JP5163622B2 - Method for surface treatment of metal members - Google Patents

Method for surface treatment of metal members Download PDF

Info

Publication number
JP5163622B2
JP5163622B2 JP2009245084A JP2009245084A JP5163622B2 JP 5163622 B2 JP5163622 B2 JP 5163622B2 JP 2009245084 A JP2009245084 A JP 2009245084A JP 2009245084 A JP2009245084 A JP 2009245084A JP 5163622 B2 JP5163622 B2 JP 5163622B2
Authority
JP
Japan
Prior art keywords
metal member
film
chemical conversion
treatment
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009245084A
Other languages
Japanese (ja)
Other versions
JP2011089187A (en
Inventor
大詞 桂
勉 重永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009245084A priority Critical patent/JP5163622B2/en
Priority to US12/839,034 priority patent/US8506728B2/en
Priority to CN201010276050.4A priority patent/CN102011111B/en
Priority to EP10009092.7A priority patent/EP2302096B1/en
Publication of JP2011089187A publication Critical patent/JP2011089187A/en
Application granted granted Critical
Publication of JP5163622B2 publication Critical patent/JP5163622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Description

本発明は、電着塗装工程の前工程として用いられる金属部材の表面処理方法に関する。   The present invention relates to a surface treatment method for a metal member used as a pre-process of an electrodeposition coating process.

自動車等の塗装工程においては、一般的に、被塗装物(金属部材)に対するカチオン電着塗装の前に、被塗装物に対して化成処理が行われる。このような化成処理においては、化成処理剤として、リン酸亜鉛を主成分としたリン酸亜鉛処理剤が多く用いられており、リン酸亜鉛処理剤を用いて被塗装物に対して化成処理を行えば、カチオン電着塗装工程において、良好な電着塗装性(塗膜膜厚特性)を得ることができる。しかし、リン酸亜鉛処理剤は、そのリン酸イオンが富栄養化をもたらし、また、化成処理に伴って、廃棄すべきスラッジを生成するという問題点を有している。このため、このような問題点を解決すべく、特許文献1に示すように、ジルコニウム、チタン、及びハフニウムからなる群より選ばれる少なくとも一種、フッ素、並びに水溶性樹脂からなる化成処理剤が提案されている。
特開2004−218074号公報
In a painting process of an automobile or the like, generally, a chemical conversion treatment is performed on an object to be coated before cationic electrodeposition coating on the object to be coated (metal member). In such a chemical conversion treatment, as a chemical conversion treatment agent, a zinc phosphate treatment agent containing zinc phosphate as a main component is often used, and a chemical conversion treatment is performed on an object to be coated using the zinc phosphate treatment agent. If it carries out, in a cation electrodeposition coating process, favorable electrodeposition coating property (coating film thickness characteristic) can be obtained. However, the zinc phosphate treating agent has a problem that the phosphate ions cause eutrophication, and sludge to be discarded is generated with the chemical conversion treatment. Therefore, in order to solve such problems, as shown in Patent Document 1, a chemical conversion treatment agent composed of at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, and a water-soluble resin has been proposed. ing.
JP 2004-218074 A

しかし、ジルコニウム等(ジルコニウム化合物等)を主成分とした化成処理剤を用いて被塗装物に対して化成処理を行った場合には、リン酸亜鉛処理剤を用いる場合に比べて、局所的な低抵抗部の数が少なくて通電しにくい化成皮膜(ZrO2等)が被塗装物面上に形成される。このため、電着塗装工程における特有の現象として、陽極とそれに近い被塗装物の部分(車体では外板部)との間に高い電圧が印加される一方で、陽極とそれから遠い被塗装物部分(車体では内板部)との間に低い電圧が印加されることになると、その低電圧領域に属する陽極から遠い被塗装物部分においては塗膜析出量が少なくなる。結果、ジルコニウム等(ジルコニウム化合物等)を主成分とした化成処理剤を用いた場合には、リン酸亜鉛処理剤を用いる場合に比べて、低電圧印加領域である陽極から遠い被塗装物部分(車体では内板部)において、塗膜析出量が低下することになる(図3参照)。   However, when chemical conversion treatment is performed on an object to be coated using a chemical conversion treatment agent containing zirconium or the like (zirconium compound or the like) as a main component, it is more localized than when a zinc phosphate treatment agent is used. A chemical conversion film (such as ZrO 2) is formed on the surface of the object to be coated because the number of low resistance portions is small and it is difficult to energize. For this reason, as a unique phenomenon in the electrodeposition coating process, a high voltage is applied between the anode and the part of the object to be coated (the outer plate part in the vehicle body), while the anode and the part of the object far from the anode are applied. When a low voltage is applied between the inner plate portion and the inner plate portion of the vehicle body, the coating deposition amount is reduced at the portion of the object far from the anode belonging to the low voltage region. As a result, when a chemical conversion treatment agent mainly composed of zirconium or the like (zirconium compound or the like) is used, compared with a case where a zinc phosphate treatment agent is used, a part to be coated far from the anode which is a low voltage application region ( In the vehicle body, the amount of coating film is reduced in the inner plate portion (see FIG. 3).

本発明は、上記実情に鑑みてなされたもので、その技術的課題は、局所的な低抵抗部の数が少ない化成皮膜を形成する化成処理剤が用いられる場合であっても、低電圧印加領域における被塗装物部分の電着塗装性を向上させることができる金属部材の表面処理方法を提供することにある。   The present invention has been made in view of the above circumstances, and its technical problem is that even when a chemical conversion treatment agent that forms a chemical conversion film with a small number of local low-resistance portions is used, low voltage application is performed. An object of the present invention is to provide a surface treatment method for a metal member that can improve the electrodeposition paintability of a part to be coated in a region.

前記技術的課題を達成するために本発明(請求項1に係る発明)においては、
電着塗装工程前に、化成処理剤を用いて、金属部材の表面に化成皮膜形成処理を行う金属部材の表面処理方法において、
前記化成処理剤として、主成分がZr,Ti,Hf,Siから選ばれる元素を有する化合物であって、化成皮膜がZr,Ti,Hf,Siから選ばれる元素を有する酸化物に形成されるものを用い、
前記化成皮膜形成処理の前工程で、前記金属部材に対して導電性物質を付着させる付着処理を行って、該金属部材の表面を凸凹状に形成し、
その上で、前記凸凹状の金属部材の表面に対して前記化成皮膜形成処理を行って、前記導電性物質の各隣り合う凸部間の化成皮膜の膜厚を、その他の部分の膜厚に比して薄くし、
前記導電性物質が、Cu,Ni,ポリアニリンの少なくとも一種である構成としてある。この請求項1の好ましい態様としては、請求項2、3の記載の通りとなる。
また、前記技術的課題を達成するために本発明(請求項4に係る発明)においては、
電着塗装工程前に、化成処理剤を用いて、金属部材の表面に化成皮膜形成処理を行う金属部材の表面処理方法において、
前記化成処理剤として、主成分がZr,Ti,Hf,Siから選ばれる元素を有する化合物であって、化成皮膜がZr,Ti,Hf,Siから選ばれる元素を有する酸化物に形成されるものを用い、
前記化成皮膜形成処理の前工程で、前記金属部材に対して導電性物質を付着させる付着処理を行って、該金属部材の表面を凸凹状に形成し、
その上で、前記凸凹状の金属部材の表面に対して前記化成皮膜形成処理を行って、前記導電性物質の各隣り合う凸部間の化成皮膜の膜厚を、その他の部分の膜厚に比して薄くし、
前記導電性物質のイオン化傾向が、前記金属部材の成分のイオン化傾向よりも小さいものであり、
前記付着処理が、前記金属部材を、前記導電性物質がイオン状態で含有される処理液に浸漬させて、該導電性物質を該金属部材の表面に析出し、該金属部材の表面を凸凹状に形成することであり、
前記導電性物質が、Cu,Niの少なくとも一種である構成としてある。この請求項4の好ましい態様としては、請求項5の記載の通りとなる。
In order to achieve the technical problem, in the present invention (the invention according to claim 1),
In the surface treatment method for a metal member, which uses a chemical conversion treatment agent before the electrodeposition coating process, and performs a chemical conversion film formation treatment on the surface of the metal member,
The chemical conversion treatment agent is a compound having an element selected from Zr, Ti, Hf, Si as a main component, and the chemical conversion film is formed on an oxide having an element selected from Zr, Ti, Hf, Si. Use
In the pre-process of the chemical conversion film forming treatment, an adhesion treatment for attaching a conductive substance to the metal member is performed, and the surface of the metal member is formed in an uneven shape,
Then, the chemical film formation treatment is performed on the surface of the uneven metal member, and the film thickness of the chemical film between adjacent convex parts of the conductive substance is changed to the film thickness of other parts. compared to thin,
The conductive material is configured to be at least one of Cu, Ni, and polyaniline . Preferred embodiments of the first aspect are as described in the second and third aspects.
In order to achieve the technical problem, in the present invention (the invention according to claim 4),
In the surface treatment method for a metal member, which uses a chemical conversion treatment agent before the electrodeposition coating process, and performs a chemical conversion film formation treatment on the surface of the metal member,
The chemical conversion treatment agent is a compound having an element selected from Zr, Ti, Hf, Si as a main component, and the chemical conversion film is formed on an oxide having an element selected from Zr, Ti, Hf, Si. Use
In the pre-process of the chemical conversion film forming treatment, an adhesion treatment for attaching a conductive substance to the metal member is performed, and the surface of the metal member is formed in an uneven shape,
Then, the chemical film formation treatment is performed on the surface of the uneven metal member, and the film thickness of the chemical film between adjacent convex parts of the conductive substance is changed to the film thickness of other parts. Thinner than
The ionization tendency of the conductive material is smaller than the ionization tendency of the component of the metal member,
In the adhesion treatment, the metal member is immersed in a treatment solution containing the conductive substance in an ionic state, and the conductive substance is deposited on the surface of the metal member, and the surface of the metal member is uneven. Is to form
The conductive material is configured to be at least one of Cu and Ni. The preferred embodiment of claim 4 is as described in claim 5.

請求項1に係る発明によれば、局所的な低抵抗部の数が少ない化成皮膜を形成することになる化成処理剤が用いられる場合であっても、化成皮膜形成処理の前工程で、金属部材に対して導電性物質を付着させる付着処理を行って、金属部材の表面を凸凹状に形成し、その上で、凸凹状の金属部材の表面に対して化成皮膜形成処理を行って、導電性物質の各隣り合う凸部間(凹部内)の化成皮膜の膜厚を、その他の部分の膜厚に比して薄くすることから、その各薄膜部(導電性物質の各隣り合う凸部間の化成皮膜部)をもって局所的な低抵抗部とすることができ、電着塗装における電圧印加時に、各薄膜部をもって通電し易くすることができる。このため、局所的な低抵抗部の数が少ない化成皮膜を形成する化成処理剤が用いられる場合であっても、金属部材の表面では、塗膜の析出が促進され、低電圧印加領域における被塗装物(金属部材)部分の電着塗装性を向上させることができる。
また、化成処理剤として、主成分がZr,Ti,Hf,Siから選ばれる元素を有する化合物であって、化成皮膜がZr,Ti,Hf,Siから選ばれる元素を有する酸化物に形成されるものを用いることから、このような化成処理剤を用いることにより、具体的に、局所的な低抵抗部の数が少ない化成皮膜が形成されることになるが、このような化成処理剤を用いる場合であっても、上記作用効果を得ることができる。
According to the first aspect of the present invention, even if a chemical conversion treatment agent that forms a chemical conversion film with a small number of local low-resistance parts is used, An adhesion treatment for attaching a conductive material to the member is performed to form a metal member surface in a concave-convex shape, and then a chemical conversion film forming process is performed on the surface of the convex-concave metal member to conduct a conductive process. Since the film thickness of the chemical film between adjacent convex portions (inside the concave portions) of the conductive material is made thinner than the film thickness of other portions, each thin film portion (each adjacent convex portion of the conductive substance) The chemical conversion film portion) can be a local low-resistance portion, and when applying a voltage in electrodeposition coating, each thin film portion can be easily energized. For this reason, even when a chemical conversion treatment agent that forms a chemical conversion film with a small number of local low resistance parts is used, deposition of the coating film is promoted on the surface of the metal member, and the coating in the low voltage application region is promoted. It is possible to improve the electrodeposition paintability of the painted product (metal member) part.
Further, as a chemical conversion treatment agent, the main component is a compound having an element selected from Zr, Ti, Hf, and Si, and the chemical conversion film is formed into an oxide having an element selected from Zr, Ti, Hf, and Si. Therefore, by using such a chemical conversion treatment agent, specifically, a chemical conversion film having a small number of local low-resistance parts is formed. However, such a chemical conversion treatment agent is used. Even if it is a case, the said effect can be obtained.

請求項2に係る発明によれば、付着処理が、金属部材を、導電性物質がイオン状態で含有される処理液に浸漬させて、導電性物質を金属部材の表面に析出し、金属部材の表面を凸凹状に形成することであることから、浸漬処理の下で、的確に、金属部材の表面を凸凹状に形成することができる。このため、この場合においても、この後の化成皮膜形成処理で、導電性物質の各隣り合う凸部間の化成皮膜部を薄膜化することができ、その各薄膜部をもって局所的な低抵抗部(局所的な通電部)とすることができる(低電圧印加領域における被塗装物(金属部材)部分の電着塗装性を向上)。 According to the second aspect of the present invention , the adhesion treatment is performed by immersing the metal member in a treatment solution containing the conductive substance in an ionic state, and depositing the conductive substance on the surface of the metal member. Since the surface is formed in an uneven shape, the surface of the metal member can be formed in an uneven shape accurately under the dipping process . For this reason, even in this case, the chemical conversion film portion between adjacent convex portions of the conductive material can be thinned by the subsequent chemical film formation treatment, and each thin film portion has a local low resistance portion. (Locally energized part) (improves the electrodeposition paintability of the part (metal member) to be coated in the low voltage application region).

請求項に係る発明によれば、導電性物質が銅であり、金属部材上に銅を析出させるに際して、金属部材を、銅イオン濃度が5〜500ppmの処理液中に浸漬することから、銅に基づき低電圧印加領域における被塗装物部分の電着塗装性を向上させつつ、その銅の含有に基づき耐食性が許容限度以下になることを確実に防止できる。 According to the invention of claim 3 , the conductive material is copper, and when the copper is deposited on the metal member, the metal member is immersed in a treatment solution having a copper ion concentration of 5 to 500 ppm. Accordingly, it is possible to reliably prevent the corrosion resistance from being below the allowable limit based on the copper content, while improving the electrodeposition coating property of the part to be coated in the low voltage application region.

請求項4に係る発明によれば、局所的な低抵抗部の数が少ない化成皮膜を形成することになる化成処理剤が用いられる場合であっても、化成皮膜形成処理の前工程で、金属部材に対して導電性物質を付着させる付着処理を行って、金属部材の表面を凸凹状に形成し、その上で、凸凹状の金属部材の表面に対して化成皮膜形成処理を行って、導電性物質の各隣り合う凸部間(凹部内)の化成皮膜の膜厚を、その他の部分の膜厚に比して薄くすることから、その各薄膜部(導電性物質の各隣り合う凸部間の化成皮膜部)をもって局所的な低抵抗部とすることができ、電着塗装における電圧印加時に、各薄膜部をもって通電し易くすることができる。このため、局所的な低抵抗部の数が少ない化成皮膜を形成する化成処理剤が用いられる場合であっても、金属部材の表面では、塗膜の析出が促進され、低電圧印加領域における被塗装物(金属部材)部分の電着塗装性を向上させることができる。According to the invention which concerns on Claim 4, even if it is a case where the chemical conversion treatment agent which will form the chemical conversion film with few local low resistance parts is used, in the front process of a chemical conversion film formation process, metal An adhesion treatment for attaching a conductive material to the member is performed to form a metal member surface in a concave-convex shape, and then a chemical conversion film forming process is performed on the surface of the convex-concave metal member to conduct a conductive process. Since the film thickness of the chemical film between adjacent convex portions (inside the concave portions) of the conductive material is made thinner than the film thickness of other portions, each thin film portion (each adjacent convex portion of the conductive substance) The chemical conversion film portion) can be a local low-resistance portion, and when applying a voltage in electrodeposition coating, each thin film portion can be easily energized. For this reason, even when a chemical conversion treatment agent that forms a chemical conversion film with a small number of local low resistance parts is used, deposition of the coating film is promoted on the surface of the metal member, and the coating in the low voltage application region is promoted. It is possible to improve the electrodeposition paintability of the painted product (metal member) part.
また、化成処理剤として、主成分がZr,Ti,Hf,Siから選ばれる元素を有する化合物であって、化成皮膜がZr,Ti,Hf,Siから選ばれる元素を有する酸化物に形成されるものを用いることから、このような化成処理剤を用いることにより、具体的に、局所的な低抵抗部の数が少ない化成皮膜が形成されることになるが、このような化成処理剤を用いる場合であっても、上記作用効果を得ることができる。Further, as a chemical conversion treatment agent, the main component is a compound having an element selected from Zr, Ti, Hf, and Si, and the chemical conversion film is formed into an oxide having an element selected from Zr, Ti, Hf, and Si. Therefore, by using such a chemical conversion treatment agent, specifically, a chemical conversion film having a small number of local low-resistance parts is formed. However, such a chemical conversion treatment agent is used. Even if it is a case, the said effect can be obtained.
さらに、導電性物質が、金属部材の成分のイオン化傾向よりも小さいものであり、付着処理が、金属部材を、導電性物質がイオン状態で含有される処理液に浸漬させて、導電性物質を金属部材の表面に析出し、金属部材の表面を凸凹状に形成することであることから、浸漬処理の下で、導電性物質と金属部材の成分とのイオン化傾向の大小を利用して、的確に、金属部材の表面を凸凹状に形成することができる。このため、この後の化成皮膜形成処理で、導電性物質の各隣り合う凸部間の化成皮膜部を薄膜化することができ、その各薄膜部をもって局所的な低抵抗部(局所的な通電部)とすることができる(低電圧印加領域における被塗装物(金属部材)部分の電着塗装性を向上)。Furthermore, the conductive substance is smaller than the ionization tendency of the components of the metal member, and the adhesion treatment is performed by immersing the metal member in a treatment solution containing the conductive substance in an ionic state, Since it is deposited on the surface of the metal member and the surface of the metal member is formed in an uneven shape, the degree of ionization between the conductive substance and the component of the metal member is utilized under the immersion treatment to accurately determine the size. In addition, the surface of the metal member can be formed in an uneven shape. For this reason, in the subsequent chemical film formation process, the chemical film part between adjacent convex parts of the conductive material can be thinned, and each thin film part has a local low resistance part (local energization). (Improves the electrodeposition coating property of the part to be coated (metal member) in the low voltage application region).
請求項5に係る発明によれば、導電性物質が銅であり、金属部材上に銅を析出させるに際して、金属部材を、銅イオン濃度が5〜500ppmの処理液中に浸漬することから、銅に基づき低電圧印加領域における被塗装物部分の電着塗装性を向上させつつ、その銅の含有に基づき耐食性が許容限度以下になることを確実に防止できる。According to the fifth aspect of the invention, the conductive material is copper, and when the copper is deposited on the metal member, the metal member is immersed in a treatment solution having a copper ion concentration of 5 to 500 ppm. Accordingly, it is possible to reliably prevent the corrosion resistance from being below the allowable limit based on the copper content, while improving the electrodeposition coating property of the part to be coated in the low voltage application region.

実施形態に係る製造工程を示す工程図。Process drawing which shows the manufacturing process which concerns on embodiment. 電着塗装工程を説明する説明図。Explanatory drawing explaining an electrodeposition coating process. ZrO2皮膜及びリン酸亜鉛皮膜の塗膜膜厚特性を示す特性図。The characteristic view which shows the coating-film film thickness characteristic of a ZrO2 membrane | film | coat and a zinc phosphate membrane | film | coat. リン酸亜鉛皮膜における各低抵抗部を概念的に説明する説明図。Explanatory drawing which illustrates each low resistance part in a zinc phosphate film | membrane conceptually. リン酸亜鉛皮膜における各低抵抗部での塗膜の析出を概念的に説明する説明図。Explanatory drawing which illustrates conceptually the precipitation of the coating film in each low resistance part in a zinc phosphate film. リン酸亜鉛皮膜における各低抵抗部での初期の塗膜析出を概念的に示す平面図。The top view which shows notionally the initial stage film deposition in each low resistance part in a zinc phosphate film. リン酸亜鉛皮膜における各低抵抗部での中期の塗膜析出を概念的に示す平面図。The top view which shows notionally the coating-film deposition of the middle stage in each low resistance part in a zinc phosphate film | membrane. リン酸亜鉛皮膜における各低抵抗部での末期の塗膜析出を概念的に示す正面図。The front view which shows notionally the coating-film precipitation of the last stage in each low resistance part in a zinc phosphate film | membrane. ZrO2皮膜における各低抵抗部を概念的に説明する説明図。Explanatory drawing explaining each low resistance part in a ZrO2 film | membrane conceptually. ZrO2皮膜における各低抵抗部での塗膜の析出を概念的に説明する説明図。Explanatory drawing which illustrates notionally deposition of the coating film in each low resistance part in a ZrO2 film | membrane. ZrO2皮膜における各低抵抗部での初期の塗膜析出を概念的に示す平面図。The top view which shows notionally the initial stage film deposition in each low resistance part in a ZrO2 film | membrane. ZrO2皮膜における各低抵抗部での中期の塗膜析出を概念的に示す平面図。The top view which shows notionally the coating-film precipitation of the middle period in each low resistance part in a ZrO2 film | membrane. ZrO2皮膜における各低抵抗部での末期の塗膜析出を概念的に示す正面図。The front view which shows notionally the coating-film precipitation of the last stage in each low resistance part in a ZrO2 film | membrane. 吸着工程を概念的に説明する説明図。Explanatory drawing which illustrates an adsorption | suction process notionally. 化成工程を概念的に説明する説明図。Explanatory drawing explaining a chemical conversion process notionally. 電着塗装工程を概念的に説明する説明図。Explanatory drawing which illustrates an electrodeposition coating process notionally. 吸着工程で析出させたCu上に形成したZrO2皮膜、ZrO2皮膜及びリン酸亜鉛皮膜の塗膜膜厚特性を示す特性図。The characteristic view which shows the coating-film film thickness characteristic of the ZrO2 membrane | film | coat formed on Cu deposited by the adsorption | suction process, a ZrO2 membrane | film | coat, and a zinc phosphate membrane | film | coat. 吸着工程における吸着処理槽の処理液中のCuイオン濃度が、塗膜膜厚(電着特性)及び耐食性に及ぼす影響を示す図。The figure which shows the influence which the Cu ion density | concentration in the process liquid of the adsorption treatment tank in an adsorption | suction process has on a coating film thickness (electrodeposition characteristic) and corrosion resistance. 耐食性の観点からのCuイオン濃度(ppm)の上限を求めることを説明する説明図。Explanatory drawing explaining calculating | requiring the upper limit of Cu ion concentration (ppm) from a corrosion-resistant viewpoint.

以下、本発明の実施形態について、金属部材として車体(被塗装物)を例にとり、図面に基づいて説明する。
自動車等の車体Wの塗装においては、図1,図2に示すように、最終工程として、電着塗装工程が行われる。この電着塗装工程は、車体Wに対してカチオン電着塗装(下塗り塗装)を行う工程であり、この電着塗装工程においては、槽T内のカチオン電着塗料31中に車体Wを浸漬(例えば180秒)させ、槽Tを陽極、車体Wを陰極として、その両者T,W間に電圧を印加することにより、車体W面上に塗膜(図1では図示略)が析出される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking a vehicle body (object to be coated) as an example of a metal member.
In painting a vehicle body W such as an automobile, an electrodeposition coating process is performed as a final process, as shown in FIGS. This electrodeposition coating step is a step of performing cationic electrodeposition coating (undercoating) on the vehicle body W. In this electrodeposition coating step, the vehicle body W is immersed in the cationic electrodeposition coating 31 in the tank T ( For example, 180 seconds), the tank T is used as an anode, the vehicle body W is used as a cathode, and a voltage is applied between the two T and W, whereby a coating film (not shown in FIG. 1) is deposited on the vehicle body W surface.

前記車体Wの塗装においては、図1に示すように、前記電着塗装工程の前工程として、化成皮膜形成処理工程(以下、化成工程という)が行われる。化成皮膜を形成して、塗膜の電着塗装性、密着性、耐食性等を高めるためである。このため、化成工程においては、化成処理剤32が満たされた化成処理槽33が備えられ、その化成処理剤32中に車体Wが浸漬される。   In the coating of the vehicle body W, as shown in FIG. 1, a chemical film formation treatment process (hereinafter referred to as a chemical conversion process) is performed as a pre-process of the electrodeposition coating process. This is because a chemical conversion film is formed to improve the electrodeposition coating property, adhesion, corrosion resistance, and the like of the coating film. For this reason, in the chemical conversion step, a chemical conversion treatment tank 33 filled with the chemical conversion treatment agent 32 is provided, and the vehicle body W is immersed in the chemical conversion treatment agent 32.

上記化成処理剤32としては、主成分として、Zr,Ti,Hf,Siから選ばれる元素を有する化合物を含み、副成分として、フッ素(エッチング剤)、水溶性樹脂を含むものが用いられる。化成処理剤32中への車体Wの浸漬により、車体W上に、主成分として、Zr,Ti,Hf,Siから選ばれる元素を有する酸化物が含まれる化成皮膜21を形成して、前述の耐食性等を確保するだけでなく、富栄養化の防止、さらには化成処理に伴って廃棄すべきスラッジの生成の抑制を図るためである。すなわち、耐食性、塗膜密着性等が優れている化成皮膜として、従来からリン酸亜鉛系処理剤を用いたリン酸亜鉛皮膜があることは知られているが、そのリン酸亜鉛皮膜を形成するリン酸亜鉛系処理剤を用いた場合には、そのリン酸イオンに基づき富栄養化をもたらされると共に、化成処理に伴って廃棄すべきスラッジが生成される等の問題が発生する。このため、そのような問題点がない上記化成処理剤32が用いられているのである。   As said chemical conversion treatment agent 32, what contains the compound which has an element chosen from Zr, Ti, Hf, Si as a main component, and contains fluorine (etching agent) and water-soluble resin as a subcomponent is used. By immersing the vehicle body W in the chemical conversion treatment agent 32, the chemical conversion film 21 containing an oxide having an element selected from Zr, Ti, Hf, and Si as a main component is formed on the vehicle body W. This is to ensure not only corrosion resistance and the like, but also to prevent eutrophication and to suppress the generation of sludge to be discarded along with the chemical conversion treatment. That is, as a chemical conversion film having excellent corrosion resistance, coating film adhesion, etc., it has been known that there is a zinc phosphate film using a zinc phosphate-based treatment agent, but the zinc phosphate film is formed. When a zinc phosphate-based treatment agent is used, eutrophication is brought about based on the phosphate ions, and problems such as the generation of sludge to be discarded with chemical conversion treatment occur. For this reason, the said chemical conversion treatment agent 32 which does not have such a problem is used.

本実施形態においては、上記化成処理剤32の中でも、ジルコニウム化合物であるH2ZrF6を主成分とするものが用いられ、その化成処理剤32中に車体Wを180秒浸漬することにより、その車体W上に酸化ジルコニウム(以下、ZrO2を用いる)を主成分とした化成皮膜(以下、ZrO2皮膜という)が形成される。
このZrO2皮膜の生成について具体的に説明すれば、化成処理剤中においては、副成分としてHF、主成分としてH2ZrF6が含まれ、それらは、(化1)(化2)に示すように、化学平衡の状態にある。

Figure 0005163622



Figure 0005163622


In the present embodiment, among the chemical conversion treatment agents 32, those containing a zirconium compound H2ZrF6 as a main component are used, and by immersing the vehicle body W in the chemical conversion treatment agent 32 for 180 seconds, Then, a chemical conversion film (hereinafter referred to as ZrO2 film) mainly composed of zirconium oxide (hereinafter referred to as ZrO2) is formed.
Specifically explaining the formation of this ZrO2 film, the chemical conversion treatment agent contains HF as a secondary component and H2ZrF6 as a main component, which are represented by (Chemical Formula 1) and (Chemical Formula 2). In equilibrium.
Figure 0005163622



Figure 0005163622


このような状態の化成処理剤32中に車体Wを浸漬すると、(化3)に示すアノード反応が生じ、Fe(車体)のイオン化に伴い電子が放出される。この電子の放出に基づき、(化4)に示すカソード反応が生じ、化成処理剤中のHFの濃度は低下する。このため、前述の(化2)は、(化5)に示すように、化成処理剤中のHFを生成する方向に反応が進み、これに伴い、ZrO2が生成され、それがZrO2皮膜を形成する(図15におけるZrO2皮膜形成部分参照)。

Figure 0005163622



Figure 0005163622



Figure 0005163622


When the vehicle body W is immersed in the chemical conversion treatment agent 32 in such a state, an anodic reaction shown in (Chemical Formula 3) occurs, and electrons are released with the ionization of Fe (vehicle body). Based on this electron emission, the cathode reaction shown in (Chemical Formula 4) occurs, and the concentration of HF in the chemical conversion treatment agent decreases. For this reason, as shown in (Chemical Formula 5), the reaction proceeds in the direction of generating HF in the chemical conversion treatment agent, and along with this, ZrO2 is generated, which forms a ZrO2 film. (Refer to the ZrO2 film forming portion in FIG. 15).
Figure 0005163622



Figure 0005163622



Figure 0005163622


しかし、一方で、上記ZrO2皮膜等の化成皮膜21が車体W上に直接、そのまま用いられた場合には、その性質(非結晶性連続皮膜を形成すること)に基づき、その化成皮膜21は、図9に示すように、局所的な低抵抗部の数が少ないものとなり、電着塗装における電圧印加時には、化成皮膜21における局所的な通電部の数は少なくなる(化成皮膜21表面(界面)に向けて供給できる電子(自由電子)の数が少なくなる)。このため、このようなZrO2皮膜等の化成皮膜21が車体W上に直接、そのまま用いられた場合には、塗膜析出量が低下することになる。   However, on the other hand, when the chemical conversion film 21 such as the ZrO2 film is used directly on the vehicle body W, the chemical conversion film 21 is based on its properties (formation of a non-crystalline continuous film). As shown in FIG. 9, the number of local low-resistance portions is small, and the number of local energization portions in the chemical conversion film 21 decreases when a voltage is applied in electrodeposition coating (the surface of the chemical conversion film 21 (interface)). The number of electrons (free electrons) that can be supplied toward the For this reason, when such a chemical conversion film 21 such as a ZrO2 film is used directly on the vehicle body W as it is, the amount of coating film deposited decreases.

これについて、ZrO2皮膜を例にとり、具体的に説明する。電着塗装工程においては、その特性上、図2に示すように、陽極(図2においては槽T)とそれに近い車体Wの外板部との間に高い電圧が印加され、陽極とそれから遠い車体Wの内板部との間に低い電圧が印加されることになり、陽極に近い車体Wの外板部から塗膜が析出を開始することになる。この析出する塗膜は絶縁性を有しており、この塗膜の析出が進行して析出塗膜が増加するに伴い、塗膜の電気抵抗が大きくなる。このため、塗膜が析出した部位での塗膜の析出が低下し、それに代わって、未析出部位への塗膜の析出が始まる。このような電着塗装の下において、上述のZrO2皮膜が車体(例えば冷延鋼板)に形成されていると、図3に示すように、リン酸亜鉛皮膜が形成されている場合に比べて、低電圧印加領域(0〜70V付近)では塗膜膜厚が薄くなりすぎ、高電圧印加領域(70V以上)では塗膜膜厚が厚くなりすぎる特性を示す。このため、高電圧印加領域に属する陽極に近い車体Wの外板部においては、塗膜の膜厚が、リン酸亜鉛皮膜の場合の塗装膜厚よりもかなり厚くなり、低電圧印加領域に属する陽極から遠い車体Wの内板部においては、塗膜の膜厚がリン酸亜鉛皮膜の場合の塗装膜厚よりもかなり薄くなり、ZrO2皮膜をそのまま使用した場合には、その塗膜の付き回り性は、リン酸亜鉛皮膜の場合よりも劣ることになる。   This will be described in detail by taking a ZrO2 film as an example. In the electrodeposition coating process, as shown in FIG. 2, a high voltage is applied between the anode (tank T in FIG. 2) and the outer plate portion of the vehicle body W close to the anode, and the anode is far from the anode. A low voltage is applied between the inner plate portion of the vehicle body W, and the coating film starts to be deposited from the outer plate portion of the vehicle body W close to the anode. The deposited coating film has insulating properties, and the electrical resistance of the coating film increases as the deposition of the coating film progresses and the deposited coating film increases. For this reason, the deposition of the coating film at the site where the coating film is deposited decreases, and instead, the deposition of the coating film on the undeposited site starts. Under such electrodeposition coating, when the above-mentioned ZrO2 film is formed on a vehicle body (for example, a cold-rolled steel sheet), as shown in FIG. 3, compared to the case where a zinc phosphate film is formed, In the low voltage application region (around 0 to 70 V), the coating film thickness becomes too thin, and in the high voltage application region (70 V or more), the coating film thickness becomes too thick. For this reason, in the outer plate part of the vehicle body W close to the anode belonging to the high voltage application region, the coating film thickness is considerably thicker than the coating film thickness in the case of the zinc phosphate coating, and belongs to the low voltage application region. In the inner plate part of the vehicle body W far from the anode, the coating film thickness is considerably thinner than the coating film thickness in the case of the zinc phosphate coating. The property is inferior to that of the zinc phosphate coating.

本件発明者は、上記問題となる現象について、研究、検討した結果、次のような結論を得た。
(1)リン酸亜鉛皮膜の場合には、図4に示すように、リン酸亜鉛系処理剤で鋼板S表面(車体W表面)を処理すると、尖った形状が隣り合うようにして並ぶ結晶性リン酸亜鉛皮膜1が形成されることになり、多数の低抵抗部(隣り合う尖った形状の境目空間下部)2が形成される。このため、電子が各低抵抗部2に移動し、鋼板S表面で電気分解が起きて水酸イオンが生じ、その水酸イオンにより塗料に水溶性を与えている酸が中和され、それに基づき、図5に示すように、塗膜Fが鋼板S表面に析出・沈着される。この結果、低電圧領域に属する陽極から遠い車体部分であっても、鋼板S表面上に塗膜Fが形成されることが促進される。
これに対して、ZrO2皮膜21の場合には、図9に示すように、化成処理剤で鋼板Sを化成処理すると、ZrO2皮膜21として、フラットな非結晶性連続膜が形成されることになり、そのZrO2皮膜21には、局所的な低抵抗部22が形成されるものの、その数は極めて少ない。このため、このZrO2皮膜21では通電し難く、低電圧領域に属する陽極から遠い車体W部分における塗膜析出量は少ない。
The inventor of the present invention has studied and studied the above-mentioned phenomenon, and as a result, has obtained the following conclusion.
(1) In the case of a zinc phosphate coating, as shown in FIG. 4, when the surface of the steel sheet S (the surface of the vehicle body W) is treated with a zinc phosphate-based treatment agent, the crystallinity arranged so that the pointed shapes are adjacent to each other. A zinc phosphate coating 1 is formed, and a large number of low resistance portions (lower adjacent boundary space spaces 2) 2 are formed. For this reason, electrons move to each low resistance portion 2, electrolysis occurs on the surface of the steel sheet S, and hydroxide ions are generated. The acid that gives water-solubility to the paint is neutralized by the hydroxide ions. As shown in FIG. 5, the coating film F is deposited and deposited on the surface of the steel sheet S. As a result, the formation of the coating film F on the surface of the steel sheet S is promoted even in the vehicle body portion far from the anode belonging to the low voltage region.
On the other hand, in the case of the ZrO2 film 21, as shown in FIG. 9, when the steel sheet S is subjected to chemical conversion treatment with a chemical conversion treatment agent, a flat amorphous continuous film is formed as the ZrO2 film 21. In the ZrO2 film 21, although the local low resistance portion 22 is formed, the number thereof is extremely small. For this reason, it is difficult for the ZrO2 film 21 to be energized, and the amount of coating film deposited on the vehicle body W portion far from the anode belonging to the low voltage region is small.

(2)ZrO2皮膜21における数少ない局所的な各低抵抗部22の抵抗が、リン酸亜鉛皮膜1における低抵抗部2の抵抗よりも高くなっている。このため、このZrO2皮膜21においては、ある程度以上の電圧が印加されない限り通電せず、低電圧領域に属する陽極から遠い車体W部分では、図10に示すように(比較として図5参照)、リン酸亜鉛皮膜1の場合に比べて、塗膜Fが析出し難い。   (2) The resistance of each of the few local low resistance portions 22 in the ZrO2 film 21 is higher than the resistance of the low resistance portion 2 in the zinc phosphate film 1. For this reason, the ZrO2 film 21 is not energized unless a voltage of a certain level or more is applied, and in the vehicle body W portion far from the anode belonging to the low voltage region, as shown in FIG. Compared with the case of the zinc oxide film 1, the coating film F is difficult to deposit.

(3)その一方、ZrO2皮膜21における最大抵抗部(皮膜の厚みが最も厚い部分(50nm程度):図9参照)23が、抵抗に関し、リン酸亜鉛皮膜1の最大抵抗部(尖った先端部分(1〜2μm程度):図4参照)3よりも小さい。このため、高電圧印加領域においては、ZrO2皮膜21の方が、リン酸亜鉛皮膜1よりも方々で塗膜Fが析出することになり、高電圧領域に属する陽極に近い車体Wの外板部においては、塗膜Fの膜厚が、リン酸亜鉛皮膜1の場合の塗装膜厚よりもかなり厚くなる。図6、図7、図11、図12は、上記内容を概念的に示したもので、図6、図7は、化成皮膜がリン酸亜鉛皮膜1である場合における高電圧領域の初期、中期現象を概念的に示し、図11、図12は、化成皮膜がZrO2皮膜21である場合における高電圧領域の初期、中期現象を概念的に示している。   (3) On the other hand, the maximum resistance portion (the thickest portion of the coating (about 50 nm): refer to FIG. 9) 23 in the ZrO2 coating 21 is related to the maximum resistance portion (the sharp tip portion) of the zinc phosphate coating 1 (About 1-2 μm): see FIG. 4) smaller than 3. For this reason, in the high voltage application region, the ZrO2 coating 21 deposits more coating film F than the zinc phosphate coating 1, and the outer plate portion of the vehicle body W close to the anode belonging to the high voltage region. In, the film thickness of the coating film F is considerably thicker than the coating film thickness in the case of the zinc phosphate film 1. 6, 7, 11, and 12 conceptually show the above contents, and FIGS. 6 and 7 show the initial and middle periods of the high voltage region when the chemical conversion coating is the zinc phosphate coating 1. The phenomenon is conceptually shown, and FIGS. 11 and 12 conceptually show the initial and medium-term phenomena in the high voltage region when the chemical conversion film is the ZrO 2 film 21.

(4)また、リン酸亜鉛皮膜1の各低抵抗部2の大きさ(空間の大きさ)は小さい。このため、その各低抵抗部2で電気分解が起きて水酸イオンが生じ、その水酸イオンにより塗料に水溶性を与えている酸が中和され、塗膜Fが析出すると、図8に示すように、その塗膜Fにより各低抵抗部2(の空間)は容易に埋められる。
これに対して、ZrO2皮膜21における数少ない局所的な各低抵抗部22は、薄く且つリン酸亜鉛皮膜1の低抵抗部2よりも大きい(広い)。このため、その大きな低抵抗部22に電荷が集中し、水酸イオン、水酸イオンによる塗料に水溶性を与えている酸の中和過程を経て塗膜Fが析出するも、その大きな低抵抗部22は、図13に示すように、塗膜Fにより容易には埋まらない。このため、鋼板S上への塗膜の析出に基づき抵抗が大きくならず、陽極に近い車体Wの外板部においては、塗膜Fが析出し続け、その塗膜の膜厚は、リン酸亜鉛皮膜1の場合の塗装膜厚よりもかなり厚くなる。これに伴い、陽極から遠い車体Wの内板部には、もともと電子が移動しにくいことに加えて、上記観点からも移動しないことになり、そこでは、容易には、塗膜Fは析出しない。
(4) Moreover, the size (space size) of each low resistance portion 2 of the zinc phosphate coating 1 is small. For this reason, electrolysis occurs in each of the low resistance portions 2 to generate hydroxide ions, and the acid imparting water solubility to the paint is neutralized by the hydroxide ions, and the coating film F is deposited. As shown, each low resistance portion 2 (the space) is easily filled with the coating film F.
On the other hand, the few local low-resistance parts 22 in the ZrO2 film 21 are thinner and larger (wider) than the low-resistance parts 2 of the zinc phosphate film 1. For this reason, although the electric charge concentrates on the large low resistance portion 22 and the coating film F is deposited through the neutralization process of the acid that imparts water solubility to the paint by hydroxide ions and hydroxide ions, the large low resistance portion 22 The part 22 is not easily filled with the coating film F as shown in FIG. For this reason, the resistance does not increase due to the deposition of the coating film on the steel sheet S, and the coating film F continues to be deposited on the outer plate portion of the vehicle body W close to the anode. It becomes considerably thicker than the coating film thickness in the case of the zinc coating 1. Along with this, in addition to the fact that electrons do not easily move to the inner plate portion of the vehicle body W far from the anode, it does not move from the above viewpoint, and the coating film F does not easily deposit there. .

このような結論に基づき、図1に示すように、脱脂工程(脱脂槽37内の脱脂液38中に車体Wを、例えば180秒間、浸漬して、車体Wに付着した油分及び塵埃等を除去する工程)後であって前記化成工程前に、車体Wに対して導電性物質34を吸着(付着)させる吸着工程(付着工程)が行われる。この後の化成工程において車体W上に形成される化成皮膜21に、多数の局所的な低抵抗部(薄膜部(通電し易い通電部))を有するようにすべく、導電性物質34の吸着処理により車体Wの表面を凸凹状に形成するためである。   Based on such a conclusion, as shown in FIG. 1, as shown in FIG. 1, the vehicle body W is immersed in the degreasing liquid 38 in the degreasing tank 37 for 180 seconds, for example, to remove oil and dust attached to the vehicle body W. An adsorbing process (adhering process) for adsorbing (adhering) the conductive material 34 to the vehicle body W is performed after the chemical conversion process. Adsorption of the conductive material 34 so that the chemical conversion film 21 formed on the vehicle body W in the subsequent chemical conversion step has a large number of local low resistance portions (thin film portions (electric current supply portions that are easily energized)). This is because the surface of the vehicle body W is formed to be uneven by the treatment.

具体的に説明する。吸着工程においては、図1に示すように、上記導電性物質34をイオン状態で含有する処理液35を満たす吸着処理槽36が備えられている。導電性物質34としては、車体Wの成分(Fe)のイオン化傾向よりも小さい金属、有機粒子等の少なくとも一種が用いられており、その金属としては、Cu,Ni等を用いることができ、その有機粒子としては、ポリアニリン等を用いることができる。
本実施形態においては、導電性物質(金属)としてCuが用いられており、そのCuは、吸着処理槽36における処理液35中では、Cuイオンとして存在されている(例えば処理液として硫酸銅溶液を使用)。しかもこの場合、処理液35中のCuイオンの濃度に関しては、塗膜膜厚(電着特性)及び耐食性の観点から、5〜500ppmに設定され、pHに関しては、pH2〜5、処理液温度(浴温度)に関しては、10〜40℃に設定されている。
This will be specifically described. In the adsorption process, as shown in FIG. 1, an adsorption treatment tank 36 that fills the treatment liquid 35 containing the conductive substance 34 in an ionic state is provided. As the conductive material 34, at least one kind of metal, organic particles, etc. smaller than the ionization tendency of the component (Fe) of the vehicle body W is used. As the metal, Cu, Ni, etc. can be used. As the organic particles, polyaniline or the like can be used.
In this embodiment, Cu is used as the conductive substance (metal), and the Cu is present as Cu ions in the treatment liquid 35 in the adsorption treatment tank 36 (for example, a copper sulfate solution as the treatment liquid). use). Moreover, in this case, the concentration of Cu ions in the treatment liquid 35 is set to 5 to 500 ppm from the viewpoint of the coating film thickness (electrodeposition characteristics) and the corrosion resistance, and the pH is set to pH 2 to 5, treatment liquid temperature ( The bath temperature is set to 10 to 40 ° C.

この吸着工程においては、付着処理として、上記処理液35に対して車体Wが浸漬される。この浸漬により、(化6)に基づき、図14に示すように、車体W成分としてのFeをイオン化して電子を放出させる一方で、処理液35中のCu2+にその電子を受け取らせて、車体W表面にCuを析出させるためである。この場合、浸漬時間は、Cuの析出(吸着)を考慮し、10〜600秒程度(本実施形態においては30秒)に設定されている。

Figure 0005163622


In this adsorption process, the vehicle body W is immersed in the treatment liquid 35 as an adhesion treatment. By this immersion, as shown in FIG. 14, Fe as a vehicle body W component is ionized to emit electrons based on (Chemical Formula 6), while Cu 2+ in the treatment liquid 35 receives the electrons, and the vehicle body This is because Cu is deposited on the W surface. In this case, the immersion time is set to about 10 to 600 seconds (30 seconds in this embodiment) in consideration of Cu precipitation (adsorption).
Figure 0005163622


これにより、車体Wの表面は、上記Cuの析出に基づき、図14(概念図)に示すように凸凹状態となる(凹部41底面(車体W表面)から凸部40頂面までの高さは数nm程度)。この車体W表面の凸凹状態は、表面酸化の程度や電子状態に差があるために、エッチング反応(析出反応)に局部差が生じることに基づいており、その表面酸化の程度や電子状態の差は、車体(鋼板)W表面の凸凹(Ra=数μm程度)や局部的な組成や結晶面方位の違いに起因している。これにより、車体W表面におけるエッチング反応が起こりやすい個所にはCuが優先的に析出され、そこにCuの凸部40が形成される。この析出したCuの凸部40は、平面視において、円状や、楕円状、さらには、それらが結合した種々の形状を呈することになり、その析出したCuの隣り合う凸部40間には凹部41が形成され、その凹部41においては、車体Wの表面が、その凹部41の底面として露出することになる。このとき、析出したCuは、互いに、またFe(車体W成分)との間で金属結合(吸着)することになり、この後、前記化成工程における化成処理槽33に浸漬するとしても、析出したCuは、車体Wから脱離することはない。   As a result, the surface of the vehicle body W becomes uneven as shown in FIG. 14 (conceptual diagram) based on the deposition of Cu (the height from the bottom surface of the recess 41 (the surface of the vehicle body W) to the top surface of the protrusion 40 is Several nm). The uneven state on the surface of the vehicle body W is based on the fact that local differences occur in the etching reaction (precipitation reaction) because there is a difference in the degree of surface oxidation and the electronic state. Is caused by unevenness on the surface of the vehicle body (steel plate) W (Ra = about several μm), local composition, or crystal plane orientation difference. As a result, Cu is preferentially deposited at locations where the etching reaction is likely to occur on the surface of the vehicle body W, and the convex portions 40 of Cu are formed there. The deposited Cu protrusions 40 have a circular shape, an elliptical shape, and various shapes coupled with each other in plan view. Between the adjacent protrusions 40 of the deposited Cu, A recess 41 is formed, and in the recess 41, the surface of the vehicle body W is exposed as the bottom surface of the recess 41. At this time, the precipitated Cu will be metal-bonded (adsorbed) with each other and with Fe (vehicle body W component), and then precipitated even if immersed in the chemical conversion treatment tank 33 in the chemical conversion step. Cu is not detached from the vehicle body W.

したがって、この吸着工程を終えた車体Wを前記化成工程における化成処理槽33内に浸漬した場合には、前述の(化1)〜(化5)に従い、車体W成分(Fe)のイオン化に伴う電子が、電極電位の高いCuの凸部40に移動し、その電子に基づき、ZrO2は各凸部40上に積極的に沈着する。
その一方、隣り合う凸部40間の凹部41においては、車体W成分(Fe)が露出しており、その凹部41にはZrO2はあまり沈着しない(Feの電極電位がCuの電極電位よりも小)。このため、各凹部41におけるZrO2の膜厚は、他の部分(凸部40上)の膜厚よりも薄膜となり、その部分は、薄膜部42を構成する。この結果、この化成工程の後の電着塗装工程においては、図16に示すように、前記化成皮膜21の各薄膜部42が局部的な低抵抗部となり、電着塗装工程における電圧印加時には、各薄膜部42を通電部として、塗膜の析出が促進される。これにより、低電圧印加領域における電着塗装性が向上される。
Therefore, when the vehicle body W that has finished this adsorption step is immersed in the chemical conversion treatment tank 33 in the chemical conversion step, it is accompanied by ionization of the vehicle body W component (Fe) in accordance with the above (Chemical Formula 1) to (Chemical Formula 5). Electrons move to the Cu convex portions 40 having a high electrode potential, and ZrO 2 is positively deposited on each convex portion 40 based on the electrons.
On the other hand, in the concave portion 41 between the adjacent convex portions 40, the vehicle body W component (Fe) is exposed, and ZrO2 does not deposit so much in the concave portion 41 (the Fe electrode potential is smaller than the Cu electrode potential). ). For this reason, the film thickness of ZrO 2 in each recess 41 is thinner than the film thickness of other parts (on the convex part 40), and that part constitutes the thin film part 42. As a result, in the electrodeposition coating process after this chemical conversion process, as shown in FIG. 16, each thin film portion 42 of the chemical conversion film 21 becomes a local low resistance portion, and at the time of voltage application in the electrodeposition coating process, Using each thin film portion 42 as an energization portion, deposition of the coating film is promoted. Thereby, the electrodeposition coating property in a low voltage application area | region is improved.

この結果、このような吸着工程、化成工程を経た最終的な化成皮膜(車体W表面に析出したCu上に形成したZrO2皮膜)21は、その塗膜膜厚特性(電着特性)が、リン酸亜鉛皮膜1の塗装膜厚特性に近づくことになり、このような最終的なZrO2皮膜を用いることにより、富栄養化、スラッジ生成の問題を引き起こさないことは勿論、耐食性及び電着塗装性をも満足させることができることになる。   As a result, the final chemical film (ZrO2 film formed on Cu deposited on the surface of the vehicle body W) 21 that has undergone such an adsorption process and chemical conversion process has a film thickness characteristic (electrodeposition characteristic) of phosphorus. The coating film thickness characteristics of the zinc oxide film 1 will be approached, and by using such a final ZrO2 film, the problems of eutrophication and sludge generation will not be caused, and corrosion resistance and electrodeposition coating properties will be improved. Can also be satisfied.

より具体的に説明すれば、耐食性等の基本機能に関しては、大部分を占める化成皮膜21(析出成分34が極めて少ないこと)の性質に基づき確保でき、陽極に近い車体Wの外板部での過剰な塗膜Fの析出に関しては、化成皮膜21内へのCuの含有に基づく化成皮膜成分の割合の相対的な減少により減らすことができる。そして、陽極から遠い車体Wの内板部における塗膜Fの析出に関しては、吸着工程において析出したCuの各隣り合う凸部40間の凹部41形状に基づき、化成工程における化成被膜21に、多数の局所的な低抵抗部(薄膜部42、通電し易い通電部)を形成でき、これにより、低電圧印加領域である陽極から遠い車体Wの内板部の電着塗装性を向上させることができることになる。   More specifically, the basic functions such as corrosion resistance can be ensured based on the properties of the chemical conversion film 21 (the amount of the precipitated component 34 is very small) that occupies most of the basic functions. The excessive deposition of the coating film F can be reduced by a relative decrease in the ratio of the chemical conversion film component based on the inclusion of Cu in the chemical conversion film 21. And about precipitation of the coating film F in the inner-plate part of the vehicle body W far from an anode, based on the shape of the recessed part 41 between each adjacent convex part 40 of Cu deposited in the adsorption | suction process, many in the chemical conversion film 21 in a chemical conversion process. The local low resistance portion (the thin film portion 42, the energization portion that is easily energized) can be formed, thereby improving the electrodeposition coating property of the inner plate portion of the vehicle body W that is far from the anode that is the low voltage application region. It will be possible.

また、前述の問題(高電圧印加領域に属する陽極に近い被塗装物部分において、塗膜の膜厚が、リン酸亜鉛皮膜の場合の塗装膜厚よりもかなり厚くなり、低電圧印加領域に属する陽極から遠い被塗装物部分においては、塗膜の膜厚がリン酸亜鉛皮膜の場合の塗装膜厚よりもかなり薄くなること)に関し、ZrO2皮膜(吸着工程でCuを析出させないもの)における各低抵抗部22の大きさを何らかの方法で小さくしてその各低抵抗部22に電荷が集中しないようにすることが考えられる。しかし、このように各抵抗部22の大きさを小さくした場合には、皮膜の厚みが厚くなって塗膜の析出開始電圧をさらに高くしなければ、塗膜は析出しなくなる。これに対して、吸着工程でCuを析出させその上にZrO2皮膜21を形成したものにおいては、各薄膜部42で、電圧印加時に電子の供給が増加(通電部が増加)することになる。このため、この観点からも、前記問題点を解消(ZrO2皮膜21の塗膜膜厚特性をリン酸亜鉛皮膜1の塗装膜厚特性に近づけること)できる。   In addition, the above-mentioned problem (at the part to be coated near the anode belonging to the high voltage application region, the coating film thickness is considerably thicker than the coating film thickness in the case of the zinc phosphate coating, and belongs to the low voltage application region. In the part to be coated far from the anode, the film thickness of the coating film is considerably thinner than the coating film thickness in the case of the zinc phosphate film), and each low in the ZrO2 film (which does not deposit Cu in the adsorption process) It is conceivable that the size of the resistance portion 22 is reduced by some method so that charges are not concentrated on each low resistance portion 22. However, when the size of each resistance portion 22 is reduced in this way, the coating film will not be deposited unless the coating thickness is increased and the deposition start voltage of the coating film is further increased. On the other hand, in the case where Cu is deposited in the adsorption step and the ZrO2 film 21 is formed thereon, the supply of electrons increases at each thin film portion 42 when a voltage is applied (the number of energized portions increases). For this reason, also from this viewpoint, the above-mentioned problem can be solved (the coating film thickness characteristic of the ZrO2 film 21 can be brought close to the coating film thickness characteristic of the zinc phosphate film 1).

図17は、上記内容を裏付けるべく、吸着工程でCuを析出させた上で車体Wに対してZrO2皮膜を形成した場合の塗膜膜厚特性を示したものである。この場合、試験車体としては、吸着工程において、Cuイオンを含有する処理液35中に浸漬され、その後、化成工程において、化成処理剤32中に浸漬されたものが用いられた。具体的な試験条件は、下記に示す通りである。
(1)吸着工程
処理液の組成:Cu(NO3)2 50ppm、NaOH(pH調整用)
処理液のpH:3
処理液の温度:30℃
試験車体の吸着処理槽への浸漬時間:30秒
(2)化成工程
化成処理剤の組成:ジルコニウム酸(H2ZrF6)、フッ酸(HF)、水溶性樹脂
化成処理剤のpH:4
試験車体の浸漬時間:180秒
化成処理剤温度(浴温度):30℃
FIG. 17 shows the film thickness characteristics when a ZrO2 film is formed on the vehicle body W after Cu is deposited in the adsorption process to support the above contents. In this case, the test vehicle body used was immersed in the treatment liquid 35 containing Cu ions in the adsorption step and then immersed in the chemical conversion treatment agent 32 in the chemical conversion step. Specific test conditions are as shown below.
(1) Adsorption process Composition of treatment liquid: Cu (NO3) 2 50ppm, NaOH (for pH adjustment)
PH of treatment solution: 3
Treatment liquid temperature: 30 ° C
Immersion time of test vehicle in adsorption treatment tank: 30 seconds (2) Chemical conversion process Composition of chemical conversion treatment agent: zirconium acid (H2ZrF6), hydrofluoric acid (HF), water-soluble resin pH of chemical conversion treatment agent: 4
Immersion time of test body: 180 seconds Chemical conversion treatment agent temperature (bath temperature): 30 ° C

この図17の結果によれば、吸着工程でCuを析出させた上で車体Wに対してZrO2皮膜を形成した場合における塗膜膜厚特性(電着特性)は、リン酸亜鉛皮膜1の塗装膜厚特性に近づくことになった。これは、主として、図16の概念図に示すように、Cuの各隣り合う凸部40間の凹部41に基づき、化成皮膜21がその凹部41で薄膜部42を形成するため、それが、局所的な低抵抗部(電圧印加時の通電し易い局所的な通電部)となり、これに基づき、塗膜(樹脂)Fの析出が促進されたためと考えられる。この場合、通電部を増加させる印加電圧は、腐食における電圧(例えば1V程度)よりも大きくなるように設定することが好ましい。尚、図16中、符号Pは、酸により水溶性を与えられた塗料を示す。   According to the result of FIG. 17, the coating film thickness characteristic (electrodeposition characteristic) when the ZrO 2 film is formed on the vehicle body W after Cu is deposited in the adsorption process is as follows. The film thickness characteristics were approached. This is mainly because, as shown in the conceptual diagram of FIG. 16, the chemical conversion film 21 forms a thin film portion 42 with the concave portions 41 based on the concave portions 41 between the adjacent convex portions 40 of Cu. This is considered to be because the deposition of the coating film (resin) F was promoted based on this low resistance portion (local energization portion that is easy to energize when applying voltage). In this case, it is preferable to set the applied voltage for increasing the current-carrying part to be higher than the voltage in corrosion (for example, about 1 V). In FIG. 16, the symbol P indicates a paint imparted with water solubility by an acid.

図18は、吸着工程における処理液35中のCuイオンの濃度が、塗膜膜厚(電着特性)及び耐食性に及ぼす影響を示したものである。
塗膜膜厚に関しては、図18に示すように、Cuイオンの濃度が増加するに伴い増加し、その塗膜膜厚も、所定値を境に減少に転じる特性を示した。耐食性に関しては、処理液中のCuイオンの濃度(ppm)が一定値まで許容できる内容を示すものの、その一定値を超えると、耐食性に問題が生じることになった。
この場合、吸着工程での各処理液35のいずれの場合も、吸着処理槽36への車体Wの浸漬時間は30秒、吸着処理槽内の処理液温度(浴温)は30℃、pH3とし、化成工程の条件としては、図17に示す実験で用いたものを共通条件として用いた。またこの場合、耐食性に関しては、CCT(CCT1サイクル≒JISK5600−7−9サイクルAの3サイクル)60サイクル後の塗膜F膨れ率(%)を測定した。
FIG. 18 shows the influence of the Cu ion concentration in the treatment liquid 35 in the adsorption step on the film thickness (electrodeposition characteristics) and the corrosion resistance.
As shown in FIG. 18, the coating film thickness increased as the Cu ion concentration increased, and the coating film thickness also showed a characteristic that turned to decrease at a predetermined value. Regarding the corrosion resistance, although the concentration (ppm) of Cu ions in the treatment solution shows an acceptable content up to a certain value, if it exceeds the certain value, a problem arises in the corrosion resistance.
In this case, the immersion time of the vehicle body W in the adsorption treatment tank 36 is 30 seconds, the treatment liquid temperature (bath temperature) in the adsorption treatment tank is 30 ° C., and pH 3 in each case of each treatment liquid 35 in the adsorption process. As the conditions for the chemical conversion step, those used in the experiment shown in FIG. 17 were used as common conditions. Further, in this case, regarding the corrosion resistance, the coating film F swelling rate (%) after 60 cycles of CCT (CCT 1 cycle≈3 cycles of JISK5600-7-9 cycle A) was measured.

図19は、耐食性の観点からの処理液35中のCuイオンの濃度(ppm)の上限を求めた内容を示している。すなわち、図19に、図18における処理液35中のCuイオンの濃度(ppm)とCCT60サイクル後の塗膜F膨れ率(%)との関係を示し、その関係から、塗膜膨れ率30(%)を耐食性の許容限界(基準値)として、処理液中のCuイオンの濃度(ppm)の上限を求めている。この場合、塗膜膨れ率30(%)を耐食性の許容限界(基準値)としているが、これは、自動車ボディ外板の穴あき錆保証の主流が12年となっており、その保証については、塗膜F膨れ率30(%)未満であれば満足することが実績を通じて確認されていることが根拠となっている。ここで、CCT1サイクル≒JISK5600−7−9サイクルAの3サイクルである。
図19によれば、耐食性の許容限界における吸着工程における処理液中のCuイオンの濃度が、500ppmであることを示し、耐食性を確保するためには、処理液中のCuイオンの濃度を500ppm以下にする必要があることを示した。その一方、下限値に関しては、必要塗膜膜厚確保の観点から、5ppm以上とする必要がある。
FIG. 19 shows the content of obtaining the upper limit of the Cu ion concentration (ppm) in the treatment liquid 35 from the viewpoint of corrosion resistance. That is, FIG. 19 shows the relationship between the concentration (ppm) of Cu ions in the treatment liquid 35 in FIG. 18 and the coating film F swelling rate (%) after 60 CCT cycles. %) As an allowable limit (reference value) of corrosion resistance, the upper limit of the concentration (ppm) of Cu ions in the treatment liquid is obtained. In this case, the coating swelling rate of 30 (%) is the allowable limit (reference value) for corrosion resistance, but this is because the mainstream of perforated rust guarantee on automobile body outer panels is 12 years. It is based on the fact that it is confirmed through results that the coating film F swelling rate is less than 30 (%). Here, CCT1 cycle≈JISK5600-7-9 cycle A, 3 cycles.
According to FIG. 19, the concentration of Cu ions in the treatment liquid in the adsorption process at the allowable limit of corrosion resistance is 500 ppm, and in order to ensure corrosion resistance, the concentration of Cu ions in the treatment liquid is 500 ppm or less. Showed that it is necessary. On the other hand, the lower limit value needs to be 5 ppm or more from the viewpoint of securing the required coating film thickness.

以上、実施形態について説明したが本発明にあっては、吸着工程における浸漬処理に代えて、付着処理として、スプレー、蒸着、溶射等の処理を用いることにより、車体(被塗装物)上に導電性物質を付着させるようにしてもよい。   As mentioned above, although embodiment was described, in this invention, it replaces with the immersion process in an adsorption | suction process, and conducts on a vehicle body (to-be-coated object) by using processes, such as spray, vapor deposition, and thermal spraying, as an adhesion process. A sex substance may be attached.

21 ZrO2皮膜
22 ZrO2皮膜の低抵抗部
32 化成処理剤
34 導電性物質
40 凸部
41 凹部
42 薄膜部
S 鋼板
W 車体
21 ZrO2 film 22 Low resistance part of ZrO2 film 32 Chemical conversion agent 34 Conductive substance 40 Convex part 41 Concave part 42 Thin film part S Steel plate W Car body

Claims (5)

電着塗装工程前に、化成処理剤を用いて、金属部材の表面に化成皮膜形成処理を行う金属部材の表面処理方法において、
前記化成処理剤として、主成分がZr,Ti,Hf,Siから選ばれる元素を有する化合物であって、化成皮膜がZr,Ti,Hf,Siから選ばれる元素を有する酸化物に形成されるものを用い、
前記化成皮膜形成処理の前工程で、前記金属部材に対して導電性物質を付着させる付着処理を行って、該金属部材の表面を凸凹状に形成し、
その上で、前記凸凹状の金属部材の表面に対して前記化成皮膜形成処理を行って、前記導電性物質の各隣り合う凸部間の化成皮膜の膜厚を、その他の部分の膜厚に比して薄くし、
前記導電性物質が、Cu,Ni,ポリアニリンの少なくとも一種である、
ことを特徴とする金属部材の表面処理方法。
In the surface treatment method for a metal member, which uses a chemical conversion treatment agent before the electrodeposition coating process, and performs a chemical conversion film formation treatment on the surface of the metal member,
The chemical conversion treatment agent is a compound having an element selected from Zr, Ti, Hf, Si as a main component, and the chemical conversion film is formed on an oxide having an element selected from Zr, Ti, Hf, Si. Use
In the pre-process of the chemical conversion film forming treatment, an adhesion treatment for attaching a conductive substance to the metal member is performed, and the surface of the metal member is formed in an uneven shape,
Then, the chemical film formation treatment is performed on the surface of the uneven metal member, and the film thickness of the chemical film between adjacent convex parts of the conductive substance is changed to the film thickness of other parts. compared to thin,
The conductive material is at least one of Cu, Ni and polyaniline;
A surface treatment method for a metal member.
請求項1において
前記付着処理が、前記金属部材を、前記導電性物質がイオン状態で含有される処理液に浸漬させて、該導電性物質を該金属部材の表面に析出し、該金属部材の表面を凸凹状に形成することである、
ことを特徴とする金属部材の表面処理方法。
In claim 1 ,
In the adhesion treatment, the metal member is immersed in a treatment solution containing the conductive substance in an ionic state, and the conductive substance is deposited on the surface of the metal member, and the surface of the metal member is uneven. Is to form,
A surface treatment method for a metal member.
請求項において、
前記導電性物質が銅であり、
前記金属部材上に銅を析出させるに際して、該金属部材を、銅イオン濃度が5〜500ppmの処理液中に浸漬する、
ことを特徴とする金属部材の表面処理方法。
In claim 2 ,
The conductive material is copper;
In depositing copper on the metal member, the metal member is immersed in a treatment solution having a copper ion concentration of 5 to 500 ppm.
A surface treatment method for a metal member.
電着塗装工程前に、化成処理剤を用いて、金属部材の表面に化成皮膜形成処理を行う金属部材の表面処理方法において、
前記化成処理剤として、主成分がZr,Ti,Hf,Siから選ばれる元素を有する化合物であって、化成皮膜がZr,Ti,Hf,Siから選ばれる元素を有する酸化物に形成されるものを用い、
前記化成皮膜形成処理の前工程で、前記金属部材に対して導電性物質を付着させる付着処理を行って、該金属部材の表面を凸凹状に形成し、
その上で、前記凸凹状の金属部材の表面に対して前記化成皮膜形成処理を行って、前記導電性物質の各隣り合う凸部間の化成皮膜の膜厚を、その他の部分の膜厚に比して薄くし、
前記導電性物質のイオン化傾向が、前記金属部材の成分のイオン化傾向よりも小さいものであり、
前記付着処理が、前記金属部材を、前記導電性物質がイオン状態で含有される処理液に浸漬させて、該導電性物質を該金属部材の表面に析出し、該金属部材の表面を凸凹状に形成することであり、
前記導電性物質が、Cu,Niの少なくとも一種である、
ことを特徴とする金属部材の表面処理方法。
In the surface treatment method for a metal member, which uses a chemical conversion treatment agent before the electrodeposition coating process, and performs a chemical conversion film formation treatment on the surface of the metal member,
The chemical conversion treatment agent is a compound having an element selected from Zr, Ti, Hf, Si as a main component, and the chemical conversion film is formed on an oxide having an element selected from Zr, Ti, Hf, Si. Use
In the pre-process of the chemical conversion film forming treatment, an adhesion treatment for attaching a conductive substance to the metal member is performed, and the surface of the metal member is formed in an uneven shape,
Then, the chemical film formation treatment is performed on the surface of the uneven metal member, and the film thickness of the chemical film between adjacent convex parts of the conductive substance is changed to the film thickness of other parts. Thinner than
The ionization tendency of the conductive material is smaller than the ionization tendency of the component of the metal member,
In the adhesion treatment, the metal member is immersed in a treatment solution containing the conductive substance in an ionic state, and the conductive substance is deposited on the surface of the metal member, and the surface of the metal member is uneven. Is to form
The conductive material is at least one of Cu and Ni;
A surface treatment method for a metal member.
請求項において、
前記導電性物質が銅であり、
前記金属部材上に銅を析出させるに際して、該金属部材を、銅イオン濃度が5〜500ppmの処理液中に浸漬する、
ことを特徴とする金属部材の表面処理方法。
In claim 4 ,
The conductive material is copper;
In depositing copper on the metal member, the metal member is immersed in a treatment solution having a copper ion concentration of 5 to 500 ppm.
A surface treatment method for a metal member.
JP2009245084A 2009-09-03 2009-10-26 Method for surface treatment of metal members Expired - Fee Related JP5163622B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009245084A JP5163622B2 (en) 2009-10-26 2009-10-26 Method for surface treatment of metal members
US12/839,034 US8506728B2 (en) 2009-09-03 2010-07-19 Surface treatment method of metal material
CN201010276050.4A CN102011111B (en) 2009-09-03 2010-08-31 Surface treatment method of metal material
EP10009092.7A EP2302096B1 (en) 2009-09-03 2010-09-01 Method for treatment of a metallic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245084A JP5163622B2 (en) 2009-10-26 2009-10-26 Method for surface treatment of metal members

Publications (2)

Publication Number Publication Date
JP2011089187A JP2011089187A (en) 2011-05-06
JP5163622B2 true JP5163622B2 (en) 2013-03-13

Family

ID=44107689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245084A Expired - Fee Related JP5163622B2 (en) 2009-09-03 2009-10-26 Method for surface treatment of metal members

Country Status (1)

Country Link
JP (1) JP5163622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169429A1 (en) * 2022-03-11 2023-09-14 华为技术有限公司 Structural member and preparation method therefor, and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284087A (en) * 1986-06-03 1987-12-09 Kawasaki Steel Corp Surface-treated steel sheet having excellent coated film adhesion and its production
JP3967796B2 (en) * 1997-08-18 2007-08-29 新日本製鐵株式会社 Surface-treated metal material
JPH10140371A (en) * 1996-11-08 1998-05-26 Sky Alum Co Ltd Aluminum sheet to be phosphated and phosphating method
JP3941649B2 (en) * 2001-09-28 2007-07-04 スズキ株式会社 Aluminum substrate and surface treatment method thereof
JP2009185392A (en) * 2002-12-24 2009-08-20 Nippon Paint Co Ltd Pretreatment method for coating
JP2008184690A (en) * 2002-12-24 2008-08-14 Nippon Paint Co Ltd Pretreatment method for coating
ES2415979T3 (en) * 2007-09-27 2013-07-29 Chemetall Gmbh Method for producing a superficially treated metallic material, and method for producing a coated metallic article
US9574093B2 (en) * 2007-09-28 2017-02-21 Ppg Industries Ohio, Inc. Methods for coating a metal substrate and related coated metal substrates
JP5421251B2 (en) * 2008-05-29 2014-02-19 日本パーカライジング株式会社 Bismuth coated metal material and method for producing the same, surface treatment liquid used therefor, and cationic electrodeposition coated metal material and method for producing the same

Also Published As

Publication number Publication date
JP2011089187A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4920800B2 (en) Manufacturing method of steel plate for containers
JP5845563B2 (en) Manufacturing method of steel plate for containers
JP5754099B2 (en) Manufacturing method of steel plate for containers
CN103597118B (en) The hard films utilizing hard films to be coated to is coated to component and manufacture method thereof
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
ES2847309T3 (en) Multilayer substrate and manufacturing procedure
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
US8506728B2 (en) Surface treatment method of metal material
JP2008261035A (en) Surface treating solution for zinc-based metal material and surface treating method of zinc-based metal material
KR100814489B1 (en) Chemically treated metal plate
JP2017520684A5 (en)
CN114829029A (en) Metal sheet with a defined surface structure and method for producing a shaped and painted sheet metal component
JP2009001854A (en) Steel sheet for vessel
JP2009209407A (en) Agent for chemical conversion treatment and surface-treated metal
JPH0813154A (en) Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
JP5163622B2 (en) Method for surface treatment of metal members
JP2009001853A (en) Steel sheet for vessel, and method for producing the same
JP5690306B2 (en) Painted stainless steel parts
US3642541A (en) Method for applying corrosion-resistant composite coating to ferrous metals and product resulting therefrom
KR20160147050A (en) Metal pretreatment modification for improved throwpower
JP5526664B2 (en) Method for surface treatment of metal members
JP2018135570A (en) Sn BASED ALLOY PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JP5186815B2 (en) Steel plate for containers
JPH0631475B2 (en) Manufacturing method of galvannealed steel sheet for cationic electrodeposition coating
EP3294926B1 (en) Process for surface treating a magnesium alloy and process for electroless nickel plating a treated surface

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees