JP5140109B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP5140109B2
JP5140109B2 JP2010096882A JP2010096882A JP5140109B2 JP 5140109 B2 JP5140109 B2 JP 5140109B2 JP 2010096882 A JP2010096882 A JP 2010096882A JP 2010096882 A JP2010096882 A JP 2010096882A JP 5140109 B2 JP5140109 B2 JP 5140109B2
Authority
JP
Japan
Prior art keywords
signal
motor current
current
motor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010096882A
Other languages
English (en)
Other versions
JP2011225108A (ja
Inventor
尚大 角田
有史 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010096882A priority Critical patent/JP5140109B2/ja
Publication of JP2011225108A publication Critical patent/JP2011225108A/ja
Application granted granted Critical
Publication of JP5140109B2 publication Critical patent/JP5140109B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Direct Current Motors (AREA)

Description

本発明は、電動パワーステアリング装置に関するものである。
電動パワーステアリング装置は、モータの駆動力を補助力として用いることで操舵力を軽減するものである。そのため、制御装置の異常により、異常な補助力が発生するとセルフステアとなり、安全上好ましくない。
この様な問題に対し、監視装置を設け制御装置が異常動作をしても安全性を確保する為の発明がなされている。
例えば、特許文献1では、操舵トルクを検出し、操舵トルクと逆方向のモータ駆動を制限する監視装置を設けることで安全性を確保している。
また、特許文献2では、パワーステアリング制御を行う主演算手段と、それを監視する副演算手段を設け、主演算手段が異常動作しても、副演算手段によってモータの駆動を制限することで安全性を確保している。
特許第3364135号公報 特開2009−132281号公報
しかしながら、特許文献1の様に構成すると、安全性は確保できるが、オートパーキングやレーンキーピングなど車載LAN経由で入力される情報に基づいてステアリングの制御を行う場合、監視装置によってモータ制御が制限され意図した制御が出来ない、という問題がある。
また、特許文献2は、前述の問題を解決するための発明であるが、車載LANを副制御装置(監視装置)に入力させるためのインターフェース回路を設ける必要があるなどコスト面での問題がある。
本発明は、上記の様な問題を解決するためのもので、車載LAN経由で入力される情報に基づくパワーステアリング制御を安価な装置で実現する電動パワーステアリング装置を提供することを目的とするものである。
本発明に係わる電動パワーステアリング装置は、操舵補助力を発生するモータと、モータに流れるモータ電流を検出しモータ電流信号を出力する電流検出手段と、ハンドルの操舵トルクを検出しトルク信号を出力するトルク検出手段と、少なくともトルク信号に基づいてモータに対するモータ電流指示値を決定するモータ指示電流決定手段、及びモータ電流指示値に従ってモータ電流を制御するモータ電流制御手段を含む制御装置と、トルク信号とモータ電流信号から制御装置の異常を検出し、異常を検出した場合にモータの駆動を制限する監視装置とを備え、監視装置は、異常と判断する第1の領域と、モータ電流信号の増加率に基づき異常、正常を判断する第2の領域と、正常と判断する第3の領域とを持ち、トルク信号とモータ電流信号に基づいて第1乃至3の領域判別を行うものである。
本発明によれば、オートパーキング制御やレーンキーピング制御など車載LAN経由の指示に従った制御や、パワーステアリングの応答性や安定性を改善する制御を備えたパワーステアリング制御において、正常動作時の制御を制限することなく、且つ異常時にはモータ電流制御を制限し安全を確保することが可能である。
本発明の実施の形態1に係わる電動パワーステアリング装置の基本構成を示すブロック図である。 実施の形態1におけるEPS ECUの制御ブロック図である。 実施の形態1におけるメインマイコン及びPI制御の制御ブロック図である。 実施の形態1における電動パワーステアリングの制御特性を示す図である。 実施の形態1におけるサブマイコンの制御ブロック図である。 実施の形態1においてサブマイコンが判定する第1の領域を示す図である。 実施の形態1においてサブマイコンが判定する第2の領域を示す図である。 実施の形態1における第2の領域判定処理部を示すフローチャートである。 実施の形態1においてサブマイコンが判定する第1,2,3の領域を示す図である。 実施の形態1における電動パワーステアリング正常時の制御特性軌跡を示す図である。 実施の形態1におけるメインマイコン、オートパーキング異常時の制御特性軌跡を示す図である。 本発明の実施の形態2におけるサブマイコンの制御ブロック図である。 実施の形態2における第2の領域判定部の処理を示すフローチャートである。 実施の形態2において応答性改善制御を付加した時の電動パワーステアリングの制御特性軌跡を示す図である。 実施の形態2において安全性改善制御を付加した時の電動パワーステアリングの制御特性軌跡を示す図である。 本発明の実施の形態3における第2の領域判定部の処理を示すフローチャートである。 本発明の実施の形態4におけるサブマイコンの制御ブロック図である。 実施の形態4における第2の領域判定部の処理を示すフローチャートである。 実施の形態4における電流しきい値減少係数の設定を示す図である。 実施の形態4における電流しきい値の変化を示す図である。 本発明の実施の形態5における第2の領域判定部の処理を示すフローチャートである。 実施の形態5における電流しきい値減少係数の設定を示す図である。 本発明の実施の形態6,8におけるメインマイコンの制御ブロック図である。 実施の形態6における右電流制限演算部の処理を示すフローチャートである。 実施の形態6における左電流制限演算部の処理を示すフローチャートである。 実施の形態6における電流制限処理部のブロック図である。 本発明の実施の形態7におけるメインマイコンの制御ブロック図である。 実施の形態7における右電流制限演算部の処理を示すフローチャートである。 実施の形態7における左電流制限演算部の処理を示すフローチャートである。 本発明の実施の形態8における右電流制限演算部の処理を示すフローチャートである。 実施の形態8における左電流制限演算部の処理を示すフローチャートである。 実施の形態8における電流しきい値減少係数の設定を示す図である。
実施の形態1.
図1に電動パワーステアリング装置の構成を示す。
同図で1はハンドル、2はステアリングシャフト、3は操舵トルクを検出するトルクセンサ、4は車速センサ、5は電動パワーステアリングの制御を行うEPS ECU、6は補助操舵力を発生するモータ、7はモータ6からの補助力をステアリングシャフト2に伝えるギヤ、8はステアリングシャフト2からの回転力を前輪に伝えるためのラック&ピニオン機構、9は車輌の前輪、10はEPS ECU5に電力を供給するバッテリ、11はオートパーキング制御を行うためにEPS ECUに指令信号を送るAP(オートパーキング)制御ECUである。
次に、EPS ECU5の内部について図2を用いて説明する。同図で同一番号は図1と同じであるので説明は省略し、EPS ECU5の内部について説明する。
501はトルクセンサ3からの信号を入力するトルクセンサI/F(インターフェース)回路、502は車速センサ4やAP制御ECU11からCAN経由で情報を入力するI/F回路、503はパワーステアリングの制御を行うようにプログラムされたメインマイコン、504はメインマイコンの出力Drymと後述するサブマイコンの出力DrySの両方がリレーONを出力したときリレーをONさせるためのAND回路、505は後述するリレーを駆動するリレー駆動回路、506は異常時にモータ電流を遮断するリレー、507はモータ6に流れる電流を検出するシャント抵抗、508はシャント抵抗507の両端に発生する電位差を増幅しメインマイコン503に入力する電流検出回路、509は前記メインマイコンと後述するサブマイコンの両方がモータONを出力したときモータを駆動させるためのAND回路、510は後述するモータ駆動回路を駆動するFET駆動回路、511はモータ6の電流を制御するためにトランジスタをブリッジ構成したモータ駆動回路、512はトルクセンサI/F回路501からの信号TRQと電流検出回路508からの信号Imdを用いて、メインマイコン503の異常を検出し異常時はモータ電流に制限をかける(モータOFF、リレーOFFする)サブマイコンである。
次に、メインマイコン503の動作について図3を用いて説明する。
図3(a)で、503aはCANバスから車速情報とオートパーキング制御信号を取り込み、各々車速信号Vsp1とオートパーキング制御信号APSigを得るメインマイコン503に内蔵されたCAN通信回路、503bはトルク信号入力I/F回路501から入力された信号TRQをA/D入力し右トルク信号をプラス、左トルク信号をマイナス値としてトルク信号TRQ1を生成するトルク入力処理部、503cはトルク信号TRQ1と車速信号Vsp1を元に、パワーステアリング指示電流ImtEPSを決定するEPS指示電流決定部、503dはオートパーキング制御信号APSigに基づきオートパーキング制御電流ImtAPを生成するAP制御部、503eはパワーステアリング指示電流ImtEPSとオートパーキング制御電流ImAPを加算しモータ電流指示値Imt1を生成する加算部、503fはモータ電流指示値Imt1と後述するモータ電流検出信号Imd1を比較し、モータ電流検出信号Imd1がモータ電流指示値Imt1と一致するようにフィードバック制御を行うモータ電流制御部で図3(b)に示す一般的なPI制御器であってモータ電流指令値DmtMを出力する。
503gはモータ電流検出回路508から入力された信号ImdをA/D変換し、右方向の電流をプラス、左方向の電流をマイナスとしてモータ電流検出信号Imd1を生成するモータ電流入力処理部である。
EPS指示電流決定部503cは、図4の様な特性を持っており、右方向に操舵すると、トルク信号TRQ1に応じて右方向の電流が、左方向に操舵した場合は左方向の電流が生成され、さらに車速信号Vsp1に応じて電流が変化する設定となっているので、車速に応じて最適なパワーステアリング制御を行うことが出来る。
次に、サブマイコン512の動作について図5を用いて説明する。
同図で512aはトルクセンサI/F回路501から入力された信号TRQを入力し右トルク信号をプラス、左トルク信号をマイナス値としてトルク信号TRQ2を生成するトルク入力処理部、512bはモータ電流検出回路508から入力された信号ImdをA/D変換し、右方向の電流をプラス、左方向の電流をマイナスとしてモータ電流信号Imd2を生成するモータ電流入力処理部、512cはモータ電流信号Imd2を微分しモータ電流変化率△Imd2を得る微分器、512dはトルク信号TRQ2とモータ電流信号Imd2から異常と判断する第1の領域に有るか否かを判定し条件を満たしている場合はF_A1=1を、満たしていない場合はF_A1=0を出力する第1の領域判定部、512eはトルク信号TRQ2とモータ電流信号Imd2とモータ電流変化率△Imd2から異常と判断する第2の領域に有るか否かを判定し条件を満たしている場合はF_A2=1を、満たしていない場合はF_A2=0を出力する第2の領域判定部、512fは前記第1の領域判定部の出力F_A1と第2の領域判定部の出力F_A2に対しOR処理を行うOR演算器、512gは前記OR演算器の出力F_S1が所定時間1(例えば50ms)を継続した場合出力F_S2を1に、それ以外は0を出力するタイマ1、512hはタイマ1の出力F_S2が0のとき出力DryS=1、F_S2が1のとき出力DryS=0を出力するリレー出力部、512iはタイマ1の出力F_S2が0のとき出力DmtS=1、F_S2が1のとき出力DmtS=0を出力するモータ出力部である。
次に、第1の領域判定部512dについて図6を用いて説明する。
同図で、21aはトルク信号TRQ2が右方向で第1の所定値Ta(例えば3Nm)以上、且つモータ電流信号Imd2が左方向の領域(Imd2<0)、21bはトルク信号が左方向で第1の所定値Ta以上(左トルク信号はマイナスで表すのでTRQ2≦-Ta)且つモータ電流信号Imd2が右方向の領域(Imd2>0)であり、21aと21bを合わせた領域が第1の領域である。第1の領域判定部512dは、トルク信号TRQ2とモータ電流信号Imd2がこの21aまたは21bの領域にあるとき、出力F_A1=1を出力し、それ以外ではF_A1=0を出力する。
次に、第2の領域判別部512eについて図7及び図8を用いて説明する。
図7(a)の22a1は、トルク信号TRQ2が右方向で第1の所定値Ta未満(TRQ2<Ta)且つ 電流Imd2が左方向で所定値Ia(例えば5A)以上(左電流はマイナスで表すのでImd2≦-Ia)の領域。
図7(b)の22a2は、トルク信号TRQ2が左方向で第2の所定値Tb(例えば1Nm)以下(左トルク信号はマイナスで表すのでTRQ2≧-Tb)且つ 電流Imd2が左方向で所定値Ia以上(Imd2≦-Ia)の領域である。
図7(a)の22b1と図7(b)の22b2は、各々22a1と22a2の対称の位置に存在する領域である。そして、図7(a)と図7(b)を重ね合わせたものが図7(c)である。
第2の領域判別部512eは、図8のフローチャートに示すように、トルク信号TRQ2とモータ電流信号Imd2が図7(c)の22aの範囲に有り、且つモータ電流変化率△Imd2が所定値△Imd2th(例えば20A/s)より大きい場合(マイナス方向に大きい場合なので△Imd2≦-△Imd2th)にF_A2=1を出力し(ステップS101,S102,S103)、また、トルク信号TRQ2とモータ電流信号Imd2が図7(c)の22bの範囲に有り、且つモータ電流変化率△Imd2が所定値△Imd2thより大きい場合(プラス方向なので△Imd2≧△Imd2th)にF_A2=1を出力し(ステップS105,S106,S103)、それ以外はF_A2=0を出力する(ステップS105,S106,S104)。
上述の第1の領域判定部の出力F_A1と第2の領域判定部の出力F_A2は、図5のOR演算部512fによって重ね合わされ、最終的には図9で示す状態となり、21が第1の領域、22が第2の領域、その他の部分23が第3の領域となる。第3の領域は正常判定の領域である。
本実施の形態1は、上述の様に構成しているので、以下の様に動作する。
先ず、パワーステアリングとして動作する場合について説明する。
ハンドル1を操舵すると、トルクセンサ3、トルク信号入力I/F回路501、トルク入力処理部503bによって、トルク信号TRQ1が得られる。
次に、EPS指示電流決定部503cによってパワーステアリング指示電流ImtEPSが決定される。具体的には図4に示すとおり、その時の車速信号Vsp1とトルク信号TRQ1に従ってパワーステアリング指示電流ImtEPSが決定される。
オートパーキング制御がOFFの場合、AP制御部503dの出力ImtAPはゼロであるから、最終指示電流Imt1は、
Imt1 = ImtEPS
となり、モータ電流制御部503fによってパワーステアリング指示電流ImtEPSがモータ6に通電される。
右操舵した場合、図4の通り右方向で電流が流れモータ6にトルクが発生する。そのトルクはギヤ7を介してステアリングシャフト2に伝達され補助力として作用する。左操舵の場合はその逆である。
次に、オートパーキング制御が動作している場合について説明する。
オートパーキングでは、オートパーキングECU11からCAN BUS経由で送られてきた指令信号がI/F回路502、CAN通信回路503aを介してEPSに取り込まれ、AP制御部503dでモータ電流指示値ImtAPに変換される。オートパーキング制御中はハンドル1は手放し状態であるため、パワーステアリング指示電流ImtEPSはゼロである。そのため最終指示電流Imt1は、
Imt1 = ImtAP
となり、モータ電流制御部503fによって電流ImtAPがモータ6に通電される。
図10は、パワーステアリングとして動作する場合の軌跡と、オートパーキングとして動作する場合の軌跡を重ねて書いた図である。軌跡31がパワーステアリング動作、軌跡32がオートパーキング動作の軌跡である。
パワーステアリング動作中はトルクに応じて電流が増加するため、軌跡31を描き、オートパーキング動作中はトルク信号TRQ1がほぼゼロであるから軌跡32を描く。
一方サブマイコン512は、図9に示す特性を持っている。
メインマイコン512がパワーステアリングとして動作する場合は、図10の31の軌跡を描く。これは図9の領域23の範囲にあるので、サブマイコン512は正常と判断しモータ電流を制限しない。その結果、意図通りのパワーステアリング制御が可能となる。
メインマイコン512がオートパーキングとして動作する場合は、図10の32の軌跡を描く。これは図9の領域22に入る。領域22は電流の増加率が所定値△Imd2th以下であれば、モータ電流を制限しない。オートパーキングが正常動作している場合、電流の増加率は小さいので、サブマイコンはモータ電流を制限しない。その結果、意図通りのオートパーキング制御が可能となる。
次に、メインマイコン512の故障、またはAP ECU11の異常で、急に過大な電流が流れる場合について説明する。
先ず、操舵中に操舵方向に異常電流が流れる場合は、図9の領域23に該当するが、操舵力が軽くなるだけなので、危険性は無く、制御を継続する。操舵方向と逆方向に電流が流れた場合は、図9の領域21に該当するので、サブマイコン512が異常と判断しモータ電流を制限する(OFFする)。
殆ど操舵していない状態で電流が流れた場合は、図9の領域22に該当する。急に過大な電流が流れる場合、電流の増加率△Imd2が所定値△Imd2thを超えるので、サブマイコン512が異常と判断しモータ電流を制限する(OFFする)。
急に過大な電流が流れる場合、上述の様に動作することによって、安全性を確保することが出来る。
次に、メインマイコン512の故障、またはAP ECU11の異常で、徐々に電流が増加し過大な電流に達する場合について説明する。
先ず、操舵中に操舵方向に異常電流が流れる場合と、操舵方向と逆方向に異常電流が流れる場合は、上述の「急に過大な電流が流れる場合」と同じなので省略する。
殆ど操舵していない状態で電流が流れた場合は、上述同様、図9の領域22に該当する。異常電流が徐々に増加するのでその増加率が所定値△Imd2th以下であれば、サブマイコン512は異常検出しない。しかし、ハンドル1が勝手に動き始めるとドライバはハンドル1を強く握り操舵角を維持しようとするので、トルクが発生する。この時、軌跡は図11の曲線33のようになる。異常電流が右方向であれば、トルクは左、異常電流が左方向であればトルクは右に変化する。そのため、図9の領域21に入る。その結果、サブマイコン512が異常と判断しモータ電流を制限する(OFFする)。
以上の様に実施の形態1は、操舵補助力を発生するモータ6と、モータ6に流れるモータ電流検出信号Imdを出力する電流検出手段508と、ハンドル1の操舵トルクを検出しトルク信号TRQを出力するトルク検出手段3と、少なくともトルク信号TRQに基づいてモータ6に対するモータ電流指示値Imt1を決定するモータ指示電流決定手段503c、及びモータ電流指示値Imt1に従ってモータ電流Imdを制御するモータ電流制御手段503fを含む制御装置(メインマイコン)503と、トルク信号TRQとモータ電流信号Imd2から制御装置503の異常を検出し、異常を検出した場合にモータ6の駆動を制限する監視装置(サブマイコン)512とを備え、監視装置512は、異常と判断する第1の領域21と、モータ電流信号Imd2の増加率に基づき異常、正常を判断する第2の領域22と、正常と判断する第3の領域23とを持ち、トルク信号TRQとモータ電流信号Imd2に基づいて第1乃至3の領域判別を行うもので、オートパーキング制御やレーンキーピング制御など車載LAN経由の指示に従った制御や、パワーステアリングの応答性や安定性を改善する制御を備えたパワーステアリング制御において、正常動作時の制御を制限することなく、且つ異常時にはモータ電流制御を制限し安全を確保することが可能である。
また、モータ電流信号Imd2の増加率が所定値以上の場合を異常と判断するようにしているので、制御装置が故障しモータ電流が急激に増加すると、モータ電流増加率が所定値以上となるので監視装置が異常と判断し、モータ電流を制限(遮断)させることが出来る。しかし、オートパーキングなど車載LAN情報に基づく制御は、電流の増加速度が遅いため、モータ電流増加率が所定値未満となり監視装置は異常と判断しない。その為、モータ電流が制限を受けず意図した制御が可能となる。
また、モータ電流が徐々に増加するような故障をした場合は、ドライバがハンドルを握ることでトルクが発生し、その結果、異常と判断する第1の領域21に入るので、監視装置はモータ電流を制限(遮断)させることが出来る。
つまり、異常電流が急激に発生した場合(急にハンドルが動く場合)は、ドライバが反応することは困難だが、モータ電流信号Imd2の増加率が大きいので、第2の領域22で監視装置が異常と判断しモータ電流を制限する。異常電流が徐々に増加する場合は(ハンドルがゆっくり動く場合)はドライバが反応しハンドルを握ることでモータ電流と逆方向のトルクが発生し、それによって第1の領域21に入るため、監視装置によってモータ電流を制限(遮断)することが出来、安全性を確保することが出来る。また正常時はモータ電流信号Imd2の増加率が遅いため、監視装置はモータ電流を制限しないのでオートパーキングなど意図した制御が可能となる。
更に、モータ電流信号Imd2の増加率が所定値以上で一次検知し、一次検知状態が所定時間継続した場合を異常と判断させることで、安全性を確保しつつ誤検出を回避することが出来る。
実施の形態2.
次に実施の形態2について説明する。実施の形態2は実施の形態1に対しサブマイコン512の処理を図12の様にしたものである。
図12で、512jはトルク信号TRQ2を微分し変化率△TRQ2を算出するトルク微分器、512kはトルク信号TRQ2とトルク変化率△TRQ2とモータ電流信号Imd2とモータ電流変化率△Imd2から異常と判断する第2の領域にあるか否かを判定し条件を満たしている場合はF_A2=1を、満たしていない場合はF_A2=0を出力する第2の領域判定部であり、その他は実施の形態1と同じであるため説明を省略する。
次に第2の領域判定部512kの動作について説明する。本実施の形態2でも、実施の形態1と同様、図7(c)の22a、22bの領域判定があり、図13のフローチャートに示すようにその領域内でトルク変化率△TRQ2とモータ電流変化率△Imd2の符号が不一致の場合、F_A2=1を出力し(ステップS201,S202,S203)、それ以外はF_A2=0を出力する(ステップS201,S202,S204)。
上述の様に構成することにより、以下の様に作用する。
正常動作については、実施の形態1と同様であるので説明は省略する。
一般にパワーステアリングでは応答性を改善する為にトルクの微分を用いた制御や、安定性を改善する為にモータ回転速度を用いた制御が使われる。図4のパワーステアリングの基本制御に応答性を改善する制御を加えると、軌跡は図14の34のようになる。また、図4のパワーステアリングの基本制御に安定性を改善する制御を加えると、軌跡は図15の35の様になる。この様に図14,15とも第2象限と第4象限で電流が流れる。そのため、図9の領域22に掛かる可能性がある。本実施の形態2は、この領域22では、トルク信号の変化率△TRQ2とモータ電流信号の変化率△Imd2の符号が不一致の場合を異常としているが、図14,15では、トルク変化率△TRQ2とモータ電流変化率△Imd2の符号は一致しているため異常と判断しない。ゆえに意図した制御が可能となる。
次に異常動作した場合について説明する。異常動作すると、軌跡は実施の形態1と同様、図11の33の様になる。これはトルク信号の変化率△TRQ2と電流の変化率△Imd2の符号が逆になるため、サブマイコン512は異常と判断しモータ電流を制限することが出来る。
上述の様に本実施の形態2では、監視装置(サブマイコン)512は、異常と判断する第1の領域21と、トルク信号の変化率△TRQ2を演算して得られたトルク微分信号と、モータ電流信号の変化率△Imd2を演算して得られたモータ電流微分信号が所定値以上で符号が不一致の場合を異常と判断する第2の領域22と、正常と判断する第3の領域23とを持ち、トルク信号とモータ電流信号に基づいて第1乃至3の領域判別を行うようにしたので、制御装置(メインマイコン)503が正常動作している場合は、監視装置はモータ電流を制限せず、意図した制御が可能である一方、制御装置が異常動作した場合は、モータ電流を制限(遮断)するので、安全性を確保することが出来る
実施の形態3.
次に実施の形態3について説明する。実施の形態3は実施の形態2に対し図12の第2の領域判定部512kの処理を図16のフローチャートの様に変更したものである。
先ず、ステップS301において、トルク信号信号TRQ2とモータ電流信号Imd2が図7(c)の領域22aまたは領域22b内に有るか否かを判定する。次に、領域22aにある場合は、トルク信号信号の変化率△TRQ2とモータ電流信号の変化率△Imd2の符号が一致しているか否かを判別し、不一致の場合、モータ電流変化率△Imd2がマイナスか否かを判定し(ステップS302)、マイナスならば出力F_A2=1を、そうでなければF_A2=0を出力する(ステップS303,S304,S305)。また、領域22bにある場合は、トルク信号信号の変化率△TRQ2とモータ電流信号の変化率△Imd2の符号が一致しているか否かを判別し(ステップS307)、不一致の場合、モータ電流変化率△Imd2がプラスか否かを判定しプラスなら出力F_A2=1を、そうでなければF_A2=0を出力する(ステップS308,S309,S310)。
この様に構成することで、領域22a、22b内で、電流の絶対値が増加する場合にF_A2=1を出力しそれ以外はF_A2=0を出力することが出来る。
上述の様に構成することで、領域22a、22bにおいて、電流の絶対値が増加する方向のみを異常と判断することが出来る。
実施の形態1,2で述べたように異常時は、軌跡が図11の33のように電流の絶対値が増加する方向に変化する。本実施の形態3の様に絶対値の増加のみを異常と判定することで、サブマイコン512の誤動作を更に回避させることが出来る。
なお、本実施の形態3はモータ電流の増加による判定を行っているが、トルク信号の増加や、トルク信号と電流の両方の増加で判定しても良い。
以上の様に本実施の形態3では、監視装置(サブマイコン)512は、第2の領域22において、トルク微分信号とモータ電流微分信号が所定値以上で符号が不一致、且つトルク微分信号またはモータ電流微分信号またはその両方の絶対値が増加方向の場合を異常と判断するようにしたので、制御装置(メインマイコン)503が正常動作している場合は、監視装置はモータ電流を制限せず、意図した制御が可能。しかし制御装置が異常動作した場合は、モータ電流を制限(遮断)するので、安全性を確保することが出来る。
実施の形態4.
次に実施の形態4について説明する。実施の形態4は実施の形態1に対しサブマイコン512の処理を図17の様にしたものである。
図17で、512mは、トルク信号信号TRQ2とモータ電流信号Imd2から異常と判断する第2の領域に有るか否かを判定し、条件を満たしている場合はF_A2=1を、条件を満たしていない場合はF_A2=0を出力する第2の領域判定部である。
その他は実施の形態1と同じであるため説明を省略する。
次に第2の領域判定部512mの動作について図18のフローチャートを用いて説明する。先ず、ステップS401でトルク信号TRQ2と電流Imd2が図7(c)の領域22aまたは22bの領域に有るか否かを判定し、前記領域に無い場合はNoに分岐し、ステップS402でタイマ2をクリアし、ステップS403で電流しきい値Imd2thを最大電流IMAX(例えば50A)に設定する。その後ステップS404で出力F_A2を0に設定し本処理を終了する。
トルク信号TRQ2と電流信号Imd2が図7(c)の領域22aまたは22bの領域に有る場合は、ステップS401でYesに分岐しステップS405に進む。ステップS405では、タイマ2をインクリメントし、ステップS406でタイマ2の経過時間をチェックし所定値Time2th(例えば50ms)未満ならステップS403へ進む。タイマ2の経過時間が所定値Time2th以上になれば、ステップS407でモータ電流信号Imd2の絶対値に応じたしきい値減少係数kdecを決定する。次にステップS408で電流しきい値Imd2thからステップS407で算出した減少係数kdecを減算する。次にステップS409で、電流しきい値Imd2thが所定値Ia(例えば5A)未満か否かをチェックし、未満であればステップS410で電流しきい値Imd2thに所定値Iaを代入する。ステップS409とS410で電流しきい値Imd2thが所定値Ia未満にならないよう下限クリップしている。次に、ステップS411で、モータ電流信号Imd2の絶対値と前記電流しきい値Imd2thを比較し、モータ電流信号Imd2の絶対値が電流しきい値Imd2th以下であれば、ステップS404へ進み、出力F_A2を0に設定する。モータ電流信号Imd2の絶対値が電流しきい値Imd2thより大きければステップS411でYesに分岐しステップS412で出力F_A2を1に設定する。
以後、演算周期ごとにこのフローチャートの処理を繰り返し行う。
ステップS407を図19の様に、電流Imd2の増加に伴って減少係数kdecが大きくなるように設定すると、電流しきい値Imd2thは、図20のタイミングチャートの様に時間と共に低下する。
上述の様に構成することにより、以下の様に動作する。
正常動作については、実施の形態1と同様であるので説明は省略する。また、実施の形態2で述べたように、一般にパワーステアリング応答性を改善する為にトルクの微分を用いた補償制御や、安定性を改善する為にモータ回転速度を用いた補償制御が使われる。この様な電流は、トルクが変化したときやモータが回転している間に発生するので一時的に発生する電流である。
本実施の形態4の様に電流しきい値Imd2thを最大値IMAXから徐々に低下させることで、この補償制御を妨げず意図した制御を行うことが出来る。
次に異常動作した場合について説明する。異常動作すると、軌跡は実施の形態1同様、図11の33の様になる。この電流は継続するので、電流Imd2が電流しきい値Imd2th以上の状態が継続する。その結果サブマイコンは異常と判断しモータ電流を制限することが出来る。
上述の様に本実施の形態4では、監視装置(サブマイコン)512は、異常と判断する第1の領域21と、モータ電流信号Imd2が所定値以上の状態が第1の所定時間以上継続したとき、最大電流値から時間の経過と共に低下するように電流しきい値Imd2thを生成し、モータ電流信号Imd2が電流しきい値Imd2thを超える状態が第2の所定時間以上継続したとき、異常と判断する第2の領域22と、正常と判断する第3の領域とを持ち、トルク信号と、モータ電流信号に基づいて第1乃至第3の領域判別を行うようにしたので、一時的に発生する過渡的な電流に対しては制限をせず、セルフステアに繋がる過大で長時間流れる電流に対し制限することが出来るので、パワーステアリング゛の制御性を損なうことなく安全性を確保することが出来る。
実施の形態5.
次に実施の形態5について説明する。実施の形態5は、実施の形態4に対し、しきい値減少係数kdecの設定をトルク信号の絶対値に応じて設定するようにしたものである。具体的には図21のフローチャートを用いて説明する。
同図のステップS507が先に説明したしきい値減少係数kdec設定処理で、その特性は図22の様に、トルク信号TRQ2の絶対値の増加に応じて係数kdecが大きくなるように設定している。その他は実施の形態4と同じである。
上述の様に実施の形態5では、電流しきい値Imd2thをトルク信号TRQ2が大きいときは速く低下させ、トルク信号TRQ2が小さいときはゆっくり低下させるようにしたことにより、実施の形態4と同様の作用効果が得られる。
実施の形態6.
次に実施の形態6について説明する。実施の形態6は、実施の形態1に対応してメインマイコン503の処理図3(a)を図23の様に変更したものである。
同図で、503nは右方向の電流制限値IlimitRを算出する右電流制限値演算部、503oは左方向の電流制限値IlimitLを算出する左電流制限値演算部、503pは電流加算部503eで生成したImtSUMを、前記の右電流制限値IlimitRと左電流制限値IlimitLでクリップする電流制限処理部で、その他は実施の形態1と同じである。
次に、右電流制限値演算部503nの処理について図24のフローチャートを用いて説明する。先ずステップS601でトルク信号TRQ1が左方向で所定値Taより大きいか否かを判定する(トルク信号は左をマイナスで表しているので、ステップS601では-Ta未満か否かで判断する)。条件が成立していればYesへ分岐し、ステップS602で右電流制限値IlimitRに0を代入し、ステップS603で右電流前回値Imt1Rzに電流しきい値Iaを代入する。
ステップS601で条件非成立の場合、ステップS604へ進み、トルク信号TRQ1が右方向で所定値Tb以下か否かを判定する。条件が成立してればYesへ分岐し、ステップS605で指示電流Imt1が所定値Ia以下か否かを判定し、以下であればYesに分岐し、ステップS606で右電流制限値IlimtRに所定値Iaを代入し、ステップS607で右電流前回値Imt1Rzに所定値Iaを代入する。
ステップS605で条件非成立の場合Noへ分岐し、ステップS608へ進む。ステップS608では、右電流前回値Imt1Rzに所定値kincを加算する。次にステップS609で右電流制限値IlimtRが最大電流値IMAXを超えているか否かを判定し、超えていればステップS610で右電流制限値IlimtRに最大電流値IMAXを代入する。ステップS609で条件が非成立の場合はNoに分岐する。次にステップS611で右電流前回値に現在の電流値Imt1を代入する。
ステップS604で条件非成立の場合は、ステップS612で右電流制限値IlimitRに最大電流値IMAXを代入し、ステップS613で右電流前回値Imt1Rzに所定値Iaを代入する。
次に左電流制限値演算部503oについて図25を用いて説明する。図25は左電流に対し同様の処理を行ったもので、図24に対し左右を逆にし設定値のプラス/マイナスを逆にしたもので動作としては図24と同じである。
次に図23の電流制限処理部503pについて図26を用いて説明する。電流制限処理部503pには入力値の中から最小値を選択し出力するMIN処理部503qと入力値の中から最大値を選択し出力するMAX処理部503rからなり、指示電流ImtSUMに対しIlimitRで最大値クリップ、IlimitLで最小値(左電流の最大値)クリップを行い指示電流Imt1を生成している。
上述の様に構成しているので、右電流制限値演算部503nと左電流制限値演算503oと電流制限処理部503pによって電流制限処理は図9の様になる。つまり、右電流制限値IlimitRについては、トルク信号が-Taより小さい場合(領域21)は0A、トルク信号が-Ta〜Tbの間はIa、Iaを超えて領域22に入ると、右電流制限値をkincで決まる所定の増加率(例えば20A/s)で決まる値になる。それ以外の領域(領域23)は最大電流まで通電可能な状態となる。
左側についても左右が逆になるが同様に処理される。
上述の様に構成することで、EPS指示電流決定部503cや、AP制御部503bが制限を越えるような指示値を出力しても、最終的に503pの電流制限処理によって電流が制限される。
この制限処理503n、503oは、サブマイコンの特性に合わせて設定するので、メインマイコンが正常動作している限りサブマイコンが異常判定する領域でモータ電流を流すことは無い。そのため実施の形態1同様の安全性を維持しつつサブマイコンの誤動作を回避することが出来る。
実施の形態7.
次に実施の形態7について説明する。実施の形態7は実施の形態2に対応してメインマイコンの処理を図27の様にしたものである。
同図で503sはトルク信号TRQ1を微分しトルク変化率△TRQ1を算出する微分演算部、503tはトルク信号TRQ1とトルク変化率△TRQ1とモータ電流指示値Imt1から、右方向の電流制限値IlimtRを算出する右電流制限値演算部、503uはトルク信号TRQ1とトルク変化率△TRQ1とモータ電流指示値Imt1から、左方向の電流制限値IlimtLを算出する左電流制限値演算部、503pは電流加算部503eで生成したImtSUMを、前記の右電流制限値IllimitRと左電流制限値IlimitLでクリップする電流制限処理部で、その他は実施の形態2と同じである。
次に、右電流制限処理演算部503tについて図28のフローチャートを用いて説明する。先ず、ステップS701でトルク信号TRQ1が左方向で所定値Taより大きいか否かを判定する(トルク信号は左をマイナスで表しているので、ステップS601では-Ta未満か否かで判断する)。条件が成立していればYesへ分岐しステップS702で右電流制限値IlimitRに0を代入する。
ステップS701で条件非成立の場合はステップS703へ進み、トルク信号TRQ1が右方向で所定値Tb以下か否かを判定する。条件が成立していれば、Yesへ分岐し、ステップS704で指示電流Imt1が所定値Ia以上か否かを判定し、以下であればYesに分岐し、ステップS705で右電流制限値IlimtRに所定値Iaを代入する。
ステップS704が非成立の場合ステップS706でトルク変化率△TRQ1が0以上(右方向に増加)か否かを判定し、右方向に増加している場合は右電流制限値IlimitRを最大電流IMAXに設定する。
ステップS706で条件が非成立の場合(トルク信号が左方向に変化した場合)はNoに分岐しステップS708で右電流制限値IlimitRに所定値Iaを代入する。
ステップS703で条件非成立の場合は、Noへ分岐しステップS709で右電流制限値IlimitRに最大電流IMAXを代入する。
次に左電流制限値演算部503sについて図29を用いて説明する。図29は左電流に対し同様の処理を行ったもので、図28に対し左右を逆にし設定値のプラス/マイナスを逆にしたもので動作としては図28と同じである。
電流制限処理部503pは実施の形態6と同じであるから、上述の様に構成することによって電流制限処理は図9の様になる。つまり、右電流制限値IlimitRに付いては、トルク信号が-Taより小さい場合(領域21)は0A、トルク信号が-Ta〜Tbの間はIa、Iaを超えて領域22に入ると、トルク信号が右方向に変化する場合は制限値が最大電流IMAXとなり、左方向に変化する場合は制限値が所定値Iaとなる。それ以外の領域(領域23)は最大電流まで通電可能な状態となる。
左側についても左右が逆になるが同様に処理される。
上述の様に構成することで、EPS指示電流決定部503cや、AP制御部503bが制限を越えるような指示値を出力しても、最終的に503pの電流制限処理によって電流が制限される。
この制限処理503t、503u、503pは、サブマイコンの特性に合わせて設定するので、メインマイコンが正常動作している限りサブマイコンが異常判定する領域でモータ電流を流すことは無い。そのため実施の形態1同様の安全性の維持しつつサブマイコンの誤動作を回避することが出来る。
実施の形態8.
次に実施の形態8について説明する。実施の形態8は実施の形態5に対応してメインマイコンの処理を図23のようにし、右電流制限値演算部503nを図30、左電流制限値演算部503oを図31の様にしたものである。
次に右電流制限値演算部503nについて図30を用いて説明する。
先ず、ステップS801でトルク信号TRQ1が左方向で所定値Taより大きいか否かを判定する(トルク信号は左をマイナスで表しているので、ステップS801では-Ta未満か否かで判断する)。条件が成立していればYesへ分岐し、ステップS802で右電流制限値IlimitRに0を代入する。ステップS801で条件非成立の場合はステップS803へ進み、トルク信号TRQ1が右方向で所定値Tb以下か否かを判定する。条件が成立していれば、Yesへ分岐し、ステップS804で指示電流Imt1が所定値Ia以上か否かを判定し、以下であればYesに分岐し、ステップS805で右電流制限値IlimtRに最大値IMAXを代入する。
ステップS804が非成立の場合Noへ分岐し、ステップS806でImt1の絶対値に基づいて減少係数kdecを決定する。この減少係数の特性を図32に示す。
次にステップS807で右電流制限値IlimitRに対し減少係数kdecを減じる。ステップS808で右電流制限値IlimitRが所定値Ia未満か否かを判定し、条件が成立していればステップS809で右電流制限値IlimitRに所定値Iaを代入する。ステップS808で条件非成立の場合はNoへ分岐する。ステップS803で条件非成立の場合は、ステップS810で右電流制限値IlimitRに最大電流IMAXを代入する。
次に左電流制限部503o(図23)について図31を用いて説明する。図31は左電流に対し同様の処理を行ったもので、図30に対し左右を逆にし設定値のプラス/マイナスを逆にしたもので動作としては図30と同じである。
上述の様に構成することによって、電流制限処理は図9の様になる。つまり、右電流制限値IlimitRについては、トルク信号が-Taより小さい場合(領域21)は0A、トルク信号が-Ta〜Tbの間はIMAX、指示電流Imt1がIaを超えて領域22に入ると、右電流制限値IlimitRが最大値から減少係数kdecが示す速度で所定値Iaまで低下する。それ以外の領域(領域23)は最大電流まで通電可能な状態となる。
左側についても左右が逆になるが同様に処理される。
上述の様に構成することで、EPS指示電流決定部503cや、AP制御部503bが制限を越えるような指示値を出力しても、最終的に503pの電流制限処理によって電流が制限される。
この制限処理503n、503oは、サブマイコンの特性に合わせて設定するので、メインマイコンが正常動作している限りサブマイコンが異常判定する領域でモータ電流を流すことは無い。そのため実施の形態1と同様の安全性の維持しつつサブマイコンの誤動作を回避することが出来る。
1 ハンドル
2 ステアリングシャフト
3 トルクセンサ
4 車速センサ
5 EPS ECU
6 モータ
7 ギヤ
8 ラック&ピニオン機構
9 前輪
10 バッテリ
11 AP ECU
501 トルク信号入力I/F回路
502 CAN信号入力I/F回路
503 メインマイコン
503a CAN通信回路
503b トルク入力処理部
503c EPS指示電流決定部
503d AP制御部
503e 加算部
503f モータ電流制御部
503g モータ電流入力処理部
503i モータ電流制御部
503n 右電流制限値演算部
503o 左電流制限値演算部
503p 電流制限処理部
503q MIN処理部
503r MAX処理部微分演算部
503s 微分演算部
503t 右電流制限値演算部
503u 左電流制限値演算部
504 AND回路
505 リレー駆動回路
506 リレー
507 シャント抵抗
508 電流検出回路
509 AND回路
510 FET駆動回路
511 モータ駆動回路
512 サブマイコン
512a トルク入力処理部
512b モータ電流入力処理部
512c 微分器
512d 第1の領域判定部
512e 第2の領域判定部
512f OR演算器
512g タイマ1
512h リレー出力部
512i モータ出力部
512j トルク微分器
512k 第2の領域判定部
512m 第2の領域判定部

Claims (10)

  1. 操舵補助力を発生するモータと、
    前記モータに流れるモータ電流を検出しモータ電流信号を出力する電流検出手段と、
    ハンドルの操舵トルクを検出しトルク信号を出力するトルク検出手段と、
    少なくとも前記トルク信号に基づいて前記モータに対するモータ電流指示値を決定するモータ指示電流決定手段、及び前記モータ電流指示値に従って前記モータ電流を制御するモータ電流制御手段を含む制御装置と、
    前記トルク信号と前記モータ電流信号から前記制御装置の異常を検出し、異常を検出した場合に前記モータの駆動を制限する監視装置とを備え、
    前記監視装置は、
    異常と判断する第1の領域と、
    前記モータ電流信号の増加率に基づき異常、正常を判断する第2の領域と、
    正常と判断する第3の領域とを持ち、
    前記トルク信号と前記モータ電流信号に基づいて第1乃至3の領域判別を行う
    ことを特徴とする電動パワーステアリング装置。
  2. 前記監視装置は、
    前記第2の領域において、前記モータ電流信号の増加率が所定値以上であれば異常、所定値未満であれば正常と判断することを特徴とする請求項1記載の電動パワーステアリング装置。
  3. 前記監視装置は、
    前記第2の領域において、前記モータ電流信号の増加率が所定値以上で一次検知し、この一次検知状態が所定時間継続した場合異常と判断することを特徴とする請求項1記載の電動パワーステアリング装置。
  4. 操舵補助力を発生するモータと、
    前記モータに流れるモータ電流を検出しモータ電流信号を出力する電流検出手段と、
    ハンドルの操舵トルクを検出しトルク信号を出力するトルク検出手段と、
    少なくとも前記トルク信号に基づいて前記モータに対するモータ電流指示値を決定するモータ指示電流決定手段、及び前記モータ電流指示値に従って前記モータ電流を制御するモータ電流制御手段を含む制御装置と、
    前記トルク信号と前記モータ電流信号から前記制御装置の異常を検出し、異常を検出した場合に前記モータの駆動を制限する監視装置とを備え、
    前記監視装置は、
    異常と判断する第1の領域と、
    前記トルク信号の変化率を演算して得られたトルク微分信号と、前記モータ電流信号の変化率を演算して得られたモータ電流微分信号が所定値以上で符号が不一致の場合を異常と判断する第2の領域と、
    正常と判断する第3の領域とを持ち、
    前記トルク信号と前記モータ電流信号に基づいて第1乃至3の領域判別を行う
    ことを特徴とする電動パワーステアリング装置。
  5. 前記監視装置は、
    前記第2の領域において、前記トルク微分信号と前記モータ電流微分信号が所定値以上で符号が不一致、且つ前記トルク微分信号または前記モータ電流微分信号またはその両方の絶対値が増加方向の場合を異常と判断することを特徴とする請求項4記載の電動パワーステアリング装置。
  6. 操舵補助力を発生するモータと、
    前記モータに流れるモータ電流を検出しモータ電流信号を出力する電流検出手段と、
    ハンドルの操舵トルクを検出しトルク信号を出力するトルク検出手段と、
    少なくとも前記トルク信号に基づいて前記モータに対するモータ電流指示値を決定するモータ指示電流決定手段、及び前記モータ電流指示値に従って前記モータ電流を制御するモータ電流制御手段を含む制御装置と、
    前記トルク信号と前記モータ電流信号から前記制御装置の異常を検出し、異常を検出した場合に前記モータの駆動を制限する監視装置とを備え、
    前記監視装置は、
    異常と判断する第1の領域と、
    前記モータ電流信号が所定値以上の状態が第1の所定時間以上継続したとき、最大電流値から時間の経過と共に低下するように電流しきい値を生成し、前記モータ電流信号が前記電流しきい値を超える状態が第2の所定時間以上継続したとき、異常と判断する第2の領域と、
    正常と判断する第3の領域とを持ち、
    前記トルク信号と、前記モータ電流信号に基づいて第1乃至第3の領域判別を行うことを特徴とする電動パワーステアリング装置。
  7. 前記電流しきい値を前記モータ電流信号が大きいときは速く低下させ、前記モータ電流信号が小さいときはゆっくり低下させることを特徴とする請求項6記載の電動パワーステアリング装置。
  8. 前記電流しきい値を前記トルク信号が大きいときは速く低下させ、前記トルク信号が小さいときはゆっくり低下させることを特徴とする請求項6記載の電動パワーステアリング装置。
  9. 前記第1の領域は、前記トルク信号が第1の所定値以上でモータ電流信号が前記操舵トルクと逆方向の領域、
    前記第2の領域は、前記トルク信号が第1の所定値未満で前記モータ電流信号が操舵トルクと逆方向且つ前記モータ電流信号が所定値以上の領域と、前記トルク信号が第2の所定値未満で前記モータ電流信号が前記トルク信号と同方向の領域で且つ前記モータ電流信号が所定値以上の領域を合わせた領域、
    第3の領域は、前記第1、第2の領域以外の領域であることを特徴とする請求項1乃至8のいずれか一つに記載の電動パワーステアリング装置。
  10. 前記モータ電流指示値が前記監視装置の異常を判断するしきい値より大きい値にならないようクリップするクリップ処理を前記制御装置内で行うことを特徴とする請求項1乃至9のいずれか一つに記載の電動パワーステアリング装置。
JP2010096882A 2010-04-20 2010-04-20 電動パワーステアリング装置 Expired - Fee Related JP5140109B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096882A JP5140109B2 (ja) 2010-04-20 2010-04-20 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096882A JP5140109B2 (ja) 2010-04-20 2010-04-20 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2011225108A JP2011225108A (ja) 2011-11-10
JP5140109B2 true JP5140109B2 (ja) 2013-02-06

Family

ID=45041031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096882A Expired - Fee Related JP5140109B2 (ja) 2010-04-20 2010-04-20 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP5140109B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199665B2 (en) * 2013-05-15 2015-12-01 Jtekt Corporation Electric power steering system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112251A (ja) * 1991-10-22 1993-05-07 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP3517715B2 (ja) * 1994-06-08 2004-04-12 光洋精工株式会社 電動パワーステアリング装置
JP3652189B2 (ja) * 1999-10-14 2005-05-25 光洋精工株式会社 電動パワーステアリング装置
JP2002347635A (ja) * 2001-05-28 2002-12-04 Unisia Jecs Corp 電動パワーステアリング装置
JP4932558B2 (ja) * 2007-03-26 2012-05-16 株式会社ショーワ 電動パワーステアリング装置

Also Published As

Publication number Publication date
JP2011225108A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
US8960363B2 (en) Electric power steering device
EP2022701B1 (en) Electric power steering device
US20080294313A1 (en) Electric power steering apparatus
US8272474B2 (en) Electric power steering system
JP5406377B2 (ja) 制御システム、及び電動パワーステアリング制御装置
JP4645343B2 (ja) 車両の操舵アシスト装置
WO2008084755A1 (ja) 操舵装置
JP5224032B2 (ja) 操舵制御装置
US11897550B2 (en) Steering control device
CN112706833A (zh) 操舵控制装置
JP5416722B2 (ja) 電動パワーステアリング装置
EP1518776B1 (en) Control apparatus for an electrically driven power steering
JP5250074B2 (ja) 電動パワーステアリング装置の制御方法
JP5552744B2 (ja) 電動パワーステアリング装置
JPH08175406A (ja) 電動パワーステアリング装置の制御装置
JP2010202062A (ja) 電動パワーステアリング装置
JP5140109B2 (ja) 電動パワーステアリング装置
JP2008296829A (ja) 電動パワーステアリング装置
JP5181540B2 (ja) 電動パワーステアリング装置
JP5427797B2 (ja) 電動パワーステアリング装置
JP2009023582A (ja) 電動パワーステアリング装置
JP3637764B2 (ja) 電動パワーステアリング装置の制御装置
JP2014088138A (ja) 電動パワーステアリング装置
US20230227098A1 (en) Control device and control method for electric power steering apparatus, and motor module
JP2012144099A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R151 Written notification of patent or utility model registration

Ref document number: 5140109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees