JP5162804B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5162804B2
JP5162804B2 JP2001277188A JP2001277188A JP5162804B2 JP 5162804 B2 JP5162804 B2 JP 5162804B2 JP 2001277188 A JP2001277188 A JP 2001277188A JP 2001277188 A JP2001277188 A JP 2001277188A JP 5162804 B2 JP5162804 B2 JP 5162804B2
Authority
JP
Japan
Prior art keywords
impurity diffusion
edge
field plate
active portion
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001277188A
Other languages
Japanese (ja)
Other versions
JP2003086815A (en
Inventor
学 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001277188A priority Critical patent/JP5162804B2/en
Publication of JP2003086815A publication Critical patent/JP2003086815A/en
Application granted granted Critical
Publication of JP5162804B2 publication Critical patent/JP5162804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力変換装置などに使用されるパワー半導体装置に関し、特にプレーナー型のフィールドプレート付きガードリング耐圧構造を有する半導体装置に関する。
【0002】
【従来の技術】
図4は、従来のプレーナー型のフィールドプレート付きガードリング耐圧構造を有する半導体装置の概略を示す断面図である。図4に示すように、従来のガードリング耐圧構造では、n-ドリフト層11、p+活性部不純物拡散領域12および複数のp+ガードリング不純物拡散領域13の上に、初期酸化膜14および層間絶縁膜15を介してフィールドプレート16,17a,17b,17c,17d,17eが選択的に形成される。
【0003】
活性部不純物拡散領域12上のフィールドプレート16は、初期酸化膜14および層間絶縁膜15を貫通して活性部不純物拡散領域12に電気的に接続している。このフィールドプレート16のエッジ側端部18は、電圧印加時における空乏層中の等電位線の曲率半径を大きくして電界を緩和するため、活性部不純物拡散領域12のエッジ側端部19からはみ出している。各ガードリング不純物拡散領域13上のフィールドプレート17a,17b,17c,17d,17eは初期酸化膜14および層間絶縁膜15を貫通してそれぞれのガードリング不純物拡散領域13に電気的に接続している。
【0004】
【発明が解決しようとする課題】
しかしながら、図4に示す構成のフィールドプレート付きガードリング耐圧構造ではつぎのような問題点がある。図5は、活性部不純物拡散領域12上のフィールドプレート16が活性部不純物拡散領域12からはみ出している半導体装置(耐圧651V)の活性部とエッジとの境界近傍領域における等電位線の様子を模式的に示す図である。図6は、フィールドプレートがない半導体装置(耐圧703V)の活性部とエッジとの境界近傍領域における等電位線の様子を模式的に示す図である。図5および図6において、図4と同じ構成については同一の符号を付す。
【0005】
フィールドプレート16がある場合には活性部とそのすぐ隣のガードリング不純物拡散領域13との間の領域は発生耐圧のボトルネックとなり、図5に示す破線領域の等電位線の曲率は、図6に示す破線領域の等電位線の曲率よりも大きくなり、耐圧が低下してしまう。したがって、フィールドプレート16があると平面接合に極めて近い理想耐圧を発生するのは困難である。
【0006】
それに対して、フィールドプレートのないガードリング構造の場合には、隣り合うガードリング不純物拡散領域の間隔を詰めることにより、上述した耐圧ボトルネックを解消することができる。しかし、この構造では、保護膜中の電荷集中を防止する作用を有するフィールドプレートがないため、耐圧構造の一部領域に表面電荷が蓄積し、その部分の耐圧が低下してしまうので、信頼性に劣るという問題点がある。
【0007】
本発明は、上記問題点に鑑みてなされたものであって、平面接合に近い理想耐圧を発生する信頼性の高い耐圧構造を備えた半導体装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる半導体装置は、プレーナー型のフィールドプレート付きガードリング耐圧構造を有し、その耐圧構造の活性部とエッジとの境界近傍領域において、酸化膜と、その酸化膜の上に設けられたBPSGよりなる層間絶縁膜を貫通して活性部不純物拡散領域に電気的に接続している第1のフィールドプレートと、層間絶縁膜を貫通して複数のガードリング不純物拡散領域の各々に電気的に接続している複数の第2のフィールドプレートとを有し、活性部内のフィールドプレートのエッジ側端部が活性部不純物拡散領域からはみ出ず、かつエッジ内のフィールドプレートの活性部側端部がガードリング不純物拡散領域からはみ出ない構成とすることを特徴とする。
【0009】
この発明によれば、活性部とエッジとの境界近傍領域において、活性部内のフィールドプレートが活性部不純物拡散領域からエッジ側にはみ出ず、かつエッジ内のフィールドプレートがガードリング不純物拡散領域から活性部側にはみ出ないため、それら隣り合う活性部不純物拡散領域とガードリング不純物拡散領域との間隔を詰めることができ、それによって等電位線の曲率半径が大きくなり、耐圧のボトルネックが解消される。また、フィールドプレートがあるため、長期信頼性が確保される。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。図1は、本発明にかかるプレーナー型のフィールドプレート付きガードリング耐圧構造を有する半導体装置の一例の概略を示す断面図である。この半導体装置では、活性部とエッジとの境界近傍領域において、最もエッジ寄りに位置するp+活性部不純物拡散領域22はn-ドリフト層21の活性部側の表面部分に形成されている。また、複数のp+ガードリング不純物拡散領域23a,23b,23c,23d,23eは、ドリフト層21のエッジ側の表面部分の活性部とたとえばAlでできたチャネルストッパー30との間に形成されている。
【0011】
活性部不純物拡散領域22上に選択的に形成されたたとえばAlでできたフィールドプレート(第1のフィールドプレート)26は、初期酸化膜24およびたとえばBPSGよりなる層間絶縁膜25を貫通して活性部不純物拡散領域22に電気的に接続している。この第1のフィールドプレート26のエッジ側端部28は活性部不純物拡散領域22のエッジ側端部29よりも活性部中央寄りに位置している。つまり、活性部不純物拡散領域22上の第1のフィールドプレート26は活性部不純物拡散領域22のエッジ側端部29からエッジ側にはみ出していない。
【0012】
各ガードリング不純物拡散領域23a,23b,23c,23d,23e上に選択的に形成されたフィールドプレート27a,27b,27c,27d,27eは初期酸化膜24および層間絶縁膜25を貫通してそれぞれのガードリング不純物拡散領域23a,23b,23c,23d,23eに電気的に接続している。最も活性部寄りに位置するガードリング不純物拡散領域23a上のフィールドプレート(第2のフィールドプレート)27aの活性部側端部31は、そのガードリング不純物拡散領域23aの活性部側端部32よりもエッジ中央寄りに位置している。つまり、エッジ内の最も活性部寄りに位置するフィールドプレート27aは、最も活性部寄りに位置するガードリング不純物拡散領域23aの活性部側端部32から活性部側にはみ出していない。
【0013】
ここで、最もエッジ寄りに位置する活性部不純物拡散領域22と、最も活性部寄りに位置するガードリング不純物拡散領域23aとの間のイオン注入窓の間隔は、従来のプレーナー型のフィールドプレート付きガードリング耐圧構造における間隔よりも狭く、特に限定しないが、たとえば10μmである。また、このガードリング不純物拡散領域23a上のフィールドプレート27aは、その幅がたとえば35μmであり、隣り合う活性部側のフィールドプレート26との間隔がたとえば40μmであり、エッジ内の、活性部側から2番目に位置するフィールドプレート27bとの間隔がたとえば20μmである。
【0014】
図2は、本発明にかかる半導体装置の第1の具体例の要部を示す断面図である。図2に示す構成の半導体装置はダイオードであり、活性部においてアノード電極46がフィールドプレートとして活性部とエッジとの境界近傍領域に延びている。アノード電極46のエッジ側端部48は、アノード電極46の下に位置するp型の活性部不純物拡散領域42のエッジ側端部49よりも活性部中央寄りに位置している。また、最も活性部に近いp型のガードリング不純物拡散領域43上に位置するフィールドプレート47の活性部側端部51は、そのガードリング不純物拡散領域43の活性部側端部52よりもエッジ中央寄りに位置している。そして、活性部不純物拡散領域42とガードリング不純物拡散領域43との間のイオン注入窓の間隔は、従来のプレーナー型のフィールドプレート付きガードリング耐圧構造における間隔よりも狭い。なお、図2において符号41はn-ドリフト層であり、符号44は初期酸化膜であり、符号45はBPSGよりなる層間絶縁膜である。
【0015】
図3は、本発明にかかる半導体装置の第2の具体例の要部を示す断面図である。図3に示す構成の半導体装置は絶縁ゲート型バイポーラトランジスタ(IGBT)またはMOSFETであり、活性部においてゲートリング66がフィールドプレートとして活性部とエッジとの境界近傍領域に設けられている。ゲートリング66のエッジ側端部68は、ゲートリング66の下に位置するp型の活性部不純物拡散領域62のエッジ側端部69よりも活性部中央寄りに位置している。また、最も活性部に近いp型のガードリング不純物拡散領域63上に位置するフィールドプレート67の活性部側端部71は、そのガードリング不純物拡散領域63の活性部側端部72よりもエッジ中央寄りに位置している。
【0016】
そして、活性部不純物拡散領域62とガードリング不純物拡散領域63との間のイオン注入窓の間隔は、従来のプレーナー型のフィールドプレート付きガードリング耐圧構造における間隔よりも狭い。なお、図3において符号61はn-ドリフト層であり、符号64は初期酸化膜であり、符号65はBPSGよりなる層間絶縁膜である。また、符号73はp型のウェル、符号74はn+ソース領域、符号75はゲート絶縁層を介してのポリシリコン層、符号76はAlでできた電極である。
【0017】
上述した実施の形態によれば、活性部とエッジとの境界近傍領域において、活性部内のフィールドプレート26のエッジ側端部28が活性部不純物拡散領域22からはみ出さず、かつエッジ内の、最も活性部寄りに位置するフィールドプレート27aの活性部側端部31がその下のガードリング不純物拡散領域23aからはみ出さないため、それら隣り合う活性部不純物拡散領域22とガードリング不純物拡散領域23aとの間隔を詰めることができ、それによって等電位線の曲率半径が大きくなり、耐圧のボトルネックを解消することができる。したがって、平面耐圧に近い高耐圧を発生させることができる。また、耐圧構造部の全体にわたってフィールドプレート26,27a,27b,27c,27d,27eがあるため、表面電荷の蓄積が抑えられるので、長期にわたって高い信頼性が確保される。
【0018】
以上において本発明は、上述した実施の形態に限らず、種々変更可能である。たとえば、上述した実施の形態において記載した寸法は一例であり、本発明はこれに限定されるものではない。また、エッジ内の、活性部側から2番目以降のフィールドプレート27b,27c,27d,27eは、対応するガードリング不純物拡散領域23b,23c,23d,23eからはみ出していてもよいし、はみ出していなくてもよい。また、本発明はn型とp型を反転させても成り立つ。
【0019】
【発明の効果】
本発明によれば、活性部とエッジとの境界近傍領域において、隣り合う活性部不純物拡散領域とガードリング不純物拡散領域との間隔を詰めて等電位線の曲率半径を大きくし、耐圧のボトルネックを解消することによって、平面耐圧に近い高耐圧を発生させることができる。また、フィールドプレートがあるため長期にわたって高い信頼性が得られる。
【図面の簡単な説明】
【図1】本発明にかかるプレーナー型のフィールドプレート付きガードリング耐圧構造を有する半導体装置の一例の概略を示す断面図である。
【図2】本発明にかかる半導体装置の第1の具体例を示す要部断面図である。
【図3】本発明にかかる半導体装置の第2の具体例を示す要部断面図である。
【図4】従来のプレーナー型のフィールドプレート付きガードリング耐圧構造を有する半導体装置の要部を示す断面図である。
【図5】フィールドプレートを有する半導体装置の活性部とエッジとの境界近傍領域における等電位線の様子を模式的に示す図である。
【図6】フィールドプレートのない半導体装置の活性部とエッジとの境界近傍領域における等電位線の様子を模式的に示す図である。
【符号の説明】
22,42,62 活性部不純物拡散領域
23a,43,63 ガードリング不純物拡散領域
26 第1のフィールドプレート
27a,47,67 第2のフィールドプレート
28,48,68 第1のフィールドプレートのエッジ側端部
29,49,69 活性部不純物拡散領域のエッジ側端部
31,51,71 第2のフィールドプレートの活性部側端部
32,52,72 ガードリング不純物拡散領域の活性部側端部
46 アノード電極(第1のフィールドプレート)
66 ゲートリング(第1のフィールドプレート)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power semiconductor device used for a power conversion device and the like, and more particularly, to a semiconductor device having a guard type withstand voltage structure with a planar type field plate.
[0002]
[Prior art]
FIG. 4 is a cross-sectional view schematically showing a conventional semiconductor device having a guard type withstand voltage structure with a planar type field plate. As shown in FIG. 4, in the conventional guard ring breakdown voltage structure, initial oxide film 14 and interlayer are formed on n drift layer 11, p + active portion impurity diffusion region 12 and a plurality of p + guard ring impurity diffusion regions 13. Field plates 16, 17a, 17b, 17c, 17d, and 17e are selectively formed through the insulating film 15.
[0003]
The field plate 16 on the active part impurity diffusion region 12 penetrates through the initial oxide film 14 and the interlayer insulating film 15 and is electrically connected to the active part impurity diffusion region 12. The edge 18 on the edge side of the field plate 16 protrudes from the edge 19 on the edge side of the active impurity diffusion region 12 in order to relax the electric field by increasing the radius of curvature of the equipotential lines in the depletion layer when a voltage is applied. ing. Field plates 17a, 17b, 17c, 17d, and 17e on each guard ring impurity diffusion region 13 penetrate through initial oxide film 14 and interlayer insulating film 15 and are electrically connected to each guard ring impurity diffusion region 13. .
[0004]
[Problems to be solved by the invention]
However, the guard ring withstand voltage structure with the field plate configured as shown in FIG. 4 has the following problems. FIG. 5 schematically shows the state of equipotential lines in the region near the boundary between the active portion and the edge of the semiconductor device (withstand voltage 651 V) in which the field plate 16 on the active portion impurity diffusion region 12 protrudes from the active portion impurity diffusion region 12. FIG. FIG. 6 is a diagram schematically showing equipotential lines in a region near the boundary between the active portion and the edge of a semiconductor device (withstand voltage 703 V) having no field plate. 5 and 6, the same components as those in FIG. 4 are denoted by the same reference numerals.
[0005]
When the field plate 16 is present, the region between the active portion and the guard ring impurity diffusion region 13 immediately adjacent thereto becomes a bottleneck of the generated breakdown voltage, and the curvature of the equipotential line in the broken line region shown in FIG. It becomes larger than the curvature of the equipotential line in the broken line area shown in FIG. Therefore, with the field plate 16, it is difficult to generate an ideal withstand voltage that is very close to planar bonding.
[0006]
On the other hand, in the case of a guard ring structure without a field plate, the above-described pressure bottleneck can be eliminated by reducing the distance between adjacent guard ring impurity diffusion regions. However, in this structure, since there is no field plate that has the function of preventing charge concentration in the protective film, surface charges are accumulated in a partial region of the breakdown voltage structure, and the breakdown voltage of that part is lowered. There is a problem that it is inferior.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having a highly reliable breakdown voltage structure that generates an ideal breakdown voltage close to that of a planar junction.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor device according to the present invention has a planar guard plate with a field plate withstand voltage structure, and an oxide film and its oxidation in a region near the boundary between the active portion and the edge of the withstand voltage structure. A first field plate passing through an interlayer insulating film made of BPSG provided on the film and electrically connected to the active portion impurity diffusion region; and a plurality of guard ring impurity diffusions passing through the interlayer insulating film A plurality of second field plates electrically connected to each of the regions, the edge side edge of the field plate in the active part does not protrude from the active part impurity diffusion region, and the field plate in the edge active portion end to said structure and to Rukoto not protrude from the guard ring impurity diffusion regions.
[0009]
According to the present invention, in the region near the boundary between the active portion and the edge, the field plate in the active portion does not protrude from the active portion impurity diffusion region to the edge side, and the field plate in the edge extends from the guard ring impurity diffusion region to the active portion. Therefore, the gap between the adjacent active portion impurity diffusion region and guard ring impurity diffusion region can be reduced, thereby increasing the radius of curvature of the equipotential line and eliminating the withstand voltage bottleneck. Moreover, since there is a field plate, long-term reliability is ensured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device having a guard-ring withstand voltage structure with a planar field plate according to the present invention. In this semiconductor device, the p + active portion impurity diffusion region 22 located closest to the edge in the region near the boundary between the active portion and the edge is formed on the surface portion of the n drift layer 21 on the active portion side. Further, the plurality of p + guard ring impurity diffusion regions 23a, 23b, 23c, 23d, and 23e are formed between the active portion of the surface portion on the edge side of the drift layer 21 and the channel stopper 30 made of, for example, Al. Yes.
[0011]
A field plate (first field plate) 26 made of, for example, Al selectively formed on the active part impurity diffusion region 22 penetrates the initial oxide film 24 and the interlayer insulating film 25 made of, for example, BPSG, to form the active part. The impurity diffusion region 22 is electrically connected. The edge side end portion 28 of the first field plate 26 is located closer to the center of the active portion than the edge side end portion 29 of the active portion impurity diffusion region 22. That is, the first field plate 26 on the active part impurity diffusion region 22 does not protrude from the edge side end portion 29 of the active part impurity diffusion region 22 to the edge side.
[0012]
Field plates 27a, 27b, 27c, 27d, and 27e selectively formed on each guard ring impurity diffusion region 23a, 23b, 23c, 23d, and 23e penetrate through the initial oxide film 24 and the interlayer insulating film 25, respectively. The guard ring impurity diffusion regions 23a, 23b, 23c, 23d, and 23e are electrically connected. The active portion side end 31 of the field plate (second field plate) 27a on the guard ring impurity diffusion region 23a located closest to the active portion is more than the active portion side end 32 of the guard ring impurity diffusion region 23a. Located near the center of the edge. That is, the field plate 27a located closest to the active part in the edge does not protrude from the active part side end 32 of the guard ring impurity diffusion region 23a located closest to the active part to the active part side.
[0013]
Here, the interval of the ion implantation window between the active portion impurity diffusion region 22 located closest to the edge and the guard ring impurity diffusion region 23a located closest to the active portion is the same as that of a conventional guard with a planar type field plate. Although it is narrower than the space | interval in a ring pressure | voltage resistant structure and it does not specifically limit, For example, it is 10 micrometers. The field plate 27a on the guard ring impurity diffusion region 23a has a width of, for example, 35 .mu.m and a distance from the adjacent field plate 26 on the active part side of, for example, 40 .mu.m. The distance from the second field plate 27b is, for example, 20 μm.
[0014]
FIG. 2 is a cross-sectional view showing the main part of the first specific example of the semiconductor device according to the present invention. The semiconductor device having the configuration shown in FIG. 2 is a diode, and the anode electrode 46 extends as a field plate in the active portion in the vicinity of the boundary between the active portion and the edge. The edge side end portion 48 of the anode electrode 46 is located closer to the center of the active portion than the edge side end portion 49 of the p-type active portion impurity diffusion region 42 located below the anode electrode 46. Further, the active portion side end portion 51 of the field plate 47 located on the p-type guard ring impurity diffusion region 43 closest to the active portion is at the center of the edge relative to the active portion side end portion 52 of the guard ring impurity diffusion region 43. It is located near. The interval between the ion implantation windows between the active portion impurity diffusion region 42 and the guard ring impurity diffusion region 43 is narrower than the interval in the conventional planar guard plate with guard plate withstand voltage structure. In FIG. 2, reference numeral 41 denotes an n drift layer, reference numeral 44 denotes an initial oxide film, and reference numeral 45 denotes an interlayer insulating film made of BPSG.
[0015]
FIG. 3 is a cross-sectional view showing the main part of a second specific example of the semiconductor device according to the present invention. The semiconductor device having the configuration shown in FIG. 3 is an insulated gate bipolar transistor (IGBT) or MOSFET, and a gate ring 66 is provided as a field plate in the vicinity of the boundary between the active portion and the edge in the active portion. The edge side end portion 68 of the gate ring 66 is located closer to the center of the active portion than the edge side end portion 69 of the p-type active portion impurity diffusion region 62 located under the gate ring 66. Further, the active portion side end 71 of the field plate 67 located on the p-type guard ring impurity diffusion region 63 closest to the active portion is located at the edge center with respect to the active portion side end 72 of the guard ring impurity diffusion region 63. It is located near.
[0016]
The interval between the ion implantation windows between the active portion impurity diffusion region 62 and the guard ring impurity diffusion region 63 is narrower than the interval in the conventional guard type with guard plate with field plate. In FIG. 3, reference numeral 61 denotes an n drift layer, reference numeral 64 denotes an initial oxide film, and reference numeral 65 denotes an interlayer insulating film made of BPSG. Reference numeral 73 denotes a p-type well, reference numeral 74 denotes an n + source region, reference numeral 75 denotes a polysilicon layer through a gate insulating layer, and reference numeral 76 denotes an electrode made of Al.
[0017]
According to the above-described embodiment, the edge side end portion 28 of the field plate 26 in the active portion does not protrude from the active portion impurity diffusion region 22 in the region near the boundary between the active portion and the edge, and the most in the edge. Since the active portion side end portion 31 of the field plate 27a located near the active portion does not protrude from the guard ring impurity diffusion region 23a below the field plate 27a, the adjacent active portion impurity diffusion region 22 and guard ring impurity diffusion region 23a The interval can be reduced, thereby increasing the radius of curvature of the equipotential line and eliminating the pressure bottleneck. Therefore, a high breakdown voltage close to the planar breakdown voltage can be generated. In addition, since the field plates 26, 27a, 27b, 27c, 27d, and 27e are provided throughout the breakdown voltage structure, the accumulation of surface charges can be suppressed, so that high reliability is ensured over a long period of time.
[0018]
As described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the dimensions described in the above-described embodiments are examples, and the present invention is not limited to these. Further, the second and subsequent field plates 27b, 27c, 27d, 27e in the edge from the active part side may or may not protrude from the corresponding guard ring impurity diffusion regions 23b, 23c, 23d, 23e. May be. The present invention can also be realized by inverting the n-type and the p-type.
[0019]
【Effect of the invention】
According to the present invention, in the region near the boundary between the active portion and the edge, the distance between the adjacent active portion impurity diffusion region and the guard ring impurity diffusion region is reduced to increase the curvature radius of the equipotential line, and the withstand voltage bottleneck. By eliminating the above, a high breakdown voltage close to the planar breakdown voltage can be generated. Moreover, since there is a field plate, high reliability can be obtained over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an outline of an example of a semiconductor device having a guard ring withstand voltage structure with a planar field plate according to the present invention.
FIG. 2 is a cross-sectional view of relevant parts showing a first specific example of a semiconductor device according to the present invention;
FIG. 3 is a cross-sectional view of a principal part showing a second specific example of a semiconductor device according to the present invention.
FIG. 4 is a cross-sectional view showing a main part of a conventional semiconductor device having a guard type withstand voltage structure with a planar plate with a field plate.
FIG. 5 is a diagram schematically showing equipotential lines in a region near the boundary between an active portion and an edge of a semiconductor device having a field plate.
FIG. 6 is a diagram schematically showing the state of equipotential lines in a region near the boundary between an active portion and an edge of a semiconductor device without a field plate.
[Explanation of symbols]
22, 42, 62 Active part impurity diffusion region 23a, 43, 63 Guard ring impurity diffusion region 26 First field plate 27a, 47, 67 Second field plate 28, 48, 68 Edge side edge of first field plate Portions 29, 49, 69 Edge-side end portions 31, 51, 71 of the active portion impurity diffusion region Active portion-side ends 32, 52, 72 of the second field plate Active portion-side end portion 46 of the guard ring impurity diffusion region Anode Electrode (first field plate)
66 Gate ring (first field plate)

Claims (4)

プレーナー型のフィールドプレート付きガードリング耐圧構造を有する半導体装置の活性部とエッジとの境界近傍領域において、
酸化膜と、該酸化膜の上に設けられたBPSGよりなる層間絶縁膜を貫通して活性部不純物拡散領域に電気的に接続している第1のフィールドプレートと、
前記層間絶縁膜を貫通して複数のガードリング不純物拡散領域の各々に電気的に接続している複数の第2のフィールドプレートとを有し、
前記活性部内の、前記エッジに最も近い第1のフィールドプレートのエッジ側端部が、前記活性部内の、前記エッジとの境界に設けられた活性部不純物拡散領域のエッジ側端部よりも活性部中央寄りに位置し、かつ前記エッジ内の、前記活性部に最も近い第2のフィールドプレートの活性部側端部が、前記エッジ内の、前記活性部に最も近いガードリング不純物拡散領域の活性部側端部よりもエッジ中央寄りに位置することを特徴とする半導体装置。
In the region near the boundary between the active portion and the edge of the semiconductor device having a guard ring withstand voltage structure with a planar type field plate,
An oxide film and a first field plate passing through an interlayer insulating film made of BPSG provided on the oxide film and electrically connected to the active portion impurity diffusion region;
A plurality of second field plates passing through the interlayer insulating film and electrically connected to each of the plurality of guard ring impurity diffusion regions;
The edge part of the first field plate closest to the edge in the active part is more active than the edge part of the active part impurity diffusion region provided at the boundary with the edge in the active part. An active portion side end portion of the second field plate closest to the active portion located near the center and closest to the active portion in the edge is an active portion of the guard ring impurity diffusion region closest to the active portion in the edge wherein a position to Rukoto the edge inboard of the side edges.
前記第1のフィールドプレートがダイオードのアノード電極を兼ねることを特徴とする請求項1に記載の半導体装置。  The semiconductor device according to claim 1, wherein the first field plate also serves as an anode electrode of a diode. 前記第1のフィールドプレートが絶縁ゲート型半導体装置のゲートリングであることを特徴とする請求項1に記載の半導体装置。  The semiconductor device according to claim 1, wherein the first field plate is a gate ring of an insulated gate semiconductor device. 前記活性部不純物拡散領域と前記ガードリング不純物拡散領域との間のイオン注入窓の間隔は10μmであることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。  The semiconductor device according to claim 1, wherein an interval between ion implantation windows between the active part impurity diffusion region and the guard ring impurity diffusion region is 10 μm.
JP2001277188A 2001-09-12 2001-09-12 Semiconductor device Expired - Lifetime JP5162804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277188A JP5162804B2 (en) 2001-09-12 2001-09-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277188A JP5162804B2 (en) 2001-09-12 2001-09-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2003086815A JP2003086815A (en) 2003-03-20
JP5162804B2 true JP5162804B2 (en) 2013-03-13

Family

ID=19101758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277188A Expired - Lifetime JP5162804B2 (en) 2001-09-12 2001-09-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5162804B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899290B2 (en) * 2003-04-10 2012-03-21 富士電機株式会社 Reverse blocking semiconductor device
CN100384584C (en) * 2004-12-20 2008-04-30 洪明山 Method for fabricating structure of heat elimination of light emitting diode,
JP5092610B2 (en) * 2007-08-01 2012-12-05 トヨタ自動車株式会社 Semiconductor device
JP5748188B2 (en) * 2009-09-29 2015-07-15 富士電機株式会社 Semiconductor device
US9178014B2 (en) 2012-03-22 2015-11-03 Toyota Jidosha Kabushiki Kaisha Semiconductor device
WO2018139027A1 (en) 2017-01-25 2018-08-02 富士電機株式会社 Semiconductor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129879A (en) * 1974-09-06 1976-03-13 Hitachi Ltd HANDOTAISOCHINOSEIZOHOHO
JPS56103463A (en) * 1980-01-21 1981-08-18 Nippon Denso Co Ltd Semiconductor device of high withstand voltage planar type
JPS57160159A (en) * 1981-03-28 1982-10-02 Toshiba Corp High breakdown voltage planar type semiconductor device
JP3424635B2 (en) * 1994-09-20 2003-07-07 株式会社日立製作所 Semiconductor device and power conversion device using the same
JP3111827B2 (en) * 1994-09-20 2000-11-27 株式会社日立製作所 Semiconductor device and power conversion device using the same
JP2000114549A (en) * 1998-09-30 2000-04-21 Meidensha Corp Semiconductor element
JP2000150859A (en) * 1998-11-18 2000-05-30 Meidensha Corp Diode
JP2000183366A (en) * 1998-12-16 2000-06-30 Meidensha Corp Semiconductor element
JP4830184B2 (en) * 1999-08-04 2011-12-07 富士電機株式会社 Manufacturing method of semiconductor device
JP2001111034A (en) * 1999-10-07 2001-04-20 Fuji Electric Co Ltd Planar semiconductor device
JP2001153012A (en) * 1999-11-25 2001-06-05 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2003086815A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US9252211B2 (en) Semiconductor device and manufacturing method thereof
US9419092B2 (en) Termination for SiC trench devices
US10957690B2 (en) Semiconductor device
JPH08306937A (en) High-breakdown strength semiconductor device
WO2017138215A1 (en) Semiconductor device
US11600725B2 (en) Trench MOSFETs integrated with clamped diodes having trench field plate termination to avoid breakdown voltage degradation
KR20150042125A (en) Semiconductor device
US10763354B2 (en) Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JPH04251983A (en) Semiconductor device
JP5512455B2 (en) Semiconductor device
US10957758B2 (en) Semiconductor device
JP5162804B2 (en) Semiconductor device
US5170241A (en) Metal insulator semiconductor transistor having guard region and semiconductor device having the same
US11437506B2 (en) Wide-gap semiconductor device
JPH11204789A (en) Insulating gate type transistor
US10763355B2 (en) Power semiconductor device
US10199483B2 (en) Semiconductor device
JP4942367B2 (en) Semiconductor device
CN108292659B (en) Semiconductor device with a plurality of semiconductor chips
JP3293603B2 (en) Power semiconductor device
TWM449354U (en) Power semiconductor device and edge terminal structure thereof
US20240170570A1 (en) Semiconductor device
US20240170569A1 (en) Semiconductor device and method of manufacturing the same
JP5774744B2 (en) Semiconductor device
JP6058712B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5162804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term