 may be further provided.
  • the drive control unit 70 determines a desired illumination light intensity distribution to be irradiated to the image display element 51 based on the image signal Vin (step S1).
  • the drive control unit 70 drives the light phase modulation element 11 so as to reproduce the desired excitation light intensity distribution obtained from the desired illumination light intensity distribution (step S2).
  • the drive control unit 70 A correction operation is performed according to a predetermined calculation table (step S3).
  • the drive control unit 70 corrects the color change due to temperature based on the detection result of at least one of the detection result T1 of the excitation light source temperature detection unit 151 and the detection result T2 of the phosphor temperature detection unit 152. Is corrected, and the image display element 51 is driven based on the corrected image signal Vin (step S4).
  • the drive control unit 70 corrects the emission intensity of the excitation light based on the detection result of at least one of the detection result T1 of the excitation light source temperature detection unit 151 and the detection result T2 of the phosphor temperature detection unit 152.
  • the excitation light source 31 is driven (step S5).
  • the drive control unit 70 may drive the excitation light source cooling unit 153 (step S6) based on the detection result T1 of the excitation light source temperature detection unit 151 to cool the excitation light source 31.
  • the drive control unit 70 may drive the phosphor cooling unit 154 (step S7) based on the detection result T2 of the phosphor temperature detection unit 152 to cool the fluorescence emission surface of the phosphor unit 20. .
  • the present technology can also be configured as follows.
  • the illumination light is generated based on the light by the fluorescence emission generated by the excitation light of the desired excitation light intensity distribution, so that the desired illumination light intensity with reduced speckles It becomes possible to obtain a distribution.
  • An excitation light source for emitting excitation light; A phosphor portion having a fluorescence emission surface that emits fluorescence when the excitation light is incident; Excitation light intensity provided between the excitation light source and the phosphor part and changing the intensity distribution of the excitation light so that the intensity distribution of the excitation light approaches a desired excitation light intensity distribution on the fluorescence emission surface
  • a distribution generation unit An illumination optical system configured to generate illumination light to be applied to an image display element based on the light from the fluorescent substance portion due to the fluorescence.
  • the calculation unit obtains a desired illumination light intensity distribution to be irradiated to the image display element based on the image signal, and also, based on the obtained desired illumination light intensity distribution, a desired fluorescence by the fluorescence emission.
  • the illumination apparatus according to (2) wherein the desired excitation light intensity distribution is determined based on the desired fluorescence emission intensity distribution determined by determining the emission intensity distribution.
  • the calculation unit is based on the determined desired fluorescence emission intensity distribution and a change in the intensity distribution of light due to the fluorescence with respect to the intensity distribution of the excitation light determined based on the emission characteristics of the fluorescence emission surface.
  • the illumination device according to (3), wherein the desired excitation light intensity distribution is determined.
  • the calculation unit is based on the determined desired illumination light intensity distribution and the change amount of the intensity distribution of the illumination light with respect to the intensity distribution of the light due to the fluorescent light determined based on the optical characteristic of the illumination optical system.
  • the lighting device according to (3) or (4), wherein the desired fluorescence emission intensity distribution is determined.
  • a temperature detection unit that detects a temperature of at least one of the excitation light source and the fluorescence emission surface;
  • the control method according to any one of (1) to (5) Lighting device.
  • a temperature detection unit that detects a temperature of at least one of the excitation light source and the fluorescence emission surface;
  • the excitation light intensity distribution generation unit includes an optical phase modulation element that modulates the phase of the excitation light.
  • the excitation light intensity distribution generation unit includes a light beam angle modulation element that changes a light beam angle of the excitation light.
  • a lighting device An image display element for intensity-modulating illumination light from the illumination device to generate a projection image; A projection optical system for projecting the projection image generated by the image display element onto a projection plane;
  • the lighting device is An excitation light source for emitting excitation light; A phosphor portion having a fluorescence emission surface that emits fluorescence when the excitation light is incident; Excitation light intensity provided between the excitation light source and the phosphor part and changing the intensity distribution of the excitation light so that the intensity distribution of the excitation light approaches a desired excitation light intensity distribution on the fluorescence emission surface
  • a distribution generation unit An illumination optical system configured to generate the illumination light to be irradiated to the image display element based on the light by the fluorescence emission from the phosphor portion.
  • a control unit for driving the image display element based on an image signal The illumination device further includes a temperature detection unit that detects a temperature of at least one of the excitation light source and the fluorescence emission surface; The projector according to (10), wherein the control unit corrects the image signal so as to correct a color change due to temperature based on a detection result of the temperature detection unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)

Abstract

本開示の照明装置は、励起光を発する励起光源と、励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、励起光源と蛍光体部との間に設けられ、蛍光発光面において励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる励起光強度分布生成部と、蛍光体部からの蛍光発光による光に基づいて画像表示素子に照射する照明光を生成する照明光学系とを備える。

Description

照明装置、およびプロジェクタ
 本開示は、照明光を生成する照明装置、およびその照明光に基づいて映像を投影するプロジェクタに関する。
 照明装置からの照明光を液晶パネル等の画像表示素子に照射して投影画像を生成するプロジェクタが知られている。ところで、近年、画像表示のHDR(High Dynamic Range)化への要求がある。プロジェクタにおける投影画像のダイナミックレンジを高める技術としては、画像信号に応じた強度分布の照明光を画像表示素子に照射する技術がある(特許文献1,2参照)。
特開2014-197227号公報 特開2016-224451号公報
 上記した技術では、照明光の生成方式によっては、所望の照明光強度分布を得ることが困難な場合がある。また、照明光の光源としてレーザ光源を用いた場合、スペックルが発生しやすくなる。
 スペックルを低減した所望の照明光強度分布を得ることを可能にする照明装置、およびプロジェクタを提供することが望ましい。
 本開示の一実施の形態に係る照明装置は、励起光を発する励起光源と、励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、励起光源と蛍光体部との間に設けられ、蛍光発光面において励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる励起光強度分布生成部と、蛍光体部からの蛍光発光による光に基づいて画像表示素子に照射する照明光を生成する照明光学系とを備えるものである。
 本開示の一実施の形態に係るプロジェクタは、照明装置と、照明装置からの照明光を強度変調して投影画像を生成する画像表示素子と、画像表示素子によって生成された投影画像を投影面に投影する投影光学系とを含み、照明装置は、励起光を発する励起光源と、励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、励起光源と蛍光体部との間に設けられ、蛍光発光面において励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる励起光強度分布生成部と、蛍光体部からの蛍光発光による光に基づいて画像表示素子に照射する照明光を生成する照明光学系とを備えるものである。
 本開示の一実施の形態に係る照明装置またはプロジェクタでは、励起光源と蛍光体部との間に設けられた励起光強度分布生成部によって、蛍光発光面において励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布が変化する。所望の励起光強度分布の励起光によって生成された蛍光発光による光に基づいて、画像表示素子に照射する照明光が生成される。
