JP2009185392A - Pretreatment method for coating - Google Patents

Pretreatment method for coating Download PDF

Info

Publication number
JP2009185392A
JP2009185392A JP2009125249A JP2009125249A JP2009185392A JP 2009185392 A JP2009185392 A JP 2009185392A JP 2009125249 A JP2009125249 A JP 2009125249A JP 2009125249 A JP2009125249 A JP 2009125249A JP 2009185392 A JP2009185392 A JP 2009185392A
Authority
JP
Japan
Prior art keywords
chemical conversion
treatment agent
coating
group
conversion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009125249A
Other languages
Japanese (ja)
Inventor
Masahiko Matsukawa
真彦 松川
Kazuhiro Makino
一宏 牧野
Toshiaki Shimakura
俊明 島倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2009125249A priority Critical patent/JP2009185392A/en
Publication of JP2009185392A publication Critical patent/JP2009185392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreatment method for coating which places a less burden on the environment and can apply satisfactory treatment to all metals, such as iron, zinc and aluminum. <P>SOLUTION: The pretreatment method for coating comprising treating a substance to be treated with a chemical conversion coating agent to form a chemical conversion coat is provided. The chemical conversion coating agent includes at least one selected from the group consisting of zirconium, titanium and hafnium and fluorine, The chemical conversion coat includes a fluorine concentration of ≤10% on the atom ratio basis, and at least a part of the substance to be treated is an iron material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、塗装前処理方法に関する。   The present invention relates to a coating pretreatment method.

金属材料表面にカチオン電着塗装、粉体塗装等を施す場合、通常、耐食性、塗膜密着性等の性質を向上させる目的で、化成処理が施されている。塗膜の密着性や耐食性をより向上させることができる観点から化成処理において用いられてきたクロメート処理は、近年、クロムの有害性が指摘されるようになっており、クロムを含まない化成処理剤の開発が必要とされてきた。このような化成処理としては、リン酸亜鉛による処理が広く行われている(例えば、特許文献1参照)。   When cationic electrodeposition coating, powder coating or the like is applied to the surface of a metal material, chemical conversion treatment is usually performed for the purpose of improving properties such as corrosion resistance and coating film adhesion. The chromate treatment that has been used in the chemical conversion treatment from the viewpoint of further improving the adhesion and corrosion resistance of the coating film has recently been pointed out to be harmful to chromium, and it does not contain chromium. Development has been needed. As such chemical conversion treatment, treatment with zinc phosphate is widely performed (see, for example, Patent Document 1).

しかし、リン酸亜鉛系処理剤は、金属イオン及び酸濃度が高く非常に反応性の強い処理剤であるため、排水処理における経済性、作業性が良好でない。更に、リン酸亜鉛系処理剤による金属表面処理に伴って、水に不溶な塩類が生成して沈殿となって析出する。このような沈殿物は、一般にスラッジと呼ばれ、このようなスラッジを除去し、廃棄することによるコストの発生等が問題とされている。また、リン酸イオンは、富栄養化によって環境に対して負荷を与えるおそれがあるため、廃液の処理に際して労力を要し、使用しないことが好ましい。更に、リン酸亜鉛系処理剤による金属表面処理においては、表面調整を行うことが必要とされており、工程が長くなるという問題もある。   However, since the zinc phosphate-based treatment agent is a highly reactive treatment agent having a high concentration of metal ions and acid, the economical efficiency and workability in wastewater treatment are not good. Further, accompanying the metal surface treatment with the zinc phosphate-based treatment agent, water-insoluble salts are generated and precipitated as precipitates. Such precipitates are generally called sludge, and there is a problem of cost generation due to removal and disposal of such sludge. Moreover, since phosphate ions may cause a load on the environment due to eutrophication, labor is required in the treatment of waste liquid, and it is preferable not to use them. Furthermore, in the metal surface treatment with a zinc phosphate-based treatment agent, it is necessary to adjust the surface, and there is a problem that the process becomes long.

このようなリン酸亜鉛系処理剤又はクロメート化成処理剤以外の金属表面処理剤として、ジルコニウム化合物からなる金属表面処理剤が知られている(例えば、特許文献2参照)。このようなジルコニウム化合物からなる金属表面処理剤は、スラッジの発生が抑制される点で上述したようなリン酸亜鉛系処理剤に比べて優れた性質を有している。   A metal surface treatment agent composed of a zirconium compound is known as a metal surface treatment agent other than such zinc phosphate-based treatment agent or chromate chemical conversion treatment agent (see, for example, Patent Document 2). The metal surface treatment agent comprising such a zirconium compound has superior properties compared to the zinc phosphate treatment agent described above in that the generation of sludge is suppressed.

しかし、ジルコニウム化合物からなる金属表面処理剤によって得られた化成皮膜は、特にカチオン電着塗装により得られる塗膜との密着性が悪く、通常、カチオン電着塗装の前処理工程として使用されることは少なかった。このようなジルコニウム化合物からなる金属表面処理剤においては、リン酸イオン等の成分を併用することによって、密着性の向上や耐食性を改善することが行われている。しかし、リン酸イオンを併用した場合、上述したような富栄養化という問題が生じる。また、このような金属表面処理剤による処理を、カチオン電着塗装等の各種塗装の前処理方法として使用することについての検討は一切なされていない。また、このような金属表面処理剤によって鉄系基材を処理する場合、充分な塗膜の密着性や塗装後の耐食性が得られないという問題があった。   However, the chemical conversion film obtained with a metal surface treatment agent comprising a zirconium compound has poor adhesion particularly with a coating film obtained by cationic electrodeposition coating, and is usually used as a pretreatment step for cationic electrodeposition coating. There were few. In such a metal surface treatment agent composed of a zirconium compound, improvement in adhesion and corrosion resistance are performed by using a component such as phosphate ion in combination. However, when phosphate ions are used in combination, the problem of eutrophication as described above occurs. In addition, no study has been made on the use of such a treatment with a metal surface treatment agent as a pretreatment method for various coatings such as cationic electrodeposition coating. Moreover, when processing an iron-type base material with such a metal surface treating agent, there existed a problem that sufficient adhesiveness of a coating film and corrosion resistance after coating were not obtained.

更に、自動車車体や部品等の鉄、亜鉛、アルミニウム等の種々の金属素材からなる物品に対して一回の処理ですべての金属の表面処理を行わなければならない場合もあり、このような場合であっても問題なく化成処理を施すことができる塗装前処理方法の開発が望まれている。他方、粉体塗料、溶剤塗料、水性塗料等によるカチオン電着塗装以外の塗装においても、上述のような問題を生じることなく化成処理を行うことができる前処理方法の開発も望まれている。   In addition, it may be necessary to perform surface treatment of all metals in a single treatment on articles made of various metal materials such as automobile bodies and parts such as iron, zinc, and aluminum. There is a demand for the development of a coating pretreatment method that can perform chemical conversion treatment without any problem. On the other hand, it is also desired to develop a pretreatment method capable of performing chemical conversion treatment without causing the above-mentioned problems even in coatings other than cationic electrodeposition coating using powder coating, solvent coating, aqueous coating, and the like.

特開平10−204649号公報Japanese Patent Laid-Open No. 10-204649 特開平7−310189号公報JP-A-7-310189

本発明は、上記に鑑み、環境への負荷が少なく、かつ、鉄、亜鉛、アルミニウム等のすべての金属に対して良好な処理を行うことができる塗装前処理方法を提供することを目的とする。   In view of the above, it is an object of the present invention to provide a pre-painting method that has a low environmental impact and can perform good treatment on all metals such as iron, zinc, and aluminum. .

本発明は、化成処理剤によって被処理物を処理し、化成皮膜を形成する塗装前処理方法であって、上記化成処理剤は、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種、並びに、フッ素を必須成分とし、上記化成皮膜は、フッ素濃度が元素比率で10%以下であり、上記被処理物は、少なくとも一部が鉄系基材であることを特徴とする塗装前処理方法である。   The present invention is a coating pretreatment method for treating a workpiece with a chemical conversion treatment agent to form a chemical conversion film, wherein the chemical conversion treatment agent is at least one selected from the group consisting of zirconium, titanium and hafnium, and The coating pretreatment method is characterized in that fluorine is an essential component, the chemical conversion film has a fluorine concentration of 10% or less in elemental ratio, and the object to be treated is at least partly an iron-based substrate. .

上記化成皮膜のフッ素濃度を元素比率で10%以下にするために、上記化成処理剤は、更に、マグネシウム、カルシウム、亜鉛、ケイ素含有化合物及び銅からなる群より選ばれる少なくとも一種を含有するものであることが好ましい。
上記化成処理剤は、更に、化成処理剤は、更に、イソシアネート基及び/又はメラミン基を含有する水性樹脂(i)、水性樹脂、及び、ポリイソシアネート化合物及び/又はメラミン樹脂の混合物(ii)、並びに、少なくとも一部に下記式(1);
The chemical conversion treatment agent further contains at least one selected from the group consisting of magnesium, calcium, zinc, silicon-containing compounds and copper in order to make the fluorine concentration of the chemical conversion film 10% or less in terms of element ratio. Preferably there is.
The chemical conversion treatment agent further includes a chemical conversion treatment agent, an aqueous resin (i) containing an isocyanate group and / or a melamine group, an aqueous resin, and a mixture (ii) of a polyisocyanate compound and / or a melamine resin, And at least part of the following formula (1):

Figure 2009185392
及び/又は下記式(2);
Figure 2009185392
で表される構成単位を有する水溶性樹脂(iii)からなる群より選ばれる少なくとも一種を含有するものであることが好ましい。
Figure 2009185392
And / or the following formula (2);
Figure 2009185392
It is preferable to contain at least one selected from the group consisting of water-soluble resins (iii) having a structural unit represented by:

上記塗装前処理方法は、上記化成皮膜のフッ素濃度を元素比率で10%以下にするために、上記化成処理剤による処理後に化成皮膜を30℃以上で加熱乾燥するものであることが好ましい。
上記塗装前処理方法は、上記化成皮膜のフッ素濃度を元素比率で10%以下にするために、上記化成処理剤による処理後にpHが9以上である塩基性水溶液によって、5〜100℃で化成皮膜を処理するものであることが好ましい。
上記化成処理剤は、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の含有量が、金属換算で20〜10000ppmであり、pHが1.5〜6.5であることが好ましい。
The coating pretreatment method is preferably a method in which the chemical conversion film is heat-dried at 30 ° C. or higher after the treatment with the chemical conversion treatment agent so that the fluorine concentration of the chemical conversion film is 10% or less.
In the pre-coating method, the chemical conversion film is formed at 5 to 100 ° C. with a basic aqueous solution having a pH of 9 or more after the treatment with the chemical conversion treatment agent so that the fluorine concentration of the chemical conversion film is 10% or less in terms of element ratio. It is preferable to process.
The chemical conversion treatment agent preferably has at least one content selected from the group consisting of zirconium, titanium, and hafnium in a metal equivalent of 20 to 10,000 ppm and a pH of 1.5 to 6.5.

本発明の塗装前処理方法は、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種及びフッ素を必須成分とする化成処理剤を使用し、得られる化成皮膜に含まれるフッ素比率を10%以下とすることで、従来ジルコニウム等からなる化成処理剤での前処理が不適であった鉄系基材に対しても皮膜としての安定性及び塗膜との密着性に優れた化成皮膜を形成することができる。
また、本発明の塗装前処理方法は、表面調整工程を必要としないため、効率的に基材の化成処理を行うことができる。
The coating pretreatment method of the present invention uses a chemical conversion treatment agent having at least one selected from the group consisting of zirconium, titanium, and hafnium and fluorine as an essential component, and the fluorine ratio contained in the resulting chemical conversion film is 10% or less. Therefore, it is possible to form a chemical conversion film having excellent stability and adhesion to a coating film even on an iron-based substrate that has been unsuitable for pretreatment with a chemical conversion treatment agent made of zirconium or the like. Can do.
Moreover, since the coating pretreatment method of the present invention does not require a surface adjustment step, the base material can be efficiently subjected to chemical conversion treatment.

以下、本発明を詳細に説明する。
本発明は、クロム、バナジウム等の有害な重金属イオンやリン酸イオン等を実質的に使用することなく、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種を用いて塗装前処理を行う方法である。例えば、ジルコニウム含有化成処理剤による金属表面処理においては、通常、金属の溶解反応により化成処理剤中に溶出した金属イオンがZrF 2−のフッ素を引き抜くことにより、又、界面pHの上昇により、ジルコニウムの水酸化物又は酸化物が生成され、このジルコニウムの水酸化物又は酸化物が基材表面に析出しているとされている。この過程で、フッ素が完全に引き抜かれるわけではないため、一定量のフッ素が化成皮膜中に含まれることになってしまう。このように、フッ素が化成皮膜中に残留することによって、塗膜形成後に腐食環境にさらされた場合、発生した水酸基と更にフッ素の置換が起こってフッ素イオンが発生することにより、塗膜と金属との結合を切断して充分な密着性が得られなくなっていると考えられる。このような作用は、特に被処理基材が鉄である場合に顕著に発生するものである。このため、少なくとも一部に鉄系基材を含む被処理物に対して、ジルコニウム等によって塗装の前処理を行った場合には、塗膜との密着性が低下するという問題が発生する。本発明は、このような知見に基づいて、化成皮膜中のフッ素濃度を元素比率で10%以下に低減することによって上記問題を改善するものである。
Hereinafter, the present invention will be described in detail.
The present invention is a method for performing a coating pretreatment using at least one selected from the group consisting of zirconium, titanium and hafnium without substantially using harmful heavy metal ions such as chromium and vanadium, phosphate ions and the like. is there. For example, in the metal surface treatment with a zirconium-containing chemical conversion treatment agent, metal ions eluted into the chemical conversion treatment agent by the metal dissolution reaction usually pull out the fluorine of ZrF 6 2− , It is said that a zirconium hydroxide or oxide is produced, and this zirconium hydroxide or oxide is deposited on the surface of the substrate. In this process, since fluorine is not completely extracted, a certain amount of fluorine is contained in the chemical conversion film. As described above, when fluorine is left in the chemical conversion film and exposed to a corrosive environment after the coating film is formed, substitution of fluorine and further generation of fluorine ions occurs due to the substitution of fluorine and the coating film and metal. It is considered that sufficient adhesion cannot be obtained by cutting the bond. Such an action is particularly prominent when the substrate to be treated is iron. For this reason, when the pretreatment of the coating with zirconium or the like is performed on the workpiece including at least a part of the iron-based substrate, there arises a problem that the adhesion with the coating film is lowered. Based on such knowledge, the present invention improves the above problem by reducing the fluorine concentration in the chemical conversion film to 10% or less in terms of element ratio.

本発明の塗装前処理方法により、少なくとも一部が鉄系基材である被処理物を処理し、塗膜との密着性に優れた化成皮膜を形成することができる。被処理物は、すべてが鉄系基材からなるものであっても、一部がアルミニウム系基材及び/又は亜鉛系基材からなるものであってもよい。   According to the pre-painting treatment method of the present invention, an object to be treated, at least a part of which is an iron-based substrate, can be processed to form a chemical conversion film having excellent adhesion to the coating film. The object to be treated may be composed entirely of an iron-based substrate, or may be partially composed of an aluminum-based substrate and / or a zinc-based substrate.

上記鉄系基材とは、鉄及び/又はその合金からなる基材であり、上記アルミニウム基材とは、アルミニウム及び/又はその合金からなる基材であり、上記亜鉛系基材とは、亜鉛及び/又はその合金からなる基材を意味する。   The iron-based substrate is a substrate made of iron and / or an alloy thereof, the aluminum substrate is a substrate made of aluminum and / or an alloy thereof, and the zinc-based substrate is zinc And / or a base material made of an alloy thereof.

上記鉄系基材としては特に限定されず、例えば、冷延鋼板、熱延鋼板等を挙げることができる。上記アルミニウム系基材としては特に限定されず、例えば、5000番系アルミニウム合金、6000番系アルミニウム合金等を挙げることができる。上記亜鉛系基材としては特に限定されず、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板等の亜鉛系の電気めっき、溶融めっき、蒸着めっき鋼板等の亜鉛又は亜鉛系合金めっき鋼板等を挙げることができる。   It does not specifically limit as said iron-type base material, For example, a cold-rolled steel plate, a hot-rolled steel plate, etc. can be mentioned. It does not specifically limit as said aluminum-type base material, For example, 5000 series aluminum alloy, 6000 series aluminum alloy, etc. can be mentioned. The zinc-based substrate is not particularly limited. For example, galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc-aluminum plated steel sheet, zinc-titanium plated steel sheet, zinc- Examples thereof include zinc-based electroplating such as magnesium-plated steel sheet and zinc-manganese-plated steel sheet, zinc such as hot-dip plating and vapor-deposited steel sheet, or zinc-based alloy-plated steel sheet.

本発明の塗装前処理方法において使用される化成処理剤に含まれるジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種は、化成皮膜形成成分である。ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種を含む化成処理剤で処理することによって、基材にジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種を含む化成皮膜が形成され、これによって基材の耐食性や耐磨耗性が向上し、更に、次に形成される塗膜との密着性が良好なものとなる。上記ジルコニウムの供給源としては特に限定されず、例えば、KZrF等のアルカリ金属フルオロジルコネート;(NHZrF等のフルオロジルコネート;HZrF等のフルオロジルコネート酸等の水性フルオロジルコネート等;フッ化ジルコニウム;酸化ジルコニウム等を挙げることができる At least one selected from the group consisting of zirconium, titanium, and hafnium contained in the chemical conversion treatment agent used in the coating pretreatment method of the present invention is a chemical film forming component. By treating with a chemical conversion treatment agent containing at least one selected from the group consisting of zirconium, titanium and hafnium, a chemical conversion film containing at least one selected from the group consisting of zirconium, titanium and hafnium is formed on the substrate, thereby The corrosion resistance and wear resistance of the base material are improved, and the adhesion to the coating film to be formed next is good. The zirconium source is not particularly limited, and examples thereof include alkali metal fluorozirconates such as K 2 ZrF 6 ; fluorozirconates such as (NH 4 ) 2 ZrF 6 ; fluorozirconate acids such as H 2 ZrF 6, etc. Aqueous fluorozirconate, etc .; zirconium fluoride; zirconium oxide, etc.

上記チタンの供給源としては特に限定されず、例えば、アルカリ金属フルオロチタネート、(NHTiF等のフルオロチタネート;HTiF等のフルオロチタネート酸等の水性フルオロチタネート等;フッ化チタン;酸化チタン等を挙げることができる。 The titanium source is not particularly limited. For example, alkali metal fluorotitanate, fluorotitanate such as (NH 4 ) 2 TiF 6 , aqueous fluorotitanate such as fluorotitanate such as H 2 TiF 6, etc .; titanium fluoride A titanium oxide can be mentioned.

上記ハフニウムの供給源としては特に限定されず、例えば、HHfF等のフルオロハフネート酸;フッ化ハフニウム等を挙げることができる。
上記ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の供給源としては、皮膜形成能が高いことからZrF 2−、TiF 2−、HfF 2−からなる群より選ばれる少なくとも一種を有する化合物が好ましい。
The source of hafnium is not particularly limited, and examples thereof include fluorohafnate acids such as H 2 HfF 6 ; hafnium fluoride.
The at least one source selected from the group consisting of zirconium, titanium and hafnium is at least one selected from the group consisting of ZrF 6 2− , TiF 6 2− , and HfF 6 2− due to high film forming ability. The compound which has is preferable.

上記化成処理剤に含まれるジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の含有量は、金属換算で下限20ppm、上限10000ppmの範囲内であることが好ましい。上記下限未満であると得られる化成皮膜の性能が不充分であり、上記上限を超えると、それ以上の効果は望めず経済的に不利である。上記下限は50ppmがより好ましく、上記上限は2000ppmがより好ましい。   The content of at least one selected from the group consisting of zirconium, titanium and hafnium contained in the chemical conversion treatment agent is preferably in the range of a lower limit of 20 ppm and an upper limit of 10,000 ppm in terms of metal. If it is less than the lower limit, the resulting chemical conversion film has insufficient performance. If the upper limit is exceeded, no further effect can be expected, which is economically disadvantageous. The lower limit is more preferably 50 ppm, and the upper limit is more preferably 2000 ppm.

上記化成処理剤に含まれるフッ素は、基材のエッチング剤としての役割を果たすものである。上記フッ素の供給源としては特に限定されず、例えば、フッ化水素酸、フッ化アンモニウム、フッ化ホウ素酸、フッ化水素アンモニウム、フッ化ナトリウム、フッ化水素ナトリウム等のフッ化物を挙げることができる。また、錯フッ化物としては、例えば、ヘキサフルオロケイ酸塩が挙げられ、その具体例としてケイフッ化水素酸、ケイフッ化水素酸亜鉛、ケイフッ化水素酸マンガン、ケイフッ化水素酸マグネシウム、ケイフッ化水素酸ニッケル、ケイフッ化水素酸鉄、ケイフッ化水素酸カルシウム等を挙げることができる。   The fluorine contained in the chemical conversion treatment agent serves as an etching agent for the substrate. The fluorine supply source is not particularly limited, and examples thereof include fluorides such as hydrofluoric acid, ammonium fluoride, fluorinated boronic acid, ammonium hydrogen fluoride, sodium fluoride, and sodium hydrogen fluoride. . Examples of the complex fluoride include hexafluorosilicate, and specific examples thereof include hydrofluoric acid, zinc silicofluoride, manganese silicofluoride, magnesium silicofluoride, and hydrosilicofluoride. Examples thereof include nickel, iron silicohydrofluorate, and calcium silicohydrofluoride.

上記化成処理剤は、実質的にリン酸イオンを含有しないものであることが好ましい。実質的にリン酸イオンを含まないとは、リン酸イオンが化成処理剤中の成分として作用する程含まれていないことを意味する。上記化成処理剤は、実質的にリン酸イオンを含まないことから、環境負荷の原因となるリンを実質的に使用することがなく、リン酸亜鉛系処理剤を使用する場合に発生するリン酸鉄、リン酸亜鉛等のようなスラッジの発生を抑制することができる。   It is preferable that the said chemical conversion treatment agent is a thing which does not contain a phosphate ion substantially. The phrase “substantially free of phosphate ions” means that the phosphate ions are not contained so much as to act as a component in the chemical conversion treatment agent. Since the chemical conversion treatment agent does not substantially contain phosphate ions, it does not substantially use phosphorus that causes environmental burdens, and phosphoric acid generated when using a zinc phosphate-based treatment agent. Generation of sludge such as iron and zinc phosphate can be suppressed.

上記化成処理剤は、pHが下限1.5、上限6.5の範囲内であることが好ましい。1.5未満であると、エッチング過剰となり充分な皮膜形成ができなくなる。6.5を超えると、エッチングが不充分となり良好な皮膜が得られない。上記下限は、2.0がより好ましく、上記上限は、5.5がより好ましい。上記下限は、2.5が更に好ましく、上記上限は、5.0が更に好ましい。化成処理剤のpHを調整するために、硝酸、硫酸等の酸性化合物、及び、水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基性化合物を使用することができる。   The chemical conversion treatment agent preferably has a pH in the range of a lower limit of 1.5 and an upper limit of 6.5. If it is less than 1.5, the etching becomes excessive and a sufficient film cannot be formed. If it exceeds 6.5, etching becomes insufficient and a good film cannot be obtained. The lower limit is more preferably 2.0, and the upper limit is more preferably 5.5. The lower limit is more preferably 2.5, and the upper limit is more preferably 5.0. In order to adjust the pH of the chemical conversion treatment agent, acidic compounds such as nitric acid and sulfuric acid and basic compounds such as sodium hydroxide, potassium hydroxide and ammonia can be used.

本発明の塗装前処理方法は、得られる化成皮膜中のフッ素濃度を元素比率で10%以下にすることにより、塗膜との密着性に優れる化成皮膜を形成するものである。上記フッ素濃度は、8.0%以下であることがより好ましい。
上記フッ素濃度は、X線光電子分光分析装置(島津製作所社製AXIS−HS)を用いて化成皮膜中に含まれる元素を測定し、そのピーク強度面積から計算したものである。
The coating pretreatment method of the present invention forms a chemical conversion film having excellent adhesion to the coating film by setting the fluorine concentration in the chemical conversion film to be 10% or less in terms of element ratio. The fluorine concentration is more preferably 8.0% or less.
The fluorine concentration is calculated from the peak intensity area by measuring elements contained in the chemical conversion film using an X-ray photoelectron spectrometer (AXIS-HS manufactured by Shimadzu Corporation).

化成皮膜中のフッ素濃度を10%以下にする方法としては特に限定されず、例えば、以下の方法等を挙げることができる。
(1)化成処理剤に、更に、マグネシウム、カルシウム、ケイ素含有化合物、亜鉛、及び、銅からなる群より選ばれる少なくとも一種を配合する方法
(2)化成皮膜を30℃以上で加熱乾燥する方法
(3)pHが9以上である塩基性水溶液によって、5〜100℃で化成皮膜を処理する方法
上記(1)〜(3)の方法は、化成皮膜中のフッ素濃度を10%以下にするために行われるものであり、この目的が達成される限りにおいて、上記方法のうち、2つ以上の方法を併用してもよい。
The method for setting the fluorine concentration in the chemical conversion film to 10% or less is not particularly limited, and examples thereof include the following methods.
(1) Method of blending chemical conversion treatment agent with at least one selected from the group consisting of magnesium, calcium, silicon-containing compound, zinc and copper (2) Method of heat-drying chemical conversion film at 30 ° C. or higher ( 3) A method of treating a chemical conversion film at 5 to 100 ° C. with a basic aqueous solution having a pH of 9 or more. The methods (1) to (3) described above are for reducing the fluorine concentration in the chemical conversion film to 10% or less. As long as this object is achieved, two or more of the above methods may be used in combination.

上記(1)の方法は、上記マグネシウム、カルシウム、ケイ素含有化合物、亜鉛、及び、銅からなる群から選ばれる少なくとも一種を化成処理剤に配合することにより、化成処理剤中のフッ素とジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の解離が促進され、化成皮膜中に存在するフッ素濃度が低減されるものであると推測される。   In the method (1), at least one selected from the group consisting of magnesium, calcium, silicon-containing compound, zinc, and copper is added to the chemical conversion treatment agent, so that fluorine, zirconium, and titanium in the chemical conversion treatment agent are mixed. And at least one kind of dissociation selected from the group consisting of hafnium is promoted, and it is presumed that the fluorine concentration present in the chemical conversion film is reduced.

上記マグネシウム、カルシウム、亜鉛及び銅は、金属イオンとして上記化成処理剤に配合するものである。上記金属イオンは、それぞれ、硝酸化物、硫酸化物、フッ化物等を供給源として配合することができる。なかでも、化成反応に悪影響を与えないため、硝酸化物を供給源とすることが好ましい。上記マグネシウム、カルシウム、亜鉛、又は、銅は、上記ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の含有量に対して、質量比で下限0.01倍、上限50倍の範囲内で配合されることが好ましい。上記下限は、0.1倍であることがより好ましく、上記上限は、10倍であることがより好ましい。   The said magnesium, calcium, zinc, and copper are mix | blended with the said chemical conversion treatment agent as a metal ion. Each of the above metal ions can be blended using a source of nitrate, sulfate, fluoride or the like. Among these, it is preferable to use nitrate as a supply source in order not to adversely affect the chemical conversion reaction. The magnesium, calcium, zinc, or copper is blended within a range of 0.01 times lower limit and 50 times upper limit in mass ratio with respect to at least one content selected from the group consisting of zirconium, titanium, and hafnium. It is preferred that The lower limit is more preferably 0.1 times, and the upper limit is more preferably 10 times.

上記(1)の方法において使用する金属化合物は、亜鉛化合物又は銅化合物であることがより好ましい。更に、上記化合物のうち、2種以上の化合物を併用して使用するものであることが好ましい。好ましい組み合わせとしては、亜鉛化合物とマグネシウム化合物の併用等を挙げることができる。   The metal compound used in the method (1) is more preferably a zinc compound or a copper compound. Furthermore, it is preferable that 2 or more types of compounds are used in combination. As a preferred combination, a combined use of a zinc compound and a magnesium compound can be exemplified.

上記ケイ素含有化合物としては特に限定されず、例えば、シリカ、水溶性ケイ酸塩化合物、ケイ酸エステル類、アルキルシリケート類、シランカップリング剤等を挙げることができる。なかでも、シリカが好ましく、化成処理剤中での分散性が高いことから水分散性シリカがより好ましい。上記水分散性シリカとしては特に限定されず、例えば、ナトリウム等の不純物が少ない、球状シリカ、鎖状シリカ、アルミ修飾シリカ等を挙げることができる。上記球状シリカとしては特に限定されず、例えば、「スノーテックスN」、「スノーテックスO」、「スノーテックスOXS」、「スノーテックスUP」、「スノーテックスXS」、「スノーテックスAK」、「スノーテックスOUP」、「スノーテックスC」、「スノーテックスOL」(いずれも日産化学工業株式会社製)等のコロイダルシリカや、「アエロジル」(日本アエロジル株式会社製)等のヒュームドシリカ等を挙げることができる。上記鎖状シリカとしては特に限定されず、例えば、「スノーテックスPS−M」、「スノーテックスPS−MO」、「スノーテックスPS−SO」(いずれも日産化学工業株式会社製)等のシリカゾル等を挙げることができる。上記アルミ修飾シリカとしては、「アデライトAT−20A」(旭電化工業株式会社製)等の市販のシリカゾル等を挙げることができる。   The silicon-containing compound is not particularly limited, and examples thereof include silica, water-soluble silicate compounds, silicate esters, alkyl silicates, and silane coupling agents. Among these, silica is preferable, and water dispersible silica is more preferable because of high dispersibility in the chemical conversion treatment agent. The water-dispersible silica is not particularly limited, and examples thereof include spherical silica, chain silica, and aluminum-modified silica that are low in impurities such as sodium. The spherical silica is not particularly limited. For example, “Snowtex N”, “Snowtex O”, “Snowtex OXS”, “Snowtex UP”, “Snowtex XS”, “Snowtex AK”, “Snow” Examples include colloidal silica such as Tex OUP, Snowtex C, and Snowtex OL (all manufactured by Nissan Chemical Industries, Ltd.), and fumed silica such as Aerosil (produced by Nippon Aerosil Co., Ltd.). Can do. The chain silica is not particularly limited, and examples thereof include silica sols such as “Snowtex PS-M”, “Snowtex PS-MO”, and “Snowtex PS-SO” (all manufactured by Nissan Chemical Industries, Ltd.) Can be mentioned. Examples of the aluminum-modified silica include commercially available silica sols such as “Adelite AT-20A” (manufactured by Asahi Denka Kogyo Co., Ltd.).

上記シランカップリング剤としては特に限定されず、例えば、アミノ基含有シランカップリング剤等を好適に使用することができる。上記アミノ基含有シランカップリング剤は、分子中に少なくとも1つのアミノ基を有し、かつ、シロキサン結合を有する化合物であって、例えば、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N,N−ビス〔3−(トリメトキシシリル)プロピル〕エチレンジアミン等の公知のシランカップリング剤等を挙げることができる。上記シランカップリング剤としては、その加水分解物、重合物等を使用してもよい。
上記ケイ素含有化合物は、ケイ素成分として、上記ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の含有量に対して、下限0.01倍、上限50倍の範囲内で配合することが好ましい。
It does not specifically limit as said silane coupling agent, For example, an amino group containing silane coupling agent etc. can be used conveniently. The amino group-containing silane coupling agent is a compound having at least one amino group in the molecule and having a siloxane bond, for example, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxy Known silane cups such as silyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine A ring agent etc. can be mentioned. As the silane coupling agent, a hydrolyzate or a polymer thereof may be used.
The silicon-containing compound is preferably blended as a silicon component within a range of 0.01 times lower limit and 50 times upper limit with respect to at least one content selected from the group consisting of zirconium, titanium and hafnium.

上記ケイ素含有化合物は、単独で使用するものであってもよいが、上記マグネシウム、カルシウム、亜鉛及び銅化合物からなる群より選択される少なくとも一種と併用して使用することによって、より優れた効果が得られるものである。   The silicon-containing compound may be used alone, but when used in combination with at least one selected from the group consisting of the magnesium, calcium, zinc and copper compounds, a more excellent effect can be obtained. It is obtained.

本発明の塗装前処理方法において、化成処理剤に上記マグネシウム、カルシウム、ケイ素含有化合物、亜鉛、及び、銅からなる群より選ばれる少なくとも一種を配合する場合、更に、イソシアネート基及び/又はメラミン基を含有する水性樹脂(i)、水性樹脂、及び、ポリイソシアネート化合物及び/又はメラミン樹脂の混合物(ii)、並びに、少なくとも一部に下記式(1);   In the coating pretreatment method of the present invention, when compounding at least one selected from the group consisting of magnesium, calcium, silicon-containing compounds, zinc, and copper is added to the chemical conversion treatment agent, an isocyanate group and / or a melamine group are further added. Containing aqueous resin (i), aqueous resin, and mixture (ii) of polyisocyanate compound and / or melamine resin, and at least a part of the following formula (1);

Figure 2009185392
及び/又は下記式(2);
Figure 2009185392
で表される構成単位を有する水溶性樹脂(iii)からなる群より選ばれる少なくとも一種を配合することが好ましい。上記(i)〜(iii)の少なくとも一種を配合することにより、フッ素濃度低減効果が更に高められるため、化成皮膜の乾燥工程が不要となる点で好ましい。
Figure 2009185392
And / or the following formula (2);
Figure 2009185392
It is preferable to blend at least one selected from the group consisting of water-soluble resins (iii) having a structural unit represented by: By blending at least one of the above (i) to (iii), the effect of reducing the fluorine concentration is further enhanced, which is preferable in that the drying step of the chemical conversion film is unnecessary.

上記イソシアネート基及び/又はメラミン基を有する水性樹脂(i)は、イソシアネート基及び/又はメラミン基によって、架橋反応が生じ、硬化膜を形成することができるものである。
上記水性樹脂としては、必要量を化成処理剤中に溶解できる程度の溶解性を有するものであれば特に限定されず、エポキシ樹脂を骨格とするもの等を挙げることができる。上記エポキシ樹脂を骨格とする水性樹脂としては特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、ビスフェノールAプロピレンオキサイド付加型エポキシ樹脂、ビスフェノールFプロピレンオキサイド付加型エポキシ樹脂、ノボラック型エポキシ樹脂等を挙げることができる。なかでも、ビスフェノールF型エポキシ樹脂が好ましく、ビスフェノールFエピクロルヒドリン型エポキシ樹脂がより好ましい。
The aqueous resin (i) having an isocyanate group and / or melamine group is capable of forming a cured film due to a crosslinking reaction caused by the isocyanate group and / or melamine group.
The aqueous resin is not particularly limited as long as it has a solubility sufficient to dissolve a required amount in the chemical conversion treatment agent, and examples thereof include those having an epoxy resin as a skeleton. The aqueous resin having the epoxy resin as a skeleton is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, bisphenol A propylene oxide An addition type epoxy resin, a bisphenol F propylene oxide addition type epoxy resin, a novolak type epoxy resin, etc. can be mentioned. Among these, bisphenol F type epoxy resin is preferable, and bisphenol F epichlorohydrin type epoxy resin is more preferable.

上記イソシアネート基は、例えば、ブロック剤によってブロックされたハーフブロックジイソシアネート化合物を水性樹脂と反応させることによって水性樹脂中に導入することができる。
上記ハーフブロックジイソシアネート化合物は、ジイソシアネート化合物とブロック剤とを、イソシアネート基が過剰となる割合で反応させることによって得ることができる。上記ハーフブロックジイソシアネート化合物の合成、及び、ハーフブロックジイソシアネート化合物と水性樹脂との反応は、特に限定されず、公知の方法によって行うことができる。
The isocyanate group can be introduced into the aqueous resin by, for example, reacting a half-blocked diisocyanate compound blocked with a blocking agent with the aqueous resin.
The said half block diisocyanate compound can be obtained by making a diisocyanate compound and a blocking agent react in the ratio in which an isocyanate group becomes excess. The synthesis | combination of the said half block diisocyanate compound and reaction with a half block diisocyanate compound and aqueous resin are not specifically limited, It can carry out by a well-known method.

上記メラミン基を水性樹脂中に導入する方法としては特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等に後述するメラミン樹脂等を添加し、80℃で2時間、加熱しながら攪拌する方法等を挙げることができる。   The method for introducing the melamine group into the aqueous resin is not particularly limited. For example, a melamine resin described later is added to bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc., and heated at 80 ° C. for 2 hours. And a method of stirring the mixture.

水性樹脂、及び、ポリイソシアネート化合物及び/又はメラミン樹脂の混合物(ii)は、上記イソシアネート基及び/又はメラミン基を有する水性樹脂(i)と同様に硬化性を有するものである。
上記水性樹脂としては特に限定されず、上述のものを挙げることができる。
The aqueous resin and the mixture (ii) of the polyisocyanate compound and / or melamine resin are curable similarly to the aqueous resin (i) having the isocyanate group and / or melamine group.
It does not specifically limit as said aqueous resin, The above-mentioned thing can be mentioned.

上記ポリイソシアネート化合物は、2以上のイソシアネート基を有する化合物であり、水性の化成処理剤中に安定して配合するために、ブロック剤でブロックされたブロックポリイソシアネート化合物又はハーフブロックポリイソシアネート化合物を使用することが好ましい。
上記メラミン樹脂としては特に限定されず、例えば、メトキシ基、エトキシ基、n−ブトキシ基、i−ブトキシ基等のアルコキシ基を有するアルコキシメチルメラミン樹脂等を挙げることができる。上記アルコキシメチルメラミン樹脂は、通常メラミンにホルムアルデヒド、パラホルムアルデヒド等のアルデヒドを付加反応又は付加縮合反応させて得たメチロールメラミン樹脂を、炭素数1〜4の1価アルコールでエーテル化して得られる。本発明においては、メチルエーテル基が好適である。
The above-mentioned polyisocyanate compound is a compound having two or more isocyanate groups, and a block polyisocyanate compound or a half block polyisocyanate compound blocked with a blocking agent is used in order to stably blend in an aqueous chemical conversion treatment agent. It is preferable to do.
It does not specifically limit as said melamine resin, For example, the alkoxymethyl melamine resin etc. which have alkoxy groups, such as a methoxy group, an ethoxy group, n-butoxy group, i-butoxy group, etc. can be mentioned. The alkoxymethylmelamine resin is usually obtained by etherifying a methylolmelamine resin obtained by addition reaction or addition condensation reaction of aldehyde such as formaldehyde and paraformaldehyde with melamine with a monohydric alcohol having 1 to 4 carbon atoms. In the present invention, a methyl ether group is preferred.

上記メラミン樹脂の具体例としては、メトキシ基を有するタイプ(メチルエーテル型)として、サイメル303、サイメル325、サイメル327、サイメル350、サイメル370、サイメル385(いずれも三井サイアナミッド(株)製)や、スミマールM40S、スミマールM50S、スミマールM100(いずれも住友化学工業(株)製)等が挙げられる。またブトキシ基を有するタイプ(ブチルエーテル型)としては、ユーバン20SE60、ユーバン20SE125、ユーバン20SE128(いずれも三井東圧化学(株)製)や、スーパーベッカミンG821、スーパーベッカミンJ820(いずれも大日本インキ化学工業(株)製)や、マイコート506、マイコート508(いずれも三井サイアナミッド(株)製)等が挙げられる。さらに、混合エーテル型メラミンとしては、サイメル235、サイメル238、サイメル254、サイメル266、サイメル267、サイメル285、サイメル1141(いずれも三井サイアナミッド(株)製)や、ニカラックMX−40、ニカラックMX−45(いずれも三和ケミカル(株)製)等が挙げられる。   As a specific example of the melamine resin, as a type having a methoxy group (methyl ether type), Cymel 303, Cymel 325, Cymel 327, Cymel 350, Cymel 370, Cymel 385 (all manufactured by Mitsui Cyanamid Co., Ltd.), Sumimar M40S, Sumimar M50S, Sumimar M100 (all manufactured by Sumitomo Chemical Co., Ltd.) and the like. Examples of the type having a butoxy group (butyl ether type) include Uban 20SE60, Uban 20SE125, Uban 20SE128 (all manufactured by Mitsui Toatsu Chemical Co., Ltd.), Super Becamine G821, and Super Becamine J820 (all Dainippon Ink). Chemical Industry Co., Ltd.), My Coat 506, My Coat 508 (all manufactured by Mitsui Cyanamid Co., Ltd.) and the like. Furthermore, as the mixed ether type melamine, Cymel 235, Cymel 238, Cymel 254, Cymel 266, Cymel 267, Cymel 285, Cymel 1141 (all manufactured by Mitsui Cyanamid Co., Ltd.), Nicarax MX-40, Nicarak MX-45 (Both manufactured by Sanwa Chemical Co., Ltd.).

上記少なくとも一部に上記式(1)及び/又は上記式(2)で表される構成単位を有する水溶性樹脂(iii)の製造方法としては特に限定されず、公知の方法によって製造することができる。
上記水溶性樹脂(iii)は、上記式(1)で表される構成単位のみからなる重合体であるポリビニルアミン樹脂及び上記式(2)で表される構成単位のみからなる重合体であるポリビニルアミン樹脂が特に好ましい。上記ポリビニルアミン樹脂及びポリアリルアミン樹脂は、特に、密着性を向上する効果に優れている点で好ましい。上記ポリビニルアミン樹脂としては特に限定されず、PVAM−0595B(三菱化学株式会社製)等の市販のポリビニルアミン樹脂を使用することができる。上記ポリアリルアミン樹脂としては特に限定されず、例えば、PAA−01、PAA−10C、PAA−H−10C、PAA−D11HCl(いずれも日東紡株式会社製)等の市販のポリアリルアミン樹脂を使用することができる。また、ポリビニルアミン樹脂とポリアリルアミン樹脂とを併用して使用するものであってもよい。
It does not specifically limit as a manufacturing method of water-soluble resin (iii) which has a structural unit represented by said Formula (1) and / or said Formula (2) in said at least one part, It can manufacture by a well-known method. it can.
The water-soluble resin (iii) is a polyvinylamine resin that is a polymer composed only of the structural unit represented by the above formula (1) and a polyvinyl that is a polymer composed only of the structural unit represented by the above formula (2). Amine resins are particularly preferred. The polyvinylamine resin and polyallylamine resin are particularly preferable in that they are excellent in the effect of improving adhesion. It does not specifically limit as said polyvinylamine resin, Commercially available polyvinylamine resin, such as PVAM-0595B (made by Mitsubishi Chemical Corporation), can be used. The polyallylamine resin is not particularly limited. For example, a commercially available polyallylamine resin such as PAA-01, PAA-10C, PAA-H-10C, PAA-D11HCl (all manufactured by Nittobo Co., Ltd.) is used. Can do. Further, a polyvinylamine resin and a polyallylamine resin may be used in combination.

上記水溶性樹脂(iii)は、本発明の目的を損なわない範囲で、上記ポリビニルアミン樹脂及び/又はポリアリルアミン樹脂のアミノ基の一部をアセチル化する等の方法によって修飾したもの、アミノ基の一部又は全部が酸により中和されたもの、溶解性に影響を与えない範囲で架橋剤によって架橋したもの等も使用することができる。   The water-soluble resin (iii) is modified by a method such as acetylation of a part of the amino group of the polyvinylamine resin and / or polyallylamine resin within the range not impairing the object of the present invention. Those partially or wholly neutralized with an acid, those crosslinked with a crosslinking agent within a range not affecting the solubility, and the like can also be used.

上記水溶性樹脂(iii)は、樹脂100g当たり、下限0.01モル、上限2.3モルの範囲内のアミノ基を有することが好ましい。0.01モル未満であると、充分な効果が得られず好ましくない。2.3モルを超えると、目的とする効果が得られないおそれがある。上記下限は、0.1モルがより好ましい。   The water-soluble resin (iii) preferably has an amino group within a range of 0.01 mol as the lower limit and 2.3 mol as the upper limit per 100 g of the resin. If it is less than 0.01 mol, a sufficient effect cannot be obtained, which is not preferable. If it exceeds 2.3 mol, the intended effect may not be obtained. The lower limit is more preferably 0.1 mol.

上記上記(i)〜(iii)の少なくとも一種は、固形分として、上記ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の含有量に対して、下限0.01倍、上限50倍の範囲内で配合することが好ましい。   At least one of the above (i) to (iii) is a solid content of at least one selected from the group consisting of zirconium, titanium and hafnium, with a lower limit of 0.01 times and an upper limit of 50 times. It is preferable to mix within.

上記(2)の方法は、化成皮膜を30℃以上で加熱乾燥することにより、化成皮膜中に含有されているフッ素を揮発させ、更に、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種と結合するフッ素の水酸基への置換を促進することによりフッ素比率を減少させるものである。乾燥時間は特に限定されないが、皮膜表面の温度が乾燥雰囲気温度に達すればよい。乾燥温度の上限は特に限定されないが、作業性の問題から300℃以下が好ましい。上記乾燥温度は、40℃以上であることがより好ましい。上記(2)の方法において用いられる乾燥機は、通常用いられている乾燥機であれば特に限定されず、例えば、熱風乾燥機、電気乾燥炉等を挙げることができる。化成処理を行った後、効率よくフッ素量を低減するためには、化成処理反応を行った後、加熱乾燥を行う前に水洗処理を行うことが好ましい。   In the method (2), the chemical conversion film is dried by heating at 30 ° C. or higher to volatilize fluorine contained in the chemical conversion film, and at least one selected from the group consisting of zirconium, titanium, and hafnium. The fluorine ratio is decreased by promoting the substitution of the bonded fluorine with a hydroxyl group. The drying time is not particularly limited as long as the temperature of the film surface reaches the drying atmosphere temperature. The upper limit of the drying temperature is not particularly limited, but is preferably 300 ° C. or less in view of workability. The drying temperature is more preferably 40 ° C. or higher. The dryer used in the method (2) is not particularly limited as long as it is a commonly used dryer, and examples thereof include a hot air dryer and an electric dryer. In order to efficiently reduce the amount of fluorine after the chemical conversion treatment, it is preferable to perform a water washing treatment after the chemical conversion reaction and before heat drying.

上記(3)の方法は、塩基性水溶液で化成皮膜を処理することにより、化成皮膜中に存在するフッ素を化成皮膜から除去するものである。上記塩基性水溶液としては特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等の水溶液を挙げることができる。なかでも、後工程で水洗しやすいため、アンモニアの水溶液が好ましい。得られた化成皮膜を、pH9以上、温度5〜100℃に調整した上記塩基性水溶液に30〜300秒間浸漬して処理することが好ましい。上記(3)の方法の後は、表面に付着した塩基性化合物を除去するために、水洗処理を行うことが好ましい。   In the method (3), the chemical film is treated with a basic aqueous solution to remove fluorine present in the chemical film from the chemical film. It does not specifically limit as said basic aqueous solution, For example, aqueous solution, such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, can be mentioned. Especially, since it is easy to wash with water at a post process, the aqueous solution of ammonia is preferable. The obtained chemical conversion film is preferably treated by immersing it in the above basic aqueous solution adjusted to pH 9 or higher and at a temperature of 5 to 100 ° C. for 30 to 300 seconds. After the method (3), it is preferable to perform a water washing treatment in order to remove the basic compound attached to the surface.

上記化成処理剤による金属の化成処理は、特に限定されるものではなく、通常の処理条件によって化成処理剤と金属表面とを接触させることによって行うことができる。上記化成処理における処理温度は、下限20℃、上限70℃の範囲内であることが好ましい。上記下限は30℃であることがより好ましく、上記上限は50℃であることがより好ましい。上記化成処理における化成時間は、下限5秒、上限1200秒の範囲内であることが好ましい。上記下限は30秒がより好ましく、上記上限は120秒がより好ましい。化成処理方法としては特に限定されず、例えば、浸漬法、スプレー法、ロールコート法等を挙げることができる。   The metal chemical conversion treatment with the chemical conversion treatment agent is not particularly limited, and can be performed by bringing the chemical conversion treatment agent into contact with the metal surface under normal treatment conditions. The treatment temperature in the chemical conversion treatment is preferably in the range of a lower limit of 20 ° C. and an upper limit of 70 ° C. The lower limit is more preferably 30 ° C, and the upper limit is more preferably 50 ° C. The chemical conversion time in the chemical conversion treatment is preferably in the range of a lower limit of 5 seconds and an upper limit of 1200 seconds. The lower limit is more preferably 30 seconds, and the upper limit is more preferably 120 seconds. The chemical conversion treatment method is not particularly limited, and examples thereof include a dipping method, a spray method, and a roll coating method.

本発明の塗装前処理方法により得られる化成皮膜は、皮膜量が化成処理剤に含まれる金属の合計量で下限0.1mg/m、上限500mg/mの範囲内であることが好ましい。0.1mg/m未満であると、均一な化成皮膜が得られず好ましくない。500mg/mを超えると、経済的に不利である。上記下限は、5mg/mがより好ましく、上記上限は、200mg/mがより好ましい。 Conversion coating obtained by painting pretreatment method of the present invention, the lower limit 0.1 mg / m 2 in a total amount of metal coating weight is comprised chemical conversion treatment agent is preferably in the range of the upper limit 500 mg / m 2. If it is less than 0.1 mg / m 2 , a uniform chemical conversion film cannot be obtained, which is not preferable. If it exceeds 500 mg / m 2 , it is economically disadvantageous. The lower limit is more preferably 5 mg / m 2 , and the upper limit is more preferably 200 mg / m 2 .

本発明の塗装前処理方法は、脱脂処理、脱脂後水洗処理を行った基材表面に対して化成処理を行い、化成後水洗処理を行うことが好ましい。
上記脱脂処理は、基材表面に付着している油分や汚れを除去するために行われるものであり、無リン・無窒素脱脂洗浄液等の脱脂剤により、通常30〜55℃において数分間程度の浸漬処理がなされる。所望により、脱脂処理の前に、予備脱脂処理を行うことも可能である。
上記脱脂後水洗処理は、脱脂処理後の脱脂剤を水洗するために、大量の水洗水によって1回又はそれ以上スプレー処理を行うことにより行われるものである。
In the pre-coating treatment method of the present invention, it is preferable to perform a chemical conversion treatment on the surface of the base material that has been subjected to a degreasing treatment and a post-degreasing water washing treatment, and then a post-chemical conversion water washing treatment.
The degreasing treatment is performed to remove oil and dirt adhering to the surface of the base material, and usually with a degreasing agent such as phosphorus-free and nitrogen-free degreasing cleaning liquid at about 30 to 55 ° C. for about several minutes. Immersion treatment is performed. If desired, a preliminary degreasing process can be performed before the degreasing process.
The post-degreasing rinsing treatment is performed by spraying once or more with a large amount of rinsing water in order to wash the degreasing agent after the degreasing treatment.

上記化成後水洗処理は、その後の各種塗装後の密着性、耐食性等に悪影響を及ぼさないようにするために、1回又はそれ以上により行われるものである。この場合、最終の水洗は、純水で行われることが適当である。この化成後水洗処理においては、スプレー水洗又は浸漬水洗のどちらでもよく、これらの方法を組み合わせて水洗することもできる。
また、本発明の塗装前処理方法は、リン酸亜鉛系化成処理剤を用いて処理する方法において、必要となっている表面調整処理を行わなくてもよいため、より少ない工程で基材の化成処理を行うことができる。
The post-chemical conversion water-washing treatment is performed once or more so as not to adversely affect the adhesion, corrosion resistance, and the like after the subsequent various coatings. In this case, it is appropriate that the final water washing is performed with pure water. In this post-chemical conversion water washing treatment, either spray water washing or immersion water washing may be used, and these methods may be combined for water washing.
Further, the coating pretreatment method of the present invention does not require the surface conditioning treatment that is required in the method of treatment using a zinc phosphate-based chemical conversion treatment agent. Processing can be performed.

本発明の塗装前処理方法により処理された金属基材に対して行うことができる塗装としては特に限定されず、カチオン電着塗料、溶剤塗料、水性塗料、粉体塗料等の従来公知の塗料を用いた塗装を行うことができる。例えば、上記カチオン電着塗料としては特に限定されず、アミノ化エポキシ樹脂、アミノ化アクリル樹脂、スルホニウム化エポキシ樹脂等からなる従来公知のカチオン電着塗料を塗布することができる。   The coating that can be performed on the metal substrate treated by the coating pretreatment method of the present invention is not particularly limited, and conventionally known paints such as cationic electrodeposition paints, solvent paints, aqueous paints, and powder paints can be used. The coating used can be performed. For example, the cationic electrodeposition coating is not particularly limited, and a conventionally known cationic electrodeposition coating made of an aminated epoxy resin, an aminated acrylic resin, a sulfoniumated epoxy resin, or the like can be applied.

以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited only to these examples.

実施例1
市販の冷間圧延鋼板(日本テストパネル社製、70mm×150mm×0.8mm)を基材として、下記の条件で塗装前処理を施した。
(1)塗装前処理
脱脂処理:2質量%「サーフクリーナー53」(日本ペイント社製脱脂剤)で40℃、2分間スプレー処理した。
脱脂後水洗処理:水道水で30秒間スプレー処理した。
化成処理:ジルコンフッ化水素酸、水酸化ナトリウムを用いて、ジルコニウム濃度100ppm、pH4である化成処理剤を調製した。調整した化成処理剤の温度を40℃とし、浸漬処理した。処理時間は60秒であり、処理の初期段階における皮膜量は、10mg/mであった。
化成後水洗処理:水道水で30秒間スプレー処理した。更にイオン交換水で30秒間スプレー処理した。
乾燥処理:水洗処理後の冷間圧延鋼板を電気乾燥炉において、80℃で5分間乾燥した。なお、得られた皮膜中の化成処理剤中に含まれる金属の合計量(皮膜量)及びフッ素濃度は、「AXIS−HS」(島津製作所製蛍光X線分析装置;X線源:mono−Al)を用いて分析した。
Example 1
Using a commercially available cold-rolled steel sheet (manufactured by Nippon Test Panel Co., Ltd., 70 mm × 150 mm × 0.8 mm) as a base material, a coating pretreatment was performed under the following conditions.
(1) Pre-coating degreasing treatment: 2 mass% “Surf Cleaner 53” (Nippon Paint degreasing agent) was sprayed at 40 ° C. for 2 minutes.
Washing with water after degreasing: spraying with tap water for 30 seconds.
Chemical conversion treatment: A chemical conversion treatment agent having a zirconium concentration of 100 ppm and a pH of 4 was prepared using zircon hydrofluoric acid and sodium hydroxide. The temperature of the adjusted chemical conversion treatment agent was set to 40 ° C., and immersion treatment was performed. The treatment time was 60 seconds, and the coating amount at the initial stage of treatment was 10 mg / m 2 .
Water treatment after chemical conversion: Sprayed with tap water for 30 seconds. Furthermore, it spray-processed for 30 second with ion-exchange water.
Drying treatment: The cold-rolled steel sheet after the water washing treatment was dried at 80 ° C. for 5 minutes in an electric drying furnace. In addition, the total amount (film amount) and fluorine concentration of the metal contained in the chemical conversion treatment agent in the obtained film are “AXIS-HS” (Shimadzu Corporation X-ray fluorescence analyzer; X-ray source: mono-Al ).

(2)塗装
化成処理剤1L当たり1mの冷間圧延鋼板を処理した後に、「パワーニクス110」(日本ペイント社製カチオン電着塗料)を用いて乾燥膜厚20μmになるように電着塗装し、水洗後、170℃で20分間加熱して焼き付け、試験板を作成した。
(2) Coating After processing 1 m 2 of cold-rolled steel sheet per liter of chemical conversion treatment agent, electrodeposition coating using “Powernics 110” (Cation Electrodeposition Paint manufactured by Nippon Paint Co., Ltd.) to a dry film thickness of 20 μm. After washing with water, baking was performed by heating at 170 ° C. for 20 minutes to prepare a test plate.

実施例2
乾燥条件を35℃、10分に代えたこと以外は、実施例1と同様にして試験板を得た。
Example 2
A test plate was obtained in the same manner as in Example 1 except that the drying conditions were changed to 35 ° C. and 10 minutes.

実施例3
乾燥条件を35℃、60分に代えたこと以外は、実施例1と同様にして試験板を得た。
Example 3
A test plate was obtained in the same manner as in Example 1 except that the drying conditions were changed to 35 ° C. and 60 minutes.

実施例4
乾燥条件を120℃、5分に代えたこと以外は、実施例1と同様にして試験板を得た。
Example 4
A test plate was obtained in the same manner as in Example 1 except that the drying condition was changed to 120 ° C. for 5 minutes.

実施例5
乾燥条件を170℃、5分に代えたこと以外は、実施例1と同様にして試験板を得た。
Example 5
A test plate was obtained in the same manner as in Example 1 except that the drying conditions were changed to 170 ° C. for 5 minutes.

実施例6
乾燥条件を180℃、3分に代えたこと以外は、実施例1と同様にして試験板を得た。
Example 6
A test plate was obtained in the same manner as in Example 1 except that the drying conditions were changed to 180 ° C. for 3 minutes.

比較例1
乾燥処理を行わなかったこと以外は、実施例1と同様にして試験板を得た。
Comparative Example 1
A test plate was obtained in the same manner as in Example 1 except that the drying treatment was not performed.

比較例2
乾燥条件を25℃、10分に代えたこと以外は、実施例1と同様にして試験板を得た。
Comparative Example 2
A test plate was obtained in the same manner as in Example 1 except that the drying conditions were changed to 25 ° C. and 10 minutes.

比較例3
脱脂後水洗処理の後に、サーフファイン5N−8M(日本ペイント社製)を用いて室温で30秒間表面調整を行い、サーフダインSD−6350(日本ペイント社製リン酸亜鉛系化成処理剤)を用いて35℃で2分間化成処理を行い、乾燥処理を行わなかったこと以外は実施例1と同様にして試験板を得た。
Comparative Example 3
After degreasing and washing with water, surffine 5N-8M (manufactured by Nippon Paint Co., Ltd.) is used to adjust the surface at room temperature for 30 seconds, and surfdyne SD-6350 (Nihon Paint Co., Ltd. zinc phosphate-based chemical conversion treatment agent) is used. A test plate was obtained in the same manner as in Example 1 except that the chemical conversion treatment was performed at 35 ° C. for 2 minutes and the drying treatment was not performed.

比較例4
乾燥処理を80℃で5分間行ったこと以外は、比較例3と同様にして試験板を得た。
Comparative Example 4
A test plate was obtained in the same manner as in Comparative Example 3 except that the drying treatment was performed at 80 ° C. for 5 minutes.

実施例7
ジルコニウム濃度を500ppmに、硝酸亜鉛を加えて亜鉛濃度を500ppmに、乾燥条件を25℃で10分に変更したこと以外は実施例1と同様にして試験板を得た。
Example 7
A test plate was obtained in the same manner as in Example 1 except that the zirconium concentration was changed to 500 ppm, zinc nitrate was added to change the zinc concentration to 500 ppm, and the drying conditions were changed to 10 minutes at 25 ° C.

実施例8
ジルコニウム濃度を500ppmに、硝酸亜鉛を加えて亜鉛濃度を500ppmに、硝酸マグネシウムを用いてマグネシウム濃度を200ppmに、乾燥条件を25℃で10分に変更したこと以外は実施例1と同様にして試験板を得た。
Example 8
Tested in the same manner as in Example 1 except that the zirconium concentration was changed to 500 ppm, the zinc concentration was added to 500 ppm, the magnesium concentration was changed to 200 ppm using magnesium nitrate, and the drying condition was changed to 10 minutes at 25 ° C. I got a plate.

実施例9
ジルコニウム濃度を500ppmに、硝酸亜鉛を加えて亜鉛濃度を500ppmに、シリカ(アエロジル300:日本アエロジル株式会社製)を用いてケイ素濃度を200ppmに、乾燥条件を25℃で10分に変更したこと以外は実施例1と同様にして試験板を得た。
Example 9
Except that the zirconium concentration was changed to 500 ppm, zinc nitrate was added to make the zinc concentration 500 ppm, silica (Aerosil 300: manufactured by Nippon Aerosil Co., Ltd.) was used, the silicon concentration was changed to 200 ppm, and the drying conditions were changed to 10 minutes at 25 ° C. Obtained a test plate in the same manner as in Example 1.

実施例10
ジルコニウム濃度を500ppmに、硝酸マグネシウムを加えてマグネシウム濃度を500ppmに、シリカ(スノーテックスO:日産化学工業株式会社製)を加えてケイ素濃度を200ppmに、乾燥条件を25℃で10分に変更したこと以外は実施例1と同様にして試験板を得た。
Example 10
The zirconium concentration was changed to 500 ppm, magnesium nitrate was added to the magnesium concentration to 500 ppm, silica (Snowtex O: manufactured by Nissan Chemical Industries, Ltd.) was added to change the silicon concentration to 200 ppm, and the drying conditions were changed to 25 ° C. for 10 minutes. A test plate was obtained in the same manner as in Example 1 except that.

実施例11
硝酸銅を加えて銅濃度を5ppmに、乾燥条件を25℃で10分に変更したこと以外は実施例1と同様にして試験板を得た。
Example 11
A test plate was obtained in the same manner as in Example 1 except that copper nitrate was added, the copper concentration was changed to 5 ppm, and the drying condition was changed to 10 minutes at 25 ° C.

実施例12
ジルコニウム濃度を500ppmに、硝酸亜鉛を加えて亜鉛濃度を500ppmにしたこと以外は実施例1と同様にして試験板を得た。
Example 12
A test plate was obtained in the same manner as in Example 1 except that the zirconium concentration was 500 ppm and zinc nitrate was added to make the zinc concentration 500 ppm.

実施例13
シランカップリング剤Aとして、KBP−90(3−アミノプロピルトリメトキシシラン加水分解物:有効濃度32%:信越化学工業株式会社製)を200ppm添加し、乾燥処理を行わなかったこと以外は実施例1と同様にして試験板を得た。
Example 13
Example except that 200 ppm of KBP-90 (3-aminopropyltrimethoxysilane hydrolyzate: effective concentration 32%: manufactured by Shin-Etsu Chemical Co., Ltd.) was added as silane coupling agent A, and the drying treatment was not performed. A test plate was obtained in the same manner as in 1.

製造例1
エポキシ等量190のビスフェノールFエピクロルヒドリン型エポキシ化合物190質量部にジエタノールアミン30部、酢酸セロソルブ110部を加え、100℃で2時間反応させ、不揮発分70%のアミノ基を含有する水性エポキシ樹脂を得た。
Production Example 1
30 parts of diethanolamine and 110 parts of cellosolve acetate were added to 190 parts by mass of bisphenol F epichlorohydrin type epoxy compound having an epoxy equivalent of 190 and reacted at 100 ° C. for 2 hours to obtain an aqueous epoxy resin containing an amino group having a nonvolatile content of 70%. .

製造例2
NCOが13.3%、不揮発分75%のトリメチロールプロパンの2,4−トルエンジイソシアネートプレコポリマーを100部、ノニルフェノール44部、ジメチルベンジルアミン5部、酢酸セロソルブ65部を混合し、窒素下80℃で3時間攪拌、反応させ、不揮発分70%、NCO%が20%の部分ブロック化ポリイソシアネートを得た。
上記製造例1で製造したアミノ基を含有する水性エポキシ樹脂70部と上記部分ブロック化ポリイソシアネート30部を混合し、80℃で4時間攪拌して反応させた後、赤外線分光分析でNCO基の吸収が完全になくなることを確認した。その後酢酸3部を混合し、さらにイオン交換水で希釈して不揮発分25%、pH4.1であるイソシアネート基及びアミノ基を含有する水性樹脂Aを得た。
Production Example 2
Mix 100 parts of trimethylolpropane 2,4-toluene diisocyanate precopolymer with 13.3% NCO and 75% non-volatile content, 44 parts nonylphenol, 5 parts dimethylbenzylamine, and 65 parts cellosolve acetate at 80 ° C. under nitrogen. The mixture was stirred and reacted for 3 hours to obtain a partially blocked polyisocyanate having a nonvolatile content of 70% and an NCO% of 20%.
70 parts of the aqueous epoxy resin containing amino group produced in Production Example 1 and 30 parts of the partially blocked polyisocyanate were mixed and reacted by stirring at 80 ° C. for 4 hours. It was confirmed that the absorption was completely eliminated. Thereafter, 3 parts of acetic acid was mixed and further diluted with ion-exchanged water to obtain an aqueous resin A containing an isocyanate group and an amino group having a nonvolatile content of 25% and pH 4.1.

実施例14
硝酸マグネシウムを用いてマグネシウム濃度を200ppmにし、上記イソシアネート基及びアミノ基を含有する水性樹脂Aを固形分で300ppm添加し、乾燥処理を行わなかったこと以外は実施例1と同様にして試験板を得た。
Example 14
A test plate was prepared in the same manner as in Example 1 except that magnesium nitrate was used to make the magnesium concentration 200 ppm, the aqueous resin A containing the isocyanate group and amino group was added in an amount of 300 ppm in solid content, and the drying treatment was not performed. Obtained.

実施例15
硝酸マグネシウムを用いてマグネシウム濃度を200ppmにし、硝酸亜鉛を加えて亜鉛濃度を400ppmにし、シランカップリング剤Bとして、KBE−903(3−アミノプロピルトリエトキシシラン:有効濃度100%:信越化学工業株式会社製)を200ppm添加し、乾燥処理を行わなかったこと以外は実施例1と同様にして試験板を得た。
Example 15
Magnesium nitrate is used to make the magnesium concentration 200 ppm, and zinc nitrate is added to make the zinc concentration 400 ppm. As silane coupling agent B, KBE-903 (3-aminopropyltriethoxysilane: effective concentration 100%: Shin-Etsu Chemical Co., Ltd. A test plate was obtained in the same manner as in Example 1 except that 200 ppm was added and no drying treatment was performed.

実施例16
化成後水洗処理の後に、pHが10の水酸化アンモニウム水溶液を用いて、50℃で3分アルカリ処理を行い、再度水洗処理をした後、乾燥処理を行わずに塗装を行ったこと以外は実施例1と同様にして試験板を得た。
Example 16
After the chemical conversion, after washing with water, using an aqueous ammonium hydroxide solution with a pH of 10 for 3 minutes at 50 ° C., followed by washing with water again, followed by coating without drying. A test plate was obtained in the same manner as in Example 1.

実施例17
化成後水洗処理の後に、pHが9の水酸化アンモニウム水溶液を用いて、50℃で10分アルカリ処理を行い、再度水洗処理をした後、乾燥処理を行わずに塗装を行ったこと以外は実施例1と同様にして試験板を得た。
Example 17
After the chemical conversion, after washing with water, an ammonium hydroxide aqueous solution with a pH of 9 was used for 10 minutes at 50 ° C, followed by washing with water, followed by washing with water, followed by coating without drying. A test plate was obtained in the same manner as in Example 1.

実施例18
化成後水洗処理の後に、pHが12の水酸化カリウム水溶液を用いて、40℃で3分アルカリ処理を行い、再度水洗処理をした後、乾燥処理を行わずに塗装を行ったこと以外は実施例1と同様にして試験板を得た。
Example 18
After the chemical conversion, after washing with water, using an aqueous potassium hydroxide solution with a pH of 12 for 3 minutes at 40 ° C., followed by washing with water again, followed by coating without drying. A test plate was obtained in the same manner as in Example 1.

実施例19
化成後水洗処理の後に、pHが12の水酸化リチウム水溶液を用いて、40℃で3分アルカリ処理を行い、再度水洗処理をした後、乾燥処理を行わずに塗装を行ったこと以外は実施例1と同様にして試験板を得た。
Example 19
After the chemical conversion, after washing with water, using an aqueous lithium hydroxide solution with a pH of 12 at 40 ° C for 3 minutes, followed by washing with water again, followed by coating without drying. A test plate was obtained in the same manner as in Example 1.

実施例20
化成後水洗処理の後に、pHが9の水酸化ナトリウム水溶液を用いて、50℃で5分アルカリ処理を行い、再度水洗処理をした後、乾燥処理を行わずに塗装を行ったこと以外は実施例1と同様にして試験板を得た。
Example 20
After the chemical conversion, after washing with water, an aqueous solution of sodium hydroxide with a pH of 9 was used for alkali treatment at 50 ° C. for 5 minutes, followed by washing with water again, followed by coating without drying. A test plate was obtained in the same manner as in Example 1.

比較例5
化成後水洗処理の後に、pHが8の水酸化アンモニウム水溶液を用いて、50℃、10分でアルカリ処理を行い、再度水洗処理をした後、乾燥処理を行わなかったこと以外は実施例1と同様にして試験板を得た。
Comparative Example 5
Example 1 with the exception that after the chemical conversion water washing treatment, using an aqueous ammonium hydroxide solution having a pH of 8, the alkali treatment was carried out at 50 ° C. for 10 minutes, the water washing treatment was carried out again, and the drying treatment was not carried out. A test plate was obtained in the same manner.

評価試験
〈スラッジ観察〉
化成処理剤1L当たり1mの冷間圧延鋼板を処理した後、化成処理剤中の濁りを目視観察した。
〇:濁りなし
×:濁りあり
Evaluation test <sludge observation>
After processing 1 m 2 of cold-rolled steel sheet per liter of chemical conversion treatment agent, turbidity in the chemical conversion treatment agent was visually observed.
○: No turbidity ×: Turbidity

〈二次密着性試験(SDT)〉
得られた試験板に、素地まで達する縦平行カットを2本入れた後、5%NaCl水溶液中において50℃で実施例1〜6で得られた試験板を96時間、実施例7〜15で得られた試験板を480時間、実施例16〜20で得られた試験板を120時間、比較例1〜4で得られた試験板を96時間、及び、比較例5で得られた試験板を120時間それぞれ浸漬した。その後、カット部をテープ剥離し、塗料の剥離を観察した。
◎:剥離なし
〇:若干剥離
×:剥離幅3mm以上
<Secondary adhesion test (SDT)>
After putting two longitudinally parallel cuts reaching the substrate into the obtained test plates, the test plates obtained in Examples 1-6 at 50 ° C. in 5% NaCl aqueous solution were used for 96 hours in Examples 7-15. The test plate obtained was 480 hours, the test plate obtained in Examples 16-20 was 120 hours, the test plate obtained in Comparative Examples 1-4 was 96 hours, and the test plate obtained in Comparative Example 5 For 120 hours. Thereafter, the cut part was peeled off with tape, and the peeling of the paint was observed.
A: No peeling ○: Slight peeling ×: Peeling width 3 mm or more

Figure 2009185392
Figure 2009185392

Figure 2009185392
Figure 2009185392

Figure 2009185392
Figure 2009185392

表1、2及び3より本発明の前処理方法によって形成された化成皮膜は、塗膜との密着性に優れ、化成処理剤中にスラッジは発生しないことが示された。一方、比較例においては、スラッジの発生を抑え、かつ、塗膜との密着性にも優れる化成皮膜を得ることはできなかった。   Tables 1, 2 and 3 show that the chemical conversion film formed by the pretreatment method of the present invention has excellent adhesion to the coating film, and no sludge is generated in the chemical conversion treatment agent. On the other hand, in the comparative example, it was not possible to obtain a chemical conversion film that suppresses the generation of sludge and has excellent adhesion to the coating film.

本発明により、環境に対する負荷が少なく、スラッジの発生も見られない塗装前処理方法を得ることができた。本発明の塗装前処理方法により、鉄系基材に対しても皮膜としての安定性及び塗膜との密着性に優れる化成皮膜を形成することができる。又、本発明の塗装前処理方法は、表面調整を行わなくても良好な化成皮膜が形成されることから、作業性及びコストの面でも良好な塗装前処理方法である。   According to the present invention, it was possible to obtain a coating pretreatment method that has little environmental impact and no sludge generation. By the coating pretreatment method of the present invention, it is possible to form a chemical conversion film excellent in stability as a film and adhesiveness with a coating film even on an iron-based substrate. Moreover, the coating pretreatment method of the present invention is a coating pretreatment method that is favorable in terms of workability and cost because a good chemical conversion film is formed without surface adjustment.

Claims (6)

化成処理剤によって被処理物を処理し、化成皮膜を形成する塗装前処理方法であって、
前記化成処理剤は、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種、並びに、フッ素を必須成分とし、
前記化成皮膜は、フッ素濃度が元素比率で10%以下であり、
前記被処理物は、少なくとも一部が鉄系基材であることを特徴とする塗装前処理方法。
It is a pre-painting treatment method for treating an object to be treated with a chemical conversion treatment agent to form a chemical conversion film,
The chemical conversion treatment agent is at least one selected from the group consisting of zirconium, titanium and hafnium, and fluorine as an essential component,
The chemical conversion film has a fluorine concentration of 10% or less by element ratio,
At least a part of the object to be treated is an iron-based base material.
化成皮膜のフッ素濃度を元素比率で10%以下にするために、化成処理剤は、更に、マグネシウム、カルシウム、亜鉛、ケイ素含有化合物及び銅からなる群より選ばれる少なくとも一種を含有するものである請求項1記載の塗装前処理方法。   The chemical conversion treatment agent further contains at least one selected from the group consisting of magnesium, calcium, zinc, silicon-containing compounds and copper in order to make the fluorine concentration of the chemical conversion film 10% or less in terms of element ratio. Item 2. A pretreatment method for painting according to item 1. 化成処理剤は、更に、イソシアネート基及び/又はメラミン基を含有する水性樹脂(i)、水性樹脂、及び、ポリイソシアネート化合物及び/又はメラミン樹脂の混合物(ii)、並びに、少なくとも一部に下記式(1);
Figure 2009185392
及び/又は下記式(2);
Figure 2009185392
で表される構成単位を有する水溶性樹脂(iii)からなる群より選ばれる少なくとも一種を含有するものである請求項2記載の塗装前処理方法。
The chemical conversion treatment agent further includes an aqueous resin (i) containing an isocyanate group and / or a melamine group, an aqueous resin, and a mixture (ii) of a polyisocyanate compound and / or a melamine resin, and at least a part of the following formula: (1);
Figure 2009185392
And / or the following formula (2);
Figure 2009185392
The coating pretreatment method according to claim 2, comprising at least one selected from the group consisting of a water-soluble resin (iii) having a structural unit represented by:
化成皮膜のフッ素濃度を元素比率で10%以下にするために、化成処理剤による処理後に化成皮膜を30℃以上で加熱乾燥するものである請求項1、2又は3記載の塗装前処理方法。   The pretreatment method for coating according to claim 1, 2, or 3, wherein the chemical conversion film is dried by heating at 30 ° C or higher after the treatment with the chemical conversion treatment agent so that the fluorine concentration of the chemical conversion film is 10% or less in terms of element ratio. 化成皮膜のフッ素濃度を元素比率で10%以下にするために、化成処理剤による処理後にpHが9以上である塩基性水溶液によって、5〜100℃で化成皮膜を処理するものである請求項1、2、3又は4記載の塗装前処理方法。   The chemical conversion film is treated at 5 to 100 ° C with a basic aqueous solution having a pH of 9 or more after the treatment with the chemical conversion treatment agent so that the fluorine concentration of the chemical conversion film is 10% or less in terms of element ratio. The coating pretreatment method according to 2, 3, or 4. 化成処理剤は、ジルコニウム、チタン及びハフニウムからなる群より選ばれる少なくとも一種の含有量が、金属換算で20〜10000ppmであり、pHが1.5〜6.5である請求項1、2、3、4又は5記載の塗装前処理方法。   The chemical conversion treatment agent has a content of at least one selected from the group consisting of zirconium, titanium and hafnium in a metal conversion of 20 to 10,000 ppm, and a pH of 1.5 to 6.5. The pretreatment method for coating according to 4 or 5.
JP2009125249A 2002-12-24 2009-05-25 Pretreatment method for coating Pending JP2009185392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125249A JP2009185392A (en) 2002-12-24 2009-05-25 Pretreatment method for coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002372767 2002-12-24
JP2009125249A JP2009185392A (en) 2002-12-24 2009-05-25 Pretreatment method for coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003403690A Division JP4526807B2 (en) 2002-12-24 2003-12-02 Pre-painting method

Publications (1)

Publication Number Publication Date
JP2009185392A true JP2009185392A (en) 2009-08-20

Family

ID=41068910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125249A Pending JP2009185392A (en) 2002-12-24 2009-05-25 Pretreatment method for coating

Country Status (1)

Country Link
JP (1) JP2009185392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089187A (en) * 2009-10-26 2011-05-06 Mazda Motor Corp Surface treatment method of metal member
WO2011155538A1 (en) 2010-06-09 2011-12-15 日本ペイント株式会社 Inorganic chromium-free metal surface treatment agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188176A (en) * 1989-10-02 1991-08-16 Nippon Parkerizing Co Ltd Self-deposition type epoxy resin coating composition and method for coating
JPH11106945A (en) * 1997-10-03 1999-04-20 Nippon Parkerizing Co Ltd Surface treating agent composition for metallic material and treating method
JP2001240979A (en) * 2000-02-29 2001-09-04 Nippon Paint Co Ltd Non-chromate surface treating agent for pcm, pcm surface treatment method and treated pcm steel sheet
JP2002194557A (en) * 2000-12-21 2002-07-10 Nisshin Steel Co Ltd Cut steel plate superior in corrosion resistance
JP2002275691A (en) * 2001-03-15 2002-09-25 Kansai Paint Co Ltd Method for coating automotive body
JP2003155578A (en) * 2001-11-20 2003-05-30 Toyota Motor Corp Chemical conversion treatment agent for iron and/or zinc
JP2004197166A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Method for manufacturing chromium-free surface-treated galvanized steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188176A (en) * 1989-10-02 1991-08-16 Nippon Parkerizing Co Ltd Self-deposition type epoxy resin coating composition and method for coating
JPH11106945A (en) * 1997-10-03 1999-04-20 Nippon Parkerizing Co Ltd Surface treating agent composition for metallic material and treating method
JP2001240979A (en) * 2000-02-29 2001-09-04 Nippon Paint Co Ltd Non-chromate surface treating agent for pcm, pcm surface treatment method and treated pcm steel sheet
JP2002194557A (en) * 2000-12-21 2002-07-10 Nisshin Steel Co Ltd Cut steel plate superior in corrosion resistance
JP2002275691A (en) * 2001-03-15 2002-09-25 Kansai Paint Co Ltd Method for coating automotive body
JP2003155578A (en) * 2001-11-20 2003-05-30 Toyota Motor Corp Chemical conversion treatment agent for iron and/or zinc
JP2004197166A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Method for manufacturing chromium-free surface-treated galvanized steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089187A (en) * 2009-10-26 2011-05-06 Mazda Motor Corp Surface treatment method of metal member
WO2011155538A1 (en) 2010-06-09 2011-12-15 日本ペイント株式会社 Inorganic chromium-free metal surface treatment agent
US10005912B2 (en) 2010-06-09 2018-06-26 Chemetall Gmbh Inorganic chromium-free metal surface treatment agent

Similar Documents

Publication Publication Date Title
JP4526807B2 (en) Pre-painting method
JP4989842B2 (en) Pre-painting method
KR100776811B1 (en) Surface-treated steel sheet excellent in resistance to white rust and method for production thereof
CN101098983B (en) Method for coating metallic surfaces with an aqueous composition
CN100457968C (en) Chemical conversion coating agent and metal with surface treatment
EP1902157B1 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
KR101319310B1 (en) Composition for metal surface treatment, metal surface treatment method, and metal material
JP4276530B2 (en) Chemical conversion treatment agent and surface treatment metal
JP2004263252A (en) Chromium-free chemically treated steel sheet excellent in resistance to white rust
JP2004218075A (en) Chemical conversion coating agent and surface-treated metal
JP4187162B2 (en) Chemical conversion treatment agent and surface treatment metal
JP3665046B2 (en) Surface-treated steel sheet excellent in white rust resistance and method for producing the same
JP4544450B2 (en) Chemical conversion treatment agent and surface treatment metal
JP2008184690A (en) Pretreatment method for coating
JP4473185B2 (en) Chemical conversion treatment method, chemical conversion treatment agent, and chemical conversion treatment member
JP2006241579A (en) Chemical conversion treatment agent and surface-treated metal
WO2013054905A1 (en) Paint pretreatment agent for coating-type paint, and coating-type painting method
JP2006161115A (en) Agent for chemical conversion treatment, and surface-treated metal
JP2005206947A (en) Surface treated steel sheet having excellent white rust resistance, and production method therefor
JP2009185392A (en) Pretreatment method for coating
JP4457820B2 (en) High corrosion resistance surface-treated steel sheet and method for producing the same
JP2019019357A (en) Treatment method using de-zinc phosphate treatment agent containing cationic urethane resin and treated automobile component
JP2019019356A (en) Chemical conversion treatment agent and coating pretreatment method and metal member
KR20040058037A (en) Chemical conversion coating agent and surface-treated metal

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090624

A977 Report on retrieval

Effective date: 20120530

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218