JP5173255B2 - A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method. - Google Patents

A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method. Download PDF

Info

Publication number
JP5173255B2
JP5173255B2 JP2007129333A JP2007129333A JP5173255B2 JP 5173255 B2 JP5173255 B2 JP 5173255B2 JP 2007129333 A JP2007129333 A JP 2007129333A JP 2007129333 A JP2007129333 A JP 2007129333A JP 5173255 B2 JP5173255 B2 JP 5173255B2
Authority
JP
Japan
Prior art keywords
fine particles
metal fine
metal
partial pressure
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007129333A
Other languages
Japanese (ja)
Other versions
JP2008285697A (en
Inventor
雅則 友成
清信 井田
徹 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2007129333A priority Critical patent/JP5173255B2/en
Publication of JP2008285697A publication Critical patent/JP2008285697A/en
Application granted granted Critical
Publication of JP5173255B2 publication Critical patent/JP5173255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属微粒子の表面に、炭素含有被覆を形成してなる金属微粒子及びその製造方法に関する。更に、金属含有膜等を製造する際に用いる前記の金属微粒子を含有した流動性組成物に関する。   The present invention relates to a metal fine particle obtained by forming a carbon-containing coating on the surface of the metal fine particle and a method for producing the same. Furthermore, it is related with the fluid composition containing the said metal microparticles used when manufacturing a metal containing film | membrane etc.

金属微粒子は、例えば導電剤、帯電防止剤、電磁波遮蔽剤、赤外線遮蔽剤、発色剤、着色剤、触媒等の種々の用途に用いられている。具体的には、金属微粒子の高い導電性を活用して、電気的導通を確保するための材料等として幅広く用いる技術が提案されている。また、ブラウン管、液晶ディスプレイ等の透明性部材の電磁波遮蔽や自動車の赤外線遮蔽に適用されている。更に、金属微粒子の金属光沢を活用した着色剤としても注目されている。
金属微粒子を種々の用途に用いるには、金属微粒子を溶媒に分散した金属コロイド液とし、必要に応じてバインダや分散剤、粘度調整剤などの添加剤を更に配合したコーティング剤、塗料、ペースト、インキなどの組成物として、それらをスクリーン印刷、インクジェット印刷等の印刷技術、スプレー塗装、スピンコーター等の塗布技術を用いて基材に設置し、必要に応じて加熱して、基材上に金属微粒子を担持したり、金属薄膜を形成したりしている。
Metal fine particles are used in various applications such as a conductive agent, an antistatic agent, an electromagnetic wave shielding agent, an infrared shielding agent, a color former, a colorant, and a catalyst. Specifically, a technique that is widely used as a material for securing electrical continuity by utilizing the high conductivity of metal fine particles has been proposed. Moreover, it is applied to electromagnetic shielding of transparent members such as cathode ray tubes and liquid crystal displays, and infrared shielding of automobiles. Furthermore, it attracts attention as a colorant utilizing the metallic luster of metal fine particles.
In order to use the metal fine particles for various applications, a metal colloid liquid in which the metal fine particles are dispersed in a solvent, and coating agents, paints, pastes, and the like further blended with additives such as a binder, a dispersant, and a viscosity modifier as necessary. As compositions such as inks, they are placed on the substrate using printing techniques such as screen printing and ink jet printing, spray coating, spin coater and other coating techniques, and heated as necessary to form a metal on the substrate. It carries fine particles or forms a metal thin film.

金属微粒子は、一般に大気・水・化学薬品・高温気体・土壌などと直接触れ合う環境下では、その表面から徐々に電気化学的な腐食が始まり、特に化学薬品や酸化による腐食は進行が著しい。このような腐食が進行すると、当然の結果として金属微粒子本来の特性も損なわれていく。そこで、このような化学薬品による腐食や酸化が問題となるような環境下に配置される金属微粒子に対しては、耐薬品性や耐酸化性を付与するための手段が講じられる。例えば、特許文献1には、金属酸化物の粒子と熱可塑性樹脂の粒子との混合物を不活性ガス雰囲気中で加熱処理し、前記熱可塑性樹脂を液相炭素化して、炭素被覆金属粒子を製造する方法が提案されている。
また、積層セラミックスコンデンサの内部電極用材料として使うために、特許文献2には、ニッケル金属粒子粉末とポリオールとを含む原料分散液を加熱し、ニッケル金属粒子に炭素コーティング層を形成させることにより、焼成時の収縮開始温度を800℃以上に高め、しかも約900℃以上の高温下の焼成過程で、炭素コーティング層はCO又はCOなどの形態に酸化されて除去され、ニッケル金属に固有の高い電気伝導性を有するニッケル内部電極を製造することを提案している。
In general, metal fine particles gradually begin to corrode electrochemically from the surface in an environment where they are in direct contact with air, water, chemicals, high-temperature gas, soil, etc., and corrosion due to chemicals or oxidation is particularly remarkable. When such corrosion progresses, as a natural result, the original characteristics of the metal fine particles are also impaired. Therefore, means for imparting chemical resistance and oxidation resistance to metal fine particles disposed in an environment in which corrosion and oxidation by such chemicals pose a problem is taken. For example, in Patent Document 1, a mixture of metal oxide particles and thermoplastic resin particles is heated in an inert gas atmosphere, and the thermoplastic resin is liquid-phase carbonized to produce carbon-coated metal particles. A method has been proposed.
In addition, in order to use as a material for an internal electrode of a multilayer ceramic capacitor, Patent Document 2 discloses that a raw material dispersion containing nickel metal particle powder and polyol is heated to form a carbon coating layer on the nickel metal particles. The shrinkage start temperature during firing is increased to 800 ° C. or higher, and the carbon coating layer is oxidized and removed to a form such as CO or CO 2 in a firing process at a high temperature of about 900 ° C. or higher, which is inherent to nickel metal. It has been proposed to produce nickel internal electrodes with electrical conductivity.

特開平10−280003号公報JP-A-10-280003 特開2005−154904号公報JP 2005-154904 A

前記の特許文献1の方法では、金属酸化物の粒子と熱可塑性樹脂の粒子との混合物を不活性ガス雰囲気中で加熱処理する方法であるために、10μm以上の大きな金属粒子しか得られず、また、大きさも形状も不揃いになるため、微細な金属微粒子が製造できない。また、炭素被覆も不均一になるため、十分な耐薬品性や耐酸化性が得られず、特に、高温度での耐酸化安定性が十分ではない。
特許文献2の方法では、炭素コーティング層の形成のためにジエチレングリコールの沸点付近の220℃程度まで原料分散液を加熱する必要があり、生産効率が低く、大量生産できない。
In the method of Patent Document 1 described above, since a mixture of metal oxide particles and thermoplastic resin particles is heated in an inert gas atmosphere, only large metal particles of 10 μm or more can be obtained. Further, since the size and shape are not uniform, fine metal fine particles cannot be produced. Further, since the carbon coating is also non-uniform, sufficient chemical resistance and oxidation resistance cannot be obtained, and in particular, oxidation resistance stability at high temperatures is not sufficient.
In the method of Patent Document 2, it is necessary to heat the raw material dispersion to about 220 ° C. near the boiling point of diethylene glycol in order to form a carbon coating layer, so that the production efficiency is low and mass production cannot be performed.

本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、高分子保護コロイドを被覆した金属微粒子を製造した後、それを酸素分圧が10Pa以下の低酸素分圧雰囲気で加熱すると、高分子保護コロイドが熱分解して、金属微粒子の表面に均一な炭素含有被覆を形成させることができること、この炭素含有被覆により金属微粒子の耐酸化安定性を改善することができること、しかも、炭素含有被覆は必要に応じて焼付けにより除去できることを見出し、本発明を完成した。   As a result of intensive studies to solve these problems, the present inventors have produced metal fine particles coated with a polymer protective colloid, and then, in a low oxygen partial pressure atmosphere with an oxygen partial pressure of 10 Pa or less. When heated, the polymer protective colloid is thermally decomposed to form a uniform carbon-containing coating on the surface of the metal fine particles, the oxidation-resistant stability of the metal fine particles can be improved by this carbon-containing coating, The present inventors have found that the carbon-containing coating can be removed by baking as necessary.

すなわち、本発明は、
(1)金属微粒子の表面に、高分子保護コロイドを熱分解して得られた炭素含有被覆を形成してなる金属微粒子、
(2)高分子保護コロイドを被覆した金属微粒子を、酸素分圧が10Pa以下の低酸素分圧雰囲気で加熱して高分子保護コロイドを熱分解することを特徴とする炭素含有被覆を形成してなる金属微粒子の製造方法、
(3)前記の金属微粒子と溶媒とを少なくとも含む金属微粒子含有組成物、などである。
That is, the present invention
(1) Metal fine particles formed by forming a carbon-containing coating obtained by pyrolyzing a polymer protective colloid on the surface of metal fine particles,
(2) Forming a carbon-containing coating characterized by thermally decomposing the polymer protective colloid by heating the metal fine particles coated with the polymer protective colloid in a low oxygen partial pressure atmosphere having an oxygen partial pressure of 10 Pa or less. A method for producing fine metal particles,
(3) A metal fine particle-containing composition containing at least the metal fine particles and a solvent.

本発明の金属微粒子は、耐酸化安定性を改善することができるため、触媒材料や着色剤等の高温度での使用に対応できる。また、焼付けにより金属微粒子の表面に形成された炭素含有被覆を除去でき、電気的導通を確保するための材料等として幅広く用いることができる。
また、本発明の金属微粒子と溶媒とを少なくとも含む流動性組成物は、金属含有膜等を形成する材料として用いることができる。
Since the metal fine particles of the present invention can improve the oxidation resistance stability, they can be used at high temperatures such as catalyst materials and colorants. In addition, the carbon-containing coating formed on the surface of the metal fine particles by baking can be removed, and can be widely used as a material for ensuring electrical conduction.
The fluid composition containing at least the metal fine particles and the solvent of the present invention can be used as a material for forming a metal-containing film or the like.

本発明の金属微粒子は、その構成成分、粒子径等には特に制限はなく、用途に応じて適宜選択することができる。構成成分としては、1種の金属であっても、合金にしたり積層するなどして2種以上の金属で構成されていても良い。また、1種の金属微粒子であっても良いし、2種以上の金属微粒子を混合した状態であっても良く、例えば平均粒子径が異なる2種以上の金属微粒子、構成成分が異なる2種以上の金属微粒子を混合した状態であっても良い。その金属成分としては周期表VIII族(鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)及びIB族(銅、銀、金)からなる群より選ばれる少なくとも1種であれば、導電性が高いので好ましく、中でも銀、金、白金、パラジウム、銅は特に導電性が高くより好ましく、導電性とコストのバランスから銀又は銅が特に好ましい。また、着色剤、装飾用途に用いるには、銀、金、銅等が好ましく、発色剤としては金等が好ましい。特に耐酸化安定性の改善が求められている銅、ニッケル、コバルト及び鉄から選ばれる少なくとも一種で構成される金属微粒子が好ましく用いられる。金属微粒子の粒子径は適宜設定することができるが、電子顕微鏡で測定した平均粒子径で表して0.001〜1.0μmの範囲が好ましく、多方面の用途に用いることができることから1〜500nm程度の平均粒子径を有する金属微粒子が更に好ましく、5〜400nmの範囲の平均粒子径を有する金属微粒子が更に好ましい。なお、金属微粒子には、製法上不可避の酸素、異種金属等の不純物を含有していても良く、あるいは、金属微粒子の急激な酸化防止のために必要に応じて予め酸素、金属酸化物や、金属微粒子製造の際に用いる原材料などが含まれていても良い。   The metal fine particles of the present invention are not particularly limited in their constituent components, particle diameter, etc., and can be appropriately selected according to the application. The constituent component may be one kind of metal or may be composed of two or more kinds of metals by alloying or laminating. Further, it may be one kind of metal fine particles, or may be a state in which two or more kinds of metal fine particles are mixed. For example, two or more kinds of metal fine particles having different average particle diameters, two or more kinds having different constituent components A state in which metal fine particles are mixed may be used. If the metal component is at least one selected from the group consisting of group VIII (iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum) and group IB (copper, silver, gold) as the metal component In view of high conductivity, silver, gold, platinum, palladium and copper are particularly preferable because of high conductivity, and silver or copper is particularly preferable from the balance of conductivity and cost. In addition, silver, gold, copper, and the like are preferable for use as a colorant and decoration, and gold is preferable as the color former. In particular, metal fine particles composed of at least one selected from copper, nickel, cobalt and iron, which are required to improve oxidation resistance stability, are preferably used. Although the particle diameter of the metal fine particles can be set as appropriate, the average particle diameter measured by an electron microscope is preferably in the range of 0.001 to 1.0 μm, and can be used for various purposes. Metal fine particles having an average particle size of about an average particle size are more preferable, and metal fine particles having an average particle size in the range of 5 to 400 nm are more preferable. In addition, the metal fine particles may contain impurities such as oxygen inevitably in the manufacturing method, foreign metals, or in advance, oxygen, metal oxides, and the like in advance to prevent rapid oxidation of the metal fine particles, The raw material used at the time of metal fine particle manufacture may be contained.

本発明の金属微粒子は、その表面に炭素含有被覆を形成している。炭素含有被覆は、カーボン、グラファイト等の炭素、あるいは炭素とその他の元素が結合した炭化物を主成分とするものであり、そのほかに未分解の高分子保護コロイドや金属微粒子製造の際の原材料、不純物等が含まれていても良い。前記の炭素含有被覆は、金属微粒子の表面に付着していても良く、金属微粒子の表面に層を形成していても良い。また、金属微粒子の表面近傍に炭素が入って金属成分と結合した炭化物の状態を形成しても良い。炭素含有被覆は、金属微粒子の表面に均一に分散されているのが好ましく、金属微粒子の表面に均一な層を形成しているのがより好ましい。炭素含有被覆の厚さは適宜設定することができるが、耐酸化安定性向上等の観点から約0.5〜約100nm程度が好ましく、より好ましくは約1〜約50nm程度である。炭素含有被覆の含有量は適宜設定することができるが、金属微粒子の金属成分に対する炭素の含有量として、耐酸化安定性向上等の観点から約0.1〜約10重量%程度が好ましく、より好ましくは約0.5〜約7重量%程度である。   The metal fine particles of the present invention have a carbon-containing coating formed on the surface thereof. Carbon-containing coatings are mainly composed of carbon such as carbon and graphite, or carbides in which carbon and other elements are combined. In addition, raw materials and impurities used in the production of undecomposed polymer protective colloids and metal fine particles Etc. may be included. The carbon-containing coating may be attached to the surface of the metal fine particles, or a layer may be formed on the surface of the metal fine particles. Further, a carbide state in which carbon enters the vicinity of the surface of the metal fine particles and is bonded to the metal component may be formed. The carbon-containing coating is preferably uniformly dispersed on the surface of the metal fine particles, and more preferably a uniform layer is formed on the surface of the metal fine particles. The thickness of the carbon-containing coating can be appropriately set, but is preferably about 0.5 to about 100 nm, more preferably about 1 to about 50 nm from the viewpoint of improving oxidation resistance stability. The content of the carbon-containing coating can be appropriately set, but the content of carbon relative to the metal component of the metal fine particles is preferably about 0.1 to about 10% by weight from the viewpoint of improving oxidation resistance stability, and more. Preferably, it is about 0.5 to about 7% by weight.

炭素含有被覆は高分子保護コロイドを熱分解して得られる。高分子保護コロイドとしては公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系又は変性セルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸又はアクリル酸塩、ポリエチレングリコール等の合成高分子等が挙げられ、これらを1種又は2種以上を用いても良い。特にゼラチン、アラビアゴム、変性セルロース、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン及びポリアクリル酸類から選ばれる少なくとも一種が好ましい。このような高分子保護コロイドを後述する方法で金属微粒子の表面に被覆させた後、熱分解して、炭素含有被覆を形成する。熱分解の条件は、高分子保護コロイドが炭化する条件であれば適宜設定することができるが、高分子保護コロイドの全部が二酸化炭素、一酸化炭素等に分解されない条件で行う必要がある。そのため、高分子保護コロイドを熱分解する際の雰囲気、特に酸素分圧を調整しながら適当な温度で加熱する。例えば、酸素分圧が10Pa以下の低酸素分圧雰囲気であれば所望の炭素含有被覆を形成することができ、酸素分圧が1×10−4〜1×10−1Paであれば微量の酸素を含む微酸素雰囲気であるためより好ましく、酸素分圧1×10−4Pa以下であれば酸素をほとんど含まない無酸素雰囲気であり、どのような温度で加熱しても所望の炭素含有被覆を形成することができるため更に好ましい。前記の酸素分圧に調整するには、高純度の窒素、アルゴン等の不活性ガス、水素等の還元性ガスを用いたり、所定の酸素分圧になるように加熱装置内を真空又は減圧する。一般に供給される工業用低純度窒素ガスは純度99.5%であって、それには0.5%の酸素が含まれ、1.34×1020個/L以下の酸素分子を有しており、そのときの酸素分圧は5.0×10Paである。このため、酸素分圧を10Pa以下にするには高純度の不活性ガス、還元性ガスを用いる。一方、真空又は減圧するには、通常の真空装置や減圧装置を用いることができるため、この方法がより好ましい。前記の加熱温度は適宜設定することができるが、150〜800℃程度が好ましく、150〜500℃程度がより好ましい。加熱時間は約1分〜約10時間程度が適当である。 Carbon-containing coatings are obtained by pyrolyzing polymeric protective colloids. As the polymer protective colloid, known ones can be used, for example, protein systems such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, natural polymers such as starch, dextrin, agar, sodium alginate, etc. Cellulose-based or modified cellulose-based, such as hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, vinyl-based such as polyvinyl alcohol, polyvinylpyrrolidone, acrylic acid or acrylate such as sodium polyacrylate, ammonium polyacrylate, polyethylene glycol, etc. These polymers may be used, and one or more of these may be used. Particularly preferred is at least one selected from gelatin, gum arabic, modified cellulose, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone and polyacrylic acids. Such a polymer protective colloid is coated on the surface of the metal fine particles by a method described later, and then pyrolyzed to form a carbon-containing coating. The conditions for the thermal decomposition can be appropriately set as long as the polymer protective colloid is carbonized, but it is necessary to carry out the conditions under which the entire polymer protective colloid is not decomposed into carbon dioxide, carbon monoxide and the like. Therefore, the polymer protective colloid is heated at an appropriate temperature while adjusting the atmosphere for thermal decomposition, particularly the oxygen partial pressure. For example, if the oxygen partial pressure is a low oxygen partial pressure atmosphere of 10 Pa or less, a desired carbon-containing coating can be formed. If the oxygen partial pressure is 1 × 10 −4 to 1 × 10 −1 Pa, a trace amount It is more preferable because it is a slight oxygen atmosphere containing oxygen, and an oxygen partial pressure of 1 × 10 −4 Pa or less is an oxygen-free atmosphere containing almost no oxygen, and the desired carbon-containing coating can be heated at any temperature. Is more preferable. In order to adjust the oxygen partial pressure, an inert gas such as high-purity nitrogen or argon, or a reducing gas such as hydrogen is used, or the inside of the heating device is evacuated or depressurized so as to have a predetermined oxygen partial pressure. . Generally supplied industrial low-purity nitrogen gas has a purity of 99.5%, contains 0.5% oxygen, and has 1.34 × 10 20 oxygen molecules / L or less. The oxygen partial pressure at that time is 5.0 × 10 2 Pa. For this reason, in order to make oxygen partial pressure 10 Pa or less, a high purity inert gas and reducing gas are used. On the other hand, in order to vacuum or reduce the pressure, a normal vacuum device or a pressure reducing device can be used, so this method is more preferable. Although the said heating temperature can be set suitably, about 150-800 degreeC is preferable and about 150-500 degreeC is more preferable. The heating time is about 1 minute to about 10 hours.

高分子保護コロイドを予め金属微粒子の表面に被覆させるには、(1)予め公知の方法で調製した金属微粒子を溶媒に分散させ、次いで、高分子保護コロイドを混合し、必要に応じて加熱して、高分子保護コロイドを金属微粒子の表面に被覆させる方法、(2)高分子保護コロイドの存在下、金属化合物溶液と還元剤を混合し還元して、高分子保護コロイドを被覆した金属微粒子を製造する方法等を用いることができるが、(2)の方法では還元反応の際に高分子保護コロイドが存在しており、微細な金属微粒子が分散した状態で得られるため好ましい方法である。   In order to coat the surface of the metal fine particles in advance with the polymer protective colloid, (1) Disperse the metal fine particles prepared in advance by a known method in a solvent, then mix the polymer protective colloid and heat as necessary. (2) In the presence of the polymer protective colloid, the metal compound solution and the reducing agent are mixed and reduced in the presence of the polymer protective colloid to reduce the metal fine particle coated with the polymer protective colloid. Although the manufacturing method etc. can be used, the method (2) is a preferable method because a polymer protective colloid is present during the reduction reaction and fine metal fine particles are obtained in a dispersed state.

前記の(2)の方法について以下に詳述する。金属微粒子を製造するための原料である金属化合物は、例えば、前記金属の塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩、酸化物、水酸化物等を用いることができる。金属化合物を溶解あるいは懸濁する溶媒は、水溶媒、アルコール等の有機溶媒又は水溶媒とアルコール等の有機溶媒との混合溶媒を用いることができ、取り扱い易さや経済性の点で水溶媒を用いるのが好ましい。金属化合物の溶媒中の濃度は、特に制約はないが、工業的には5ミリモル/リットル以上とすることが好ましい。   The method (2) will be described in detail below. For example, the metal chloride, sulfate, nitrate, carbonate, acetate, oxide, hydroxide and the like can be used as the metal compound as a raw material for producing the metal fine particles. As the solvent for dissolving or suspending the metal compound, an aqueous solvent, an organic solvent such as alcohol, or a mixed solvent of an aqueous solvent and an organic solvent such as alcohol can be used, and an aqueous solvent is used from the viewpoint of ease of handling and economy. Is preferred. The concentration of the metal compound in the solvent is not particularly limited, but is preferably 5 mmol / liter or more industrially.

(2)の方法において用いる、還元剤としては、公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその塩、次亜リン酸及び次亜リン酸ナトリウム等のその塩等が挙げられ、これらを1種又は2種以上用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。還元剤の使用量は、金属化合物から金属微粒子を生成できる量であれば適宜設定することができ、金属化合物中に含まれる金属1モルに対し0.2〜5モルの範囲にあるのが好ましい。還元剤が前記範囲より少ないと反応が進み難く、金属微粒子が十分に生成せず、前記範囲より多いと反応が進みすぎ、所望の金属微粒子が得られ難いため好ましくない。更に好ましい還元剤の使用量は、0.3〜2モルの範囲である。   As the reducing agent used in the method (2), known ones can be used. For example, hydrazine reducing agents such as hydrazine and hydrazine compounds such as hydrazine hydrochloride, hydrazine sulfate and hydrazine hydrate, borohydride Sodium, sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and its salt such as sodium phosphite, hypophosphorous acid and its salt such as sodium hypophosphite, etc. These may be used alone or in combination of two or more. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power. The amount of the reducing agent used can be appropriately set as long as it can generate metal fine particles from the metal compound, and is preferably in the range of 0.2 to 5 mol with respect to 1 mol of the metal contained in the metal compound. . If the reducing agent is less than the above range, the reaction is difficult to proceed, and metal fine particles are not sufficiently formed. Furthermore, the usage-amount of a preferable reducing agent is the range of 0.3-2 mol.

高分子保護コロイドの存在下、金属化合物溶液と還元剤を混合し還元すると、高分子保護コロイドが被覆された金属微粒子が生成する。還元反応温度は、10℃〜用いた溶媒の沸点の範囲であれば反応が進み易いので好ましく、40〜95℃の範囲であれば微細な金属微粒子が得られるためより好ましく、60〜95℃の範囲が更に好ましく、80〜95℃の範囲が特に好ましい。反応液のpHを酸又はアルカリで3〜12の範囲に予め調整すると、均一に反応させることができるので好ましい。反応時間は、還元剤等の原材料の添加時間などで制御して設定することができ、例えば、10分〜6時間程度が適当である。前記の還元反応の際に、錯化剤を存在させると金属微粒子の大きさを適宜制御することができるため好ましい。錯化剤としては、硫黄、窒素、酸素から選ばれる少なくとも1種をドナー原子として含む錯化剤が好ましく、メルカプトプロピオン酸、メルカプト酢酸、メルカプトエタノール、システインなどの硫黄を含む錯化剤がより好ましい。還元終了後、生成した金属微粒子を固液分離し、必要に応じて洗浄した後、通常の方法により乾燥しても良い。金属微粒子は酸化され易いので、酸化を抑制するために、乾燥は窒素、アルゴン等の不活性ガスの雰囲気下で行うのが好ましい。乾燥後は、必要に応じて粉砕を行っても良い。   When the metal compound solution and the reducing agent are mixed and reduced in the presence of the polymer protective colloid, metal fine particles coated with the polymer protective colloid are generated. The reduction reaction temperature is preferably in the range of 10 ° C. to the boiling point of the solvent used, because the reaction is easy to proceed, and in the range of 40 to 95 ° C., because fine metal fine particles are obtained, more preferably 60 to 95 ° C. The range is more preferable, and the range of 80 to 95 ° C. is particularly preferable. It is preferable to adjust the pH of the reaction solution in the range of 3 to 12 in advance with an acid or an alkali because the reaction can be performed uniformly. The reaction time can be set by controlling the addition time of raw materials such as a reducing agent. For example, about 10 minutes to 6 hours is appropriate. In the above reduction reaction, the presence of a complexing agent is preferable because the size of the metal fine particles can be appropriately controlled. As the complexing agent, a complexing agent containing at least one selected from sulfur, nitrogen, and oxygen as a donor atom is preferable, and a complexing agent containing sulfur such as mercaptopropionic acid, mercaptoacetic acid, mercaptoethanol, and cysteine is more preferable. . After completion of the reduction, the produced metal fine particles may be solid-liquid separated, washed as necessary, and then dried by a usual method. Since the metal fine particles are easily oxidized, drying is preferably performed in an atmosphere of an inert gas such as nitrogen or argon in order to suppress oxidation. After drying, you may grind | pulverize as needed.

前記の炭素含有被覆を形成してなる金属微粒子は、溶媒に分散させて用いることができる。この金属微粒子含有組成物は、一般に分散体、コーティング剤、塗料、ペースト、インキ、インクなどと称される流動性組成物を包含し、前記の金属微粒子と溶媒を少なくとも含有する。金属微粒子を分散させる溶媒は特に制限はなく、水溶媒、アルコール、トルエン等の有機溶媒又は水溶媒とアルコール等の有機溶媒との混合溶媒を用いることができ、用途に応じて適宜選択することができる。具体的には、アルコール類としては例えばメタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、イソブタノール、α−テルピネオールが挙げられ、ケトン類としては例えばシクロヘキサノン、メチルシクロヘキサノン、2−ブタノン、メチルイソブチルケトン、アセトンが挙げられる。更に有機溶媒としてトルエン、ミネラルスピリットなども好適に用いることができる。金属含有組成物に含まれる金属微粒子の配合量は特に制限はなく、用途に応じて適宜選択することができる。例えば、電気的導通を確保するための材料等の用途における金属微粒子の配合量の上限値は、90重量%程度が可能であり、85重量%が好ましく、80重量%がより好ましく、その下限値は10重量%程度である。装飾用途においてはコストの面から、より低濃度の金属微粒子を用いて鏡面を呈する塗膜が得られることが望ましく、その配合量の上限値は50重量%であれば良く、20重量%であればより好ましく、15重量%であれば更に好ましく、その下限値は1重量%程度である。   The fine metal particles formed by forming the carbon-containing coating can be used by being dispersed in a solvent. The metal fine particle-containing composition includes a fluid composition generally referred to as a dispersion, a coating agent, a paint, a paste, an ink, or an ink, and contains at least the metal fine particles and a solvent. The solvent in which the metal fine particles are dispersed is not particularly limited, and an aqueous solvent, an organic solvent such as alcohol and toluene, or a mixed solvent of an aqueous solvent and an organic solvent such as alcohol can be used, and can be appropriately selected depending on the application. it can. Specifically, examples of alcohols include methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, isobutanol, and α-terpineol, and examples of ketones include cyclohexanone, methylcyclohexanone, 2-butanone, methyl isobutyl ketone, Acetone is mentioned. Furthermore, toluene, mineral spirit, etc. can be used suitably as an organic solvent. There is no restriction | limiting in particular in the compounding quantity of the metal fine particle contained in a metal containing composition, According to a use, it can select suitably. For example, the upper limit value of the amount of the metal fine particles in the use of a material for ensuring electrical continuity can be about 90% by weight, preferably 85% by weight, more preferably 80% by weight, and the lower limit value thereof. Is about 10% by weight. In decorative applications, from the viewpoint of cost, it is desirable that a coating film having a mirror surface is obtained by using metal fine particles having a lower concentration. The upper limit of the blending amount may be 50% by weight, or 20% by weight. More preferably, it is more preferably 15% by weight, and the lower limit is about 1% by weight.

前記の金属微粒子含有組成物には、前記の金属微粒子、溶媒の他に、界面活性剤、バインダ(硬化性樹脂)、増粘剤、可塑剤、防カビ剤、分散剤等を必要に応じて適宜配合することもできる。界面活性剤は、金属微粒子の分散安定性を更に良くすることができ、4級アンモニウム塩等のカチオン系界面活性剤等を制限なく用いることができる。バインダは、塗布物と基材との密着性を一層向上させることができ、溶媒に対する溶解型、エマルジョン型、コロイダルディスパージョン型等のバインダを制限なく用いることができ、公知のタンパク質系高分子、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エチルセルロース等のセルロース樹脂などを用いることができる。バインダの配合量は、金属微粒子100重量部に対し0.01〜10重量部程度の範囲が好ましく、より好ましい範囲は0.01〜8重量部程度であり、0.01〜5重量部程度であれば更に好ましい。また、金属微粒子の分散性を更に向上させるために、アルカノールアミン等の分散剤を添加しても良い。溶媒への金属微粒子の分散方法は特に制限されないが、例えば、ディスパー等の撹拌機を用いた撹拌混合、サンドミル、コロイドミル等の湿式粉砕混合、超音波分散などの方法を用いることができる。   In addition to the metal fine particles and the solvent, the metal fine particle-containing composition contains a surfactant, a binder (curable resin), a thickener, a plasticizer, an antifungal agent, a dispersant, and the like as necessary. It can also mix | blend suitably. The surfactant can further improve the dispersion stability of the metal fine particles, and a cationic surfactant such as a quaternary ammonium salt can be used without limitation. The binder can further improve the adhesion between the coated material and the base material, and can use a binder such as a solvent-soluble type, an emulsion type, and a colloidal dispersion type without limitation. An acrylic resin, a polyester resin, a urethane resin, a cellulose resin such as ethyl cellulose, or the like can be used. The amount of the binder is preferably in the range of about 0.01 to 10 parts by weight, more preferably in the range of about 0.01 to 8 parts by weight, and about 0.01 to 5 parts by weight with respect to 100 parts by weight of the metal fine particles. More preferably. Moreover, in order to further improve the dispersibility of the metal fine particles, a dispersant such as alkanolamine may be added. The method for dispersing the metal fine particles in the solvent is not particularly limited. For example, a method such as stirring and mixing using a stirrer such as a disper, wet pulverization and mixing such as a sand mill or a colloid mill, and ultrasonic dispersion can be used.

前記の金属微粒子含有組成物は、金属含有膜の形成に用いることができる。例えば、スクリーン印刷、インクジェット印刷等の方法、スピンコート、ロールコート、スプレーコート、刷毛塗り等の塗布方法により、基材に塗布又は印刷し、乾燥して金属含有膜を形成する。また、基板に塗布又は印刷した後、必要に応じて塗布物又は印刷物を雰囲気、特に酸素分圧を調整しながら適当な温度で焼付けする。焼付けして炭素含有被覆を除去する場合は、空気、酸素ガス等の酸化性ガスを含む雰囲気下、例えば酸素分圧が10Pa以上の雰囲気下で焼付けすれば炭素が酸化され気化して除去される。また、金属微粒子の酸化を防止する上から、10Pa以下の低酸素分圧雰囲気で行うのが好ましく、酸素分圧が1×10−4〜1×10−1Paの微酸素雰囲気であれば、金属微粒子の酸化を防止しながら焼結させることができるためより好ましい。炭素含有被覆を除去する場合の焼付け温度は、酸素分圧によって適宜設定することができるが、100〜1000℃程度の温度が好ましく、120〜700℃程度がより好ましく、150〜700℃程度がより一層好ましく、200〜700℃程度が更に好ましい。
一方、炭素含有被覆が存在しても差し支えなければ、雰囲気や酸素分圧を調整しながら適当な温度で焼付けを行うことができる。通常の焼付け温度としては、例えば、150〜500℃程度であるが、それ以上の温度であっても酸素分圧を調整すれば可能である。その際の雰囲気は、炭素含有被覆により金属の酸化等が防止されるため空気、酸素等の酸化性ガスでも良く、10Pa以下の低酸素分圧雰囲気が好ましく、酸素分圧が1×10−4〜1×10−1Paの微酸素雰囲気あるいは1×10−4Pa以下の無酸素雰囲気であれば、どのような温度で焼付けしても所望の金属含有膜を形成することができるため更に好ましい。いずれも場合でも、前記の酸素分圧に調整するには、高純度の窒素、アルゴン等の不活性ガス、水素等の還元性ガスを用いたり、所定の酸素分圧になるように加熱装置内を真空又は減圧する。焼付け時間は約1分〜約10時間程度が適当である。基材としては、金属、ガラス、セラミック、コンクリートなどの無機質材料、ゴム、プラスチック、紙、木、皮革、布、繊維などの有機質材料、前記の無機質材料と有機質材料とを併用あるいは複合した材料を用いることができる。
The metal fine particle-containing composition can be used for forming a metal-containing film. For example, a metal-containing film is formed by coating or printing on a substrate by a method such as screen printing or inkjet printing, or a coating method such as spin coating, roll coating, spray coating, or brush coating, followed by drying. Moreover, after apply | coating or printing to a board | substrate, a coating material or printed material is baked at suitable temperature, adjusting atmosphere, especially oxygen partial pressure as needed. When the carbon-containing coating is removed by baking, carbon is oxidized and vaporized and removed by baking in an atmosphere containing an oxidizing gas such as air or oxygen gas, for example, in an atmosphere having an oxygen partial pressure of 10 Pa or higher. . In order to prevent oxidation of the metal fine particles, it is preferably performed in a low oxygen partial pressure atmosphere of 10 Pa or less, and if the oxygen partial pressure is a micro oxygen atmosphere of 1 × 10 −4 to 1 × 10 −1 Pa, It is more preferable because it can be sintered while preventing oxidation of the metal fine particles. The baking temperature for removing the carbon-containing coating can be appropriately set depending on the oxygen partial pressure, but is preferably about 100 to 1000 ° C, more preferably about 120 to 700 ° C, and more preferably about 150 to 700 ° C. More preferably, about 200-700 degreeC is still more preferable.
On the other hand, if a carbon-containing coating may be present, baking can be performed at an appropriate temperature while adjusting the atmosphere and oxygen partial pressure. The normal baking temperature is, for example, about 150 to 500 ° C., but even higher temperatures are possible by adjusting the oxygen partial pressure. The atmosphere in this case may be an oxidizing gas such as air or oxygen because the carbon-containing coating prevents oxidation of the metal, and a low oxygen partial pressure atmosphere of 10 Pa or less is preferable, and the oxygen partial pressure is 1 × 10 −4. A slightly oxygen atmosphere of ˜1 × 10 −1 Pa or an oxygen-free atmosphere of 1 × 10 -4 Pa or less is more preferable because a desired metal-containing film can be formed at any temperature. . In any case, in order to adjust the oxygen partial pressure to the above, an inert gas such as high purity nitrogen or argon, or a reducing gas such as hydrogen is used, or the inside of the heating device is adjusted so as to have a predetermined oxygen partial pressure. Is vacuumed or depressurized. The baking time is suitably about 1 minute to about 10 hours. As the base material, inorganic materials such as metal, glass, ceramic, concrete, etc., organic materials such as rubber, plastic, paper, wood, leather, cloth, fiber, etc., and materials obtained by combining or combining the above inorganic materials and organic materials Can be used.

また、本発明に関連した別の発明は、高分子保護コロイドを表面に有する金属微粒子と溶媒とを少なくとも含む金属微粒子含有組成物を基板に塗布又は印刷した後、焼付け工程の少なくとも一時期を酸素分圧が10Pa以下の低酸素分圧雰囲気で焼付けすることを特徴とする金属含有膜の製造方法である。この方法では、高分子保護コロイドを表面に有する金属微粒子を用い、それを基板上において焼付けする。高分子保護コロイドを表面に有する金属微粒子は前記のものを用いることができ、それと溶媒とを少なくとも含む金属微粒子含有組成物を用いる。この組成物は、前記の炭素含有被覆を形成してなる金属微粒子を含有した金属微粒子含有組成物において、金属微粒子として炭化する前の高分子保護コロイドを表面に有する金属微粒子に置き換えたものであり、溶媒やそのほかの添加剤等は同じものを用いることができ、塗布方法又は印刷方法も前記の方法を用いることができる。
高分子保護コロイドを表面に有する金属微粒子と溶媒とを少なくとも含む金属微粒子含有組成物を基板に塗布又は印刷した後、雰囲気や酸素分圧を調整しながら適当な温度で焼付けを行うが、焼付け工程を10Pa以下の低酸素分圧雰囲気で行うのが好ましく、酸素分圧が1×10−4〜1×10−1Paの微酸素雰囲気あるいは1×10−4Pa以下の無酸素雰囲気であれば、どのような温度で焼付けしても所望の金属含有膜を形成することができるためより好ましい。更に、焼付け工程の一部、例えば100〜400℃の間を酸素分圧が1×10−4Pa以下の無酸素雰囲気で行い、金属微粒子の表面に炭素含有被覆を形成した後、その後の焼付け工程、例えば400℃以上の温度を酸素分圧が1×10−4〜1×10−1Paの微酸素雰囲気で行うと炭素含有被覆を除去でき、金属微粒子の酸化を防止しながら焼結させることができるため、より好ましい方法である。また、焼付け工程の一部を酸素分圧が10Pa以上の雰囲気で行い、その後の焼付け工程を10Pa以下の低酸素分圧雰囲気で行っても良く、反対に、焼付け工程の一部を酸素分圧が10Pa以下の低酸素分圧雰囲気で行い、その後の焼付け工程を10Pa以上の雰囲気で行っても良い。前記の酸素分圧に調整するには、高純度の窒素、アルゴン等の不活性ガス、水素等の還元性ガスを用いたり、所定の酸素分圧になるように加熱装置内を真空又は減圧する。焼付け温度は、酸素分圧によって適宜設定することができるが、100〜1000℃程度の温度が好ましく、120〜700℃程度がより好ましく、150〜700℃程度がより一層好ましく、200〜700℃程度が更に好ましい。焼付け時間は約1分〜約10時間程度が適当である。
Further, another invention related to the present invention relates to a method in which at least one part of the baking process is performed after applying or printing a metal fine particle-containing composition containing at least a metal fine particle having a polymer protective colloid on the surface and a solvent on the substrate. Baking is performed in a low oxygen partial pressure atmosphere having a pressure of 10 Pa or less. In this method, metal fine particles having a polymer protective colloid on the surface are used and baked on a substrate. As the metal fine particles having the polymer protective colloid on the surface, those described above can be used, and a metal fine particle-containing composition containing at least a solvent and the same is used. This composition is obtained by replacing the metal fine particle-containing composition containing metal fine particles formed with the carbon-containing coating with metal fine particles having a polymer protective colloid on the surface before carbonization as metal fine particles. The same solvent and other additives can be used, and the above method can also be used as a coating method or a printing method.
After coating or printing a metal fine particle-containing composition containing at least a metal fine particle having a polymer protective colloid on the surface and a solvent, baking is performed at an appropriate temperature while adjusting the atmosphere and oxygen partial pressure. Is preferably performed in a low oxygen partial pressure atmosphere of 10 Pa or less, and the oxygen partial pressure is 1 × 10 −4 to 1 × 10 −1 Pa in a slightly oxygen atmosphere or 1 × 10 −4 Pa or less in an oxygen-free atmosphere. It is more preferable because a desired metal-containing film can be formed at any temperature. Further, a part of the baking process, for example, between 100 and 400 ° C. is performed in an oxygen-free atmosphere with an oxygen partial pressure of 1 × 10 −4 Pa or less to form a carbon-containing coating on the surface of the metal fine particles, and then baking is performed. If the process is performed at a temperature of 400 ° C. or higher, for example, in a micro oxygen atmosphere with an oxygen partial pressure of 1 × 10 −4 to 1 × 10 −1 Pa, the carbon-containing coating can be removed, and sintering is performed while preventing oxidation of metal fine particles This is a more preferable method. Further, a part of the baking process may be performed in an atmosphere having an oxygen partial pressure of 10 Pa or higher, and the subsequent baking process may be performed in a low oxygen partial pressure atmosphere of 10 Pa or lower. May be performed in a low oxygen partial pressure atmosphere of 10 Pa or less, and the subsequent baking step may be performed in an atmosphere of 10 Pa or more. In order to adjust the oxygen partial pressure, an inert gas such as high-purity nitrogen or argon, or a reducing gas such as hydrogen is used, or the inside of the heating device is evacuated or depressurized so as to have a predetermined oxygen partial pressure. . The baking temperature can be appropriately set depending on the oxygen partial pressure, but is preferably about 100 to 1000 ° C, more preferably about 120 to 700 ° C, still more preferably about 150 to 700 ° C, and about 200 to 700 ° C. Is more preferable. The baking time is suitably about 1 minute to about 10 hours.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
工業用酸化銅(N−120:エヌシーテック社製)64g、高分子保護コロイドとしてゼラチン5.1gを650ミリリットルの純水に添加、混合し、15%のアンモニア水を用いて混合液のpHを10に調整した後、20分かけて室温から90℃まで昇温した。昇温後、撹拌しながら、錯化剤として1%のメルカプト酢酸溶液7.7g(酸化銅1000重量部に対し1.2重量部)と、80%のヒドラジン一水和物75gを150ミリリットルの純水に混合した液を添加し、1時間かけて酸化銅と反応させ、銅微粒子を生成させた。その後は、濾過洗浄、乾燥し、平均一次粒子径0.1μmの銅微粒子(試料A)を得た。
試料Aを透過型電子顕微鏡で観察したところ、試料Aの表面は、厚さ約5.5nmのゼラチン層で被覆されていることが確認された(図1)。
試料Aを高真空雰囲気(約2.0×10−5Pa)下、250℃、20分間加熱することで、本発明の試料Bを作製した。試料Bを透過型電子顕微鏡で観察したところ、試料Bの表面は、厚さ約1.5nmの炭素含有層で被覆されていることが確認された(図2)。
また、この試料Bは、高真空雰囲気(約2.0×10−5Pa)下での500℃の焼成でも金属銅の酸化及び焼結が抑制されることが分かった。
Example 1
64 g of industrial copper oxide (N-120: manufactured by NC Tech) and 5.1 g of gelatin as a polymer protective colloid are added to 650 ml of pure water, mixed, and the pH of the mixed solution is adjusted using 15% ammonia water. After adjusting to 10, the temperature was raised from room temperature to 90 ° C. over 20 minutes. After heating, with stirring, 7.7 g of 1% mercaptoacetic acid solution (1.2 parts by weight with respect to 1000 parts by weight of copper oxide) as a complexing agent and 75 ml of 80% hydrazine monohydrate were added to 150 ml. A liquid mixed with pure water was added and reacted with copper oxide for 1 hour to produce copper fine particles. Thereafter, filtration washing and drying were performed to obtain copper fine particles (sample A) having an average primary particle size of 0.1 μm.
When the sample A was observed with a transmission electron microscope, it was confirmed that the surface of the sample A was covered with a gelatin layer having a thickness of about 5.5 nm (FIG. 1).
Sample A of the present invention was manufactured by heating Sample A in a high vacuum atmosphere (about 2.0 × 10 −5 Pa) at 250 ° C. for 20 minutes. When the sample B was observed with a transmission electron microscope, it was confirmed that the surface of the sample B was covered with a carbon-containing layer having a thickness of about 1.5 nm (FIG. 2).
Moreover, it turned out that this sample B suppresses the oxidation and sintering of metallic copper even by baking at 500 ° C. in a high vacuum atmosphere (about 2.0 × 10 −5 Pa).

ペースト1の調製
試料Bを10g、バインダ樹脂としてエチルセルロースを0.5g、溶媒として、α−テルピネオール9.5gを三本ロールにて混練し、本発明のペースト1(試料C)を作製した。
試料Cをアルミナ基板上に塗布し、微酸素雰囲気(酸素分圧約6.0×10−3Pa)下、所定の温度で焼付けを行い、銅薄膜を作製した。得られた膜の体積抵抗率を表1に示す。この結果から、これらの銅薄膜は導電性材料として使用できることが分かった。
Preparation of Paste 1 10 g of Sample B, 0.5 g of ethyl cellulose as a binder resin, and 9.5 g of α-terpineol as a solvent were kneaded with a three-roll to produce Paste 1 (Sample C) of the present invention.
Sample C was applied on an alumina substrate, and baked at a predetermined temperature in a slight oxygen atmosphere (oxygen partial pressure of about 6.0 × 10 −3 Pa) to prepare a copper thin film. Table 1 shows the volume resistivity of the obtained film. From this result, it was found that these copper thin films can be used as a conductive material.

Figure 0005173255
Figure 0005173255

本発明の金属微粒子は、耐酸化安定性を改善することができるため、触媒材料や着色剤等の高温度での使用に対応できる。また、焼付けにより金属微粒子の表面に形成された炭素含有被覆を除去でき、電気的導通を確保するための材料等として幅広く用いることができる。   Since the metal fine particles of the present invention can improve the oxidation resistance stability, they can be used at high temperatures such as catalyst materials and colorants. In addition, the carbon-containing coating formed on the surface of the metal fine particles by baking can be removed, and can be widely used as a material for ensuring electrical conduction.

実施例1で得られた銅微粒子(試料A)の電子顕微鏡写真である。2 is an electron micrograph of copper fine particles (sample A) obtained in Example 1. FIG. 実施例1で得られた銅微粒子(試料B)の電子顕微鏡写真である。2 is an electron micrograph of copper fine particles (sample B) obtained in Example 1. FIG.

Claims (5)

高分子保護コロイドを被覆した金属微粒子を、真空装置又は減圧装置を用いて酸素分圧が10Pa以下の低酸素分圧雰囲気で加熱して保護コロイドを熱分解することを特徴とする炭素含有被覆層を形成してなる金属微粒子の製造方法。 A carbon-containing coating layer characterized by thermally decomposing a protective colloid by heating metal fine particles coated with a polymer protective colloid in a low oxygen partial pressure atmosphere having an oxygen partial pressure of 10 Pa or less using a vacuum device or a decompression device The manufacturing method of the metal microparticle formed by forming. 高分子保護コロイドがゼラチン、アラビアゴム、変性セルロース、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン及びポリアクリル酸類から選ばれる少なくとも一種である請求項1記載の金属微粒子の製造方法。 The method for producing metal fine particles according to claim 1, wherein the polymer protective colloid is at least one selected from gelatin, gum arabic, modified cellulose, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone and polyacrylic acids. 金属微粒子が銅、ニッケル、コバルト及び鉄から選ばれる少なくとも一種で構成される請求項1記載の金属微粒子の製造方法。 The method for producing fine metal particles according to claim 1, wherein the fine metal particles are composed of at least one selected from copper, nickel, cobalt and iron. 電子顕微鏡で測定した金属微粒子の平均粒子径が0.001〜1.0μmの範囲である請求項1記載の金属微粒子の製造方法。 The method for producing metal fine particles according to claim 1, wherein the average particle diameter of the metal fine particles measured by an electron microscope is in the range of 0.001 to 1.0 µm. 高分子保護コロイドを表面に有する金属粒子と溶媒とを少なくとも含む金属微粒子含有組成物を基板に塗布又は印刷した後、加熱装置内を真空又減圧して酸素分圧が10Pa以下の低酸素分圧雰囲気で焼付することを特徴とする金属含有膜の製造方法。 After at least comprises metal fine particles-containing composition the metal particles and a solvent having a polymer protective colloid surface coating or printing on a substrate, the low oxygen partial vacuum or partial pressure of oxygen under reduced pressure following 10Pa within the heating device A method for producing a metal-containing film, comprising baking in a pressurized atmosphere.
JP2007129333A 2007-05-15 2007-05-15 A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method. Active JP5173255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129333A JP5173255B2 (en) 2007-05-15 2007-05-15 A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129333A JP5173255B2 (en) 2007-05-15 2007-05-15 A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method.

Publications (2)

Publication Number Publication Date
JP2008285697A JP2008285697A (en) 2008-11-27
JP5173255B2 true JP5173255B2 (en) 2013-04-03

Family

ID=40145718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129333A Active JP5173255B2 (en) 2007-05-15 2007-05-15 A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method.

Country Status (1)

Country Link
JP (1) JP5173255B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533098B2 (en) 2013-08-01 2020-01-14 Sekisui Chemical Co., Ltd. Conductive filler, method for producing same, conductive paste and method for producing conductive paste
KR20200026206A (en) * 2017-07-07 2020-03-10 도레이 카부시키가이샤 Manufacturing method of conductive film, manufacturing method of field effect transistor using the same, and manufacturing method of wireless communication device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621182A (en) * 2003-11-25 2005-06-01 三星电子株式会社 Carbon-containing nickel-particle powder and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008285697A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
KR102297023B1 (en) Ferromagnetic metal nanowire dispersion and method for manufacturing same
KR20100024295A (en) Preparation method of metal flake
JP2021021146A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
EP3243881A1 (en) Nano-sized silver particle ink
CN103379973A (en) Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
KR101777342B1 (en) A method to prepare a metallic nanoparticle dispersion
KR20090115854A (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
WO2013099818A1 (en) Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP2017527943A (en) Conductive composition
JP5431071B2 (en) Conductive substrate, precursor thereof, and production method thereof
KR101401571B1 (en) Conductive metal ion ink composition, method of preparing the same and prerparing method of highly conductive metal pattern or film using the same
WO2007066416A1 (en) Silver microparticle colloid dispersion liquid, coating liquid for silver film formation and process for producing the same, and silver film
JP5173255B2 (en) A method for producing metal fine particles and a composition containing metal fine particles obtained by the production method.
CN103702786B (en) Silver microparticle and the conductive paste containing this silver-colored microparticle, conductive film and electronic device
JP2005019028A (en) Metal colloid liquid, and conductive ink using it
JP6598934B2 (en) Photosintering composition and method for forming conductive film using the same
KR20150060657A (en) Preparation method of metal flake
JP2006028637A (en) Silver particulate colloid-dispersed solution, coating solution for silver film formation and production method therefor and silver film
JP2005068508A (en) Metal powder coated with inorganic superfine particle and its production method
JP2013028858A (en) Silver particle, conductive paste containing the silver particle, conductive film and electronic device
KR20080114008A (en) Composition of conductor paste and manufacturing method of conductor paste using it
JP5765139B2 (en) Method for producing silver oxide composition
JP5720498B2 (en) Silver oxide composition, silver oxide-containing conductive composition, laminate comprising conductive film, and method for producing the same
JP2019200912A (en) Photosintering composition and method of forming conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R151 Written notification of patent or utility model registration

Ref document number: 5173255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250