本開示の第1の実施の形態に係る照明装置、およびプロジェクタの概要を示すブロック図である。 第1の実施の形態に係る照明装置、およびプロジェクタの光学系の第1の具体例を示す構成図である。 第1の実施の形態に係る照明装置、およびプロジェクタの光学系の第2の具体例を示す構成図である。 第1の実施の形態に係る照明装置、およびプロジェクタの光学系の第3の具体例を示す構成図である。 第1の実施の形態に係る照明装置、およびプロジェクタの光学系の第4の具体例を示す構成図である。 第1の実施の形態に係る照明装置、およびプロジェクタの光学系の第5の具体例を示す構成図である。 第1の実施の形態に係る照明装置、およびプロジェクタの光学系の第6の具体例を示す構成図である。 光線角度変調素子を用いた照明装置の要部の一例を示す構成図である。 光線角度変調素子の一例を示す構成図である。 照明光学系の第1の例を示す構成図である。 照明光学系の第2の例を示す構成図である。 蛍光体部の構成の第1の具体例を示す断面図である。 蛍光体部の構成の第2の具体例を示す断面図である。 蛍光体部の構成の第3の具体例を示す断面図である。 励起光強度分布と蛍光発光強度分布との関係の一例を示す説明図である。 所望の照明光強度分布から所望の励起光強度分布を求める演算の一例を示す説明図である。 第1の実施の形態に係る照明装置、およびプロジェクタの制御系を含む構成例を示す構成図である。 第2の実施の形態に係る照明装置、およびプロジェクタの制御系の要部の一例を概略的に示す構成図である。 第2の実施の形態に係る照明装置、およびプロジェクタの要部の制御動作の一例を概略的に示す説明図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 0.比較例
 1.第1の実施の形態(図1~図17)
  1.1 照明装置、およびプロジェクタの光学系の概要
  1.2 照明装置、およびプロジェクタの光学系の具体例
  1.3 光線角度変調素子の構成例
  1.4 照明光学系の構成例
  1.5 蛍光体部の構成例
  1.6 励起光強度分布の演算例
  1.7 照明装置、およびプロジェクタの制御系を含む具体的な構成例
  1.8 効果
 2.第2の実施の形態(図18~図19)
  2.1 構成および動作
  2.2 効果
 3.その他の実施の形態
<0.比較例>
 一般的なプロジェクタとして、均一な照明光を画像表示素子としての空間光強度変調素子に照射して光強度変調を行って画像を生成し、生成された画像を投射レンズを通してスクリーンに投影する構成のものが知られている。画像表示素子としては、液晶表示パネル、DMD(Digital Micro-mirror Device)、またはMEMS(Micro Electro Mechanical Systems)等が用いられている。
 このようなプロジェクタにおける投影画像のダイナミックレンジを高める技術として、光源からの出射光を光強度変調素子によって画像信号に応じて強度変調し、画像信号に応じた強度分布の照明光を画像表示素子に照射する方式がある。しかしながら、この方式では、投射画像の暗部をより暗くすることはできるものの、投射画像の明部をより明るくすることは困難である。また、投影画像のダイナミックレンジを高める技術として、例えばレーザ光源からの光を光位相変調素子によって画像信号に応じて位相変調し、画像信号に応じた位相分布の照明光を画像表示素子に照射する方式がある。
 この方式では、投影画像の明部をより明るくしてダイナミックレンジを高めることができる。しかしながら、この方式では、レーザ光源を使用するので、レーザ特有のスペックルが発生してしまう。このため、スペックルを除去するために照明効率の低下やコストアップが生じてしまう。
 そこで、スペックルを低減しつつ、所望の照明光強度分布を得ることを可能にする技術の開発が望まれる。
<1.第1の実施の形態>
[1.1 照明装置、およびプロジェクタの光学系の概要]
 図1は、本開示の第1の実施の形態に係る照明装置100、およびプロジェクタ101の概要を示している。
 プロジェクタ101は、照明装置100と、画像表示素子51と、投射レンズ53とを含んでいる。
 画像表示素子51は、照明装置100からの照明光を強度変調して投影画像を生成する光強度変調素子である。画像表示素子51は、例えば、液晶表示パネル、DMD、またはMEMS等で構成されている。
 投射レンズ53は、複数のレンズを含む投影光学系であり、画像表示素子51によって生成された投影画像を、スクリーン50等の投影面に投影する。
 照明装置100は、励起光源31と、励起光強度分布生成部10と、蛍光体部20と、照明光学系40とを備えている。
 励起光源31は、例えばレーザ光源(LD:Laser Diode)を含み、蛍光体部20の蛍光体を励起する励起光を発する。なお、励起光源31として、LED(Light Emitting Diode)を用いてもよい。
 蛍光体部20は、励起光源31が発した励起光が入射することによって蛍光発光する蛍光発光面を有している。蛍光体部20は、後述するように、例えば、回転する蛍光体ホイールによって構成されている。また、蛍光体部20を、固定の蛍光体部としてもよい。
 照明光学系40は、蛍光体部20からの蛍光発光による光に基づいて画像表示素子51に照射する照明光を生成する。
 励起光強度分布生成部10は、励起光源31と蛍光体部20との間に設けられている。励起光強度分布生成部10は、蛍光体部20の蛍光発光面において、励起光源31が発した励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる。励起光強度分布生成部10は、励起光の位相を変調する光位相変調素子を含んでいる。光位相変調素子は、SLM(Spatial Light Modulator)等であってもよい。また、励起光強度分布生成部10は、光位相変調素子に代えて、後述するように励起光の光線角度を変化させる光線角度変調素子を含んでいてもよい。
 ここで、所望の励起光強度分布は、後述するように、画像信号に基づいて求められる。より具体的には、画像信号に基づいて、画像表示素子51に照射する所望の照明光強度分布を求めると共に、求められた所望の照明光強度分布に基づいて、蛍光発光による所望の蛍光発光強度分布を求める。さらに、求められた所望の蛍光発光強度分布に基づいて、所望の励起光強度分布を求める。
 励起光強度分布生成部10では、上記した所望の照明光強度分布から逆算された所望の蛍光発光強度分布が得られるように、励起光源31が発した励起光の強度分布を変化させる。結果的に、画像表示素子51には、所望の照明光強度分布の照明光が照射され、投影画像のダイナミックレンジを高めることができる。
[1.2 照明装置、およびプロジェクタの光学系の具体例]
 次に、図1に示した照明装置100、およびプロジェクタ101の光学系の具体的な構成例を説明する。なお、以下の具体例では、図1のプロジェクタ101の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 以下では、カラー表示を行うプロジェクタの構成例を説明する。カラー表示を行うプロジェクタの表示方式は、大別して、画像表示素子51(画像表示パネル)を1枚のみ用いる単板方式と、R(赤色),G(緑色),B(青色)のそれぞれについての画像表示パネルを備えた3板方式とがある。
(光学系の第1の具体例)
 図2は、第1の具体例に係るプロジェクタ101Aの光学系の概略を示している。
 プロジェクタ101Aは、単一の画像表示素子51を用いて、時分割方式でフルカラー表示を行う構成とされている。プロジェクタ101Aは、励起光を発する励起光源31Wを備えている。プロジェクタ101Aは、励起光源31W側から画像表示素子51側に向かって順に、励起光学系12と、光位相変調素子11と、蛍光体ホイール21と、照明光学系40とを備えている。
 また、プロジェクタ101Aは、画像信号Vinに基づいて、励起光源31Wと、光位相変調素子11と、画像表示素子51とを制御する駆動制御部70を備えている。
 励起光源31Wは、励起光として、例えば白色光を発するレーザ光源である。
 励起光学系12と光位相変調素子11は、励起光強度分布生成部10を構成している。光位相変調素子11は、例えば透過型の位相変調液晶パネルで構成されている。
 照明光学系40は、例えばクリティカル照明系となっている。
 蛍光体ホイール21は、蛍光体部20を構成している。蛍光体ホイール21は、赤用蛍光発光面22Rと、緑用蛍光発光面22Gと、青用蛍光発光面22Bとを有している。赤用蛍光発光面22Rは、赤色の蛍光体を含み、励起光強度分布生成部10を介して励起光源31Wからの励起光が入射することによって赤色に蛍光発光する。緑用蛍光発光面22Gは、緑色の蛍光体を含み、励起光強度分布生成部10を介して励起光源31Wからの励起光が入射することによって緑色に蛍光発光する。青用蛍光発光面22Bは、青色の蛍光体を含み、励起光強度分布生成部10を介して励起光源31Wからの励起光が入射することによって青色に蛍光発光する。
 蛍光体ホイール21が回転することによって、赤用蛍光発光面22R、緑用蛍光発光面22G、および青用蛍光発光面22Bのそれぞれには、励起光が時分割で照射される。これにより、蛍光体ホイール21からは、蛍光発光による赤色光、緑色光、および青色光のそれぞれが時分割で出射される。
 光位相変調素子11は、各色ごとに、励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を時分割で変化させる。これにより、蛍光体ホイール21からは、蛍光発光による所望の蛍光発光強度分布の各色光が時分割で出射される。結果として、画像表示素子51には、照明光学系40を介して所望の照明光強度分布の各色ごとの照明光が時分割で照射される。
 画像表示素子51は、各色光が照射されるタイミングに同期して、各色の照明光に対して、各色の投影画像を時分割で生成する。赤色光、緑色光、および青色光による各色の投影画像は、投射レンズ53に向けて出射される。投射レンズ53は、その各色の投影画像を、スクリーン50等の投影面に時分割で投影する。
(光学系の第2の具体例)
 図3は、第2の具体例に係るプロジェクタ101Bの光学系の概略を示している。
 プロジェクタ101Bは、R,G,Bの3枚の画像表示素子51を用いて、フルカラー表示を行う構成とされている。プロジェクタ101Bは、3枚の画像表示素子51として、赤用画像表示素子(赤用空間光強度変調素子)51Rと、緑用画像表示素子(緑用空間光強度変調素子)Gと、青用画像表示素子(青用空間光強度変調素子)51Bとを備えている。
 プロジェクタ101Bは、励起光を発する励起光源31Bを備えている。プロジェクタ101Bは、励起光源31B側から画像表示素子51側に向かって順に、励起光学系12と、光位相変調素子11と、蛍光体部20と、照明光学系40とを備えている。
 プロジェクタ101Bは、図示しないが図2のプロジェクタ101Aと略同様に、画像信号Vinに基づいて、励起光源31Bと、光位相変調素子11と、画像表示素子51とを制御する駆動制御部70を備えている。
 励起光源31Bは、励起光として、例えば青色光を発するレーザ光源である。
 プロジェクタ101Bは、蛍光体部20として、蛍光体ホイール21Aを備えている。蛍光体ホイール21Aは、例えばYAG蛍光体を含む蛍光発光面22を有し、励起光強度分布生成部10を介して励起光源31Bからの励起光が入射することによって黄色に蛍光発光する。蛍光体ホイール21Aからは、蛍光発光による黄色光と、蛍光発光面22で拡散され透過した青色の励起光による青色光とが出射される。黄色光は、赤色光と緑色光とを含んでいる。
 プロジェクタ101Bは、光位相変調素子11と蛍光体部20との間に設けられた、色分離部41と、反射ミラー42Rと、反射ミラー42Bとを備えている。
 また、プロジェクタ101Bは、照明光学系40として、赤用照明光学系40Rと、緑用照明光学系40Gと、青用照明光学系40Bとを備えている。赤用照明光学系40R、緑用照明光学系40G、および青用照明光学系40Bはそれぞれ、例えばクリティカル照明系となっている。
 また、プロジェクタ101Bは、照明光学系40と画像表示素子51との間に設けられた、反射ミラー43Rと、反射ミラー43Bとを備えている。
 色分離部41は、蛍光体ホイール21Aから出射された黄色光と青色光とを、赤色光、緑色光、および青色光に分離する。
 色分離部41によって分離された赤色光の光路上に、反射ミラー42Rと、赤用照明光学系40Rと、反射ミラー43Rと、赤用画像表示素子51Rとが順に、設けられている。
 また、色分離部41によって分離された緑色光の光路上に、緑用照明光学系40Gと、緑用画像表示素子Gとが順に、設けられている。
 色分離部41によって分離された青色光の光路上に、反射ミラー42Bと、青用照明光学系40Bと、反射ミラー43Bと、青用画像表示素子51Bとが順に、設けられている。
 光位相変調素子11は、励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる。これにより、蛍光体ホイール21Aからは、蛍光発光による所望の蛍光発光強度分布の光が出射される。結果として、赤用画像表示素子51R、緑用画像表示素子G、および青用画像表示素子51Bのそれぞれには、照明光学系40を介して所望の照明光強度分布の各色の照明光が照射される。
 赤用画像表示素子51R、緑用画像表示素子G、および青用画像表示素子51Bはそれぞれ、各色の照明光に対して、各色の投影画像を生成する。赤色光、緑色光、および青色光による各色の投影画像は、図示しない色合成光学系によって色合成され、投射レンズ53に向けて出射される。投射レンズ53は、色合成された投影画像を、スクリーン50等の投影面に投影する。
(光学系の第3の具体例)
 図4は、第3の具体例に係るプロジェクタ101Cの光学系の概略を示している。
 プロジェクタ101Cは、R,G,Bの3枚の画像表示素子51を用いて、フルカラー表示を行う構成とされている。プロジェクタ101Cは、3枚の画像表示素子51として、赤用画像表示素子(赤用空間光強度変調素子)51Rと、緑用画像表示素子(緑用空間光強度変調素子)Gと、青用画像表示素子(青用空間光強度変調素子)51Bとを備えている。
 プロジェクタ101Cは、励起光を発する励起光源31Wを備えている。プロジェクタ101Cは、励起光源31W側から画像表示素子51側に向かって順に、励起光学系12と、光位相変調素子11と、蛍光体部20と、照明光学系40とを備えている。
 プロジェクタ101Cは、図示しないが図2のプロジェクタ101Aと略同様に、画像信号Vinに基づいて、励起光源31Wと、光位相変調素子11と、画像表示素子51とを制御する駆動制御部70を備えている。
 励起光源31Wは、励起光として、例えば白色光を発するレーザ光源である。
 プロジェクタ101Cは、蛍光体部20として、赤用蛍光体部21Rと、緑用蛍光体部21Gと、青用蛍光体部21Bとを備えている。赤用蛍光体部21R、緑用蛍光体部21G、および青用蛍光体部21Bはそれぞれ、固定配置されている。赤用蛍光体部21Rは、赤色の蛍光体を含む蛍光発光面を有し、励起光強度分布生成部10を介して励起光源31Wからの励起光が入射することによって赤色に蛍光発光する。緑用蛍光発光面22Gは、緑色の蛍光体を含み、励起光強度分布生成部10を介して励起光源31Wからの励起光が入射することによって緑色に蛍光発光する。青用蛍光発光面22Bは、青色の蛍光体を含み、励起光強度分布生成部10を介して励起光源31Wからの励起光が入射することによって青色に蛍光発光する。
 プロジェクタ101Cは、光位相変調素子11と蛍光体部20との間に設けられた、分岐光学系44と、反射ミラー45Rと、反射ミラー45Bとを備えている。
 また、プロジェクタ101Cは、照明光学系40として、赤用照明光学系40Rと、緑用照明光学系40Gと、青用照明光学系40Bとを備えている。赤用照明光学系40R、緑用照明光学系40G、および青用照明光学系40Bはそれぞれ、例えばクリティカル照明系となっている。
 また、プロジェクタ101Cは、照明光学系40と画像表示素子51との間に設けられた、反射ミラー43Rと、反射ミラー43Bとを備えている。
 プロジェクタ101Cは、光位相変調素子11と蛍光体部20との間に設けられた、分岐光学系44と、反射ミラー45Rと、反射ミラー45Bとを備えている。
 分岐光学系44は、励起光強度分布生成部10を介して入射した励起光源31Wからの励起光の光路を3つに分岐させる。
 分岐光学系44によって分岐された第1の光路上に、反射ミラー45Rと、赤用蛍光体部21Rと、赤用照明光学系40Rと、反射ミラー43Rと、赤用画像表示素子51Rとが順に、設けられている。
 分岐光学系44によって分岐された第2の光路上に、反射ミラー45Bと、青用蛍光体部21Bと、青用照明光学系40Bと、反射ミラー43Bと、青用画像表示素子51Bとが順に、設けられている。
 分岐光学系44によって分岐された第3の光路上に、緑用蛍光体部21Rと、緑用照明光学系40Gと、緑用画像表示素子51Gとが順に、設けられている。
 光位相変調素子11は、励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる。これにより、蛍光体部20からは、蛍光発光による所望の蛍光発光強度分布の光が出射される。結果として、赤用画像表示素子51R、緑用画像表示素子G、および青用画像表示素子51Bのそれぞれには、照明光学系40を介して所望の照明光強度分布の各色の照明光が照射される。
 赤用画像表示素子51R、緑用画像表示素子G、および青用画像表示素子51Bはそれぞれ、各色の照明光に対して、各色の投影画像を生成する。赤色光、緑色光、および青色光による各色の投影画像は、図示しない色合成光学系によって色合成され、投射レンズ53に向けて出射される。投射レンズ53は、色合成された投影画像を、スクリーン50等の投影面に投影する。
(光学系の第4の具体例)
 図5は、第4の具体例に係るプロジェクタ101Dの光学系の概略を示している。
 図3に示したプロジェクタ101Bでは、色分離部41によって色分離された後の光路上に照明光学系40を配置した構成とされている。これに対して、図5に示したプロジェクタ101Dでは、照明光学系40が色分離部41によって色分離される前の光路上にも、照明光学系40が配置されている。
 その他の構成は、図3のプロジェクタ101Bと同様であってもよい。
 なお、図5に示したプロジェクタ101Dの構成に対して、色分離部41によって色分離された後の光路上の照明光学系40を省略し、色分離部41によって色分離される前の光路上にのみ、照明光学系40が配置された構成であってもよい。
(光学系の第5の具体例)
 図6は、第5の具体例に係るプロジェクタ101Eの光学系の概略を示している。
 図6に示したプロジェクタ101Eは、図2に示したプロジェクタ101Aにおける励起光源31Wに代えて、励起光として青色光を発する励起光源31Bを用いている。励起光源31Bは、例えば波長440nm~470nm程度の青色光を発するレーザ光源である。また、図6に示したプロジェクタ101Eは、図2に示したプロジェクタ101Aにおける蛍光体ホイール21の青用蛍光発光面22Bに代えて、青用発光面22B′が設けられている。青用発光面22B′は、青色の蛍光体に代えて、励起光源31Bからの青色光を拡散する拡散材を用いた拡散発光面となっている。
 その他の構成は、図2のプロジェクタ101Aと同様であってもよい。
(光学系の第6の具体例)
 図7は、第6の具体例に係るプロジェクタ101Fの光学系の概略を示している。
 図7に示したプロジェクタ101Fは、図3に示したプロジェクタ101Bにおける励起光源31Bに加えて、赤色光源31Rを備えている。励起光源31Bは、励起光として青色光を発する。赤色光源31Rは、赤色光を発する。励起光源31Bは、例えば波長440nm~470nm程度の青色光を発するレーザ光源である。赤色光源31Rは、例えば波長620nm~650nm程度の赤色光を発するレーザ光源である。図3に示したプロジェクタ101Bの構成のように、青色光を発する励起光源31Bと蛍光発光面22との組み合わせのみでは、赤色光が不足する場合がある。これに対して、図7に示したプロジェクタ101Fのように、赤色光源31Rを追加することにより、蛍光発光のみでは不足する赤色の成分を補うことができる。これにより、より広色域の投影画像を得ることができる。
 その他の構成は、図3のプロジェクタ101Bと同様であってもよい。
(各具体例の変型例)
 なお、以上の具体例では、画像表示素子51の具体例として、透過型の画像表示素子を用いた構成を示したが、反射型の画像表示素子を用いた構成であってもよい。反射型の画像表示素子は、反射型の液晶表示パネル、DMD、またはMEMS等であってもよい。
 また、以上の具体例では、光位相変調素子11の具体例として、透過型の位相変調液晶パネルの例を挙げたが、光位相変調素子11を反射型の位相変調液晶パネルで構成してもよい。
 また、以上の具体例では、光位相変調素子11を1枚のみ用いる構成例を示したが、光位相変調素子11を複数、用いる構成であっても良い。例えば、上記第3の具体例の構成において、赤用蛍光体部21R、緑用蛍光体部21G、および青用蛍光体部21Bの各色ごとの第1ないし第3の各光路上に光位相変調素子11を配置し、R,G,Bの各色ごとに励起光の強度分布を変化させてもよい。
[1.3 光線角度変調素子の構成例]
 図8は、光線角度変調素子13を用いた照明装置の要部の構成例を示している。図9は、光線角度変調素子13の具体的な構成例を示している。
 図2~図7の具体例では、励起光強度分布生成部10に光位相変調素子11を用いた構成例を示したが、光位相変調素子11に代えて、図8および図9に示した光線角度変調素子13を用いてもよい。
 図8では、例えば青色光を発する励起光源31Bと、青色光を黄色光に変換する蛍光発光面22を有する蛍光体ホイール21Aとの間に、光線角度変調素子13を配置した構成例を示している。ただし、光線角度変調素子13が適用される光学系の構成はこの例に限定されるものではない。
 光線角度変調素子13は、例えば図9に示したように、複数の微小ミラー14からなるミラーアレイを含む構成とされている。また、光線角度変調素子13は、複数の微小ミラー14のそれぞれの角度を調整する複数の圧電素子15を備えている。これにより、蛍光発光面22に対する励起光の入射角度を変化させることができる。
 光線角度変調素子13は、図示しないが図2のプロジェクタ101Aと略同様に、画像信号Vinに基づいて駆動制御部70によって制御される。駆動制御部70は、蛍光発光面22における励起光の強度分布が所望の励起光強度分布に近付くように、複数の圧電素子15を制御して、蛍光発光面22における励起光の強度分布を変化させる。
[1.4 照明光学系の構成例]
 図10は、照明光学系40の第1の構成例を示している。また、図11は、照明光学系40の第2の構成例を示している。なお、図10および図11では、蛍光体部20として、青色光を黄色光に変換する蛍光発光面22を有する蛍光体ホイール21Aを用いた構成例を示しているが、蛍光体部20の構成はこの例に限定されるものではない。
 図10では、MEMSで構成された画像表示素子54を用いる場合の照明光学系40の構成例を示している。MEMSで構成された画像表示素子54の場合、照明光学系40として、例えば図10に示したような結像光学系46を用いる。
 図11は、液晶表示素子で構成された画像表示素子55を用いる場合の照明光学系40の構成例を示している。液晶表示素子で構成された画像表示素子54の場合、照明光学系40として、例えば図11に示したように、集光レンズ47と集光レンズ48との間にPS(偏光)変換素子49を配置した光学系を用いる。
[1.5 蛍光体部の構成例]
 次に、蛍光体部20の構成例を説明する。以下では、蛍光体部20の蛍光発光面が反射型である場合を例に説明する。
 蛍光体部20の蛍光体は、例えば、CASN、またはSCASN等であってもよい。CASNまたはSCASNは、青色光を励起光として赤色光を発する蛍光体である。
 また、蛍光体部20において、青色光を励起光として黄色光を発する蛍光体として、Ce:YAG蛍光体、Ce:LAG蛍光体、またはサイアロン(SiALON)蛍光体等を用いてもよい。
 また、蛍光体部20の蛍光体は、量子ドット蛍光体等であってもよい。
 図12は、蛍光体部20の構成の第1の具体例を示している。
 図12に示した蛍光体部120Aは、蛍光発光面が、バインダレスの粒子集積構造とされている。蛍光体部120Aは、例えばアルミニウムからなるホイール基材121上に、蛍光体122を分散させた粒子状の水ガラス123等が集積された構造とされている。この構造では、蛍光発光面において空気層124(空隙部)が10%以上あることが望ましい。
 このような粒子集積構造を有する蛍光体部120Aによれば、励起光に対する蛍光発光の拡がりが最低限に抑えられる。これにより、画像表示素子51において、よりシャープな照明光強度分布を得ることができ、投影画像の品質を高めることができる。また、画像表示素子51のエッジ部における照明光の強度の低下も少なくできることから、照明光学系40における照明光の利用効率を高めることができる。
 図13は、蛍光体部20の構成の第2の具体例を示している。
 図13に示した蛍光体部120Bは、蛍光発光面が、樹脂バインダ構造とされている。蛍光体部120Bは、例えばアルミニウムからなるホイール基材121上に、蛍光体122を分散させたシリコン樹脂125を積層した構造とされている。
 このような樹脂バインダ構造を有する蛍光体部120Bでは、上記粒子集積構造を有する蛍光体部120Aに比べて、蛍光発光面において、蛍光発光による光L1が内部反射により拡散しやすい。
 図14は、蛍光体部20の構成の第3の具体例を示している。
 図14に示した蛍光体部120Cは、例えばアルミニウムからなるホイール基材121上に、セラミックス蛍光体126を積層した構造とされている。
 このような構造を有する蛍光体部120Cでは、上記粒子集積構造を有する蛍光体部120Aに比べて、蛍光発光面において、蛍光発光による光が拡がりやすい。
[1.6 励起光強度分布の演算例]
 図15は、蛍光体部20に入射する励起光の励起光強度分布と、蛍光体部20における蛍光発光による蛍光発光強度分布との関係の一例を示している。
 図15に示したように、蛍光発光強度分布は、励起光強度分布に対してビーム断面が幅方向に拡大するような形状となる。この拡大の幅は、蛍光体部20の発光特性によって決まる。蛍光体部20の発光特性は、蛍光体部20の蛍光発光面の構造によって決まる。例えば上記したように、樹脂バインダ構造を有する蛍光体部120Bでは、上記粒子集積構造を有する蛍光体部120Aに比べて、ビーム断面が拡大しやすくなる。
 駆動制御部70(図2参照)は、画像信号Vinに基づいて、所望の励起光強度分布を求める演算部であってもよい。
 図16は、演算部としての駆動制御部70が、画像信号Vinに基づいて、所望の照明光強度分布から所望の励起光強度分布を求めるまでの演算の一例を示している。
 駆動制御部70は、画像信号Vinに基づいて、画像表示素子51に照射する所望の照明光強度分布を求めると共に、求められた所望の照明光強度分布に基づいて、蛍光発光による所望の蛍光発光強度分布を求める。さらに、駆動制御部70は、求められた所望の蛍光発光強度分布に基づいて、所望の励起光強度分布を求める。
 駆動制御部70は、求められた所望の照明光強度分布と照明光学系の光学特性に基づいて求められる蛍光発光による光の強度分布に対する照明光の強度分布の変化量とに基づいて、所望の蛍光発光強度分布を求める。
 駆動制御部70は、求められた所望の蛍光発光強度分布と蛍光発光面の発光特性に基づいて求められる励起光の強度分布に対する蛍光発光による光の強度分布の変化量(図15参照)とに基づいて、所望の励起光強度分布を求める。
[1.7 照明装置、およびプロジェクタの制御系を含む具体的な構成例]
 次に、照明装置、およびプロジェクタの制御系を含む具体的な構成例を説明する。
 なお、以下の具体例では、図1のプロジェクタ101等の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 図17は、第1の実施の形態に係る照明装置、およびプロジェクタの制御系を含む構成例を示している。
 プロジェクタ101Gは、画像信号出力装置60と、表示パターン計算回路61と、位相変調パターン計算回路62と、位相変調素子駆動回路63と、光強度変調素子駆動回路64とを備えている。また、プロジェクタ101Gは、光位相変調素子11と、励起光源31と、ビーム整形光学系32と、画像表示素子51と、偏光分離素子(PBS)52と、投射レンズ53とを備えている。また、プロジェクタ101Gは、ハーフミラー131と、集光光学系132と、蛍光体部20としての蛍光体ホイール121と、照明光学系140と、PS(偏光)変換素子141と、反射ミラー142とを備えている。
 励起光源31は、例えばレーザ光源である。ビーム整形光学系32は、励起光源31から発せられた励起光を光位相変調素子11に照射する励起光学系である。光位相変調素子11は、例えばSLM等の空間光位相変調素子で構成される。光位相変調素子11は、励起光の強度分布が所望の励起光強度分布に近付くように、励起光の強度分布を変化させる。
 蛍光体ホイール121は、反射型の蛍光発光面を有している。蛍光体ホイール121の蛍光発光面には、光位相変調素子11によって生成された所望の励起光強度分布の励起光が、ハーフミラー131および集光光学系132を介して照射される。これにより、蛍光体ホイール121からは、蛍光発光による所望の蛍光発光強度分布の光が出射される。結果として、画像表示素子51には、照明光学系140、PS変換素子141、反射ミラー142、および偏光分離素子52を介して所望の照明光強度分布の照明光が照射される。
 画像信号出力装置60は、表示パターン計算回路61と位相変調パターン計算回路62とに画像信号Vinを出力する。
 位相変調パターン計算回路62では、画像信号Vinに基づいて、光位相変調素子11における位相変調パターンを計算する。光位相変調素子11における位相変調パターンは、上述の図15および図16で説明した所望の励起光強度分布を再現するようなパターンである。
 なお、図15および図16の説明では、駆動制御部70(図2参照)を、所望の励起光強度分布を求める演算部として説明したが、ここでは、位相変調パターン計算回路62が、所望の励起光強度分布を求める演算部として機能する。位相変調パターン計算回路62では、例えば、FFT(高速フーリエ変換)計算によって位相変調パターンを計算する。また、位相変調パターン計算回路62は、照明光強度変調パターン信号を、表示パターン計算回路61に出力する。照明光強度変調パターン信号は、画像信号Vinに基づいて求められた所望の照明光強度分布の情報を表している。
 位相変調素子駆動回路63は、位相変調パターン計算回路62で計算された位相変調パターンを表示するように光位相変調素子11を駆動する。
 表示パターン計算回路61では、画像信号Vinに基づいて、画像表示素子51で表示する画像を生成するための強度変調パターンを計算する。このとき、光位相変調素子11による所望の照明光強度分布の情報を加味した強度変調パターンを計算する。
 光強度変調素子駆動回路64は、表示パターン計算回路61で計算された強度変調パターンを生成するように画像表示素子51を駆動する。
 偏光分離素子52は、入射した光のうち第1の偏光成分を透過し、第1の偏光成分に直交する第2の偏光成分を反射する。画像表示素子51には、偏光分離素子52を介して、上述した所望の照明光強度分布の照明光が照射される。画像表示素子51は、その照明光に対して、表示パターン計算回路61で計算された強度変調パターンに基づいて強度変調を行い、投影画像を生成する。上述したように、表示パターン計算回路61で計算された強度変調パターンには、所望の照明光強度分布の情報が加味されているので、画像表示素子51によって、結果として、元の画像信号Vinを再現する投影画像が生成される。
 画像表示素子51によって生成された投影画像は、偏光分離素子52によって投射レンズ53に向けて出射される。投射レンズ53は、複数のレンズを含む投影光学系であり、画像表示素子51によって生成された投影画像を、スクリーン50等の投影面に投影する。
[1.8 効果]
 以上のように、本実施の形態によれば、所望の励起光強度分布の励起光によって生成された蛍光発光による光に基づいて照明光を生成するようにしたので、スペックルを低減した所望の照明光強度分布を得ることが可能となる。
 これにより、本実施の形態によれば、効率良く投影画像のダイナミックレンジを高めることができる。一般に、光源として、レーザ光源を用いる場合にはレーザ特有のスペックルが発生してしまう。本実施の形態によれば、レーザ光源が発した光を励起光として蛍光発光による所望の照明光強度分布を生成するので、実質上、スペックルレスとなり、投影画像の画質に優れる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態に係る照明装置、およびプロジェクタについて説明する。なお、以下では、上記第1の実施の形態に係る照明装置、およびプロジェクタの構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
[2.1 構成および動作]
 図18は、本開示の第2の実施の形態に係る照明装置、およびプロジェクタの制御系の要部の一構成例を概略的に示している。図19は、第2の実施の形態に係る照明装置、およびプロジェクタの要部の制御動作の一例を概略的に示している。
 なお、図18では、図1のプロジェクタ101や図2のプロジェクタ101A等の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 第2の実施の形態に係るプロジェクタは、励起光源31および蛍光体部20のうち、少なくとも一方の温度を検出する温度検出部を備えている。例えば、図18に示したように、温度検出部として、励起光源温度検出部151と、蛍光体温度検出部152とを備えている。
 また、第2の実施の形態に係るプロジェクタは、励起光源31および蛍光体部20の蛍光発光面のうち、少なくとも一方を冷却する冷却部をさらに備えていてもよい。例えば、励起光源31を冷却する励起光源冷却部153と、蛍光体部20の蛍光発光面を冷却する蛍光体冷却部154とをさらに備えていてもよい。
 図19に示したように、駆動制御部70は、画像信号Vinに基づいて、画像表示素子51に照射する所望の照明光強度分布を決定する(ステップS1)。駆動制御部70は、所望の照明光強度分布から求められた所望の励起光強度分布を再現するように、光位相変調素子11を駆動する(ステップS2)。
 また、駆動制御部70は、励起光源温度検出部151の検出結果T1(励起光源温度)と蛍光体温度検出部152の検出結果T2(蛍光体温度)との少なくとも一方の検出結果に基づいて、所定の計算テーブルによる補正演算を行う(ステップS3)。
 駆動制御部70は、励起光源温度検出部151の検出結果T1と蛍光体温度検出部152の検出結果T2との少なくとも一方の検出結果に基づいて、温度による色変化を補正するように画像信号Vinを補正し、補正した画像信号Vinに基づいて画像表示素子51を駆動する(ステップS4)。
 また、駆動制御部70は、励起光源温度検出部151の検出結果T1と蛍光体温度検出部152の検出結果T2との少なくとも一方の検出結果に基づいて、励起光の発光強度を補正するように励起光源31を駆動する(ステップS5)。
 また、駆動制御部70は、励起光源温度検出部151の検出結果T1に基づいて、励起光源冷却部153を駆動(ステップS6)して、励起光源31を冷却してもよい。
 また、駆動制御部70は、蛍光体温度検出部152の検出結果T2に基づいて、蛍光体冷却部154を駆動(ステップS7)して、蛍光体部20の蛍光発光面を冷却してもよい。
[2.2 効果]
 本実施の形態によれば、励起光源31および蛍光体部20の温度特性による投影画像の色変化を抑制することができる。これにより、より正確な色での画像表示が可能となる。
 その他の構成、動作、ならびに効果は、上記第1の実施の形態に係る照明装置、およびプロジェクタと略同様であってもよい。
<3.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
 例えば、本技術は以下のような構成を取ることもできる。以下の構成の本技術によれば、所望の励起光強度分布の励起光によって生成された蛍光発光による光に基づいて照明光を生成するようにしたので、スペックルを低減した所望の照明光強度分布を得ることが可能となる。
(1)
 励起光を発する励起光源と、
 前記励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、
 前記励起光源と前記蛍光体部との間に設けられ、前記蛍光発光面において前記励起光の強度分布が所望の励起光強度分布に近付くように、前記励起光の強度分布を変化させる励起光強度分布生成部と、
 前記蛍光体部からの前記蛍光発光による光に基づいて画像表示素子に照射する照明光を生成する照明光学系と
 を備える
 照明装置。
(2)
 画像信号に基づいて、前記所望の励起光強度分布を求める演算部
 をさらに備える
 上記(1)に記載の照明装置。
(3)
 前記演算部は、前記画像信号に基づいて、前記画像表示素子に照射する所望の照明光強度分布を求めると共に、求められた前記所望の照明光強度分布に基づいて、前記蛍光発光による所望の蛍光発光強度分布を求め、求められた前記所望の蛍光発光強度分布に基づいて、前記所望の励起光強度分布を求める
 上記(2)に記載の照明装置。
(4)
 前記演算部は、求められた前記所望の蛍光発光強度分布と前記蛍光発光面の発光特性に基づいて求められる前記励起光の強度分布に対する前記蛍光発光による光の強度分布の変化量とに基づいて、前記所望の励起光強度分布を求める
 上記(3)に記載の照明装置。
(5)
 前記演算部は、求められた前記所望の照明光強度分布と前記照明光学系の光学特性に基づいて求められる前記蛍光発光による光の強度分布に対する前記照明光の強度分布の変化量とに基づいて、前記所望の蛍光発光強度分布を求める
 上記(3)または(4)に記載の照明装置。
(6)
 前記励起光源および前記蛍光発光面のうち、少なくとも一方の温度を検出する温度検出部と、
 前記温度検出部の検出結果に基づいて、前記励起光の発光強度を補正するように前記励起光源を駆動する制御部と
 をさらに備える
 上記(1)ないし(5)のいずれか1つに記載の照明装置。
(7)
 前記励起光源および前記蛍光発光面のうち、少なくとも一方の温度を検出する温度検出部と、
 前記温度検出部の検出結果に基づいて、前記励起光源および前記蛍光発光面のうち、少なくとも一方を冷却する冷却部と
 をさらに備える
 上記(1)ないし(6)のいずれか1つに記載の照明装置。
(8)
 前記励起光強度分布生成部は、前記励起光の位相を変調する光位相変調素子を含む
 上記(1)ないし(7)のいずれか1つに記載の照明装置。
(9)
 前記励起光強度分布生成部は、前記励起光の光線角度を変化させる光線角度変調素子を含む
 上記(1)ないし(7)のいずれか1つに記載の照明装置。
(10)
 照明装置と、
 前記照明装置からの照明光を強度変調して投影画像を生成する画像表示素子と、
 前記画像表示素子によって生成された前記投影画像を投影面に投影する投影光学系と
 を含み、
 前記照明装置は、
 励起光を発する励起光源と、
 前記励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、
 前記励起光源と前記蛍光体部との間に設けられ、前記蛍光発光面において前記励起光の強度分布が所望の励起光強度分布に近付くように、前記励起光の強度分布を変化させる励起光強度分布生成部と、
 前記蛍光体部からの前記蛍光発光による光に基づいて前記画像表示素子に照射する前記照明光を生成する照明光学系と
 を備える
 プロジェクタ。
(11)
 画像信号に基づいて、前記画像表示素子を駆動する制御部、さらに含み、
 前記照明装置は、前記励起光源および前記蛍光発光面のうち、少なくとも一方の温度を検出する温度検出部、をさらに備え、
 前記制御部は、前記温度検出部の検出結果に基づいて、温度による色変化を補正するように前記画像信号を補正する
 上記(10)に記載のプロジェクタ。
 本出願は、日本国特許庁において2017年12月4日に出願された日本特許出願番号第2017-232299号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (11)

  1.  励起光を発する励起光源と、
     前記励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、
     前記励起光源と前記蛍光体部との間に設けられ、前記蛍光発光面において前記励起光の強度分布が所望の励起光強度分布に近付くように、前記励起光の強度分布を変化させる励起光強度分布生成部と、
     前記蛍光体部からの前記蛍光発光による光に基づいて画像表示素子に照射する照明光を生成する照明光学系と
     を備える
     照明装置。
  2.  画像信号に基づいて、前記所望の励起光強度分布を求める演算部
     をさらに備える
     請求項1に記載の照明装置。
  3.  前記演算部は、前記画像信号に基づいて、前記画像表示素子に照射する所望の照明光強度分布を求めると共に、求められた前記所望の照明光強度分布に基づいて、前記蛍光発光による所望の蛍光発光強度分布を求め、求められた前記所望の蛍光発光強度分布に基づいて、前記所望の励起光強度分布を求める
     請求項2に記載の照明装置。
  4.  前記演算部は、求められた前記所望の蛍光発光強度分布と前記蛍光発光面の発光特性に基づいて求められる前記励起光の強度分布に対する前記蛍光発光による光の強度分布の変化量とに基づいて、前記所望の励起光強度分布を求める
     請求項3に記載の照明装置。
  5.  前記演算部は、求められた前記所望の照明光強度分布と前記照明光学系の光学特性に基づいて求められる前記蛍光発光による光の強度分布に対する前記照明光の強度分布の変化量とに基づいて、前記所望の蛍光発光強度分布を求める
     請求項3に記載の照明装置。
  6.  前記励起光源および前記蛍光発光面のうち、少なくとも一方の温度を検出する温度検出部と、
     前記温度検出部の検出結果に基づいて、前記励起光の発光強度を補正するように前記励起光源を駆動する制御部と
     をさらに備える
     請求項1に記載の照明装置。
  7.  前記励起光源および前記蛍光発光面のうち、少なくとも一方の温度を検出する温度検出部と、
     前記温度検出部の検出結果に基づいて、前記励起光源および前記蛍光発光面のうち、少なくとも一方を冷却する冷却部と
     をさらに備える
     請求項1に記載の照明装置。
  8.  前記励起光強度分布生成部は、前記励起光の位相を変調する光位相変調素子を含む
     請求項1に記載の照明装置。
  9.  前記励起光強度分布生成部は、前記励起光の光線角度を変化させる光線角度変調素子を含む
     請求項1に記載の照明装置。
  10.  照明装置と、
     前記照明装置からの照明光を強度変調して投影画像を生成する画像表示素子と、
     前記画像表示素子によって生成された前記投影画像を投影面に投影する投影光学系と
     を含み、
     前記照明装置は、
     励起光を発する励起光源と、
     前記励起光が入射することによって蛍光発光する蛍光発光面を有する蛍光体部と、
     前記励起光源と前記蛍光体部との間に設けられ、前記蛍光発光面において前記励起光の強度分布が所望の励起光強度分布に近付くように、前記励起光の強度分布を変化させる励起光強度分布生成部と、
     前記蛍光体部からの前記蛍光発光による光に基づいて前記画像表示素子に照射する前記照明光を生成する照明光学系と
     を備える
     プロジェクタ。
  11.  画像信号に基づいて、前記画像表示素子を駆動する制御部、さらに含み、
     前記照明装置は、前記励起光源および前記蛍光発光面のうち、少なくとも一方の温度を検出する温度検出部、をさらに備え、
     前記制御部は、前記温度検出部の検出結果に基づいて、温度による色変化を補正するように前記画像信号を補正する
     請求項10に記載のプロジェクタ。
PCT/JP2018/041519 2017-12-04 2018-11-08 照明装置、およびプロジェクタ WO2019111627A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/766,911 US11156849B2 (en) 2017-12-04 2018-11-08 Illumination unit and projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232299 2017-12-04
JP2017-232299 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019111627A1 true WO2019111627A1 (ja) 2019-06-13

Family

ID=66750551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041519 WO2019111627A1 (ja) 2017-12-04 2018-11-08 照明装置、およびプロジェクタ

Country Status (2)

Country Link
US (1) US11156849B2 (ja)
WO (1) WO2019111627A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100699A (ja) * 1999-09-29 2001-04-13 Canon Inc 投射型表示装置とその応用システム
JP2004226631A (ja) * 2003-01-22 2004-08-12 Seiko Epson Corp プロジェクタ及び光学装置
JP2006106691A (ja) * 2004-09-08 2006-04-20 Seiko Epson Corp プロジェクタ
US20070110386A1 (en) * 2005-11-12 2007-05-17 Tien-Hon Chiang Device having combined diffusing, collimating, and color mixing light control function
JP2007264192A (ja) * 2006-03-28 2007-10-11 Toshiba Corp 投影表示装置
JP2010217566A (ja) * 2009-03-17 2010-09-30 Casio Computer Co Ltd 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ
JP2011227468A (ja) * 2010-03-30 2011-11-10 Panasonic Corp 投写型画像表示装置
JP2014062951A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
WO2017033369A1 (ja) * 2015-08-24 2017-03-02 ソニー株式会社 画像表示装置、画像表示方法、及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507705C (zh) 2004-09-08 2009-07-01 精工爱普生株式会社 投影机
JP5208727B2 (ja) * 2006-03-16 2013-06-12 パナソニック株式会社 画像投射装置、画像投射スクリーンおよび画像表示システム
US7551341B1 (en) 2008-01-28 2009-06-23 Dolby Laboratories Licensing Corporation Serial modulation display having binary light modulation stage
JP5741795B2 (ja) * 2010-11-09 2015-07-01 セイコーエプソン株式会社 プロジェクター及びその制御方法
JP5820983B2 (ja) * 2011-08-01 2015-11-24 パナソニックIpマネジメント株式会社 投写型映像表示装置
US10146118B2 (en) * 2014-09-26 2018-12-04 Sony Corporation Illumination device and display unit
CN105988266A (zh) * 2015-02-05 2016-10-05 深圳市绎立锐光科技开发有限公司 投影设备、投影控制***及投影控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100699A (ja) * 1999-09-29 2001-04-13 Canon Inc 投射型表示装置とその応用システム
JP2004226631A (ja) * 2003-01-22 2004-08-12 Seiko Epson Corp プロジェクタ及び光学装置
JP2006106691A (ja) * 2004-09-08 2006-04-20 Seiko Epson Corp プロジェクタ
US20070110386A1 (en) * 2005-11-12 2007-05-17 Tien-Hon Chiang Device having combined diffusing, collimating, and color mixing light control function
JP2007264192A (ja) * 2006-03-28 2007-10-11 Toshiba Corp 投影表示装置
JP2010217566A (ja) * 2009-03-17 2010-09-30 Casio Computer Co Ltd 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ
JP2011227468A (ja) * 2010-03-30 2011-11-10 Panasonic Corp 投写型画像表示装置
JP2014062951A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
WO2017033369A1 (ja) * 2015-08-24 2017-03-02 ソニー株式会社 画像表示装置、画像表示方法、及びプログラム

Also Published As

Publication number Publication date
US20200372844A1 (en) 2020-11-26
US11156849B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
JP5951744B2 (ja) プロジェクター及びその照明装置
US10819961B2 (en) Light source apparatus for use in projection three-dimensional display apparatus, with dynamic diffusion plate
US8651667B2 (en) Projector and method of controlling the same
US9500935B2 (en) Projection image display device
WO2013094011A1 (ja) 画像投射装置およびその制御方法
JP2014160233A (ja) 照明装置および映像表示装置
TW201109726A (en) Light source device, projector and projection method
US10939079B2 (en) Display apparatus
EP3855734B1 (en) Projection system and projection display method
WO2016021002A1 (ja) 光源装置、プロジェクタおよび光源装置の制御方法
JP6406736B2 (ja) プロジェクタおよび画像表示方法
EP3561593B1 (en) Projection display system
CN112424687B (zh) 照明装置和投影仪
JP2015184407A (ja) 照明装置および映像表示装置
JP6659061B2 (ja) プロジェクタ
JP2016145881A (ja) 波長変換素子、照明装置およびプロジェクター
JP2018013541A (ja) 投写型映像表示装置
JP7047761B2 (ja) 投射型表示装置
WO2019111627A1 (ja) 照明装置、およびプロジェクタ
WO2021205849A1 (ja) 照明光学系および投射型表示装置
JP7204379B2 (ja) 光源装置および画像投射装置
JP2009198570A (ja) 画像表示装置及び投影装置
JP2016212172A (ja) 照明光学系および画像投射装置
JP2018124389A (ja) プロジェクター及びプロジェクターの制御方法
EP4375746A1 (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP