JP5161552B2 - 半導体メモリ装置及び半導体装置 - Google Patents

半導体メモリ装置及び半導体装置 Download PDF

Info

Publication number
JP5161552B2
JP5161552B2 JP2007320682A JP2007320682A JP5161552B2 JP 5161552 B2 JP5161552 B2 JP 5161552B2 JP 2007320682 A JP2007320682 A JP 2007320682A JP 2007320682 A JP2007320682 A JP 2007320682A JP 5161552 B2 JP5161552 B2 JP 5161552B2
Authority
JP
Japan
Prior art keywords
transistor
film
circuit
semiconductor
sram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007320682A
Other languages
English (en)
Other versions
JP2008181635A5 (ja
JP2008181635A (ja
Inventor
隆之 池田
義元 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2007320682A priority Critical patent/JP5161552B2/ja
Publication of JP2008181635A publication Critical patent/JP2008181635A/ja
Publication of JP2008181635A5 publication Critical patent/JP2008181635A5/ja
Application granted granted Critical
Publication of JP5161552B2 publication Critical patent/JP5161552B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/13Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body combined with thin-film or thick-film passive components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • H10B10/125Static random access memory [SRAM] devices comprising a MOSFET load element the MOSFET being a thin film transistor [TFT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Static Random-Access Memory (AREA)

Description

本発明は、半導体メモリ装置及び当該半導体メモリ装置を具備し、非接触で通信を行う半導体装置に関する。
近年、電磁界または電波等の無線通信を利用した個体識別技術が注目を集めている。特に、無線通信によりデータの交信を行う半導体装置として、RFID(Radio Frequency Identification)タグを利用した個体識別技術が注目を集めている。RFIDタグ(以下、単にRFIDという)は、IC(Integrated Circuit)タグ、RFタグ、無線タグ、電子タグ、ICチップ、無線チップ、トランスポンダ、データキャリアとも呼ばれる。RFIDを用いた個体識別技術は、個々の対象物の生産、管理等に役立てられ始めており、個人認証への応用も期待されている。
RFIDには、データを保存するため、IDを保存するため、または通信状態を保存するためにメモリが使用される。また、RFIDにCPUを搭載する場合、プログラムの格納や、作業変数を格納するためにRFIDにメモリが搭載される。メモリにはROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)やSRAM(Static Random Access Memory)が使用される。(例えば、非特許文献1)。
また、RFIDを構成するコントロール回路は一般に順序回路を含み、順序回路を構成するフリップフロップ回路はSRAMと同じ構造である。
RFIDは、電源を内蔵するか、リーダ(リーダ/ライタ、トランスミッタとも呼ばれる)から電源供給を受けるかの違いにより、情報を含んだ電磁波を送信することが可能なアクティブタイプ(能動タイプ)のRFIDと、リーダからの電波または電磁波(搬送波)の電力を利用して駆動するパッシブタイプ(受動タイプ)のRFIDとの二つのタイプに分けることができる。このうち、アクティブタイプのRFIDにおいては、RFIDを駆動するための電源を内蔵しており、電源として電池を備えて構成されている。また、パッシブタイプにおいては、RFIDを駆動するための電源をリーダからの電磁波(搬送波)の電力を利用して作りだし、電池を備えることのない構成を実現している。
「RFIDハンドブック第2版 非接触ICカードの原理とその応用」日刊工業新聞社、Klaus Finkenzeller 著、ソフト工学研究所 訳、p243−271
RFIDにメモリとしてSRAMを搭載する場合、リーダから電力が供給されない間にSRAMでデータを保持するために電源を搭載するアクティブタイプのRFIDとする必要がある。しかしながら、アクティブタイプのRFIDの場合、個体情報の送受信、送受信に必要な電波の強度設定に応じて、電池は経時的に消耗していき、最終的には個体情報の送受信に必要な電力を発生できなくなるといった課題があった。このため、駆動用の電池を備えたアクティブタイプのRFIDを有する半導体装置を使用し続けるためには、電池の残存容量の確認や電池の交換をする作業が発生するという課題があった。また、駆動用の電池を搭載する場合、RFIDのサイズの小型化が困難になることや電池の耐温特性によってRFIDの使用状況が制限されるおそれがある。
本発明は、上記問題を鑑み、駆動電源のための電池の経時的劣化に伴う電池の交換作業をすることなく、SRAMやフリップフロップ回路のデータを保持し、リーダからの電力が供給されない、または不足する間もSRAMでデータを保持する半導体メモリ装置及び当該半導体メモリ装置を具備する半導体装置を提供することを課題とする。
本発明の半導体メモリ装置は、SRAMセルと、ワード線を介してSRAMセルと接続されたデコーダと、第1のデータ線及び第2のデータ線を介してSRAMセルと接続された読み書き回路と、SRAMセルと接続された蓄電手段とを有し、蓄電手段は、SRAMセルを介して第1のデータ線又は第2のデータ線から供給される電力を充電する。また、蓄電手段の充電は、SRAMセルにデータの書き込み又は読み込みの際に行われることを特徴としている。本明細書において、SRAMセルとはSRAM型のメモリセルをいう。
また、本発明の半導体メモリ装置は、上記構成において、SRAMセル及び蓄電手段は複数設けられ、複数のSRAMセルの各々に蓄電手段が設けられている。
本発明の半導体装置は、アンテナ回路と、アンテナ回路を介して供給される電力により駆動するデコーダ及び読み書き回路と、デコーダとワード線を介して接続され、且つ読み書き回路と第1のデータ線及び第2のデータ線を介して接続されたSRAMセルと、SRAMセルに接続された蓄電手段とを有し、蓄電手段は、SRAMセルを介して第1のデータ線又は第2のデータ線から供給される電力を充電する。
また、本発明の半導体装置は、アンテナ回路と、アンテナ回路を介して供給される電力を整流して出力する電源部と、アンテナ回路を介して供給される電力により駆動するデコーダ及び読み書き回路と、デコーダとワード線を介して接続され、且つ読み書き回路と第1のデータ線及び第2のデータ線を介して接続されたSRAMセルと、SRAMセルに接続された蓄電手段とを有し、蓄電手段は、電源部から供給される電力又はSRAMセルを介して第1のデータ線又は第2のデータ線から供給される電力を充電する。
また、本発明の半導体装置は、上記構成において、蓄電手段の充電は、SRAMセルにデータの書き込み又は読み込みの際に行われることを特徴としている。
また、本発明の半導体装置は、上記構成において、アンテナ回路を介して外部より供給される電力がデコーダ及び読み書き回路に供給されない場合であっても、SRAMセルが動作する。
本発明において、SRAMセルを構成するトランジスタは特に限定されない。非晶質シリコンや多結晶シリコンに代表される非単結晶半導体膜を用いた薄膜トランジスタ(TFT)、半導体基板やSOI基板を用いて形成されるトランジスタ、MOS型トランジスタ等を適用することができ、データの保持時間を長くするためにCMOS構造を取れる素子であることが望ましい。また、トランジスタが配置されている基板の種類についても特に限定されず、例えば、単結晶基板、SOI基板、ガラス基板、プラスチック基板等を用いることができる。
本明細においてSRAMはフリップフロップ回路を含む。
本発明を用いることにより、リーダからの電力が供給されない場合、または不足する場合であってもSRAMセルでデータを保持する半導体メモリ装置を提供することが出来る。また、データを保存するためROMを用いた場合書き換えることが出来ないが、本発明の半導体メモリ装置を用いることにより、データを書き換えて保存することが出来る。
以下に、本発明の実施の形態を図面に基づいて説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、本発明の半導体メモリ装置の一例に関して説明する。
本実施の形態で示す半導体メモリ装置は、データを記憶するためのメモリとして、蓄電手段が設けられたSRAMで構成される。SRAMに蓄電手段を設けることにより外部から電力が供給されない場合(電源がオフの場合)であってもデータを記憶保持できる。以下にその構成、動作に関して図面を参照して説明する。
本実施の形態で示す半導体メモリ装置は、デコーダ122と、読み書き回路123と、SRAMセル121を複数具備するメモリセルアレイ120を有している(図1参照)。
デコーダ122は、SRAMセル121とワード線103を介して接続されており、SRAMセル121を選択する。また、読み書き回路123は、SRAMセル121と第1のデータ線104及び第2のデータ線105を介して接続されており、SRAMセル121に対してデータの書き込み又は読み込みを行う。
SRAMセル121は、ワード線103、第1のデータ線104、第2のデータ線105及び蓄電手段102と接続されている。蓄電手段102は、SRAMセル121と電力の授受を行う機能を有している。つまり、蓄電手段102は、SRAMセル121に電力を供給する場合や、SRAMセル121を介して第1のデータ線104、第2のデータ線105から電力を供給される場合がある。
SRAMセル121は、SRAM型のメモリセルであり、メモリセルへの情報の書き込み、再書き込み、読み出しが可能であり、記憶保持動作(リフレッシュ)を必要としない構成であればどのような構成で設けてもよい。以下に図2を参照して、SRAMセル121の具体的な構成及び動作について、CMOSによるSRAMセルを例に挙げて説明する。もちろん、SRAMセルは6トランジスタ型に限らない。高抵抗負荷型(4トランジスタ型)によるSRAMセルとしてもよい。
図2において、SRAMセル121は、第1のトランジスタ106〜第6のトランジスタ111を有している。第1のトランジスタ106及び第2のトランジスタ107は選択トランジスタとして機能する。また、第3のトランジスタ108と第4のトランジスタ109は、一方がnチャネル型トランジスタ(ここでは、第3のトランジスタ108)他方がpチャネル型トランジスタ(ここでは、第4のトランジスタ109)として相補的に組み合わされたCMOSを構成している。同様に、第5のトランジスタ110と第6のトランジスタ111は、一方がnチャネル型トランジスタ(ここでは、第5のトランジスタ110)他方がpチャネル型トランジスタ(ここでは、第6のトランジスタ111)として相補的に組み合わされたCMOSを構成している。
第1のトランジスタ106は、ゲート電極がワード線103に接続され、ソース電極又はドレイン電極の一方が第1のデータ線104に接続され、他方が第3のトランジスタ108のゲート電極、第4のトランジスタ109のゲート電極、第5のトランジスタ110のドレイン電極及び第6のトランジスタ111のソース電極又はドレイン電極の他方に接続されている。なお、ここでは、第1のトランジスタ106がnチャネル型のトランジスタで設けた例を示している。
第2のトランジスタ107は、ゲート電極がワード線103に接続され、ソース電極又はドレイン電極の一方が第2のデータ線105に接続され、他方が第3のトランジスタ108のドレイン電極、第4のトランジスタ109のソース電極又はドレイン電極の他方、第5のトランジスタ110のゲート電極及び第6のトランジスタ111のゲート電極に接続されている。なお、ここでは、第2のトランジスタ107がnチャネル型のトランジスタで設けた例を示している。
第3のトランジスタ108は、nチャネル型のトランジスタであり、ゲート電極が第4のトランジスタ109のゲート電極と接続され、ソース電極がグランドに接続され、ドレイン電極が第4のトランジスタ109のソース電極又はドレイン電極の他方と接続されている。また、第4のトランジスタ109は、pチャネル型のトランジスタであり、ソース電極又はドレイン電極の一方が蓄電手段102、第6のトランジスタ111のソース電極又はドレイン電極の一方と接続されている。
第5のトランジスタ110は、nチャネル型のトランジスタであり、ゲート電極が第6のトランジスタ111のゲート電極と接続され、ソース電極がグランドに接続され、ドレイン電極が第6のトランジスタ111のソース電極又はドレイン電極の他方と接続されている。また、第6のトランジスタ111は、pチャネル型のトランジスタであり、ソース電極又はドレイン電極の一方が蓄電手段102と接続されている。
また、蓄電手段102は、電力の充電又は供給することができる構成とすればよく、コンデンサーや小型の2次電池を用いることができる。コンデンサーとしては、活性炭、フラーレン、カーボンナノチューブなど比表面積の大きい電極用材料を用いることが好適である。コンデンサーは電池に較べ構成が単純であり薄膜化や積層化も容易である。
次に、図2に示したSRAMセル121の動作について説明する。なお、ここでは、第4のトランジスタ109のソース電極又はドレイン電極の一方、第6のトランジスタ111のソース電極又はドレイン電極の一方、蓄電手段102の接続箇所をノード101とする。また、第1のトランジスタ106のソース電極又はドレイン電極の他方、第3のトランジスタ108のゲート電極、第4のトランジスタ109のゲート電極、第5のトランジスタ110のドレイン電極、第6のトランジスタ111のソース電極又はドレイン電極の他方の接続箇所をノード112とする。また、第2のトランジスタ107のソース電極又はドレイン電極の他方、第3のトランジスタ108のドレイン電極、第4のトランジスタ109のソース電極又はドレイン電極の他方、第5のトランジスタ110のゲート電極、第6のトランジスタ111のゲート電極の接続箇所をノード113とする。
はじめに、SRAMセル121にデータを書き込む場合について説明する。
SRAMセル121にデータの書き込みが行われる際には、デコーダ122及び読み書き回路123には電源(Vdd)が供給されている。例えば、読み書き回路123から書き込むデータ(例えば、「1」)を示す信号を出力する場合、すなわち第1のデータ線104の電位をハイ(High)、第2のデータ線105をロウ(Low)にする場合、ワード線103をハイにすると、第1のトランジスタ106及び第2のトランジスタ107はオン(On)の状態となり、ノード112の電位はハイ、ノード113の電位はロウになる。このとき、ノード101の電位がノード112の電位より低い場合、第6のトランジスタ111はソース電極をノード112、ゲート電極をノード113としてオンの状態となり、ノード101はハイとなる。すなわち、蓄電手段102に充電が行われる。
また、読み書き回路123から書き込むデータ(例えば、「0」)を示す信号を出力する場合、すなわち第1のデータ線104の電位をロウ、第2のデータ線105をハイにする場合、ワード線103をハイにすると、第1のトランジスタ106及び第2のトランジスタ107はオンの状態となり、ノード112の電位はロウ、ノード113の電位はハイになる。このとき、ノード101の電位がノード113の電位より低い場合、第4のトランジスタ109はソース電極をノード113、ゲート電極をノード112としてオンの状態となり、ノード101はハイとなる。すなわち、蓄電手段102に充電が行われる。
次に、SRAMセル121からデータを読み出す場合について説明する。
SRAMセル121からデータが読み出される際にも、デコーダ122及び読み書き回路123には電源が供給されている。ワード線103の電位がハイとなる前、第1のデータ線104及び第2のデータ線105の電位がプリチャージ電位に設定される。プリチャージ電位は、デコーダ122や読み書き回路123の電源電位の半分程度に設定される。ワード線103の電位がハイとなると、第1のトランジスタ106と第2のトランジスタ107がオンの状態となる。
例えば、ノード101の電位がプリチャージ電位より高く、ノード112がハイの場合、第1のデータ線104の電位が上昇し、第2のデータ線105の電位はロウとなる。このとき、読み出し回路123に第1のデータ線104と第2のデータ線105の電位差を読み出す差動アンプ回路を使用することによって、第2のデータ線105より第1のデータ線104の電位が高いことを検出できる。また、ノード101の電位がプリチャージ電位より高く、ノード113がハイの場合も同様に、第1のデータ線104より第2のデータ線105の電位が高いことを検出できる。
ノード101の電位がプリチャージ電位より低く、ノード112がハイの場合、第1のトランジスタ106と第6のトランジスタ111がオンの状態であるため、電流が第1のデータ線104からノード112を通ってノード101へ流れて、ノード101の電位は上昇する。従って、第1のデータ線104の電位は下降し、ノード101の電位と第1のデータ線104の電位がつりあった状態で安定する。また、第2のトランジスタ107と第3のトランジスタ108がオンの状態であるため、第2のデータ線105の電位はロウになる。なお、この場合であっても、第1のデータ線104の電位は下降するが、第2のデータ線105の電位より高いため、差動アンプ回路により第2のデータ線105より第1のデータ線104の電位が高いことを検出できる。また、ノード101の電位がプリチャージ電位より低く、ノード113がハイの場合も同様に、第1のデータ線104より第2のデータ線105の電位が高いことを検出できる。
次に、SRAMセル121がデータを保持する場合について説明する。
デコーダ122及び読み書き回路123等に電源が供給されている場合、ワード線の電位はロウに固定され第1のトランジスタ106及び第2のトランジスタ107はオフ(Off)の状態である。また、デコーダ122及び読み書き回路123等に電源が供給されていない場合、デコーダ122及び読み書き回路123等の電位はグラウンドになり、第1のトランジスタ106及び第2のトランジスタ107はオフの状態とみなせる。
例えば、ノード112がハイでノード113がロウの場合、第3のトランジスタ108はオンの状態となりノード113はロウを維持する。第6のトランジスタ111はゲート電極がロウであるためオンの状態であるが、ノード101とノード112が共にハイである場合には変化しない。逆に、ノード112がロウでノード113がハイの場合、第4のトランジスタ109と第5のトランジスタ110がオンの状態であるが、ノード101とノード113が共にハイである場合には変化しない。
このように、本実施の形態で示す半導体メモリ装置は、半導体メモリ装置に電源が供給されている場合にはSRAMセル121を介して蓄電手段102が充電され、電源が供給されない場合には蓄電手段102が放電することによってSRAMセル121に電力が供給される構成となっている。
なお、本説明においてハイ状態は必ずしもデコーダ122及び読み書き回路123の電源電位と同じ電位ではない。例えばデータの読み出しにおいてノード101の電位がプリチャージ電位より低い場合、ノード112はハイ状態であっても電位はプリチャージ電位より低い。
一般に従来のSRAMセルにおいては、デコーダ122や読み書き回路123に供給される電源とノード101に供給される電源とは同じノードであるため、半導体メモリ装置に電源が供給されている場合には、ノード112又はノード113の電位を保持することができるが、電源が供給されなくなるとノード112及びノード113の電位を保持することができない。しかし、本実施の形態で示したSRAMセル121では、半導体メモリ装置に電源が供給されない場合であっても、蓄電手段102が放電することによりSRAMセル121に電力が供給されるため、データを保持することができる。
また、本実施の形態で示した半導体メモリ装置において、データの保持時間を長くするため、蓄電手段102が接続するノード101はデコーダ122や読み書き回路123の電源ノードとは別ノードである。すなわち蓄電手段102はデコーダ122や読み書き回路123へ電源を供給しない。
なお、上述した半導体メモリ装置において、SRAMセル121の各々に蓄電手段102を設けた構成としたがこれに限られない。例えば、メモリセルアレイ120に設けられたSRAMセル121において、一行毎に蓄電手段102を設けた構成としてもよい(図3参照)。もちろん、一列毎に蓄電手段102を設けた構成、あるブロック毎に蓄電手段102を設けた構成又は全てのSRAMセル121に共通に一つの蓄電手段102を設けた構成としてもよい。このように設けることによって、蓄電手段102の設ける数を低減することができるため、メモリセルアレイ120の面積を低減することができる。また、このように設けることによって、充電する蓄電手段102の数が低減される。すなわち例えば2つのSRAMセル121に1つの蓄電手段102を設けた構成の場合、一方のSRAMセル121にデータを書き込むことによって蓄電手段102に充電されると、他方のSRAMセル121に記憶されたデータはDRAMにおいてリフレッシュを行ったのと同様にデータの保持時間を延長する効果がある。一方でそれぞれのSRAMセル121に蓄電手段102を設けた構成は、複数のSRAMセル121に一つの蓄電手段102を設けた構成に比べて、蓄電手段にコンデンサーを用いた場合1つのコンデンサーの容量を小さく出来るので、ノード101の電位が十分な電位に上昇するまでの時間が短いという効果がある。
以上のように、本実施の形態で示した半導体メモリ装置は、リーダからの電力が供給されない場合、または不足する場合であってもSRAMセルでデータを保持することが出来る。また、データを保存するためマスクROMを用いた場合書き換えることが出来ないが、本実施の形態で示した半導体メモリ装置を用いることにより、データを書き換えて保存することが出来る。また、SRAMセルの電源を保持する蓄電手段の電力を、SRAMセル以外の回路へ供給しない構成とすることによって、メモリセル以外の回路へ電源を供給する場合より電位を保持する時間を長くすることが出来る。また、本実施の形態で示したメモリ構造を用いることにより、DRAMのようなリフレッシュ動作は必要ない。
なお、本実施の形態で示した半導体メモリ装置の構成は、本明細書の他の実施の形態に示した構成と自由に組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、上記実施の形態1で示した蓄電手段が設けられたSRAMを具備し、無線通信によりデータの交信を行う半導体装置(RFID)について図面を参照して説明する。
本実施の形態で示す半導体装置200は、ロジック部206と、アナログ部215とを有する。またロジック部206は、CPU202と、マスクROM203と、SRAM204と、コントローラ205とを有する。アナログ部215は、アンテナ回路224と、電源回路209と、リセット回路210と、クロック生成回路211と、復調回路212と、変調回路213と、電源管理回路214とを有する。また、SRAM204は、上記実施の形態1で示した構成で設ければよく、複数のSRAMセル121と、蓄電手段102とを有する。また、アンテナ回路224は、アンテナ207と、共振回路208とを有する(図4参照)。
コントローラ205は、CPUインターフェース(CPUIF)216と、制御レジスタ217と、コード抽出回路218と、符号化回路219とを有する。なお、図4では、説明を簡単にするため、通信信号を受信信号220と、送信信号221とに分けて示したが、実際には、両者は一体とされた信号であり、半導体装置200およびリーダの間で同時に送受信される。受信信号220は、アンテナ回路224とで受信された後、復調回路212により復調される。また、送信信号221は、変調回路213により変調された後、アンテナ207から送信される。
図4において、通信信号により形成される磁界中に半導体装置200を置くと、アンテナ回路224により、誘導起電力を生じる。誘導起電力は、電源回路209における電気容量により保持され、また電気容量によって電位が安定化され、半導体装置200の各回路に電源電圧として供給される。リセット回路210は、半導体装置200全体の初期リセット信号を生成する。例えば、電源電圧の上昇に遅延して立ち上がる信号をリセット信号として生成する。クロック生成回路211は、電源管理回路214より生成される制御信号に応じて、クロック信号の周波数とデューティー比を変更する。復調回路212は、ASK方式の受信信号220の振幅の変動を”0”“1”の受信データ222として検出する。復調回路212は、例えばローパスフィルターとする。さらに、変調回路213は、送信データをASK方式の送信信号221の振幅を変動させて送信する。例えば、送信データ223が”0”の場合、共振回路208の共振点を変化させ、通信信号の振幅を変化させる。電源管理回路214は、電源回路209よりロジック部206に供給される電源電圧またはロジック部206における消費電流を監視し、クロック生成回路211において、クロック信号の周波数とデューティー比を変更するための制御信号を生成する。
次に、本実施の形態における半導体装置の動作を説明する。流通業界において商品管理を行う場合、どのような場所を、いつ通過したかは重要な情報である。また、この位置情報、時間情報は消費者に対して製造元、商品の信頼性を得ることのできる点として挙げられる。リーダによって半導体装置200に搭載されたSRAM204に位置/時間情報を書き込む場合を以下で説明する。
まず、リーダより送信された受信信号220により、半導体装置200が受信信号220を受信する。受信信号220にはSRAM204に書き込む位置/時間情報が含まれている。受信信号220は、復調回路212で復調された後、コード抽出回路118で制御コマンドや位置/時間情報などに分解され、制御レジスタ217に格納される。ここで、制御コマンドは、半導体装置200の応答を指定するデータである。例えば、固有ID番号の送信、動作停止、暗号解読などを指定する。
続いて、ロジック部206において、CPU202が、マスクROM203に格納された書き込み用プログラムデータを基にSRAM204に位置/時間情報を書き込む。また書き換え動作は書き込み動作と同様に、CPU202がマスクROM203に格納された書き換え用プログラムデータを基にSRAM204の記憶データを書き換える。SRAM204に一度書き込まれた位置/時間情報は位置/時間情報を読み出すためのプログラムデータを含む受信信号220を半導体装置200に受信させることで応答信号を得ることができる。
SRAM204に設けられた蓄電手段102は、SRAMセル121のデータ保持用の電力供給源として機能する。
なお、CPU202は、CPUIF216を介してマスクROM203、SRAM204、制御レジスタ217にアクセスする。CPUIF216は、CPU202が要求するアドレスより、マスクROM203、SRAM204、制御レジスタ217のいずれかに対するアクセス信号を生成する機能を有している。
最後に、符号化回路219において、応答信号から送信データ223を生成し、変調回路213で変調し、アンテナ207より送信信号221をリーダに送信する。
本実施の形態を用いることにより、直接SRAMから読み出すことが可能となるため、読み出し時間の差分だけ、処理時間を短縮することが可能となる。また、蓄電手段の付加によりSRAMに書き込んだデータの保持が可能であるため、電源再供給直後にもシステムの高速動作が可能となる。すなわち、通信状態によって一時的にリーダからRFIDに十分な電力が供給されなくても本実施の形態のSRAMによってデータを保持するので、電源再供給直後に続きの処理が可能となる。なおRFIDをリーダから離して電源が供給されない状態でデータを長期間保存する場合はフラッシュメモリなどに書き込んでおくことが好ましい。
以上の読み出し速度、また、書き込み速度の向上により、リーダとの通信時間が短縮できる。応答時間を短縮化したデータ書き込み可能な半導体装置を製造物、製造部品に貼付することで製造工程の履歴情報(固有ID、製造場所、製造時間、等)を得ることができる。応答時間の短縮化によって、製造ラインの速度を遅くすることなく半導体装置へのデータ書き込みが可能となり、生産ラインへの導入が容易に行える。また、半導体装置に書き込まれた情報を高速に読み取ることで、製造途中で異なる工程へ振り分ける場合や出荷先の分別を自動に行うことができ、生産ラインの効率化を計ることが可能となる。
上記の構成をとることで、応答速度を向上させた半導体装置を提供することが可能となる。
本実施の形態で示した半導体装置の構成は、本明細書の他の実施の形態に示した構成と自由に組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、上記実施の形態2と異なる半導体装置の構成に関して図面を参照して説明する。
本実施の形態で示す半導体装置は、蓄電手段102に電力を供給可能な電源部226を有している(図5参照)。電源部226は、アンテナ回路224が受信した電力を整流して蓄電手段102に供給する機能を有しており、蓄電手段102が過充電とならないよう蓄電の制御を行う機能を有する構成としてもよい。つまり、本実施の形態で示す半導体装置は、上記図4の構成に電源部226を追加した構成となっている。このような構成とすることによって、蓄電手段102は、SRAMセル121を介しての充電と電源部226から電力が供給されることによる充電が可能となる。
次に、本実施の形態で示す半導体装置におけるSRAMの構成に関して図6を参照して説明する。
SRAMセル121の構成は、上記図1と同様に設けることができる。ここでは、蓄電手段102と電源部226とをダイオード素子252を介して接続する。
図6において、ノード251の電位がノード101の電位より高い場合はダイオード素子252をノード251からノード101へ電流が流れ、ノード101の電位が上昇する。しかし、ノード251の電位がノード101より低い場合は実施の形態1で説明した状態になる。なお、ここでは、ダイオード素子252と電源部226の接続箇所をノード251としている。
本実施の形態で示す半導体装置は、電源が複数あって、一方または複数の電源が切れるまたは不足する可能性がある場合、電源の一方をノード251として、他方をデコーダ122や読み書き回路123などのシステム用電源として、ノード112または113から101へ電流が流れる状態があることを特徴とする。
ノード251は、デコーダなどのシステム用電源とは別のノードであって、RFIDにおいてシステム用電源を生成する整流回路とは別の整流回路で生成された電源であっても良い。また、図6に示した構成において、ダイオード素子252はダイオード接続のMOSトランジスタでも良い。この場合、ノード251の電位がノード101より低いときにノード101からノード251への電流が大きいと、ノード101の電位の低下が早くなり、データの保持時間が短くなるため、ノード101からノード251への電流は十分に小さいことが望ましい。
実施の形態ではノード101の電位がグランドより高い場合で説明したが、逆に低い電位をデコーダなどの他の回路から別ノードとして切り離して蓄電手段で保存する構成にしても構わない。
本実施の形態で示した半導体装置の構成は、本明細書の他の実施の形態に示した構成と自由に組み合わせて実施することができる。
(実施の形態4)
本発明のSRAMの構成はRFIDに使用されるメモリに限らない。
一般のSRAMはシステムの電源が切れたとき、データを保持するためにバックアップバッテリーを用いる。本発明のSRAMの構成を用いれば一時的に電源が切れてもデータを保持するため、バッテリーを交換する際に一時的に電源が切れることを防止するための回路が不要になる。本発明のSRAMの構成はRFIDに使用されるメモリに限らないので、RFIDで問題になる小型化や耐温特性の制限が重要ではなくバッテリーが使用できる場合、例えば、図6において、ノード251はバックアップバッテリーによる電源ノードでもよい。当該バックアップバッテリーをSRAMセル121にのみに電源を供給する構成とすることによって、バックアップバッテリーがデコーダ122や読み書き回路123などにも電源を供給する構成と比較してバックアップバッテリーの電力消費を小さく出来る。
また、EEPROMなどの一般の不揮発性メモリは専用のメモリ書き込み装置でデータを書き込み、書き込み装置から外して別の装置に設置することがある。本発明のメモリ構成を用いれば、書き込み装置から外して別の装置に設置する間、一時的に電源が切れてもデータを保持できるため、専用のメモリ書き込み装置でデータを書き込んだメモリを、書き込み装置から外して、別の装置に設置することが出来る。
本実施の形態で示した半導体装置の構成は、本明細書の他の実施の形態に示した構成と自由に組み合わせて実施することができる。
(実施の形態5)
本実施の形態では、上記実施の形態で示した半導体装置の作製方法の一例に関して、図面を参照して説明する。本実施の形態においては、半導体装置のSRAMを具備するロジック部、アンテナ回路等を有するアナログ部等の回路に含まれる素子を同一基板上に薄膜トランジスタを用いて設ける場合について説明する。また、蓄電手段を薄膜トランジスタ型の容量素子で設ける場合について説明する。もちろん、薄膜と欄持した型の容量素子の代わりに小型の二次電池等で設けた構成とすることも可能である。なお、本実施の形態では、薄膜トランジスタ等の素子を一度支持基板に設けた後、可撓性を有する基板に転置する場合に関して説明する。
まず、基板1301の一表面に絶縁膜1302を介して剥離層1303を形成し、続けて下地膜として機能する絶縁膜1304と半導体膜1305(例えば、非晶質シリコンを含む膜)を積層して形成する(図7(A)参照)。なお、絶縁膜1302、剥離層1303、絶縁膜1304および半導体膜1305は、連続して形成することができる。
基板1301は、ガラス基板、石英基板、ステンレス等の金属基板、セラミック基板、Si基板等の半導体基板、SOI(Silicon on Insulator)基板等などから選択されるものである。他にもプラスチック基板として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリルなどの基板を選択することもできる。なお、本工程では、剥離層1303は、絶縁膜1302を介して基板1301の全面に設けているが、必要に応じて、基板1301の全面に剥離層を設けた後に、フォトリソグラフィ法により選択的に設けてもよい。
絶縁膜1302、絶縁膜1304は、CVD法やスパッタリング法等を用いて、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸化窒化シリコン(SiOxNy)(x>y)、窒化酸化シリコン(SiNxOy)(x>y)等の絶縁材料を用いて形成する。例えば、絶縁膜1302又は絶縁膜1304を2層構造とする場合、第1層目の絶縁膜として窒化酸化シリコン膜を形成し、第2層目の絶縁膜として酸化窒化シリコン膜を形成するとよい。また、第1層目の絶縁膜として窒化シリコン膜を形成し、第2層目の絶縁膜として酸化シリコン膜を形成してもよい。絶縁膜1302は、基板1301から剥離層1303又はその上に形成される素子に不純物元素が混入するのを防ぐブロッキング層として機能し、絶縁膜1304は基板1301、剥離層1303からその上に形成される素子に不純物元素が混入するのを防ぐブロッキング層として機能する。このように、ブロッキング層として機能する絶縁膜1302、1304を形成することによって、基板1301からNaなどのアルカリ金属やアルカリ土類金属が、剥離層1303から剥離層に含まれる不純物元素がこの上に形成する素子に悪影響を与えることを防ぐことができる。なお、基板1301として石英を用いるような場合には絶縁膜1302、1304を省略してもよい。
剥離層1303は、金属膜や金属膜と金属酸化膜の積層構造等を用いることができる。金属膜としては、タングステン(W)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、亜鉛(Zn)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)から選択された元素または元素を主成分とする合金材料若しくは化合物材料からなる膜を単層又は積層して形成する。また、これらの材料は、スパッタ法やプラズマCVD法等の各種CVD法等を用いて形成することができる。金属膜と金属酸化膜の積層構造としては、上述した金属膜を形成した後に、酸素雰囲気化またはNO雰囲気下におけるプラズマ処理、酸素雰囲気化またはNO雰囲気下における加熱処理を行うことによって、金属膜表面に当該金属膜の酸化物または酸化窒化物を設けることができる。例えば、金属膜としてスパッタ法やCVD法等によりタングステン膜を設けた場合、タングステン膜にプラズマ処理を行うことによって、タングステン膜表面にタングステン酸化物からなる金属酸化膜を形成することができる。他にも、例えば、金属膜(例えば、タングステン)を形成した後に、当該金属膜上にスパッタ法で酸化シリコン等の絶縁膜を設けると共に、金属膜上に金属酸化物(例えば、タングステン上にタングステン酸化物)を形成してもよい。
非晶質半導体膜1305は、スパッタリング法、LPCVD法、プラズマCVD法等により、25〜200nm(好ましくは30〜150nm)の厚さで形成する。
次に、非晶質半導体膜1305にレーザー光を照射して結晶化を行う。なお、レーザー光の照射と、RTA又はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法とを組み合わせた方法等により非晶質半導体膜1305の結晶化を行ってもよい。その後、得られた結晶質半導体膜を所望の形状にエッチングして、結晶質半導体膜1305a〜結晶質半導体膜1305fを形成し、当該半導体膜1305a〜1305fを覆うようにゲート絶縁膜1306を形成する(図7(B)参照)。
ゲート絶縁膜1306は、CVD法やスパッタリング法等を用いて、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等の絶縁材料を用いて形成する。例えば、ゲート絶縁膜1306を2層構造とする場合、第1層目の絶縁膜として酸化窒化シリコン膜を形成し、第2層目の絶縁膜として窒化酸化シリコン膜を形成するとよい。また、第1層目の絶縁膜として酸化シリコン膜を形成し、第2層目の絶縁膜として窒化シリコン膜を形成してもよい。
結晶質半導体膜1305a〜1305fの作製工程の一例を以下に簡単に説明すると、まず、プラズマCVD法を用いて、膜厚50〜60nmの非晶質半導体膜を形成する。次に、結晶化を助長する金属元素であるニッケルを含む溶液を非晶質半導体膜上に保持させた後、非晶質半導体膜に脱水素化の処理(500℃、1時間)と、熱結晶化の処理(550℃、4時間)を行って結晶質半導体膜を形成する。その後、レーザー光を照射し、フォトリソグラフィ法を用いることよって結晶質半導体膜1305a〜1305fを形成する。なお、結晶化を助長する金属元素を用いる熱結晶化を行わずに、レーザー光の照射だけで非晶質半導体膜の結晶化を行ってもよい。
結晶化に用いるレーザー発振器としては、連続発振型のレーザービーム(CWレーザービーム)やパルス発振型のレーザービーム(パルスレーザービーム)を用いることができる。ここで用いることができるレーザービームは、Arレーザー、Krレーザー、エキシマレーザーなどの気体レーザー、単結晶のYAG、YVO、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質とするレーザー、ガラスレーザー、ルビーレーザー、アレキサンドライトレーザー、Ti:サファイアレーザー、銅蒸気レーザーまたは金蒸気レーザーのうち一種または複数種から発振されるものを用いることができる。このようなレーザービームの基本波、及びこれらの基本波の第2高調波から第4高調波のレーザービームを照射することで、大粒径の結晶を得ることができる。例えば、Nd:YVOレーザー(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm)を用いることができる。このときレーザーのパワー密度は0.01〜100MW/cm程度(好ましくは0.1〜10MW/cm)が必要である。そして、走査速度を10〜2000cm/sec程度として照射する。なお、単結晶のYAG、YVO、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質とするレーザー、Arイオンレーザー、またはTi:サファイアレーザーは、連続発振をさせることが可能であり、Qスイッチ動作やモード同期などを行うことによって10MHz以上の発振周波数でパルス発振をさせることも可能である。10MHz以上の発振周波数でレーザービームを発振させると、半導体膜がレーザーによって溶融してから固化するまでの間に、次のパルスが半導体膜に照射される。従って、発振周波数が低いパルスレーザーを用いる場合と異なり、半導体膜中において固液界面を連続的に移動させることができるため、走査方向に向かって連続的に成長した結晶粒を得ることができる。
また、ゲート絶縁膜1306は、半導体膜1305a〜1305fに対し前述の高密度プラズマ処理を行い、表面を酸化又は窒化することで形成しても良い。例えば、He、Ar、Kr、Xeなどの希ガスと、酸素、酸化窒素(NO)、アンモニア、窒素、水素などの混合ガスを導入したプラズマ処理で形成する。この場合のプラズマの励起は、マイクロ波の導入により行うと、低電子温度で高密度のプラズマを生成することができる。この高密度プラズマで生成された酸素ラジカル(OHラジカルを含む場合もある)や窒素ラジカル(NHラジカルを含む場合もある)によって、半導体膜の表面を酸化又は窒化することができる。
このような高密度プラズマを用いた処理により、1〜20nm、代表的には5〜10nmの絶縁膜が半導体膜に形成される。この場合の反応は、固相反応であるため、当該絶縁膜と半導体膜との界面準位密度はきわめて低くすることができる。このような、高密度プラズマ処理は、半導体膜(結晶性シリコン、或いは多結晶シリコン)を直接酸化(若しくは窒化)するため、形成される絶縁膜の厚さは理想的には、ばらつきをきわめて小さくすることができる。加えて、結晶性シリコンの結晶粒界でも酸化が強くされることがないため、非常に好ましい状態となる。すなわち、ここで示す高密度プラズマ処理で半導体膜の表面を固相酸化することにより、結晶粒界において異常に酸化反応をさせることなく、均一性が良く、界面準位密度が低い絶縁膜を形成することができる。
ゲート絶縁膜は、高密度プラズマ処理によって形成される絶縁膜のみを用いても良いし、それにプラズマや熱反応を利用したCVD法で酸化シリコン、酸窒化シリコン、窒化シリコンなどの絶縁膜を堆積し、積層させても良い。いずれにしても、高密度プラズマで形成した絶縁膜をゲート絶縁膜の一部又は全部に含んで形成されるトランジスタは、特性のばらつきを小さくすることができる。
また、半導体膜に対し、連続発振レーザー若しくは10MHz以上の周波数で発振するレーザービームを照射しながら一方向に走査して結晶化させて得られた半導体膜1305a〜1305fは、そのビームの走査方向に結晶が成長する特性がある。その走査方向をチャネル長方向(チャネル形成領域が形成されたときにキャリアが流れる方向)に合わせてトランジスタを配置し、上記ゲート絶縁層を組み合わせることで、特性ばらつきが小さく、しかも電界効果移動度が高い薄膜トランジスタ(TFT)を得ることができる。
なお、本実施の形態では、半導体膜1305fを容量素子の電極として利用するため、当該半導体膜1305fに不純物元素を導入する。具体的には、ゲート絶縁膜1306の形成前または形成後に、半導体膜1305a〜1305eをレジストで覆い、イオンドープ方またはイオン注入法により半導体膜1305fにn型またはp型を示す不純物元素を選択的に導入することができる。n型を示す不純物元素としては、リン(P)やヒ素(As)等を用いることができる。p型を示す不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。ここでは、n型を付与する不純物元素としてリン(P)を用い、半導体膜1305fに選択的に導入する。
次に、ゲート絶縁膜1306上に、第1の導電膜と第2の導電膜とを積層して形成する。ここでは、第1の導電膜は、CVD法やスパッタリング法等により、20〜100nmの厚さで形成する。第2の導電膜は、100〜400nmの厚さで形成する。第1の導電膜と第2の導電膜は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等から選択された元素又はこれらの元素を主成分とする合金材料若しくは化合物材料で形成する。または、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体材料により形成する。第1の導電膜と第2の導電膜の組み合わせの例を挙げると、窒化タンタル膜とタングステン膜、窒化タングステン膜とタングステン膜、窒化モリブデン膜とモリブデン膜等が挙げられる。タングステンや窒化タンタルは、耐熱性が高いため、第1の導電膜と第2の導電膜を形成した後に、熱活性化を目的とした加熱処理を行うことができる。また、2層構造ではなく、3層構造の場合は、モリブデン膜とアルミニウム膜とモリブデン膜の積層構造を採用するとよい。
次に、フォトリソグラフィ法を用いてレジストからなるマスクを形成し、ゲート電極とゲート線を形成するためのエッチング処理を行って、半導体膜1305a〜1305fの上方にゲート電極1307を形成する。ここでは、ゲート電極1307として、第1の導電膜1307aと第2の導電膜1307bの積層構造で設けた例を示している。
次に、ゲート電極1307をマスクとして半導体膜1305a〜1305fに、イオンドープ法またはイオン注入法により、n型を付与する不純物元素を低濃度に添加し、その後、フォトリソグラフィ法によりレジストからなるマスクを選択的に形成して、p型を付与する不純物元素を高濃度に添加する。n型を示す不純物元素としては、リン(P)やヒ素(As)等を用いることができる。p型を示す不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。ここでは、n型を付与する不純物元素としてリン(P)を用い、1×1015〜1×1019/cmの濃度で含まれるように半導体膜1305a〜1305fにゲート電極1307をマスクとして選択的に導入し、n型を示す不純物領域1308を形成する。続いて、半導体膜1305a、1305b、1305d、1305fをレジストで覆い、p型を付与する不純物元素としてボロン(B)を用い、1×1019〜1×1020/cmの濃度で含まれるように選択的に半導体膜1305c、1305eに導入し、p型を示す不純物領域1309を形成する(図7(C)参照)。
続いて、ゲート絶縁膜1306とゲート電極1307を覆うように、絶縁膜を形成する。絶縁膜は、プラズマCVD法やスパッタリング法等により、シリコン、シリコンの酸化物又はシリコンの窒化物の無機材料を含む膜や、有機樹脂などの有機材料を含む膜を、単層又は積層して形成する。次に、絶縁膜を、垂直方向を主体とした異方性エッチングにより選択的にエッチングして、ゲート電極1307の側面に接する絶縁膜1310(サイドウォールともよばれる)を形成する。絶縁膜1310は、LDD(Lightly Doped drain)領域を形成する際のドーピング用のマスクとして用いる。
続いて、フォトリソグラフィ法により形成したレジストからなるマスクと、ゲート電極1307および絶縁膜1310をマスクとして用いて、半導体膜1305a、1305b、1305d、1305fにn型を付与する不純物元素を高濃度に添加して、n型を示す不純物領域1311を形成する。ここでは、n型を付与する不純物元素としてリン(P)を用い、1×1019〜1×1020/cmの濃度で含まれるように半導体膜1305a、1305b、1305d、1305fに選択的に導入し、不純物領域1308より高濃度のn型を示す不純物領域1311を形成する。
以上の工程により、nチャネル型薄膜トランジスタ1300a、1300b、1300dと、pチャネル型薄膜トランジスタ1300c、1300eと、容量素子1300fが形成される(図7(D)参照)。
nチャネル型薄膜トランジスタ1300aは、ゲート電極1307と重なる半導体膜1305aの領域にチャネル形成領域が形成され、ゲート電極1307及び絶縁膜1310と重ならない領域にソース領域又はドレイン領域を形成する不純物領域1311が形成され、絶縁膜1310と重なる領域であってチャネル形成領域と不純物領域1311の間に低濃度不純物領域(LDD領域)が形成されている。また、nチャネル型薄膜トランジスタ1300b、1300dも同様にチャネル形成領域、低濃度不純物領域及び不純物領域1311が形成されている。
pチャネル型薄膜トランジスタ1300cは、ゲート電極1307と重なる半導体膜1305cの領域にチャネル形成領域が形成され、ゲート電極1307と重ならない領域にソース領域又はドレイン領域を形成する不純物領域1309が形成されている。また、pチャネル型薄膜トランジスタ1300eも同様にチャネル形成領域及び不純物領域1309が形成されている。なお、ここでは、pチャネル型薄膜トランジスタ1300c、1300eには、LDD領域を設けていないが、pチャネル型薄膜トランジスタにLDD領域を設けてもよいし、nチャネル型薄膜トランジスタにLDD領域を設けない構成としてもよい。
次に、半導体膜1305a〜1305f、ゲート電極1307等を覆うように、絶縁膜を単層または積層して形成し、当該絶縁膜上に薄膜トランジスタ1300a〜1300eのソース領域又はドレイン領域を形成する不純物領域1309、1311、容量素子1300fの一方の電極と電気的に接続する導電膜1313を形成する(図8(A)参照)。絶縁膜は、CVD法、スパッタ法、SOG法、液滴吐出法、スクリーン印刷法等により、シリコンの酸化物やシリコンの窒化物等の無機材料、ポリイミド、ポリアミド、ベンゾシクロブテン、アクリル、エポキシ等の有機材料やシロキサン材料等により、単層または積層で形成する。ここでは、当該絶縁膜を2層で設け、1層目の絶縁膜1312aとして窒化酸化シリコン膜で形成し、2層目の絶縁膜1312bとして酸化窒化シリコン膜で形成する。また、導電膜1313は、薄膜トランジスタ1300a〜1300eのソース電極又はドレイン電極を形成しうる。なお、シロキサン材料とは、Si−O−Si結合を含む材料に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いることもできる。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
なお、絶縁膜1312a、1312bを形成する前、または絶縁膜1312a、1312bのうちの1つまたは複数の薄膜を形成した後に、半導体膜の結晶性の回復や半導体膜に添加された不純物元素の活性化、半導体膜の水素化を目的とした加熱処理を行うとよい。加熱処理には、熱アニール、レーザーアニール法またはRTA法などを適用するとよい。
導電膜1313は、CVD法やスパッタリング法等により、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、ニッケル(Ni)、白金(Pt)、銅(Cu)、金(Au)、銀(Ag)、マンガン(Mn)、ネオジム(Nd)、炭素(C)、シリコン(Si)から選択された元素、又はこれらの元素を主成分とする合金材料若しくは化合物材料で、単層又は積層で形成する。アルミニウムを主成分とする合金材料とは、例えば、アルミニウムを主成分としニッケルを含む材料、又は、アルミニウムを主成分とし、ニッケルと、炭素とシリコンの一方又は両方とを含む合金材料に相当する。導電膜1313は、例えば、バリア膜とアルミニウムシリコン(Al−Si)膜とバリア膜の積層構造、バリア膜とアルミニウムシリコン(Al−Si)膜と窒化チタン膜とバリア膜の積層構造を採用するとよい。なお、バリア膜とは、チタン、チタンの窒化物、モリブデン、又はモリブデンの窒化物からなる薄膜に相当する。アルミニウムやアルミニウムシリコンは抵抗値が低く、安価であるため、導電膜1313を形成する材料として最適である。また、上層と下層のバリア層を設けると、アルミニウムやアルミニウムシリコンのヒロックの発生を防止することができる。また、還元性の高い元素であるチタンからなるバリア膜を形成すると、結晶質半導体膜上に薄い自然酸化膜ができていたとしても、この自然酸化膜を還元し、結晶質半導体膜と良好なコンタクトをとることができる。
次に、導電膜1313を覆うように、絶縁膜1314を形成し、当該絶縁膜1314上に、薄膜トランジスタ1300aのソース電極又はドレイン電極を形成する導電膜1313と電気的に接続する導電膜1316を形成する。導電膜1316は、上述した導電膜1313で示したいずれかの材料を用いて形成することができる。
続いて、導電膜1316にアンテナとして機能する導電膜1317が電気的に接続されるように形成する(図8(B)参照)。
絶縁膜1314は、CVD法やスパッタ法等により、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等の酸素または窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、ベンゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂等のシロキサン材料からなる単層または積層構造で設けることができる。
導電膜1317は、CVD法、スパッタリング法、スクリーン印刷やグラビア印刷等の印刷法、液滴吐出法、ディスペンサ法、メッキ法等を用いて、導電性材料により形成する。導電性材料は、アルミニウム(Al)、チタン(Ti)、銀(Ag)、銅(Cu)、金(Au)、白金(Pt)ニッケル(Ni)、パラジウム(Pd)、タンタル(Ta)、モリブデン(Mo)から選択された元素、又はこれらの元素を主成分とする合金材料若しくは化合物材料で、単層構造又は積層構造で形成する。
例えば、スクリーン印刷法を用いてアンテナとして機能する導電膜1317を形成する場合には、粒径が数nmから数十μmの導電体粒子を有機樹脂に溶解または分散させた導電性のペーストを選択的に印刷することによって設けることができる。導電体粒子としては、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、白金(Pt)、パラジウム(Pd)、タンタル(Ta)、モリブデン(Mo)およびチタン(Ti)等のいずれか一つ以上の金属粒子やハロゲン化銀の微粒子、または分散性ナノ粒子を用いることができる。また、導電性ペーストに含まれる有機樹脂は、金属粒子のバインダー、溶媒、分散剤および被覆材として機能する有機樹脂から選ばれた一つまたは複数を用いることができる。代表的には、エポキシ樹脂、シリコーン樹脂等の有機樹脂が挙げられる。また、導電膜の形成にあたり、導電性のペーストを押し出した後に焼成することが好ましい。例えば、導電性のペーストの材料として、銀を主成分とする微粒子(例えば粒径1nm以上100nm以下)を用いる場合、150〜300℃の温度範囲で焼成することにより硬化させて導電膜を得ることができる。また、はんだや鉛フリーのはんだを主成分とする微粒子を用いてもよく、この場合は粒径20μm以下の微粒子を用いることが好ましい。はんだや鉛フリーのはんだは、低コストであるといった利点を有している。
次に、導電膜1317を覆うように絶縁膜1318を形成した後、薄膜トランジスタ1300a〜1300e、容量素子1300f、導電膜1317等を含む層(以下、「素子形成層1319」と記す)を基板1301から剥離する。ここでは、レーザー光(例えばUV光)を照射することによって、薄膜トランジスタ1300a〜1300e、容量素子1300fを避けた領域に開口部を形成後(図8(C)参照)、物理的な力を用いて基板1301から素子形成層1319を剥離することができる。なお、素子形成層1319を剥離する際に、水等の液体で濡らしながら行うことによって、静電気により素子形成層1319に設けられた薄膜トランジスタの破壊を防止することができる。また、素子形成層1319が剥離された基板1301を再利用することによって、コストの削減をすることができる。
絶縁膜1318は、CVD法やスパッタ法等により、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等の酸素または窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、ベンゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂等のシロキサン材料からなる単層または積層構造で設けることができる。
本実施の形態では、レーザー光の照射により素子形成層1319に開口部を形成した後に、当該素子形成層1319の一方の面(絶縁膜1318の露出した面)に第1のシート材1320を貼り合わせた後、基板1301から素子形成層1319を剥離する(図9(A)参照)。
次に、素子形成層1319の他方の面(剥離により露出した面)に、第2のシート材1321を貼り合わせた後、加熱処理と加圧処理の一方又は両方を行って第2のシート材1321を貼り合わせる(図9(B)参照)。第1のシート材1320、第2のシート材1321として、ホットメルトフィルム等を用いることができる。
また、第1のシート材1320、第2のシート材1321として、静電気等を防止する帯電防止対策を施したフィルム(以下、帯電防止フィルムと記す)を用いることもできる。帯電防止フィルムとしては、帯電防止可能な材料を樹脂中に分散させたフィルム、及び帯電防止可能な材料が貼り付けられたフィルム等が挙げられる。帯電防止可能な材料が設けられたフィルムは、片面に帯電防止可能な材料を設けたフィルムであってもよいし、両面に帯電防止可能な材料を設けたフィルムであってもよい。さらに、片面に帯電防止可能な材料が設けられたフィルムは、帯電防止可能な材料が設けられた面をフィルムの内側になるように層に貼り付けてもよいし、フィルムの外側になるように貼り付けてもよい。なお、帯電防止可能な材料はフィルムの全面、あるいは一部に設けてあればよい。ここでの帯電防止可能な材料としては、金属、インジウムと錫の酸化物(ITO)、両性界面活性剤や陽イオン性界面活性剤や非イオン性界面活性剤等の界面活性剤用いることができる。また、他にも帯電防止材料として、側鎖にカルボキシル基および4級アンモニウム塩基をもつ架橋性共重合体高分子を含む樹脂材料等を用いることができる。これらの材料をフィルムに貼り付けたり、練り込んだり、塗布することによって帯電防止フィルムとすることができる。帯電防止フィルムで封止を行うことによって、商品として取り扱う際に、外部からの静電気等によって半導体素子に悪影響が及ぶことを抑制することができる。
なお、本実施の形態で示した半導体装置においてトランジスタの構成は、様々な形態をとることができる。本実施の形態で示した特定の構成に限定されない。例えば、ゲート電極が2個以上になっているマルチゲート構造を用いてもよい。マルチゲート構造にすると、チャネル領域が直列に接続されるような構成となるため、複数のトランジスタが直列に接続されたような構成となる。マルチゲート構造にすることにより、オフ電流を低減し、トランジスタの耐圧を向上させて信頼性を良くし、飽和領域で動作する時に、ドレインとソース間電圧が変化しても、ドレインとソース間電流があまり変化せず、フラットな特性にすることなどができる。また、チャネルの上下にゲート電極が配置されている構造でもよい。チャネルの上下にゲート電極が配置されている構造にすることにより、チャネル領域が増えるため、電流値を大きくし、空乏層ができやすくなってS値をよくすることができる。チャネルの上下にゲート電極が配置されると、複数のトランジスタが並列に接続されたような構成となる。
また、チャネルの上にゲート電極が配置されている構造でもよいし、チャネルの下にゲート電極が配置されている構造でもよいし、正スタガ構造であってもよいし、逆スタガ構造でもよい。また、チャネル領域が複数の領域に分かれていてもよいし、複数のチャネル領域が並列に接続されていてもよいし、直列に接続されていてもよい。また、チャネル(もしくはその一部)にソース電極やドレイン電極が重なっていてもよい。チャネル(もしくはその一部)にソース電極やドレイン電極が重なっている構造にすることにより、チャネルの一部に電荷がたまって、動作が不安定になることを防ぐことができる。また、LDD領域があってもよい。LDD領域を設けることにより、オフ電流を低減し、トランジスタの耐圧を向上させて信頼性を良くし、飽和領域で動作する時に、ドレインとソース間電圧が変化しても、ドレインとソース間電流があまり変化せず、フラットな特性にすることができる。
なお、本実施の形態の半導体装置の作製方法は、本明細書に記載した他の実施の形態の半導体装置に適用することができる。
(実施の形態6)
本実施の形態では、上記実施の形態5とは異なる半導体装置の作製方法に関して、図面を参照して説明する。本実施の形態においては、半導体装置のSRAMを具備するロジック部、アンテナ回路等を有するアナログ部等の回路に含まれる素子を同一の半導体基板上に設ける場合について説明する。また、蓄電手段を小型の二次電池を用いた例について説明する。もちろん、二次電池の代わりにコンデンサー等で設けた構成とすることも可能である。
まず、半導体基板2300に素子を分離した領域2304、2306(以下、領域2304、2306とも記す)を形成する(図10(A)参照)。半導体基板2300に設けられた領域2304、2306は、それぞれ絶縁膜2302(フィールド酸化膜ともいう)によって分離されている。また、ここでは、半導体基板2300としてn型の導電型を有する単結晶Si基板を用い、半導体基板2300の領域2306にpウェル2307を設けた例を示している。
また、半導体基板2300は、半導体であれば特に限定されず用いることができる。例えば、n型又はp型の導電型を有する単結晶Si基板、化合物半導体基板(GaAs基板、InP基板、GaN基板、SiC基板、サファイア基板、ZnSe基板等)、貼り合わせ法またはSIMOX(Separation by Implanted Oxygen)法を用いて作製されたSOI(Silicon on Insulator)基板等を用いることができる。
素子分離領域2304、2306は、選択酸化法(LOCOS(Local Oxidation of Silicon)法)又はトレンチ分離法等を適宜用いることができる。
また、半導体基板2300の領域2306に形成されたpウェルは、半導体基板2300にp型の導電型を有する不純物元素を選択的に導入することによって形成することができる。p型を示す不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。
なお、本実施の形態では、半導体基板2300としてn型の導電型を有する半導体基板を用いているため、領域2304には不純物元素の導入を行っていないが、n型を示す不純物元素を導入することにより領域2304にnウェルを形成してもよい。n型を示す不純物元素としては、リン(P)やヒ素(As)等を用いることができる。一方、p型の導電型を有する半導体基板を用いる場合には、領域2304にn型を示す不純物元素を導入してnウェルを形成し、領域2306には不純物元素の導入を行わない構成としてもよい。
次に、領域2304、2306を覆うように絶縁膜2332、2334をそれぞれ形成する(図10(B)参照)。
絶縁膜2332、2334は、例えば、熱処理を行い半導体基板2300に設けられた領域2304、2306の表面を酸化させることにより酸化シリコン膜で絶縁膜2332、2334を形成することができる。また、熱酸化法により酸化シリコン膜を形成した後に、窒化処理を行うことによって酸化シリコン膜の表面を窒化させることにより、酸化シリコン膜と酸素と窒素を有する膜(酸窒化シリコン膜)との積層構造で形成してもよい。
他にも、上述したように、プラズマ処理を用いて絶縁膜2332、2334を形成してもよい。例えば、半導体基板2300に設けられた領域2304、2306の表面に高密度プラズマ処理により酸化処理又は窒化処理を行うことにより、絶縁膜2332、2334として酸化シリコン膜又は窒化シリコン膜で形成することができる。また、高密度プラズマ処理により領域2304、2306の表面に酸化処理を行った後に、再度高密度プラズマ処理を行うことによって窒化処理を行ってもよい。この場合、領域2304、2306の表面に接して酸化シリコン膜が形成され、当該酸化シリコン膜上に(酸窒化シリコン膜)が形成され、絶縁膜2332、2334は酸化シリコン膜と酸窒化シリコン膜とが積層された膜となる。また、熱酸化法により領域2304、2306の表面に酸化シリコン膜を形成した後に高密度プラズマ処理により酸化処理又は窒化処理を行ってもよい。
また、半導体基板2300の領域2304、2306に形成された絶縁膜2332、2334は、後に完成するトランジスタにおいてゲート絶縁膜として機能する。
次に、領域2304、2306の上方に形成された絶縁膜2332、2334を覆うように導電膜を形成する(図10(C)参照)。ここでは、導電膜として、導電膜2336と導電膜2338を順に積層して形成した例を示している。もちろん、導電膜は、単層又は3層以上の積層構造で形成してもよい。
導電膜2336、2338としては、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等から選択された元素またはこれらの元素を主成分とする合金材料若しくは化合物材料で形成することができる。また、これらの元素を窒化した金属窒化膜で形成することもできる。他にも、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体材料により形成することもできる。
ここでは、導電膜2336として窒化タンタルを用いて形成し、その上に導電膜2338としてタングステンを用いて積層構造で設ける。また、他にも、導電膜2336として、窒化タングステン、窒化モリブデン又は窒化チタンから選ばれた単層又は積層膜を用い、導電膜2338として、タンタル、モリブデン、チタンから選ばれた単層又は積層膜を用いることができる。
次に、積層して設けられた導電膜2336、2338を選択的にエッチングして除去することによって、領域2304、2306の上方の一部に導電膜2336、2338を残存させ、それぞれゲート電極2340、2342を形成する(図11(A)参照)。
次に、領域2304を覆うようにレジストマスク2348を選択的に形成し、当該レジストマスク2348、ゲート電極2342をマスクとして領域2306に不純物元素を導入することによって不純物領域を形成する(図11(B)参照)。不純物元素としては、n型を付与する不純物元素又はp型を付与する不純物元素を用いる。n型を示す不純物元素としては、リン(P)やヒ素(As)等を用いることができる。p型を示す不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。ここでは、不純物元素として、リン(P)を用いる。
図11(B)においては、不純物元素を導入することによって、領域2306にソース領域又はドレイン領域を形成する不純物領域2352とチャネル形成領域2350が形成される。
次に、領域2306を覆うようにレジストマスク2366を選択的に形成し、当該レジストマスク2366、ゲート電極2340をマスクとして領域2304に不純物元素を導入することによって不純物領域を形成する(図11(C)参照)。不純物元素としては、n型を付与する不純物元素又はp型を付与する不純物元素を用いる。n型を示す不純物元素としては、リン(P)やヒ素(As)等を用いることができる。p型を示す不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。ここでは、図11(C)で領域2306に導入した不純物元素と異なる導電型を有する不純物元素(例えば、ボロン(B))を導入する。その結果、領域2304にソース領域又はドレイン領域を形成する不純物領域2370とチャネル形成領域2368を形成される。
次に、絶縁膜2332、2334、ゲート電極2340、2342を覆うように第2の絶縁膜2372を形成し、当該第2の絶縁膜2372上に領域2304、2306にそれぞれ形成された不純物領域2352、2370と電気的に接続する配線2374を形成する(図12(A)参照)。
第2の絶縁膜2372は、CVD法やスパッタ法等により、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等の酸素または窒素を有する絶縁膜やDLC(ダイヤモンドライクカーボン)等の炭素を含む膜、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノール、ベンゾシクロブテン、アクリル等の有機材料またはシロキサン樹脂等のシロキサン材料からなる単層または積層構造で設けることができる。なお、シロキサン材料とは、Si−O−Si結合を含む材料に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いることもできる。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
配線2374は、CVD法やスパッタリング法等により、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、ニッケル(Ni)、白金(Pt)、銅(Cu)、金(Au)、銀(Ag)、マンガン(Mn)、ネオジム(Nd)、炭素(C)、シリコン(Si)から選択された元素、又はこれらの元素を主成分とする合金材料若しくは化合物材料で、単層又は積層で形成する。アルミニウムを主成分とする合金材料とは、例えば、アルミニウムを主成分としニッケルを含む材料、又は、アルミニウムを主成分とし、ニッケルと、炭素と珪素の一方又は両方とを含む合金材料に相当する。配線2374は、例えば、バリア膜とアルミニウムシリコン(Al−Si)膜とバリア膜の積層構造、バリア膜とアルミニウムシリコン(Al−Si)膜と窒化チタン膜とバリア膜の積層構造を採用するとよい。なお、バリア膜とは、チタン、チタンの窒化物、モリブデン、又はモリブデンの窒化物からなる薄膜に相当する。アルミニウムやアルミニウムシリコンは抵抗値が低く、安価であるため、配線2374を形成する材料として最適である。また、上層と下層のバリア層を設けると、アルミニウムやアルミニウムシリコンのヒロックの発生を防止することができる。また、還元性の高い元素であるチタンからなるバリア膜を形成すると、結晶質半導体膜上に薄い自然酸化膜ができていたとしても、この自然酸化膜を還元し、結晶質半導体膜と良好なコンタクトをとることができる。
なお本発明のトランジスタを構成するトランジスタの構造は図示した構造に限定されるものではないことを付記する。例えば、逆スタガ構造、フィンFET構造等の構造のトランジスタの構造を取り得る。フィンFET構造であることでトランジスタサイズの微細化に伴う短チャネル効果を抑制することができるため好適である。
本実施の形態において二次電池は、トランジスタに接続された配線2374上に積層して形成される。二次電池は、集電体薄膜、負極活物質層、固体電解質層、正極活物質層、集電体薄膜の薄膜層が順次積層される(図12(B))。そのため、二次電池の集電体薄膜と兼用される配線2374の材料は、負極活物質と密着性がよく、抵抗が小さいことが求められ、特にアルミニウム、銅、ニッケル、バナジウムなどが好適である。
薄膜二次電池の構成について次いで詳述すると、配線2374上に負極活物質層2391を成膜する。一般には酸化バナジウム(V)などが用いられる。次に負極活物質層2391上に固体電解質層2392を成膜する。一般にはリン酸リチウム(LiPO)などが用いられる。次に固体電解質層2392上に正極活物質層2393を成膜する。一般にはマンガン酸リチウム(LiMn)などが用いられる。コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)を用いても良い。次に正極活物質層2393上に電極となる集電体薄膜2394を成膜する。集電体薄膜2394は正極活物質層2393と密着性がよく、抵抗が小さいことが求められ、アルミニウム、銅、ニッケル、バナジウムなどを用いることができる。
上述の負極活物質層2391、固体電解質層2392、正極活物質層2393、集電体薄膜2394の各薄膜層はスパッタ技術を用いて形成しても良いし、蒸着技術を用いても良い。また、それぞれの層の厚さは0.1μm〜3μmが望ましい。
次に樹脂を塗布し、層間膜2396を形成する。そして層間膜2396をエッチングしコンタクトホールを形成する。層間膜は樹脂には限定せず、CVD酸化膜など他の膜であっても良いが、平坦性の観点から樹脂であることが望ましい。また、感光性樹脂を用いて、エッチングを用いずにコンタクトホールを形成しても良い。次に層間膜2396上に配線層2395を形成し、配線2397と接続することにより、二次電池の電気接続を確保する。
以上のような構成にすることにより、本発明の半導体装置においては、単結晶基板上にトランジスタを形成し、その上に薄膜二次電池を有する構成を取り得る。従って本発明の半導体装置においては、極薄化、小型化を達成することができる。
なお、本実施の形態の半導体装置の作製方法は、本明細書に記載した他の実施の形態の半導体装置に適用することができる。
(実施の形態7)
本実施の形態では、上記実施の形態で示した半導体メモリ装置が設けられ無線で情報の送受信が可能な半導体装置の利用形態の一例であるRFIDタグの用途について説明する。RFIDタグは、例えば、紙幣、硬貨、有価証券類、無記名債券類、証書類(運転免許証や住民票等)、包装用容器類(包装紙やボトル等)、記録媒体(DVDソフトやビデオテープ等)、乗物類(自転車等)、身の回り品(鞄や眼鏡等)、食品類、植物類、動物類、人体、衣類、生活用品類、電子機器等の商品や荷物の荷札等の物品に設けることができ、いわゆるIDラベル、IDタグ、IDカードとして使用することができる。電子機器とは、液晶表示装置、EL表示装置、テレビジョン装置(単にテレビ、テレビ受像機、テレビジョン受像機とも呼ぶ)及び携帯電話等を指す。以下に、図13を参照して、本発明の応用例、及びそれらを付した商品の一例について説明する。
図13(A)は、本発明に係る半導体装置の完成品の状態の一例である。ラベル台紙3001(セパレート紙)上に、半導体装置3002を内蔵した複数のIDラベル3003が形成されている。IDラベル3003は、ボックス3004内に収納されている。また、IDラベル3003上には、その商品や役務に関する情報(商品名、ブランド、商標、商標権者、販売者、製造者等)が記されている。一方、内蔵されている半導体装置3002には、その商品(又は商品の種類)固有のIDナンバーが付されており、偽造や、商標権、特許権等の知的財産権侵害、不正競争等の不法行為を容易に把握することができる。また、半導体装置3002内には、商品の容器やラベルに明記しきれない多大な情報、例えば、商品の産地、販売地、品質、原材料、効能、用途、数量、形状、価格、生産方法、使用方法、生産時期、使用時期、賞味期限、取扱説明、商品に関する知的財産情報等を入力しておくことができ、取引者や消費者は、簡易なリーダによって、それらの情報にアクセスすることができる。また、生産者側からは容易に書換え、消去等も可能であるが、取引者、消費者側からは書換え、消去等ができない仕組みになっている。なお、半導体装置に表示部を設けこれらの情報を表示できる構成としてもよい。
図13(B)は、半導体装置3012を内蔵したラベル状の半導体装置3011を示している。半導体装置3011を商品に備え付けることにより、商品管理が容易になる。例えば、商品が盗難された場合に、商品の経路を辿ることによって、その犯人を迅速に把握することができる。このように、半導体装置を備えることにより、所謂トレーサビリティに優れた商品を流通させることができる。
図13(C)は、半導体装置3022を内包したIDカード3021の完成品の状態の一例である。上記IDカード3021としては、キャッシュカード、クレジットカード、プリペイドカード、電子乗車券、電子マネー、テレフォンカード、会員カード等のあらゆるカード類が含まれる。また、IDカード3021の表面に表示部を設け様々な情報を表示させる構成としてもよい。
図13(D)は、無記名債券3031の完成品の状態を示している。無記名債券3031には、半導体装置3032が埋め込まれており、その周囲は樹脂によって成形され、半導体装置を保護している。ここで、該樹脂中にはフィラーが充填された構成となっている。無記名債券3031は、本発明に係る半導体装置と同じ要領で作成することができる。なお、上記無記名債券類には、切手、切符、チケット、入場券、商品券、図書券、文具券、ビール券、おこめ券、各種ギフト券、各種サービス券等が含まれるが、勿論これらに限定されるものではない。また、紙幣、硬貨、有価証券類、無記名債券類、証書類等に本発明の半導体装置3032を設けることにより、認証機能を設けることができ、この認証機能を活用すれば、偽造を防止することができる。
図13(E)は半導体装置3042を内包したIDラベル3041を貼付した書籍3043を示している。本発明の半導体装置3042は、表面に貼ったり、埋め込んだりして、物品に固定される。図13(E)に示すように、本なら紙に埋め込んだり、有機樹脂からなるパッケージなら当該有機樹脂に埋め込んだりして、各物品に固定される。本発明の半導体装置3042は、小型、薄型、軽量を実現するため、物品に固定した後も、その物品自体のデザイン性を損なうことがない。
また、ここでは図示しないが、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、電子機器等に本発明の半導体装置を設けることにより、検品システム等のシステムの効率化を図ることができる。また乗物類に半導体装置を設けることにより、偽造や盗難を防止することができる。また、動物等の生き物に埋め込むことによって、個々の生き物の識別を容易に行うことができる。例えば、家畜等の生き物に無線タグを埋め込むことによって、生まれた年や性別または種類等を容易に識別することが可能となる。
図14(A)、(B)は、本発明に係る半導体装置2501を含んだIDラベル2502を貼付した書籍2701、及びペットボトル2702を示している。本発明に用いられる半導体装置2501は非常に薄いため、上記書籍等の物品にIDラベル2502を搭載しても、機能、デザイン性を損ねることがない。更に、非接触型薄膜集積回路装置の場合、アンテナとチップを一体形成でき、曲面を有する商品に直接転写することが容易になる。
図14(C)は、果物類2705の生鮮食品に、直接半導体装置2501を含んだIDラベル2502を貼り付けた状態を示している。また、図14(D)は、包装用フィルム類によって、野菜類2704の生鮮食品を包装した一例を示している。また、なお、半導体装置2501を商品に貼り付けた場合、剥がされる可能性があるが、包装用フィルム類によって商品をくるんだ場合、包装用フィルム2703類を剥がすのは困難であるため、防犯対策上多少のメリットはある。なお、上述した商品以外にも、あらゆる商品に、本発明に係る無線蓄電装置を利用することができる。
本実施の形態で示した半導体装置の構成は、本明細書の他の実施の形態に示した構成と自由に組み合わせて実施することができる。
本発明の半導体メモリ装置の一例を示す図。 本発明の半導体メモリ装置のSRAMセルの一例を示す図。 本発明の半導体メモリ装置の一例を示す図。 本発明の半導体メモリ装置を具備する半導体装置の一例を示す図。 本発明の半導体メモリ装置を具備する半導体装置の一例を示す図。 本発明の半導体メモリ装置のSRAMセルの一例を示す図。 本発明の半導体装置の作製方法の一例を示す図。 本発明の半導体装置の作製方法の一例を示す図。 本発明の半導体装置の作製方法の一例を示す図。 本発明の半導体装置の作製方法の一例を示す図。 本発明の半導体装置の作製方法の一例を示す図。 本発明の半導体装置の作製方法の一例を示す図。 本発明の半導体装置の使用形態の一例を示す図。 本発明の半導体装置の使用形態の一例を示す図。
符号の説明
101 ノード
102 蓄電手段
103 ワード線
104 データ線
105 データ線
106 トランジスタ
107 トランジスタ
108 トランジスタ
109 トランジスタ
110 トランジスタ
111 トランジスタ
112 ノード
113 ノード
118 コード抽出回路
120 メモリセルアレイ
121 SRAMセル
122 デコーダ
123 回路
200 半導体装置
202 CPU
203 マスクROM
204 SRAM
205 コントローラ
206 ロジック部
207 アンテナ
208 共振回路
209 電源回路
210 リセット回路
211 クロック生成回路
212 復調回路
213 変調回路
214 電源管理回路
215 アナログ部
216 CPUIF
217 制御レジスタ
218 コード抽出回路
219 符号化回路
220 受信信号
221 送信信号
222 受信データ
223 送信データ
224 アンテナ回路
226 電源部
243 p
251 ノード
252 ダイオード素子

Claims (5)

  1. 第1の回路と、第2の回路と、SRAMと、を有し、
    前記SRAMは、第1の配線、第2の配線、及び第3の配線と電気的に接続され、
    前記SRAMは、電力を充電することができる機能を有する手段と電気的に接続され、
    前記第1の回路は、前記第1の配線と電気的に接続され、
    前記第2の回路は、前記第2の配線及び前記第3の配線と電気的に接続され、
    前記第1の回路は、前記SRAMを選択するための信号を供給することができる機能を有し、
    前記第2の回路は、前記SRAMの書き込み又は読み出しを行うことができる機能を有し、
    前記SRAMの書き込み又は読み出しが行われる際に、前記手段への充電が行われることを特徴とする半導体メモリ装置。
  2. 第1の回路と、第2の回路と、SRAMと、を有し、
    前記SRAMは、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第5のトランジスタと、第6のトランジスタと、を有し、
    前記第1のトランジスタのゲートは、第1の配線と電気的に接続され、
    前記第1のトランジスタのソース又はドレインの一方は、第2の配線と電気的に接続され、
    前記第1のトランジスタのソース又はドレインの他方は、前記第3のトランジスタのゲート、前記第4のトランジスタのゲート、前記第5のトランジスタのソース又はドレインの一方、及び前記第6のトランジスタのソース又はドレインの一方と電気的に接続され、
    前記第2のトランジスタのゲートは、前記第1の配線と電気的に接続され、
    前記第2のトランジスタのソース又はドレインの一方は、第3の配線と電気的に接続され、
    前記第2のトランジスタのソース又はドレインの他方は、前記第3のトランジスタのソース又はドレインの一方、前記第4のトランジスタのソース又はドレインの一方、前記第5のトランジスタのゲート、及び前記第6のトランジスタのゲートと電気的に接続され、
    前記第3のトランジスタのソース又はドレインの他方は、第4の配線と電気的に接続され、
    前記第4のトランジスタのソース又はドレインの他方は、前記第6のトランジスタのソース又はドレインの他方、及び電力を充電することができる機能を有する手段と電気的に接続され、
    前記第5のトランジスタのソース又はドレインの他方は、第5の配線と電気的に接続され、
    前記第1の回路は、前記第1の配線と電気的に接続され、
    前記第2の回路は、前記第2の配線、及び前記第3の配線と電気的に接続され、
    前記第1の回路は、前記SRAMを選択するための信号を供給することができる機能を有し、
    前記第2の回路は、前記SRAMの書き込み又は読み出しを行うことができる機能を有し、
    前記SRAMの書き込み又は読み出しが行われる際に、前記手段への充電が行われることを特徴とする半導体メモリ装置。
  3. 請求項1又は2において、
    前記手段は、コンデンサー、又は二次電池であることを特徴とする半導体メモリ装置。
  4. 請求項1乃至3のいずれか一項に記載の半導体メモリ装置と、
    通信信号を受信することができる機能を有する第3の回路と、
    前記第3の回路からの電力を整流して、前記手段に電力を供給することができる機能を有する第4の回路と、を有することを特徴とする半導体装置。
  5. 請求項4において、
    前記第4の回路は、ダイオード素子を介して前記手段と電気的に接続されていることを特徴とする半導体装置。
JP2007320682A 2006-12-26 2007-12-12 半導体メモリ装置及び半導体装置 Expired - Fee Related JP5161552B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320682A JP5161552B2 (ja) 2006-12-26 2007-12-12 半導体メモリ装置及び半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006349377 2006-12-26
JP2006349377 2006-12-26
JP2007320682A JP5161552B2 (ja) 2006-12-26 2007-12-12 半導体メモリ装置及び半導体装置

Publications (3)

Publication Number Publication Date
JP2008181635A JP2008181635A (ja) 2008-08-07
JP2008181635A5 JP2008181635A5 (ja) 2011-01-20
JP5161552B2 true JP5161552B2 (ja) 2013-03-13

Family

ID=39725391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320682A Expired - Fee Related JP5161552B2 (ja) 2006-12-26 2007-12-12 半導体メモリ装置及び半導体装置

Country Status (3)

Country Link
US (1) US8134862B1 (ja)
JP (1) JP5161552B2 (ja)
KR (1) KR101447051B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI525614B (zh) 2011-01-05 2016-03-11 半導體能源研究所股份有限公司 儲存元件、儲存裝置、及信號處理電路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699A (en) * 1979-06-14 1981-01-06 Mitsubishi Electric Corp Semiconductor memory unit
JPH09186252A (ja) 1996-01-08 1997-07-15 Nkk Corp ダイナミックsram
JPH09306174A (ja) * 1996-05-16 1997-11-28 Nkk Corp ダイナミックsram
TWI273539B (en) 2001-11-29 2007-02-11 Semiconductor Energy Lab Display device and display system using the same
JP3913534B2 (ja) 2001-11-30 2007-05-09 株式会社半導体エネルギー研究所 表示装置及びこれを用いた表示システム
JP2004063003A (ja) * 2002-07-29 2004-02-26 Pioneer Electronic Corp ピックアップ送り機構およびこれを備えたディスク装置
KR100976475B1 (ko) * 2003-08-19 2010-08-18 엘지전자 주식회사 서비스 품질 (QoS) 측정보고 전송 방법 및 수신 방법
JP2005202505A (ja) * 2004-01-13 2005-07-28 Sharp Corp 情報送信装置
US7257017B2 (en) * 2004-05-28 2007-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. SRAM cell for soft-error rate reduction and cell stability improvement
KR101299932B1 (ko) 2006-03-10 2013-08-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101362954B1 (ko) 2006-03-10 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작방법
WO2007108371A1 (en) 2006-03-15 2007-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
US8134862B1 (en) 2012-03-13
JP2008181635A (ja) 2008-08-07
KR101447051B1 (ko) 2014-10-08
US20120069637A1 (en) 2012-03-22
KR20080060156A (ko) 2008-07-01

Similar Documents

Publication Publication Date Title
JP5325415B2 (ja) 半導体装置
US10256669B2 (en) Semiconductor device and power receiving device
US8232880B2 (en) Semiconductor device
US8030885B2 (en) Semiconductor device, communication system, and method of charging the semiconductor device
JP5210613B2 (ja) 半導体装置
US8816484B2 (en) Semiconductor device
JP5147345B2 (ja) 半導体装置
US7663447B2 (en) Oscillator circuit having a stable output signal resistant to power supply voltage fluctuation
JP4906093B2 (ja) 半導体装置
JP5222545B2 (ja) 送受信回路及び当該送受信回路を具備する半導体装置
JP5279256B2 (ja) 半導体装置
JP5438894B2 (ja) 半導体装置及び電子機器
JP5346459B2 (ja) 発振回路およびそれを備えた半導体装置
JP5161552B2 (ja) 半導体メモリ装置及び半導体装置
JP5334381B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5161552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees