JP3967796B2 - Surface-treated metal material - Google Patents

Surface-treated metal material Download PDF

Info

Publication number
JP3967796B2
JP3967796B2 JP22153197A JP22153197A JP3967796B2 JP 3967796 B2 JP3967796 B2 JP 3967796B2 JP 22153197 A JP22153197 A JP 22153197A JP 22153197 A JP22153197 A JP 22153197A JP 3967796 B2 JP3967796 B2 JP 3967796B2
Authority
JP
Japan
Prior art keywords
compound
group
oxygen
acid compound
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22153197A
Other languages
Japanese (ja)
Other versions
JPH1161431A (en
Inventor
浩雅 荘司
健一郎 田所
雅雄 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22153197A priority Critical patent/JP3967796B2/en
Priority to US09/093,109 priority patent/US6190780B1/en
Publication of JPH1161431A publication Critical patent/JPH1161431A/en
Application granted granted Critical
Publication of JP3967796B2 publication Critical patent/JP3967796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon

Description

【0001】
【発明の属する技術分野】
本発明は加工追従性があり、耐食性に優れ、且つ6価クロムを全く含まない被覆層を有する表面処理金属材料に関するものである。
【0002】
【従来の技術】
従来、自動車、家電製品、建材等の用途に用いられる冷延鋼板、亜鉛めっき鋼板および亜鉛系合金めっき鋼板、アルミニウムめっき鋼板などに防錆性を付与するため等に、それらの表面にクロメート皮膜を被覆することが一般に行なわれている。このクロメート処理としては、電解型クロメートや塗布型クロメートがある。電解クロメートは、例えばクロム酸を主成分とし、他に硫酸、燐酸、硼酸およびハロゲンなどの各種陰イオンを添加した浴を用いて、金属板を陰極電解処理することにより行なわれてきた。また、塗布型クロメートは、クロメート処理金属板からのクロムの溶出の問題があり、あらかじめ6価クロムの一部を3価に還元した溶液や6価クロムと3価クロム比を特定化した溶液に無機コロイドや無機アニオンを添加して処理液とし、金属板をその中に浸漬したり、処理液を金属板にスプレーしたりすることにより行なわれてきた。
【0003】
クロメート皮膜の内、電解によって形成されたクロメート皮膜は6価クロムの溶出性は少ないものの防食性は十分とは言えず、特に加工時などの皮膜損傷が大きい場合、その耐食性は低下する。一方、塗布型クロメート皮膜により被覆された金属板の耐食性は高く、特に加工部耐食性に優れているが、クロメート皮膜からの6価クロムの溶出が大きく問題となる。有機重合体を被覆すれば6価クロムの溶出はかなり抑制されるものの十分ではない。また、特開平5−230666号公報に開示されているような一般に樹脂クロメートと呼ばれる方法では6価クロムの溶出抑制に改善は見られるものの、微量の溶出は避けられない。
このように6価クロムの溶出を完全に抑えるためには、6価クロムを全く使用せず従来の6価クロムを含有するクロメート皮膜と同等の機能を有する防錆性皮膜の開発が必要となる。
【0004】
我々は、PCT/JP97/00272に記載したように現行クロメート処理に代わる6価クロムを全く含まない汎用化成処理皮膜として希土類元素の酸素酸(水素)化合物による被覆層を得た。その一例として、ランタンやセリウムを燐酸化合物とすることでペースト状とし、加工追従性を付与し、そのバリヤー効果により腐食を抑制するとともに、セリウムイオンによりカソーディック反応の抑制、さらに燐酸を過剰にすることで燐酸塩皮膜型の不働態化および酸化物皮膜型の不働態化によりアノーディック反応を抑制する無機系耐食性化成処理皮膜を得た。
【0005】
【発明が解決しようとする課題】
本発明の目的は上述の6価クロムを全く使用せず、加工追従性、耐食性に優れた無機系化成処理皮膜を有する表面処理金属材料に関する新たな技術を提供することにある。
【0006】
【課題を解決するための手段】
現行クロメート処理に代わる汎用化成処理皮膜を6価クロムを全く含まない系で設計すべく、本発明者らは鋭意検討を重ねた結果、IVA属元素の酸素酸化合物、酸素酸水素化合物、またはこれらの混合物を主成分とするものにより形成される新規でかつ画期的な化成処理皮膜を得ることが可能となったものである。さらに有機系インヒビターおよび/またはセリウム化合物を被覆層中に含有させ、腐食抑制を補完、強化したものである。
【0007】
その発明の要旨とするところは、
(1)IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。
(2)IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、またはIVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物と、希土類元素の酸化物、水酸化物、炭酸化合物、硫酸化合物、硝酸化合物および有機酸化合物から選ばれる1種または2種以上の化合物の添加成分からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。
(3)IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物と、有機系インヒビターの添加成分からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。
【0008】
(4)IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物と、希土類元素の酸化物、水酸化物、炭酸化合物、硫酸化合物、硝酸化合物および有機酸化合物から選ばれる1種または2種以上の化合物および有機系インヒビターの添加成分からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。
(5)添加成分の希土類元素がセリウムである(2)又は(4)記載の表面処理金属材料。
【0009】
(6)有機系インヒビターが、N−フェニル−ジメチルピロールのホルミル化誘導体、HS−CH 2 COOC n 2n+1 (nは1〜25の整数)で表されるチオグリコール酸エステル及びその誘導体、C n 2n (SH)COOH(nは1〜25の整数)で表されるα−メルカプトカルボン酸及びその誘導体、キノリン及びその誘導体、トリアジンジチオール及びその誘導体、没食子酸エステル及びその誘導体、ニコチン酸およびその誘導体、カテコールおよびその誘導体および/または導電性高分子から選ばれる1種又は2種以上の混合物である(3)又は(4)に記載の表面処理金属材料。
(7)IVA属元素がジルコニウムである(1)〜(4)のいずれかに記載の表面処理金属材料。
(8)酸素酸化合物のアニオン種が燐酸イオン、タングステン酸イオン、モリブデン酸イオンおよび/またはバナジン酸イオンである(1)〜(7)のいずれかに記載の表面処理金属材料。
(9)燐酸化合物および燐酸水素化合物が、オルト(水素)燐酸、メタ燐酸化合物、ポリ燐酸(水素)化合物またはこれらの混合物である(8)に記載の表面処理金属材料
(10)添加物として、水酸化カルシウム、炭酸カルシウム、酸化カルシウム、りん酸亜鉛、りん酸カリウム、りん酸カルシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、りん酸アルミニウム、りん酸ジルコニウム、TiO 2 ,SiO 2 ,Al 2 3 の中から選ばれる1種以上を含む請求項1〜9のいずれかに記載の表面処理金属材料である。
【0010】
【発明の実施の形態】
本発明に使用されるIVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物とは、りん酸イオン、タングステン酸イオン、バナジン酸イオンなどの酸素酸アニオンとIVA属元素(即ち、Ti,Zr,Hf)との化合物を指称し、酸素酸水素化合物とはカチオンの一部に水素を含む化合物を指称する。これら酸素酸化合物および/または酸素酸水素化合物は、加工追従性とそのバリヤー効果により腐食を抑制するとともに、酸素酸を過剰にすることで酸素酸塩皮膜型の不働態皮膜を形成し、かつ酸化物皮膜型の不働態皮膜を形成させることができるため、高い防食性能を持った耐食性化成処理皮膜を得ることが出来る。IVA属元素のうち、Zrは加工追従性、耐食性が特に優れており好適である。
【0011】
金属材料上の皮膜中に含まれるIVA属元素の酸素酸化合物および/または酸素酸水素化合物の量としては、求められる耐食性により必要添加量が変わるため限定することは出来ないが、IVA属元素換算で1mg/m2 以上であれば良い。1mg/m2 未満では耐食性が不十分であり、10g/m2 を超えた場合は耐食性向上効果は飽和してしまうため、経済性を考慮すると10g/m2 で十分である。IVA属元素の酸素酸化合物および/または酸素酸水素化合物の処理液中での存在形態は、使用される溶媒やpH、温度、濃度に依存するが、溶解した状態または処理液中に微細分散したコロイド状が好ましい。
【0012】
これら以外では、皮膜を形成したときにIVA属元素の酸素酸化合物および/またはIVA属元素の酸素酸水素化合物の分散状態が不均一になり、IVA属元素の酸素酸化合物および/またはIVA属元素の酸素酸水素化合物の存在量の少ないところで防食性能が低下する可能性がある。IVA属元素の酸素酸化合物および/またはIVA属元素の酸素酸水素化合物をコロイド状に微細分散した場合の平均粒子径としては、3μm以下が好ましく、さらには1μm以下、特に0.2μm以下が好ましい。粒子径が3μm以上であると、処理液中や皮膜中でのIVA属元素の酸素酸化合物および/またはIVA属元素の酸素酸水素化合物の分散状態が不均一になる、皮膜の膜厚が制限される等の問題がある。
【0013】
本発明の皮膜や処理液には有機系インヒビターやセリウム化合物のような腐食抑制剤、不働態化皮膜形成助剤以外に分散剤や消泡剤などの界面活性剤、その他添加物を複合して使用することもできる。
有機系インヒビターは金属表面への吸着性を有し、金属イオンの溶出時に錯体形成し捕捉するためイオン化の更なる進行を抑制する作用を有する。その有機系インヒビターとしては分子構造中に金属錯体結合形成に必要な官能基(=O,−NH2 ,=NH,=N−,=S,−OH等)、および金属表面との共有結合形成可能な官能基(−OH,=NH,−SH,−CHO,−COOH等)を有する化合物が使用できる。なお、皮膜中に含有させるインヒビターは難水溶性の化合物が好ましい。
【0014】
この理由として、この腐食抑制作用は皮膜を透過する水により有機系インヒビターが微量溶解することで発現するため、もし易溶性であると水の皮膜透過時に容易に溶出してしまい、機能を発揮しないため、あるいは持続性が十分でないため好ましくない。上記の官能基を兼ね備えた難水溶性の有機系インヒビターの具体例としては、N−フェニル−ジメチルピロールのホルミル化誘導体、HS−CH2 COOCn 2n+1(nは1〜25の整数)で表されるチオグリコール酸エステル及びその誘導体、Cn 2n(SH)COOH(nは1〜25の整数)で表されるα−メルカプトカルボン酸及びその誘導体、キノリン及びその誘導体、トリアジンジチオール及びその誘導体、没食子酸エステル及びその誘導体、ニコチン酸およびその誘導体、カテコールおよびその誘導体等である。
【0015】
これらとは防食機構が異なる有機系インヒビターとして電子伝導性導電性高分子も用いることができる。これは分子全体にπ電子共役結合が広がった繰り返し単位の単一な分子であり、ポリアセチレン、ポリアニリン、ポリチオフェン、ポリピロール等が知られている。これに、例えば硫酸バリウムなどをドーパントとして加えることにより電子伝導性を付与することができる。この導電性高分子の防食作用については詳細は不明であるが、電子伝導性により界面での腐食電流整流化作用、酸素還元抑制作用を発現しカソード防食剤として機能するものと推定される。
【0016】
なお、これら有機系インヒビターを1種または2種以上混合して使用するが、その添加量はIVA属元素と有機系インヒビターとのモル比(有機系インヒビター/ジルコニウム)で0.001〜2、好ましくは0.01〜1、さらに好ましくは0.02〜0.5である。モル比が0.001未満では添加効果が十分ではなく、2を越えると密着性が十分ではない。また、皮膜中でのこれらインヒビターの形態は特に限定されないが、例えば処理液にそのまま添加し混合する、またはあらかじめ燐酸に溶解させて処理液に添加する、あるいはエタノール、イソプロピルアルコール等のアルコールに完全溶解後、脱イオン水を滴下し微細コロイド化させて処理液に添加する、などの方法により皮膜中に含有させることができる。
【0017】
さらにセリウムの酸化物、水酸化物、炭酸化合物、硫酸化合物、硝酸化合物および有機酸化合物のようなセリウム化合物を添加する場合、マトリックスのIVA属元素とセリウム化合物とのモル比(セリウム化合物/IVA属元素)は50以下であり、好ましくは10以下、さらにこの好ましくは5以下である。50を超える場合は、成膜性が低下し十分な加工追従性が得られない。皮膜中に含まれるセリウム量としては1mg/m2以上であれば良い。1mg/m2未満では耐食性が十分ではない。また、10g/m2を超えても耐食性はそれほど向上せず、経済性を考慮すると10g/m2で十分である。
【0018】
不働態化皮膜形成助剤としてりん酸、ポリりん酸、また、添加物として水酸化カルシウム、炭酸カルシウム、酸化カルシウム、りん酸亜鉛、りん酸カリウム、りん酸カルシウム、ケイ酸カルシウム、りん酸アルミニウム、TiO2 ,SiO2 ,Al23 などを添加できる。本発明の皮膜を形成するための処理液は、マトリックス成分であるIVA属元素の酸素酸化合物および/または酸素酸水素化合物と溶媒から基本的に構成され、処理液の濃度やpHは特に限定されない。溶媒は水系、揮発性有機化合物の何れでも選択できる。但し、作業環境を考慮に入れると水系の方が好ましい。
【0019】
本発明の表面処理金属材料の製造方法としては、処理液を金属材料表面に塗布し乾燥すれば良く、とくに限定しない。例えば、現在使用されているクロメート処理の塗布設備や塗料の塗装設備などそのまま流用でき、特別な設備を必要としない。また、刷毛塗りやバーコーターを使用して手作業で塗布し、乾燥する事によって皮膜を形成することも出来る。乾燥条件は、一概には限定することはできないが、少なくとも処理液中に含まれる溶媒を乾燥されれば良い。例えば、金属材料表面到達温度が50℃〜200℃の範囲が好ましい。膜厚は、用途によって変わるため限定することは出来ないが、0.01μm以上が好ましい。さらに好ましくは、0.1μm以上である。0.01μm未満では耐食性が十分ではない。しかし、膜厚が10μmを越えても耐食性向上効果は飽和してしまうため、経済性を考慮すると10μmで十分である。
【0020】
この発明の対象となる金属材料は特に限定されないが、例えば溶融亜鉛めっき鋼板、溶融亜鉛−鉄合金めっき鋼板、溶融亜鉛−アルミニウム−マグネシウム合金めっき鋼板、溶融アルミニウム−シリコン合金めっき鋼板、溶融鉛−スズ合金めっき鋼板などの溶融めっき鋼板や、電気亜鉛めっき鋼板、電気亜鉛−ニッケル合金めっき鋼板、電気亜鉛−鉄合金めっき鋼板、電気亜鉛−クロム合金めっきなどの電気めっき鋼板などの表面処理鋼板、冷延鋼板や亜鉛、アルミニウム、マグネシウムなどの金属板などに適用できる。
【0021】
本発明の表面処理金属材料の製造方法例としては、塩化酸化ジルコニウム水溶液と燐酸を十分に混合、熱処理(100〜200℃、0.5〜24時間)し、得られた生成物に有機系インヒビターやセリウム化合物などを添加し、十分に混合する。これら添加剤は、上述のように耐食性を高めることができる。この処理液を金属板に塗布し、乾燥および熱処理(板温100〜200℃、30秒間〜1時間)を行なうことにより目的の表面処理金属材料を得る。
【0022】
【実施例】
処理液の調製法
(1)マトリックスの無機成分
ZP−1:塩化酸化ジルコニウム水溶液(16%)100gと燐酸(85%)115.3gと十分に混合した後、150℃で12時間加熱した。
ZP−2:塩化酸化ジルコニウム水溶液(32%)100gと燐酸(85%)115.3gと十分に混合した後、150℃で12時間加熱した。
ZP−3:塩化酸化ジルコニウム水溶液(40%)100gと燐酸(85%)115.3gと十分に混合した後、150℃で12時間加熱した。
【0023】
TP−1:硫酸チタン水溶液(24%)100gと燐酸(85%)115.3gと十分に混合した後、150℃で12時間加熱した。
ZPP:塩化酸化ジルコニウム水溶液(32%)100gとポリ燐酸(平均分子量338)338gを十分に混合した後、150℃で12時間加熱した。
ZW:塩化酸化ジルコニウム水溶液(32%)100gとタングステン酸アンモニウム水溶液(4%)261.0gを十分に混合した後、150℃で12時間加熱した。
ZM:塩化酸化ジルコニウム水溶液(32%)100gとモリブデン酸アンモニウム水溶液(28%)176.6gを十分に混合した後、150℃で12時間加熱した。
ZV:塩化酸化ジルコニウム水溶液(32%)100gとバナジン酸アンモニウム水溶液(5%)117.0gをそれぞれ十分に混合した後、150℃で12時間加熱した。
【0024】
上記したIVA属元素酸素酸(水素)化合物、及び各種添加物を配合して建浴した(表1、2)。また、建浴濃度は、IVA属元素の酸素酸化合物および/または酸素酸水素化合物(IVA属元素換算)100g/l、コロイダルシリカ添加の場合はSiO2 換算で5g/l、セリウム化合物添加の場合は10g/l、有機系インヒビター添加の場合は10g/lの条件に統一した。なお、α−メルカプトラウリル酸については合成し、それ以外のものについては市販の試薬を使用した(ポリアニリン水溶液は1重量%水溶液でドーパントは硫酸バリウムである)。
【0025】
皮膜形成法
表1、2の処理液を金属板上にバーコーターを用いて乾燥後の皮膜厚が1μmとなるように塗布し、板温100℃で1分間熱処理した。用いた金属材料はGI(溶融亜鉛めっき鋼板、めっき付着量:90g/m2 )、EG(電気亜鉛めっき鋼板、めっき付着量:20g/m2 )、Al(溶融アルミニウム−シリコン合金めっき鋼板、めっき付着量:120g/m2 、Al/Si=90/10)である。なお、クロメート処理鋼板との比較を行なうべく、クロメート処理液として、澱粉による部分還元クロム酸をCrO3 換算で30g/l、SiO2 を40g/l、燐酸を20g/l含有する処理浴を建浴し、鋼板上に塗布、乾燥、硬化させ皮膜形成を行なった(皮膜中Cr量は、金属Crに換算して100mg/m2 である)。
【0026】
皮膜の性能評価法
(a)サンプルをエリクセン7mm加工後、SEM観察を行ない、加工追従性評価を行なった。

Figure 0003967796
【0027】
(b)サンプルに5%、35℃の塩水を噴霧した後の錆発生面積で平板耐食性評価を行なった。なお、噴霧期間はGI、EGが10日間、Alが15日間で何れも白錆発生率で測定した。
Figure 0003967796
【0028】
(c)サンプルをエリクセン7mm加工後、5%、35℃の塩水を噴霧した後の錆発生面積で加工部耐食性評価を行なった。なお、噴霧期間はGI、EGが10日間、Alが15日間で何れも白錆発生率で測定した。
Figure 0003967796
これらの評価結果(表1、2)から明らかなように、本発明の表面処理金属材は加工追従性、塗料密着性に優れ、クロメート処理と同等の平板および加工部耐食性を示した。従って、6価クロムを全く含まない化成処理膜として環境適合性に優れている上に耐食性皮膜としてその効果を発揮するものである。
【0029】
【表1】
Figure 0003967796
【0030】
【表2】
Figure 0003967796
【0031】
【発明の効果】
以上述べたように、IVA属元素の酸素酸酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸酸化合物とIVA属元素の酸素酸水素化合物の混合物によって形成される皮膜、さらに有機系インヒビターおよび/またはセリウム化合物を含有する皮膜は、高い加工追従性と6価クロムを含有する皮膜と同等以上の防食性能を示し、環境適合性とも併せて極めて優れた効果を奏するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-treated metal material having a coating layer that has processing followability, excellent corrosion resistance, and does not contain hexavalent chromium at all.
[0002]
[Prior art]
Conventionally, chromate coating is applied to the surface of cold-rolled steel sheets, galvanized steel sheets, zinc-based alloy-plated steel sheets, aluminum-plated steel sheets, etc. used for automobiles, home appliances, building materials, etc. Coating is generally performed. Examples of the chromate treatment include electrolytic chromate and coating chromate. Electrolytic chromate has been performed, for example, by subjecting a metal plate to cathodic electrolysis using a bath containing chromic acid as a main component and various anions such as sulfuric acid, phosphoric acid, boric acid and halogen. In addition, the coating type chromate has a problem of elution of chromium from the chromate-treated metal plate, so that a solution in which a part of hexavalent chromium is reduced to trivalent in advance or a solution in which the ratio of hexavalent chromium to trivalent chromium is specified. It has been carried out by adding an inorganic colloid or an anion to obtain a treatment liquid and immersing the metal plate therein or spraying the treatment liquid onto the metal plate.
[0003]
Among the chromate films, the chromate film formed by electrolysis has little elution of hexavalent chromium, but it cannot be said to have sufficient anticorrosion properties. In particular, when the film damage during processing is large, the corrosion resistance is lowered. On the other hand, the metal plate coated with the coating type chromate film has high corrosion resistance, and particularly excellent in the corrosion resistance of the processed part, but elution of hexavalent chromium from the chromate film is a serious problem. If an organic polymer is coated, elution of hexavalent chromium is considerably suppressed, but it is not sufficient. Further, in the method generally called resin chromate as disclosed in JP-A-5-230666, although improvement in the elution suppression of hexavalent chromium is observed, a very small amount of elution is unavoidable.
Thus, in order to completely suppress the elution of hexavalent chromium, it is necessary to develop a rust preventive film having a function equivalent to that of a conventional chromate film containing hexavalent chromium without using hexavalent chromium. .
[0004]
As described in PCT / JP97 / 00272, we have obtained a coating layer of rare earth element oxyacid (hydrogen) compound as a general chemical conversion treatment film containing no hexavalent chromium in place of the current chromate treatment. For example, lanthanum or cerium is made into a paste by using a phosphoric acid compound to give processing followability, suppress the corrosion by its barrier effect, suppress the cathodic reaction by cerium ions, and make phosphoric acid excessive. As a result, an inorganic corrosion-resistant chemical conversion coating that suppresses the anodic reaction by the passivation of the phosphate coating type and the passivation of the oxide coating type was obtained.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a new technique relating to a surface-treated metal material having an inorganic chemical conversion coating excellent in processing followability and corrosion resistance without using the above hexavalent chromium.
[0006]
[Means for Solving the Problems]
In order to design a general-purpose chemical conversion coating that replaces the current chromate treatment with a system that does not contain hexavalent chromium at all, the present inventors have conducted intensive studies. As a result, the present inventors have studied oxyacid compounds, oxyhydrogen compounds of group IVA elements, or these Thus, it is possible to obtain a novel and innovative chemical conversion treatment film formed by using a mixture of the above as a main component. Furthermore, an organic inhibitor and / or a cerium compound is contained in the coating layer to supplement and enhance corrosion inhibition.
[0007]
The gist of the invention is that
(1) A corrosion-resistant coating layer comprising an oxygen acid compound of a group IVA element, an oxygen oxyhydrogen compound of a group IVA element, or a mixture of an oxygen acid compound of a group IVA element and an oxygen oxyhydrogen compound of a group IVA element, A surface-treated metal material, which is 1 mg / m 2 to 10 g / m 2 in terms of a genus element.
(2) Oxygen compound of group IVA element, oxygen oxyhydrogen compound of group IVA element, or mixture of oxygen acid compound of group IVA element and oxygen oxyhydrogen compound of group IVA element, oxide of rare earth element, hydroxide , carbonated compounds, sulfate compounds, a corrosion resistant coating layer made of the additive component of one or more compounds selected from nitric acid compound and an organic acid compound, in IVA group elements in terms 1mg / m 2 ~10g / m 2. A surface-treated metal material, wherein
(3) An oxygen acid compound of an IVA group element, an oxygen oxyhydrogen compound of an IVA element, or a mixture of an oxygen acid compound of an IVA element and an oxygen oxyhydrogen compound of an IVA element, and an additive component of an organic inhibitor A surface-treated metal material which is a corrosion-resistant coating layer and is 1 mg / m 2 to 10 g / m 2 in terms of an IVA group element.
[0008]
(4) Oxygen acid compound of group IVA element, oxygen oxyhydrogen compound of group IVA element, or mixture of oxygen acid compound of group IVA element and oxygen oxyhydrogen compound of group IVA element, oxide of rare earth element, hydroxylation things, carbonated compounds, sulfate compounds, a corrosion resistant coating layer made of the additive component of one or more compounds and organic inhibitor selected from nitrate compounds and organic acid compounds, 1 mg / m at IVA group elements in terms 2 to 10 g / m 2 , a surface-treated metal material.
(5) The surface-treated metal material according to (2) or (4), wherein the rare earth element as an additive component is cerium.
[0009]
(6) The organic inhibitor is a formylated derivative of N-phenyl-dimethylpyrrole , a thioglycolic acid ester represented by HS—CH 2 COOC n H 2n + 1 (n is an integer of 1 to 25) and derivatives thereof, Α-mercaptocarboxylic acid and its derivative represented by C n H 2n (SH) COOH (n is an integer of 1 to 25), quinoline and its derivative, triazine dithiol and its derivative, gallic acid ester and its derivative, nicotinic acid The surface-treated metal material according to (3) or (4), which is one or a mixture of two or more selected from catechol and derivatives thereof and / or conductive polymers .
(7) The surface-treated metal material according to any one of (1) to (4), wherein the IVA group element is zirconium .
(8) The surface-treated metal material according to any one of (1) to (7), wherein the anionic species of the oxygen acid compound is a phosphate ion, a tungstate ion, a molybdate ion and / or a vanadate ion .
(9) The surface-treated metal material according to (8), wherein the phosphoric acid compound and the hydrogen phosphate compound are ortho (hydrogen) phosphoric acid, a metaphosphoric acid compound, a polyphosphoric acid (hydrogen) compound, or a mixture thereof .
(10) As additives, calcium hydroxide, calcium carbonate, calcium oxide, zinc phosphate, potassium phosphate, calcium phosphate, calcium silicate, zirconium silicate, aluminum phosphate, zirconium phosphate, TiO 2 , SiO 2 The surface-treated metal material according to claim 1, comprising at least one selected from Al 2 O 3 .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The oxygen acid compound of the group IVA element used in the present invention, the oxygen acid hydrogen compound of the group IVA element, or the mixture of the oxygen acid compound of the group IVA element and the oxygen acid hydrogen compound of the group IVA element is a phosphate ion, A compound of an oxyacid anion such as tungstate ion or vanadate ion and a group IVA element (ie, Ti, Zr, Hf) is designated, and an oxyhydrogen compound is a compound containing hydrogen as a part of a cation. . These oxyacid compounds and / or oxyhydrogen compounds suppress corrosion due to processing followability and its barrier effect, and form an oxyacid salt film type passive film by excessive oxygen acid, and oxidation Since a physical film type passive film can be formed, a corrosion-resistant chemical conversion film having high anticorrosion performance can be obtained. Among the IVA group elements, Zr is particularly preferable because it has excellent process followability and corrosion resistance.
[0011]
The amount of oxyacid compound and / or oxyhydrogen compound of group IVA element contained in the coating on the metal material cannot be limited because the required addition amount varies depending on the required corrosion resistance, but it can be converted to group IVA element 1 mg / m 2 or more is sufficient. If it is less than 1 mg / m 2 , the corrosion resistance is insufficient, and if it exceeds 10 g / m 2 , the effect of improving the corrosion resistance is saturated. Therefore, 10 g / m 2 is sufficient in view of economy. The existence form of the oxygen acid compound and / or oxyhydrogen compound of the group IVA element in the treatment liquid depends on the solvent used, pH, temperature and concentration, but is dissolved or finely dispersed in the treatment liquid. A colloidal shape is preferred.
[0012]
Other than these, when the film is formed, the dispersion state of the oxygen acid compound of the group IVA element and / or the oxygen oxyhydrogen compound of the group IVA element becomes uneven, and the oxygen acid compound of the group IVA element and / or the group IVA element There is a possibility that the anticorrosion performance is lowered at a small amount of the oxygen oxyhydrogen compound. The average particle diameter when colloidally dispersing the oxygen acid compound of group IVA and / or the oxygen oxyhydrogen compound of group IVA is preferably 3 μm or less, more preferably 1 μm or less, and particularly preferably 0.2 μm or less. . When the particle size is 3 μm or more, the dispersion state of the oxygen acid compound of the IVA group element and / or the oxygen oxyhydrogen compound of the IVA group element in the treatment liquid or in the film becomes non-uniform, and the film thickness of the film is limited. There are problems such as being.
[0013]
In addition to organic inhibitors and corrosion inhibitors such as cerium compounds, passivating film formation aids, surfactants such as dispersants and antifoaming agents, and other additives are combined in the coating and treatment liquid of the present invention. It can also be used.
An organic inhibitor has an adsorptivity to a metal surface and has a function of suppressing further progression of ionization because it forms a complex and traps when metal ions are eluted. The organic-based inhibitors as functional groups necessary for a metal complex bond formation in the molecular structure (= O, -NH 2, = NH, = N -, = S, -OH , etc.) covalent bond formation with, and metal surfaces Compounds having possible functional groups (—OH, ═NH, —SH, —CHO, —COOH, etc.) can be used. The inhibitor to be contained in the film is preferably a poorly water-soluble compound.
[0014]
The reason for this is that this corrosion inhibitory action is manifested by a small amount of organic inhibitor dissolved in the water that permeates the film. For this reason, or because the sustainability is not sufficient, it is not preferable. Specific examples of poorly water-soluble organic inhibitors having the above functional groups include N-phenyl-dimethylpyrrole formylated derivatives, HS-CH 2 COOC n H 2n + 1 (n is an integer of 1 to 25) An α-mercaptocarboxylic acid represented by C n H 2n (SH) COOH (n is an integer of 1 to 25) and a derivative thereof, quinoline and a derivative thereof, triazine dithiol and Derivatives thereof, gallic acid esters and derivatives thereof, nicotinic acid and derivatives thereof, catechol and derivatives thereof, and the like.
[0015]
Electron conductive polymers can also be used as organic inhibitors having different anticorrosion mechanisms. This is a single molecule of a repeating unit in which a π-electron conjugated bond spreads throughout the molecule, and polyacetylene, polyaniline, polythiophene, polypyrrole, and the like are known. For example, electron conductivity can be imparted by adding, for example, barium sulfate as a dopant. Although the details of the anticorrosive action of this conductive polymer are unknown, it is presumed that it functions as a cathodic anticorrosive by exhibiting an effect of rectifying the corrosion current at the interface and suppressing oxygen reduction due to electronic conductivity.
[0016]
These organic inhibitors are used singly or in combination of two or more. The amount added is 0.001-2, preferably in terms of the molar ratio of the IVA group element to the organic inhibitor (organic inhibitor / zirconium). Is 0.01 to 1, more preferably 0.02 to 0.5. When the molar ratio is less than 0.001, the effect of addition is not sufficient, and when it exceeds 2, the adhesion is not sufficient. The form of these inhibitors in the film is not particularly limited. For example, the inhibitor is added to the treatment solution as it is and mixed, or dissolved in phosphoric acid in advance and added to the treatment solution, or completely dissolved in an alcohol such as ethanol or isopropyl alcohol. Thereafter, deionized water is added dropwise to form a fine colloid and added to the treatment liquid.
[0017]
Additionally oxides of cerium, a hydroxide, carbonate acid compounds, sulfate compounds, when adding cerium compounds such as nitric acid compound and an organic acid compound, the molar ratio of the IVA group elements and cerium compounds in the matrix (cerium compound / IVA (Genus element) is 50 or less, preferably 10 or less, and more preferably 5 or less. When it exceeds 50, the film formability is lowered, and sufficient processing followability cannot be obtained. The amount of cerium contained in the film may be 1 mg / m 2 or more. If it is less than 1 mg / m 2 , the corrosion resistance is not sufficient. Moreover, even if it exceeds 10 g / m < 2 >, corrosion resistance does not improve so much, and 10 g / m < 2 > is enough considering economic efficiency.
[0018]
Phosphoric acid as passivating film forming aid, polyphosphoric acid addition, calcium hydroxide as an additive, calcium carbonate, calcium oxide, zinc phosphate, potassium phosphate, calcium phosphate, calcium silicate, Ri I aluminum , it can be added, such as T iO 2, SiO 2, Al 2 O 3. The treatment liquid for forming the film of the present invention is basically composed of an oxygen acid compound and / or oxyhydrogen compound of a group IVA element as a matrix component and a solvent, and the concentration and pH of the treatment liquid are not particularly limited. . The solvent can be selected from either aqueous or volatile organic compounds. However, the water system is preferable in consideration of the working environment.
[0019]
The method for producing the surface-treated metal material of the present invention is not particularly limited as long as the treatment liquid is applied to the surface of the metal material and dried. For example, currently used chromate treatment coating equipment and paint coating equipment can be used as they are, and no special equipment is required. It is also possible to form a film by applying manually using a brush or a bar coater and drying. The drying conditions cannot be generally limited, but at least the solvent contained in the treatment liquid may be dried. For example, the metal material surface arrival temperature is preferably in the range of 50 ° C to 200 ° C. Although the film thickness cannot be limited because it varies depending on the application, it is preferably 0.01 μm or more. More preferably, it is 0.1 μm or more. If it is less than 0.01 μm, the corrosion resistance is not sufficient. However, even if the film thickness exceeds 10 μm, the effect of improving corrosion resistance is saturated, so 10 μm is sufficient in consideration of economy.
[0020]
The metal material that is the subject of the present invention is not particularly limited. For example, hot dip galvanized steel sheet, hot dip zinc-iron alloy plated steel sheet, hot dip zinc-aluminum-magnesium alloy plated steel sheet, hot dip aluminum-silicon alloy plated steel sheet, hot lead-tin Surface-treated steel sheets such as hot-dip galvanized steel sheets such as alloy-plated steel sheets, electrogalvanized steel sheets, electrogalvanized-nickel alloy-plated steel sheets, electrogalvanized-iron alloy-plated steel sheets, electrogalvanized steel sheets such as electrogalvanized-chromium alloy plating, and cold rolling It can be applied to steel plates, metal plates such as zinc, aluminum and magnesium.
[0021]
As an example of a method for producing the surface-treated metal material of the present invention, a zirconium chloride aqueous solution and phosphoric acid are sufficiently mixed, heat-treated (100 to 200 ° C., 0.5 to 24 hours), and an organic inhibitor is added to the obtained product. Add cerium compound and mix well. These additives can enhance the corrosion resistance as described above. This treatment liquid is applied to a metal plate and dried and subjected to heat treatment (plate temperature 100 to 200 ° C., 30 seconds to 1 hour) to obtain a target surface-treated metal material.
[0022]
【Example】
Preparation of treatment liquid (1) Inorganic component ZP-1 of matrix: 100 g of zirconium chloride aqueous solution (16%) and 115.3 g of phosphoric acid (85%) were sufficiently mixed, and then heated at 150 ° C. for 12 hours.
ZP-2: After thoroughly mixing with 100 g of a chlorinated zirconium oxide aqueous solution (32%) and 115.3 g of phosphoric acid (85%), the mixture was heated at 150 ° C. for 12 hours.
ZP-3: After thoroughly mixing with 100 g of zirconium chloride aqueous solution (40%) and 115.3 g of phosphoric acid (85%), the mixture was heated at 150 ° C. for 12 hours.
[0023]
TP-1: After thoroughly mixing with 100 g of titanium sulfate aqueous solution (24%) and 115.3 g of phosphoric acid (85%), the mixture was heated at 150 ° C. for 12 hours.
ZPP: 100 g of a chlorinated zirconium oxide aqueous solution (32%) and 338 g of polyphosphoric acid (average molecular weight 338) were sufficiently mixed and then heated at 150 ° C. for 12 hours.
ZW: 100 g of zirconium chloride aqueous solution (32%) and 261.0 g of ammonium tungstate aqueous solution (4%) were sufficiently mixed, and then heated at 150 ° C. for 12 hours.
ZM: 100 g of zirconium chloride aqueous solution (32%) and 176.6 g of ammonium molybdate aqueous solution (28%) were sufficiently mixed and then heated at 150 ° C. for 12 hours.
ZV: 100 g of zirconium chloride aqueous solution (32%) and 117.0 g of ammonium vanadate aqueous solution (5%) were mixed sufficiently and then heated at 150 ° C. for 12 hours.
[0024]
The above-mentioned IVA group element oxygen acid (hydrogen) compound and various additives were blended and constructed (Tables 1 and 2). In addition, the concentration of building bath is 100 g / l of oxygen acid compound and / or hydrogen oxyhydrogen compound (IVA element conversion) of group IVA element, 5 g / l in terms of SiO 2 when colloidal silica is added, and when cerium compound is added Was 10 g / l, and in the case of adding an organic inhibitor, the conditions were 10 g / l. In addition, (alpha) -mercaptolauric acid was synthesize | combined and the commercially available reagent was used about the other thing (a polyaniline aqueous solution is 1 weight% aqueous solution, and a dopant is barium sulfate).
[0025]
Film Formation Method The treatment liquids shown in Tables 1 and 2 were applied on a metal plate using a bar coater so that the film thickness after drying was 1 μm, and heat-treated at a plate temperature of 100 ° C. for 1 minute. The metal materials used were GI (hot dip galvanized steel sheet, plating coverage: 90 g / m 2 ), EG (electrogalvanized steel sheet, plating coverage: 20 g / m 2 ), Al (hot aluminum-silicon alloy plated steel sheet, plating) Adhesion amount: 120 g / m 2 , Al / Si = 90/10). In order to compare with the chromate-treated steel plate, a treatment bath containing 30 g / l of partially reduced chromic acid based on starch in terms of CrO 3 , 40 g / l of SiO 2 and 20 g / l of phosphoric acid is established as a chromate treatment solution. The film was formed by bathing, coating, drying and curing on a steel plate (the amount of Cr in the film is 100 mg / m 2 in terms of metal Cr).
[0026]
Film performance evaluation method (a) After processing 7 mm of Erichsen sample, SEM observation was performed to evaluate the process following ability.
Figure 0003967796
[0027]
(B) The plate corrosion resistance was evaluated by the rust generation area after spraying 5%, 35 ° C. salt water on the sample. The spraying period was 10 days for GI and EG, and 15 days for Al.
Figure 0003967796
[0028]
(C) After the sample was processed with Erichsen 7 mm, the corrosion resistance of the processed part was evaluated by the rust generation area after spraying 5%, 35 ° C. salt water. The spraying period was 10 days for GI and EG, and 15 days for Al.
Figure 0003967796
As is clear from these evaluation results (Tables 1 and 2), the surface-treated metal material of the present invention was excellent in processing followability and paint adhesion, and exhibited the same flat plate and processed part corrosion resistance as chromate treatment. Therefore, it is excellent in environmental compatibility as a chemical conversion treatment film containing no hexavalent chromium and exhibits its effect as a corrosion resistant film.
[0029]
[Table 1]
Figure 0003967796
[0030]
[Table 2]
Figure 0003967796
[0031]
【The invention's effect】
As described above, a film formed by an oxyacid compound of an IVA group element, an oxyhydrogen compound of an IVA element , or a mixture of an oxyacid compound of an IVA element and an oxyhydrogen compound of an IVA element Furthermore, a film containing an organic inhibitor and / or a cerium compound exhibits high processing followability and anticorrosion performance equal to or higher than that of a film containing hexavalent chromium, and exhibits extremely excellent effects in combination with environmental compatibility. It is.

Claims (10)

IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。Corrosion-resistant coating layer comprising an oxygen acid compound of group IVA element, an oxygen acid hydrogen compound of group IVA element, or a mixture of an oxygen acid compound of group IVA element and an oxygen acid hydrogen compound of group IVA element, in terms of group IVA element 1 mg / m 2 to 10 g / m 2 . IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、またはIVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物と、希土類元素の酸化物、水酸化物、炭酸化合物、硫酸化合物、硝酸化合物および有機酸化合物から選ばれる1種または2種以上の化合物の添加成分からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。Oxygen acid compound of IVA group element, a mixture of IVA genus oxyacid hydrogen compound of an element, or oxygen acid compound of IVA group elements and oxyacid hydrogen compound IVA group elements and oxides of rare earth elements, hydroxides, carbonated A corrosion-resistant coating layer comprising an additive component of one or more compounds selected from a compound, a sulfuric acid compound, a nitric acid compound and an organic acid compound, which is 1 mg / m 2 to 10 g / m 2 in terms of an IVA group element A surface-treated metal material. IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物と、有機系インヒビターの添加成分からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。Corrosion-resistant coating layer comprising an oxygen acid compound of group IVA element, an oxygen acid hydrogen compound of group IVA element, or a mixture of an oxygen acid compound of group IVA element and an oxygen acid hydrogen compound of group IVA element, and an additive component of an organic inhibitor a is a surface treated metal material characterized in that at IVA group elements in terms of a 1mg / m 2 ~10g / m 2 . IVA属元素の酸素酸化合物、IVA属元素の酸素酸水素化合物、または、IVA属元素の酸素酸化合物とIVA属元素の酸素酸水素化合物の混合物と、希土類元素の酸化物、水酸化物、炭酸化合物、硫酸化合物、硝酸化合物および有機酸化合物から選ばれる1種または2種以上の化合物および有機系インヒビターの添加成分からなる耐食性被覆層であって、IVA属元素換算で1mg/m2〜10g/m2であることを特徴とする表面処理金属材料。Oxygen acid compound of group IVA element, oxygen oxyhydrogen compound of group IVA element, or mixture of oxygen acid compound of group IVA element and oxygen oxyhydrogen compound of group IVA element, rare earth element oxide, hydroxide , charcoal A corrosion-resistant coating layer comprising one or more compounds selected from an acid compound, a sulfuric acid compound, a nitric acid compound and an organic acid compound and an additive component of an organic inhibitor, which is 1 mg / m 2 to 10 g in terms of an IVA element A surface-treated metal material characterized by being / m 2 . 添加成分の希土類元素がセリウムである請求項2又は4記載の表面処理金属材料。  The surface-treated metal material according to claim 2 or 4, wherein the rare earth element as an additive component is cerium. 有機系インヒビターが、N−フェニル−ジメチルピロールのホルミル化誘導体、HS−CH2 COOCn 2n+1(nは1〜25の整数)で表されるチオグリコール酸エステル及びその誘導体、Cn 2n(SH)COOH(nは1〜25の整数)で表されるα−メルカプトカルボン酸及びその誘導体、キノリン及びその誘導体、トリアジンジチオール及びその誘導体、没食子酸エステル及びその誘導体、ニコチン酸およびその誘導体、カテコールおよびその誘導体および/または導電性高分子から選ばれる1種又は2種以上の混合物である請求項3又は4記載の表面処理金属材料。An organic inhibitor is a formylated derivative of N-phenyl-dimethylpyrrole, a thioglycolic acid ester represented by HS—CH 2 COOC n H 2n + 1 (n is an integer of 1 to 25) and a derivative thereof, C n H Α-mercaptocarboxylic acid represented by 2n (SH) COOH (n is an integer of 1 to 25) and derivatives thereof, quinoline and derivatives thereof, triazine dithiol and derivatives thereof, gallic acid ester and derivatives thereof, nicotinic acid and derivatives thereof The surface-treated metal material according to claim 3 or 4, which is one or a mixture of two or more selected from catechol and its derivatives and / or conductive polymers. IVA属元素がジルコニウムである請求項1〜4のいずれか1項に記載の表面処理金属材料。  The surface-treated metal material according to any one of claims 1 to 4, wherein the IVA group element is zirconium. 酸素酸化合物のアニオン種が燐酸イオン、タングステン酸イオン、モリブデン酸イオンおよび/またはバナジン酸イオンである請求項1〜7のいずれか1項に記載の表面処理金属材料。  The surface-treated metal material according to any one of claims 1 to 7, wherein the anionic species of the oxygen acid compound is a phosphate ion, a tungstate ion, a molybdate ion and / or a vanadate ion. 燐酸化合物および燐酸水素化合物が、オルト(水素)燐酸、メタ燐酸化合物、ポリ燐酸(水素)化合物またはこれらの混合物である請求項8に記載の表面処理金属材料。  The surface-treated metal material according to claim 8, wherein the phosphoric acid compound and the hydrogen phosphate compound are ortho (hydrogen) phosphoric acid, a metaphosphoric acid compound, a polyphosphoric acid (hydrogen) compound, or a mixture thereof. 添加物として、水酸化カルシウム、炭酸カルシウム、酸化カルシウム、りん酸亜鉛、りん酸カリウム、りん酸カルシウム、ケイ酸カルシウム、りん酸アルミニウム、TiO2,SiO2,Al23の中から選ばれる1種以上を含む請求項1〜9のいずれか1項に記載の表面処理金属材料。As an additive, 1 selected from calcium hydroxide, calcium carbonate, calcium oxide, zinc phosphate, potassium phosphate, calcium phosphate, calcium silicate, aluminum phosphate, TiO 2 , SiO 2 , and Al 2 O 3 The surface-treated metal material according to any one of claims 1 to 9, comprising a seed or more.
JP22153197A 1996-02-05 1997-08-18 Surface-treated metal material Expired - Fee Related JP3967796B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22153197A JP3967796B2 (en) 1997-08-18 1997-08-18 Surface-treated metal material
US09/093,109 US6190780B1 (en) 1996-02-05 1998-06-08 Surface treated metal material and surface treating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22153197A JP3967796B2 (en) 1997-08-18 1997-08-18 Surface-treated metal material

Publications (2)

Publication Number Publication Date
JPH1161431A JPH1161431A (en) 1999-03-05
JP3967796B2 true JP3967796B2 (en) 2007-08-29

Family

ID=16768184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22153197A Expired - Fee Related JP3967796B2 (en) 1996-02-05 1997-08-18 Surface-treated metal material

Country Status (1)

Country Link
JP (1) JP3967796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387719B2 (en) 2013-10-28 2016-07-12 Honeywell International Inc. Cold-worked metal articles including luminescent phosphor particles, methods of forming the same, and methods of authenticating the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865139B2 (en) * 2000-05-31 2012-02-01 ディップソール株式会社 Method for forming chromium-free corrosion-resistant film on Sn-Zn alloy plating
MY117334A (en) 2000-11-10 2004-06-30 Nisshin Steel Co Ltd Chemically processed steel sheet improved in corrosion resistance
JP4242827B2 (en) * 2004-12-08 2009-03-25 日本パーカライジング株式会社 Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
JP4832023B2 (en) * 2005-08-12 2011-12-07 住友金属工業株式会社 Surface-treated steel sheet with heat resistance
ES2568227T3 (en) 2008-10-08 2016-04-28 Nippon Steel & Sumitomo Metal Corporation Metallic material that has excellent corrosion resistance
EP2458031B1 (en) 2009-07-02 2019-08-07 Henkel AG & Co. KGaA Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
US8506728B2 (en) 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
JP5163622B2 (en) * 2009-10-26 2013-03-13 マツダ株式会社 Method for surface treatment of metal members
CN108914108A (en) * 2013-03-16 2018-11-30 Prc-迪索托国际公司 Metal complex as corrosion inhibitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387719B2 (en) 2013-10-28 2016-07-12 Honeywell International Inc. Cold-worked metal articles including luminescent phosphor particles, methods of forming the same, and methods of authenticating the same

Also Published As

Publication number Publication date
JPH1161431A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP4473895B2 (en) Corrosion-resistant surface-treated metal material and surface treatment agent therefor
US6190780B1 (en) Surface treated metal material and surface treating agent
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JP3967796B2 (en) Surface-treated metal material
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
EP0624182A1 (en) Autodeposition coating composition
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
JP3139795B2 (en) Metal surface treatment agent for composite film formation
JPH1161429A (en) Surface treated metal material
JP4509425B2 (en) Paint surface treatment agent, surface treatment method, metal material, processing method, and metal product
JP4191845B2 (en) Surface-treated metal plate
JP2002332574A (en) Plated steel with chromate-free treated film having excellent corrosion resistance
JP3962123B2 (en) Organic surface treatment metal plate and organic metal surface treatment liquid
JP3454010B2 (en) Non-chrome type metal anticorrosion coating composition
JP3903900B2 (en) Non-chromium zinc phosphate treated steel plate with excellent corrosion resistance, paint adhesion and workability
JPH1161432A (en) Metal plate surface-treated with inorganic/organic composite
JP3543194B2 (en) Chrome-free surface treatment agent for metal materials and surface-treated metal materials
JP5000802B2 (en) Inorganic film-forming coating agent, inorganic film-forming method, inorganic film-coated aluminum material and inorganic film-coated steel material obtained by using the same
JP4007736B2 (en) Chromium-free organically coated galvanized steel
JP4349712B2 (en) Surface-treated galvanized steel without chromium
KR101079392B1 (en) Anticorrosive coating solution for zinc coated steel sheet and the zinc coated steel sheet therefrom
JP2010242155A (en) Corrosion-proof steel, and method for producing the same
KR20040108110A (en) Method of manufacturing galvanized steel plate excellent for resistance against corrosion and adherence of film plated
JPH11152588A (en) Composition for forming rust preventive protective coating for metal and its formation
JP4439093B2 (en) Post-treatment agent for phosphate treatment film on metal surface, coated steel sheet obtained by using post-treatment agent, and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees